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FLA 5.6
BACKGROUND: Clinical heterogeneity in bronchiectasis remains a challenge for improving the
appropriate targeting of therapies and patient management. Antimicrobial peptides (AMPs)
have been linked to disease severity and phenotype.

RESEARCHQUESTION: Can we identify clusters of patients based on the levels of AMPs, airway
inflammation, tissue remodeling, and tissue damage to establish their relationship with
disease severity and clinical outcomes?

STUDY DESIGN AND METHODS: A prospective cohort of 128 stable patients with bronchiectasis were
recruited across three centers in three different countries (Spain, Scotland, and Italy). A two-step
cluster strategy was used to stratify patients according to levels of lactoferrin, lysozyme, LL-37, and
secretory leukocyte protease inhibitor in sputum. Measurements of inflammation (IL-8, tumor growth
factor b, and IL-6), tissue remodeling and damage (glycosaminoglycan, matrix metallopeptidase 9,
neutrophil elastase, and total and bacterial DNA), and neutrophil chemotaxis were assessed.

RESULTS: Three clusters of patients were defined according to distinct airway profiles of AMPs.
They represented groups of patients with gradually distinct airway infection and disease
severity. Each cluster was associated with an airway profile of inflammation, tissue remodeling,
and tissue damage. The relationships between soluble mediators also were distinct between
clusters. This analysis allowed the identification of the cluster with the most deregulated local
innate immune response. During follow-up, each cluster showed different risk of three or more
exacerbations occurring (P ¼ .03) and different times to first exacerbations (P ¼ .03).

INTERPRETATION: Bronchiectasis patients can be stratified in different clusters according to
profiles of airway AMPs, inflammation, tissue remodeling, and tissue damage. The combi-
nation of these immunologic variables shows a relationship with disease severity and future
risk of exacerbations. CHEST 2021; -(-):---
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Take-home Point

STUDY QUESTION: Can we identify distinct clusters
of bronchiectasis patients based on airway immune
profile?
RESULTS: We found three clusters of patients based
on airway AMPs, inflammation, tissue remodeling,
and tissue damage associated to distinct severity
disease and future exacerbations.
INTERPRETATION: The combination of airway
AMPs, inflammation, tissue remodeling, and tissue
damage markers shows a relationship with disease
severity and future risk of exacerbations.
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Bronchiectasis in adults is a heterogeneous, chronic,
irreversible airway disease characterized by recurrent
airway infection that worsens the prognosis.1 Clinical
heterogeneity in airway diseases has been studied
from clinical data.2,3 In bronchiectasis, chronic
infection with Pseudomonas aeruginosa, other
pathogens, and daily sputum production without
airway infection allowed the identification of four
clinical phenotypes.2 However, a need exists to
identify biological clusters based on pathobiological
mechanisms (endotypes) to target antiinflammatory
therapies better.

Neutrophilic inflammation is one of the major drivers in
bronchiectasis. Neutrophils are recruited to the lung
during infection in proportion to bacterial load.4 In the
lung, neutrophils release antimicrobial peptides (AMPs),
also produced by alveolar macrophages and airway
epithelial cells.5,6 To our knowledge, the most abundant
and relevant AMPs in other chronic airway diseases and
in P. aeruginosa infection are LL-37, secretory leukocyte
protease inhibitor (SLPI), lactoferrin, and lysozyme.7-9

Recently, we showed that bronchiectasis patients
demonstrated deregulated airway AMP levels, especially
the frequent exacerbator phenotype.10 Elevated LL-37
and reduced SLPI levels are related independently with
2 Original Research
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more severe disease and can predict risk of
exacerbations. Furthermore, elevated LL-37, lactoferrin,
and reduced SLPI are associated with airway infection,
especially that resulting from P. aeruginosa.10 Airway
AMPs in COPD are associated with inflammatory
markers such as IL-6, IL-8, and tumor necrosis factor
a.11 However, the relationships between airway AMPs
and cytokines have not been described yet in
bronchiectasis.

