From Trustworthy Data to Trustworthy loT: A Data
Collection Methodology Based on Blockchain

CLAUDIO A. ARDAGNA, Universita degli Studi di Milano

RASOOL ASAL, EBTIC, Khalifa University of Science, Technology and Research
ERNESTO DAMIANI", EBTIC, Khalifa University of Science, Technology and Research
NABIL EL IOINI, Free University of Bozen

MEHDI ELAHI, University of Bergen

CLAUS PAHL, Free University of Bozen

Internet of Things (IoT) is composed of physical devices, communication networks, and services provided
by edge systems and over-the-top applications. IoT connects billions of devices that collect data from the
physical environment, which are pre-processed at the edge and then forwarded to processing services at the
core of the infrastructure, on top of which cloud-based applications are built and provided to mobile end users.
IoT comes with important advantages in terms of applications and added value for its users, making their
world smarter and simpler. These advantages, however, are mitigated by the difficulty of guaranteeing IoT
trustworthiness, which is still in its infancy. IoT trustworthiness is a must especially in critical domains (e.g.,
health, transportation) where humans become new components of an IoT system and their life is put at risk by
system malfunctioning or breaches. In this paper, we put forward the idea that trust in IoT can be boosted if
and only if its automation and adaptation processes are based on trustworthy data. We therefore depart from
a scenario that considers the quality of a single decision as the main goal of an IoT system, and consider the
trustworthiness of collected data as a fundamental requirement at the basis of a trustworthy IoT environment.
We therefore define a methodology for data collection that filters untrusted data out according to trust rules
evaluating the status of the devices collecting data and the collected data themselves. Our approach is based
on blockchain and smart contracts, and collects data whose trustworthiness and integrity are proven over
time. The methodology balances trustworthiness and privacy, and is experimentally evaluated in real-world
and simulated scenarios using Hyperledger fabric blockchain.

CCS Concepts: « Information systems — Computing platforms; Trust; Information integration; « Com-
puter systems organization — Distributed architectures; « Security and privacy — Security services.

Additional Key Words and Phrases: Blockchain, Internet of Things, Trustworthiness

ACM Reference Format:

Claudio A. Ardagna, Rasool Asal, Ernesto Damiani, Nabil El Ioini, Mehdi Elahi, and Claus Pahl. 2019. From
Trustworthy Data to Trustworthy IoT: A Data Collection Methodology Based on Blockchain. ACM Transactions
on Cyber-Physical Systems 1, 1, Article 1 (January 2019), 26 pages.

“Ernesto Damiani is also with Universita degli Studi di Milano

Authors’ addresses: Claudio A. Ardagna, claudio.ardagna@unimi.it, Universita degli Studi di Milano, Milano, Italy, Rasool
Asal, rasool.asal@bt.com, EBTIC, Khalifa University of Science, Technology and Research, Abu Dhabi, UAE, ; Ernesto
Damiani, ernesto.damiani@ku.ac.ae, EBTIC, Khalifa University of Science, Technology and Research, Abu Dhabi, UAE, ;
Nabil El Ioini, nelioini@unibz.it, Free University of Bozen, Bolzano, Italy, Mehdi Elahi, Mehdi.Elahi@uib.no, University of
Bergen, Bergen, Norway, Claus Pahl, Claus.Pahl@unibz.it, Free University of Bozen, Bolzano, Italy,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

XXXX-XXXX/2019/1-ART1 $15.00

https://doi.org/

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/

1:2 Ardagna et al.

1 INTRODUCTION

Internet of Things (IoT) can be defined as “the networked interconnection of everyday objects, equipped
with ubiquitous intelligence” [32]. From the original launch of the IoT idea, more than 10 years
ago, technology has rapidly progressed and several aspects of IoT came to maturity and entered
commercial offerings. We are increasingly moving from a centralized approach where computations
are done at the core of the network (e.g., cloud), to a scenario where analytics and knowledge
extraction are partially done at the edge near the physical environment and sensors where data are
collected. This scenario will be put to the extreme by the exponential growth of connected devices
(from minuscule sensors to bigger machines), which, according to Intel,! are expected to reach 200
billions by 2020.

The existence of billions of resource-constrained devices connected to the Internet introduces
fundamental risks that can threaten users’ life and personal sphere. Devices are so pervasive that
humans have just become another component of the system, with all risks and unpredictability
introduced when human decisions are put in the automation loop. A wealth of services in different
domains, such as smart vehicles, smart buildings, e-health, are distributed on the basis of data
collected by devices. In this context, system automation and adaptation is based on the assumptions
that the system and its devices behave correctly, and collected data are trustworthy [3]. Amit Sheit
in [27] maps the Data, Information, Knowledge and Wisdom (DIKW) hierarchy [22] to IoT. The
hierarchy is used to “contextualize data, information, knowledge, and sometimes wisdom, with respect
to one another and to identify and describe the processes involved in the transformation of an entity at
a lower level in the hierarchy” [22]. The implicit assumption is that data have a sufficient level of
trustworthiness to create information, and in turn knowledge and wisdom. Recent work followed
this assumption in the definition of new assurance techniques [3, 6], as well as new automation
solutions and adaptive techniques [30], where collected data are first aggregated (information) and
then transformed (knowledge) to take a decision (wisdom). This assumption is however not sound
when a plethora of devices are used to collect data, and might bring to scenarios where wrong
data results in wrong decisions and, in turn, untrusted services/applications. Resource-constrained
devices are in fact more subject to hacking or malfunctioning, and becomes a main driver towards
system manipulation.