Airway epithelial damage is another consequence of
neutrophilic inflammation, which favors airway
infection.12 Among the constituents of the airway
epithelium, glycosaminoglycans (GAGs) are
polysaccharides expressed ubiquitously on the
extracellular matrix of the lung and cell surface and in
intracellular compartments.13 GAGs also can interact
and modulate the function of AMPs,14 DNA,
chemokines, cytokines, growth factors, enzymes, and
adhesion molecules.15,16 To our knowledge, GAGs levels
in bronchiectasis have not been described yet.

Biological heterogeneity in airway diseases is reported in
COPD and asthma. Biologic clusters based on sputum
IL-1b, serum C-X-C motif chemokine 10, and the
number of peripheral eosinophils allow for the
recognition of clinical COPD exacerbation
phenotypes.17 Furthermore, sputum cellular and
cytokines profiles are associated with distinct and
overlapping groups of patients with asthma and
COPD.18,19 This clustering strategy therefore could be a
potential tool to discriminate patients better.

In this study, we hypothesized that the distinct degrees
of disease severity may be explained by profiles of airway
AMPs, inflammation, tissue remodeling, and tissue
damage. First, we identified clusters of patients based on
airway AMP levels; second, we showed that clusters were
linked to airway inflammation, remodeling, and tissue
damage; and finally, we found that these clusters differ
in clinical severity and outcomes.
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Methods
Study Design and Ethics

This international, multicenter, prospective study included consecutive
adult patients with bronchiectasis. The study was approved by the
ethics committee “Comitè Ètic d’Investigació Clínica de la Fundació
de Gestió Sanitària de l’Hospital de la Santa Creu i Sant Pau de
Barcelona” (Identifier: IIBSP-BRO-2013). All patients signed the
informed consent form.
Patients

Clinically stable patients with bronchiectasis (n ¼ 128) were recruited
from three regional specialist bronchiectasis clinics: Hospital de Sant
Pau i la Santa Creu (Barcelona, Spain), Ninewells Hospital (Dundee,
Scotland), and Ospedale Maggiore Policlinico (Milano, Italy).
Inclusion and exclusion criteria were defined as previously
described.7 Demographic and clinical characteristics were recorded.
To ascertain the reference AMP levels in indications not associated
with bronchiectasis, we included eight control participants with no
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respiratory conditions and normal spirometry results. For neutrophil
experiments, 10 healthy donors, sex- and age-matched with patients,
were included. Patients were followed-up prospectively for 1 year to
assess the number and the time of the first exacerbation from the
inclusion.

Sample Collection and Processing

Spontaneous sputum samples were obtained at the time of inclusion
and were processed within 2 h of collection as described
previously.10 Bacteriologic assays were performed, and sputum
supernatants were frozen at -80�C until analysis.

Bacteriology Analysis

Specific microorganisms were identified in sputum samples according
to standard laboratory methods and were classified as recognized
pathogenic bacteria—P. aeruginosa, Haemophilus influenzae,
Streptococcus pneumoniae, Moraxella catarrhalis, Stenotrophomonas,
Serratia, Staphylococcus species, and Escherichia coli—or
nonpathogenic bacteria—Streptococcus viridans, Corynebacterium
species, and coagulase-negative staphylococci.20

AMPs and Cytokine Measurements

Sputum LL-37 (Hycult Biotech), lactoferrin, lysozyme (AssayPro),
SLPI (R&D Systems), IL-8, tumor growth factor b (TGF-b; Mabtech
AB), and IL-6 (Immunotools) were measured by commercial
enzyme-linked immunosorbent assay kits.7 The limits of detection
were 10 pg/mL for IL-8 and IL-6 and 40 pg/mL for TGF-b. Samples
were diluted 1:25 for IL-8, 1:5 for TGF-b, and 1:10 for IL-6.

Tissue Remodeling and Damage Assessment

Sulphated GAGs (keratan, chondroitin, and heparin sulphate) were
measured in sputum supernatants using a commercial competitive
enzyme-linked immunosorbent assay detection kit (Fine Biotech
Co.). The limit of detection was 1.563 ng/mL, and samples were
diluted 1:3. Levels of matrix metallopeptidase 9 were measured using
a commercial enzyme-linked immunosorbent assay kit (R&D
Systems). Neutrophil elastase activity was measured by activity-based
immunoassay (ProAxsis Ltd.), as described previously.21

DNA Measurement

Total DNA was extracted from sputum supernatant using the QIAmp
DNA Blood Kit (Qiagen) following the manufacturer’s instructions
and was measured using the Nanodrop ND-1000 Spectrophotometer
(Thermo Fisher Scientific). Bacterial DNA was isolated using the
Femto Bacterial DNA Quantification Kit (Zymo Research) by a
quantitative real-time polymerase chain reaction system
(ThermoFisher).

Blood Neutrophil Chemotaxis Assays
Roswell Park Memorial Institute 1640 medium (Lonza), supplemented
with 10% sputum supernatants, was placed in the bottom of a 24-well
chestjournal.org
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plate with 3-mm transwell inserts (Millipore). Above, 1 � 106/mL of
healthy blood neutrophils purified using Ficoll-Hypaque Q, dextran-
saccharose sedimentation, and lysis of erythrocytes were added and
incubated for 4 h at 37�C 5% CO2. Next, inserts were removed and
the migrating neutrophils at the bottom were harvested and counted
by flow cytometry (MACSQuant cytometer; Miltenyi Biotec). As a
control for unspecific migration, a well with neutrophils and
medium alone was included.

Clustering Analysis

To identify the phenotypes of bronchiectasis based on sputum AMPs,
we carried out a scalable two-step cluster analysis using log-likelihood
distance measures. The clustering was an explorative analysis to group
patients based in the distribution of LL-37, SLPI, lactoferrin, and
lysozyme concentrations. The sequence of the process was: (1)
testing the normal (Gaussian) distribution of variables by the
Kolmogorov test, (2) analyzing the independency of the variables by
bivariate correlation and validating it by the scatterplot of the pairs
of variables, and (3) an unsupervised two-step clustering using log-
likelihood distance measurement and continuous variables
standardized using Z scores in SPSS version 22 software (SPSS Inc.).
This clustering method is preferred when the most appropriate
number of clusters to fit the data is not known before the clustering
procedure. Two clustering variables (LL-37 and SLPI) finally were
selected because they did not have substantial multicollinearity (r >

0.3) among the four AMPs (correlation matrix in e-Table 1). The
optimal number of clusters (n ¼ 3) was selected automatically by an
algorithm based on Akaike’s information criterion. The resulting
clusters distributed the patients in cluster 1 (n ¼ 33), cluster 2 (n ¼
74), and cluster 3 (n ¼ 21). The two variables included produced a
silhouette coefficient of 0.7, indicative of good data partitioning. In
this model, we found that SLPI showed a predictive strength of 1
and LL-37 showed a predictive strength of 0.99 in accordance with
cluster ability and quality. To minimize order effects, we randomly
ordered the patients for the analysis.

Statistical Analysis

The Kolmogorov-Smirnov test was applied to test for normal data
distribution. Categorical variables were presented as frequencies.
Continuous variables were presented as mean and SD or median and
interquartile range (IQR; 25th-75th percentiles). The comparisons
were analyzed using the analysis of variance or their corresponding
nonparametrical tests when required. Multiple comparisons between
groups were analyzed by the Bonferroni or Dunn test, according to
their normal distribution. Correlations were analyzed using Pearson
or Spearman coefficients according to their normal distribution.
Time to first exacerbation was modeled using Kaplan-Meier analysis.
In each figure legend, the number of samples is indicated. The
correlation matrix was obtained by R software (R Foundation for
Statistical Computing) and Corrplot packages Q.22 A P value of less
than .05 was considered significant.
319
320

321
322
323
324
325
326
327
328
329
330
Results

Clinical Characteristics

Table 1 shows the demographic and clinical
characteristics of all patients. The mean age was 69 � 10
years and 56.3% were women. Patients were
predominantly nonsmokers (59.4%) and had idiopathic
bronchiectasis (45.3%). The mean FEV1 (percentage
predicted) was 78.4 � 28.8 L and the mean BMI was 25.7
� 5.5 kg/m2. Half of the patients experienced frequent
exacerbations.23 Demographics and clinical characteristics
of control participants are shown in e-Table 2.