This paper shifts the focus from the need of trustworthy automation and adaptation to the need of
trustworthy data at the basis of provable automation and adaptation processes. The idea is to provide
an approach that complements existing trustworthy decision processes with a methodology for
collecting trustworthy data, identifying untrustworthy data sources due to sensor malfunctioning
or configuration errors also including those configurations that can indirectly affect the correctness
of sensor communications (e.g., weak encryption algorithms). The intuition behind our approach is
that the more trustworthy data, the higher the decision accuracy. Our approach provides a novel
methodology for trustworthy data collection at the basis of trustworthy IoT, where data collected
from devices are first checked for correctness and then stored in the blockchain using specific
smart contracts. Blockchain can play an important role in IoT trustworthiness evaluation since i) it
provides a robust decentralized architecture that could stand against failures and attacks, ii) all
participants in the network share the same truth (data) and contributes to support the honest
nodes, weakening the possibility of data manipulation, iii) it relies on Public Key encryption,
which is expensive to crack and guarantees to identify all participants. Trustworthiness of data is
evaluated at two levels: i) syntactic level where physical parameters and configurations of devices
(e.g., firmware version, direction of a camera, data format and syntax) are used to filter out data
produced by untrusted devices, ii) semantic level where system/device behaviors are modeled (from

Thttps://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot html

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:3

statistical parameters to complex machine learning models) to filter out untrustworthy/incorrect
data (e.g., a fire alarm sensor sending an alarm when temperature is less than 20 degrees Celsius).

This paper develops on our previous work [2] by providing i) an architecture for trustworthy
data collection based on blockchain and smart contracts (Section 4), ii) a methodology for the
assessment of the trustworthiness of collected data based on syntactic and semantics rules (Sections 5
and 6), iii) different processes for collecting, verifying, and storing trustworthy data, which balance
trustworthiness and privacy (Section 7). We further evaluate the performance of our approach
(Section 8) and its quality in a simulated scenario considering data collected from smart homes and
in a real-world scenario considering roaming data collected from the switching infrastructure of
ETISALAT, the largest telecommunication corporation in the Gulf Cooperation Council (Section 9).

2 PROBLEM STATEMENT AND RELATED WORK

The advantages introduced by smart IoT systems clash with the new risks introduced in (critical)
domains (e.g., health, transportation) where human safety depends on IoT and is threatened by it.
These risks are even worse when autonomic decisions and adaptations (e.g., [6, 14]) are employed
for increasing the system performance and quality. We put forward the idea that the success
of IoT and edge systems cannot depart from an open, protocol-neutral baseline solution for IoT
trustworthiness. This solution must be grounded on a data collection methodology that verifies data
trustworthiness. Trustworthy data are in fact the cornerstone for implementing safe autonomic
and adaptive processes at the basis of IoT system functioning. Wrong decisions, such as a smoke
detector not detecting smoke properly and impairing the correct functioning of a fire alarm, can
result in an incalculable damage to users.

Current literature (e.g., [35]) seems to ignore this problem and usually assumes trustworthy data,
or at least that “superiority in numbers is the most important factor in the result of a combat (cit.
Clausewitz)”, meaning that the availability of a huge amount of devices should support trustworthy
decisions also in case a not-negligible part misbehaves. Current autonomic and adaptive systems
then take a decision on data directly coming from sensors with no filtering. This assumption
introduces important limitations when targeting complex IoT systems, where autonomic and
adaptation decisions are taken at run time, as follows.

e Hybrid and complex systems. Current hybrid systems connect cloud systems at the center and
smart devices at the periphery, via edge networks. The trustworthiness of devices and, in
turn, of their data cannot be simply based on the assumption that superiority in numbers is
the most important factor. The trustworthiness of a sensor measurement can be evaluated by
observing the values of the other sensors. A proper assessment must satisfy heterogeneous
requirements coming from the different parts of the system.

o Untrusted (micro) providers. Hybrid systems rely on data continuously collected by a multitude
of devices, which are intrinsically unreliable and under the control of many untrusted
providers. A proper assessment must depart from any form of trust on remote providers.

o Untrustworthy data collection. Traditional autonomic and adaptive processes are often driven
by untrusted/unverified data that are accepted on the basis of the provider reputation. In
addition, collection mechanisms are often blurred into the target system, imposing a take
or leave approach. These assumptions can hinder the soundness of the system itself, since
smart devices are owned by micro providers, they can be hacked or simply fail. A proper
assessment should be grounded on a standard and trustworthy data collection.

e Untrustworthy decision. Traditional autonomic and adaptive processes consider the target
system as a whole, introducing decision that might interfere with the behavior of a specific
subsystem. Hybrid systems introduce the need of taking a bottom-up approach, where

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 Ardagna et al.

trustworthy data on local devices/services/processes are first collected and evaluated to
generate local claims, and local claims are then composed to provide global assessment on
the whole system [4].

e Unverifiable decision. Traditional autonomic and adaptive systems aim to maximize the
quality of a decision (e.g., scalability). It is often difficult to prove/audit the correctness of
such decisions. This problem points to the need of an accountable trustworthy data collection.