Compared with control participants, bronchiectasis
patients showed significantly higher sputum levels of LL-
37 (median, 0.02 mg/mL [IQR, 0.01-0.2 mg/mL] vs 1.8 mg/
mL [IQR, 0.2-5.4 mg/mL]; P ¼ .004) and lower levels of
SLPI (median, 7.7 mg/mL [IQR, 1.3-11.1 mg/mL] vs 0.5
3
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TABLE 1 ] Patient Demographics, Clinical Characteristics, and Prior Treatments of Patients Stratified in Each
Cluster Q19

Variable All Patients (n ¼ 128) Cluster 1 (n ¼ 33) Cluster 2 (n ¼ 74) Cluster 3 (n ¼ 21) P Value

Age, y 69 � 10 70 � 3 70 � 1 72 � 2 .7

Female sex 72 (56.3) 18 (54.5) 42 (56.8) 12 (57.1) .9

Smoking status

Never 76 (59.4) 19 (57.6) 43 (58.1) 14 (66.7) .1

Former 30 (23.4) 5 (15.2) 18 (24.3) 7 (33.3) .

Current 22 (17.2) 9 (27.3) 13 (17.6) 0 (0) .

Comorbidities

Cardiovascular disease 29 (22.7) 6 (18.2) 21 (28.4) 2 (9.5) .1

Diabetes mellitus 12 (9.4) 6 (18.2) 5 (6.8) 1 (4.8) .1

Stroke 8 (6.3) 2 (6.1) 5 (6.8) 1 (4.8) .9

COPD 23 (21) 7 (21.9) 12 (20.3) 4 (21.1) 1

Treatment

LABA 76 (59.4) 24 (72.7) 35 (47.3) 17 (81.0) .004

LAMA 42 (32.8) 13 (39.4) 22 (29.7) 7 (33.3) .6

Inhaled corticosteroids 55 (43) 13 (39.4) 27 (36.5) 15 (71.4) .01

Inhaled antibiotics 6 (4.7) 2 (6.1) 2 (2.7) 2 (9.5) .4

Cause

Idiopathic 58 (45.3) 11 (33.3) 37 (50) 10 (47.6) .3

After infection 21 (16.4) 6 (18.2) 11 (14.9) 4 (19) .

After TB 12 (9.4) 6 (18.2) 6 (8.1) 0 (0) .

Others 37 (28.9) 10 (30.3) 20 (27) 7 (33.3) .

Past history of pertussis 7 (5.5) 2 (12.5) 1 (1.9) 4 (26.7) .008

Exacerbations previous 1 y

0 23 (18) 6 (18.2) 13 (17.6) 4 (19) .9

1-2 41 (32) 11 (33.3) 25 (33.8) 5 (23.8) .

3 or more 64 (50) 16 (48.5) 36 (48.6) 12 (57.1) .

Data are presented as No. (%) or mean � SD, unless otherwise indicated. LABA ¼ long-acting b agonist; LAMA ¼ long-acting muscarinic antagonist.
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mg/mL [IQR, 0.2-3.1 mg/mL]; P ¼ .008). No significant
differences were observed in lactoferrin (median, 113.2
mg/mL [IQR, 45.9-240.4 mg/mL] vs 59.4 mg/mL [IQR,
13.8-168.8 mg/mL], respectively; P¼ .2) or lysozyme (68.9
mg/mL [IQR, 39.3-104.7 mg/mL] vs 80.5 mg/mL [IQR, 57-
121.3 mg/mL], respectively; P ¼ .5) levels.

Cluster Classification

We then studied the relationship between AMPs to
apply clustering strategies. We found strong correlations
only between lactoferrin and lysozyme (r ¼ 0.468; P <

.0001) and LL-37 (r ¼ 0.698; P < .0001). After
confirming that LL-37 and SLPI did not show strong
multicollinearity, we used them as clustering variables.
Table 1 also shows that cluster 3 included the highest
percentage of patients taking inhaled corticosteroids
(P ¼ .01). However, AMP levels were comparable
between treated and nontreated patients with inhaled
4 Original Research
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corticosteroids in each cluster (data not shown). Cluster
3 also included the highest percentage of patients taking
long-acting b agonists (P ¼ .004) and of patients with a
history of pertussis (P ¼ .008).

Airway AMP Levels

The sputum profile of AMPs in each cluster is shown in
Figure 1A. All these AMPs were significantly different
between clusters (P < .0001). We found that cluster 1
was comparable with control participants. Cluster 2
showed lower lysozyme and SLPI levels than control
participants, whereas cluster 3 showed higher LL-37 and
lactoferrin levels and lower SLPI levels than control
participants.

Airway Infection and Disease Severity

The percentage of airway infection was significantly
different among clusters: 42.4% of infected patients in
[ -#- CHE ST - 2 0 2 1 ]
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Figure 1 – Q16Graph showing the profile of the airway levels of antimicrobial peptides (lactoferrin, lysozyme, LL-37, and SLPI levels) in each cluster of
patients (n ¼ 128). Red Q22circles showed the position of patients infected by P. aeruginosa. The adjusted P values are obtained by Bonferroni or Dunn test
correction, according to their normal distribution. SLPI ¼ secretory leukocyte protease inhibitor. *P < .05; **P < .01; ***P < .001; ****P < .0001.
*cluster 1 and cluster 2; #cluster 1 and cluster 3; $cluster 2 and cluster 3. Q17
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cluster 1, 67.6% of patients in cluster 2, and 85.7% of
patients in cluster 3 (P ¼ .005). P. aeruginosa infection
was present in 12.1%, 31.1%, and 52.4% of patients,
n = 33
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respectively (P ¼ .006) (Fig 2A). Cluster 3 patients
showed the highest severity assessed by Bronchiectasis
Severity Index (P ¼ .01) and FEV1, Age, Chronic
B

0

2 C3

*

0
C1 C2 C3

50

100

F
E

V
1
 (

%
 p

re
d

ic
te

d
)

150

200
0.1

C1 C2 C3

5

10

15

20

*

C1 vs C2 P = .03
C1 vs C3 P = .001
C2 vs C3 P = .1 B

S
I 

s
c

o
re

ter of patients. A, Percentage of airway infection. P value obtained by c 2

cluded in these scores such as BMI and FEV1 percentage predicted (n ¼
n, according to their normal distribution. C ¼ cluster; FACED ¼ FEV1,

5

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

ary 2021 � 7:33 pm � EO: CHEST-20-3516

http://chestjournal.org


0

10
,0

00

20
,0

00

40
,0

00

IL-8 (pg/ml)

60
,0

00

80
,0

00

rho = 0.38
P = .05

1

2

C
h

e
m

o
ta

x
is

 I
n

d
e

x

3

4

5
B

rho = 0.49
P = .009

0
0

10
,0

00

LL-37 (ng/ml)

20
,0

00

30
,0

00

1

2

C
h

e
m

o
ta

x
is

 I
n

d
e

x

3

4

5
C

10–4

A

Cluster 1 Cluster 2 Cluster 3

IL-
8

TG
F-
β

IL-
6

IL-
8

TG
F-
β

IL-
6

IL-
8

TG
F-
β

IL-
6

10–3

10–2

10–1

100

101

p
g

/m
l

102

103

104

105

#

***
$$$ $

p
ri
n
t
&

w
e
b
4
C
=
F
P
O

p
ri
n
t
&

w
e
b
4
C
=
F
P
O

p
ri
n
t
&

w
e
b
4
C
=
F
P
O

Figure 3 – A-C, Inflammatory mediators in each cluster of patients. A, Profile of IL-8, tumor growth factor b (TGF-b), and IL-6 levels in each cluster
(n ¼ 128). The adjusted P values are obtained by Dunn’s test correction. B-C, Relationship between chemotaxis of healthy blood neutrophils cultured in
sputum supernatants (n ¼ 25) and the content of IL-8 (B) and (C) LL-37 sputum levels. Correlations were analyzed using the Spearman test. ***P <
.001. *cluster 1 and cluster 2; #cluster 1 and cluster 3; $cluster 2 and cluster 3. Q18
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Colonization, Extension, and Dyspnea score (P ¼ .02)
and the lowest values of BMI (P ¼ .01). This finding was
not influenced by gender or age. Cluster 3 also showed the
lowest value of FEV1 percentage predicted, although only
a trend was observed between clusters (P ¼ .07) (Fig 2B-
D).

Inflammation

Cluster 3 patients showed the highest IL-8 (P ¼ .0003)
and lower IL-6 levels than cluster 2 patients (P ¼ .01).
Cluster 2 patients showed lower TGF-b levels than cluster
1 patients (P¼ .0002) (Fig 3A). Because bronchiectasis is
characterized by neutrophilic inflammation,4 we tested
the capacity of sputum supernatants from bronchiectasis
6 Original Research
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patients to induce the chemotaxis of healthy blood
neutrophils. Although we did not observe statistically
significant differences among clusters, we did observe a
positive correlation between the chemotaxis index and
the sputum content of IL-8 (r¼ 0.38; P¼ .05) and LL-37
(r ¼ 0.49; P ¼ .009) (Fig 3B, 3C).

Tissue Remodeling and Airway Damage

Cluster 3 patients showed the highest levels of GAGs (P <

.0001), matrix metallopeptidase 9 (P ¼ .004), and
neutrophil elastase activity (P ¼ .005) (Fig 4A-C). We also
observed that cluster 3 patients showed the highest levels of
total DNA and bacterial DNA (P < .0001) (Fig 4D). The
overall analysis revealed a distinct profile of relationships
[ -#- CHE ST - 2 0 2 1 ]

anuary 2021 � 7:33 pm � EO: CHEST-20-3516



D

0

20

40

60

T
o

ta
l 
D

N
A

 (
n

g
/μ

l)

80

100

C1 C2 C3

****
****

50

100

500

B
a

c
te

ri
a

l 
D

N
A

 (
p

g
/μ

l)

1,000

0

1,500

C1 C2 C3

****
****

10–1

C1 C2 C3

100

101

G
A

G
s
 (

n
g

/m
l)

102

103

A

****
***

B

0

2,000

4,000

M
M

P
-9

 (
μg

/m
l)

6,000

8,000

C1 C2 C3

0.06
**

C

0

100

N
e

u
tr

o
p

h
il
 e

la
s
ta

s
e

a
c

ti
v
it

y
 (
μg

/m
l)

200

300

C1 C2 C3

*
**

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 4 – A-D, Tissue remodeling and airway epithelial damage in each cluster of patients. A, Sulphated GAG levels (n ¼ 128). B, MMP-9 levels (n ¼
81). C, Activity of neutrophil elastase (n ¼ 78). D, Total and bacterial DNA levels (n ¼ 128 and n ¼ 60, respectively). The adjusted P values are
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among AMPs, inflammatory mediators, and markers of
tissue remodeling and damage in each cluster (e-Fig 1).

Longitudinal Outcomes

Ninety-eight patients experienced exacerbation during
the 1-year follow-up. Of them, 24 patients (24.5%)
experienced severe exacerbations. In cluster 3, 66.7% of
patients experienced three or more total exacerbations
during follow-up, compared with 37.8% in cluster 2 and
24.2% in cluster 1 (P ¼ .03) (Fig 5A). Cluster 3 patients
also experienced more severe exacerbations compared
with cluster 2 and cluster 1 patients (0.8� 1.5 vs 0.2� 0.6
vs 0.1 � 0.3, respectively; P ¼ .006) (Fig 5B). Cluster 3
patients showed a shorter time to first exacerbation
compared with cluster 1 patients (hazard ratio, 2.1;
95% CI, 1.0-4.2; P¼ .02) and a tendency toward a shorter
time to first exacerbation compared with cluster 2
patients (hazard ratio, 1.4; 95% CI, 0.8-2.5; P ¼ .2) (Fig
5C). Interestingly, among the patients with and without
P. aeruginosa infection was a similar percentage of
patients in cluster 3 who were hospitalized (41% and 44%,
respectively) who had experienced 3 or more
exacerbations (both 66.6%) and who experienced an
exacerbation in the next 5 months (83% and 77%,
respectively). We also observed that cluster 2 patients
experienced exacerbation earlier than cluster 1 patients
(hazard ratio, 1.7; 95% CI, 1.1-2.6; P ¼ .04) (Fig 5C).
Interestingly, the comparison of clinical outcomes among
chestjournal.org
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clusters revealed us that none of the cluster 1 patients, but
50% of cluster 2 patients and 41% of cluster 3 patients,
with P. aeruginosa infection were hospitalized.
Discussion
In this study, we applied a new strategy combining
airway AMPs to identify three biological clusters
associated with distinct profiles of airway inflammation,
tissue remodeling, and tissue damage. Furthermore, the
three clusters showed distinct degrees of past, current,
and future clinical parameters. This tool helped us to
identify a cluster (cluster 3) with the highest severity and
the highest risk of future exacerbations characterized by
a deregulated local innate immune response and
increased tissue remodeling and damage. We also
identified two clusters (clusters 1 and 2) with low tissue
remodeling and damage that could explain their severity.

Our cluster strategywas based onLL-37 and SLPI because of
their independence and their marked association with
Bronchiectasis Severity Index, airway infection, and risk of
exacerbation.10 The three clusters presented different airway
AMPprofiles. Cluster 3, with the highest levels of LL-37 and
lactoferrin and the lowest levels of SLPI, were the patients
with the highest severity. Inversely, cluster 1, which showed
an airway AMP profile similar to control participants, were
the mildest patients. Finally, cluster 2, with low SLPI and
lysozyme levels, showed moderate severity. It should be
7
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Figure 5 – A-C, Relationship between clusters and clinical outcomes. A, Percentage of the total exacerbations during 1 year of follow-up (n ¼ 128). B,
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mentioned that our control airway AMP levels are
comparable with those of other reports.11,24 Compared with
other work,17-19 we obtained clusters based onAMPs, rather
than on extensive panels of sputum inflammatory
mediators, because AMPs mainly are neutrophil proteins
and are closely related to airway infection.

We found that airway AMP profiles in each cluster were
associated distinctly with airway infection. Interestingly,
cluster 3 patients, with high AMP levels, were expected
to have a greater protection against infection. However,
they showed the highest percentage of airway infection.
This apparent contradiction could be explained by
Cole’s vicious cycle hypothesis,25 suggesting that chronic
inflammation contributes to the persistence of bacteria,
which leads to greater inflammation. In fact, cluster 3
patients frequently were infected with P. aeruginosa,
which is linked to great inflammation, severity, and poor
outcomes.26 We also found that patients infected by
P. aeruginosa showed a heterogeneous airway immune
profile. Therefore, both AMPs and P. aeruginosa should
be explored together in future extensive cohorts.
Although cluster 1 and 2 patients demonstrated lower
inflammation and better outcomes than cluster 3
patients, 12% and 31% of patients, respectively, were
infected with P. aeruginosa. This finding has several
possible explanations. One is a lower bacterial load in
clusters 1 and 2 than in cluster 3.27 Although data for the
quantitative bacterial load are not available, we found
that cluster 3 had the highest sputum bacterial DNA,
which is in line with this hypothesis. Another possibility
is that clusters are associated with different P. aeruginosa
strains in terms of virulence factors, biofilm production,
and antimicrobial resistance that favor their persistence
8 Original Research
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in the lungs.28-30 Thus, we speculate that cluster 3 could
be the cluster with the most virulent and resistant
P. aeruginosa strains. Regarding infections, we did not
observe any association between clusters and causes of
infection. However, it should be mentioned that only
9.4% of patients had recovered from TB, and a more
extensive cohort is needed to reach conclusions about
the impact of causes in our cluster classification.

We found that LL-37 levels are correlated with in vitro
neutrophil migration toward sputum, confirming that this
AMP has additional functions. LL-37 also is associated
with endotoxin binding, wound healing, release of
histamine and leukotriene B4, and modulation of
dendritic cell function.31 At physiologic concentrations,
LL-37 properties are beneficial for the host defense, but at
higher concentrations, LL-37 has a cytotoxic effect on
leukocytes and epithelial cells.32,33 The high levels of total
DNA in cluster 3 patients suggest the death of neutrophils
and epithelial cells resulting from cytotoxic LL-37 levels. It
is reported that sputum34 and blood35 neutrophils from
bronchiectasis patients showed delayed apoptosis.
However, the sputum soluble factors reflect the
consequences of the presence of neutrophils in airways.
We determined IL-8 levels to be an indirect measure of the
presence of neutrophils, and cluster 3 showed the highest
IL-8 levels. We did not find differences in IL-8 and total
and bacterial DNA between clusters 1 and 2, suggesting
comparable numbers of sputum neutrophils.

We found different GAGs levels in the sputum from
bronchiectasis patients. Cluster 3 showed the highest
airway sulphated GAGs levels, followed by cluster 2,
suggesting an excessive tissue remodeling characteristic
[ -#- CHE ST - 2 0 2 1 ]
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of excessive inflammation and an imbalance between
pulmonary proteases and antiproteases.36 Cluster 3
showed the highest matrix metallopeptidase 9 levels and
neutrophil elastase activity. They contribute to the
damage of airway epithelium through the breakdown of
GAGs37 and render the airways more susceptible to
infection.25 The analysis of the relationship between the
immune parameters determined revealed that almost all
the relationships observed in clusters 1 and 2 were
absent in cluster 3. This suggests that the poor outcomes
in cluster 3 could be linked to deregulated airway
immune responses. We also observed that cluster 3
included a high percentage of patients treated with
inhaled corticosteroids. Although we cannot infer
whether this treatment is the cause or the consequence,
studies have reported the inhibitory effects of inhaled
corticosteroids on AMPs.38,39 Other known regulatory
factors of AMP production are vitamin D levels,40 which
were not evaluated in this study, and smoking status,41

which did not show any influence in the clustering of the
cohort. Therefore, the severity of bronchiectasis could be
a combination of factors, including inflammation,
remodeling, and deregulation of certain AMPs.
Although we did not find significant differences in the
LL-37 levels between clusters 1 and 2 or in the SLPI
levels between clusters 2 and 3, these clusters were
significantly different in inflammatory mediators, tissue
remodeling and damage, severity, and clinical outcomes.
These findings suggest that the AMP profile is relevant
to stratify the bronchiectasis patients with distinctive
clinical parameters and future exacerbations.
chestjournal.org
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Our study has some limitations. First, we had no
consecutive samples during the follow-up. Therefore, we
could not analyze the long-term stability of these
clusters. Second, we are aware of the risk of spurious
associations resulting from multiple statistical
comparisons. However, we focused the cluster analysis
on two independent markers (LL-37 and SLPI) clearly
associated with clinical parameters at baseline. Finally,
airway infection was determined by conventional
microbiological cultures instead of molecular diagnosis,
which may explore better the characteristics of airway
infection in each cluster.
Interpretation
Our cluster strategy identifies three clusters of
bronchiectasis patients with distinct profiles of AMPs,
inflammation, and lung remodeling and damage.
These profiles are translated into distinct and gradual
clinical phenotypes in terms of airway infection,
disease severity, and outcomes, strengthening the
validity of these biological clusters. However, it is
important to validate these clusters externally.
Furthermore, our work gives relevance to the existence
of distinct relationships among airway immune
response mediators in each biological cluster.
Therefore, our work highlights the importance of
identifying patients with distinct grades of
severity based on the airway immune profile to
improve therapies to restore pulmonary immune
homeostasis.
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