The need of assessing data trustworthiness clearly emerges in different critical scenarios.

First, the advent of cloud and IoT make the need of evaluating non-functional properties (e.g.,
performance, security) of current systems more stringent than ever. Assurance techniques can
contribute to address this issue, by increasing the confidence that a system behaves as expected.
Their definition recently targeted the cloud (e.g., [3, 6, 9]). Concerning IoT, the research community
has mainly focused on new security protocols and techniques to support the CIA (Confidentiality,
Integrity, Availability) triad (e.g., [8, 33]), while research on assurance is at an early stage. Preliminary
work focused on defining new assurance architectures for IoT. Ardagna et al. [4] first discussed
challenges in the design and development of assurance techniques for 10T, proposing a conceptual
framework and architecture for IoT security assurance evaluation. Sato et al. [24] investigated
the problem of trust establishment in IoT and proposed an architecture for evaluating “area-wise
trust”, where the trust level considers device identification, monitoring of device behaviors, device
connection processes and protocols. Taherizadeh et al. [31] presented a survey on the monitoring of
self-adaptive applications based on decentralized edge computing. The proposed approach assumes
that collected data are trustworthy and do not affect the precision of the assessment, denying
possible false-positive scenarios resulting in a wrong assessment.

Other approaches based on remote attestation focused on ascertaining the legitimate operation
of potential untrusted devices and on establishing trust in IoT devices, by detecting malware
installed on them. Ambrosin et al. [1] presented an architecture for a scalable and secure IoT
management. The approach relies on two protocols that send control messages and monitor the
status of IoT devices. Al-Hamadi and Rani et al. [20] presented a game theory-based approach to
improve IoT sensor trustworthiness in the automotive domain, by creating clusters of sensors to
identify illegitimate and malicious nodes. Although the above work focuses on the assessment of a
system trustworthiness, they do not consider the problem of executing a management/autonomic
function on the basis of untrustworthy data. This could result in scenarios where a malicious user
injects fake data to manipulate the correct execution of a given system workflow. In addition, the
need of evaluating the trustworthiness of collected data clearly emerged in the context of forensics
science and has been initially dealt with by defining a systematic and reliable methodology for
data collection and analysis [10]. Some solutions based on blockchain have been also proposed
to guarantee availability, integrity, and verifiability of collected data (e.g., [5, 16, 19]). Their goal
was to show the feasibility of using blockchain to guarantee integrity and traceability of digital
forensics evidence, while not focusing on the quality and accuracy of stored results.

Some effort has been devoted to IoT trust management and evaluation. Jayasinghe et al. [11]
presented a data-centric evaluation and precision framework that defines a set of trust metrics.
Machine learning is used to compute the trust prediction model based on the data collected from
the involved entities. Maxim et al. [21] proposed a data-oriented trust model for Ephemeral ad-hoc
Networks. The model establishes an initial trust relationship between the involved parties and
defines a set of metrics such as time freshness and location relevance, which are used by Bayesian
inference and Dempster-Shafer Theory to evaluate the collected evidence. Yang et al. [34] proposed
a blockchain-based trust management system in Vehicular Networks. The main idea relies on
validating messages received from neighboring vehicles, by classifying the messages based on

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:5

their type and the vehicles location. Dai et al. [7] introduced a trustworthiness framework that
considers both data and data providers. The main idea is to assign different trust scores to data
and data provider based on four factors: i) data similarity, ii) path similarity, iii) data conflicts, iv)
data deduction. The scores are calculated using a similarity function to put the similar entities and
data points at the same level of trust. Similarly to [7], Suhail et al. [30] proposed a lightweight
provenance schema that does not add high overhead in an IoT environment. The limitation of this
approach is that it does not consider the messages content (e.g., wrong measurements). As sensors
data is critical to the decision making process, the authors in [13] developed a trust model for event
selection in wireless sensor networks. The approach implements a data fault detection and data
reconstruction based on spatio-temporal data correlation and attribute data correlation. In general,
although the work done in the context of trust management and evaluation in IoT represents a good
starting point, it fails to provide a general-purpose methodology for trustworthy data collection,
at the basis of a trustworthy decision process in IoT. Most of the work either focus on specific
scenarios (e.g., vehicular ad-hoc networks) or on specific requirements (e.g., data freshness, location
relevance), often building on assumptions such as superiority in numbers and trustworthiness of
the data provider.

To conclude, a considerable research attention has been devoted to the use of blockchain tech-
nology to improve the security and scalability of IoT devices. Lin et al. [15] implemented and tested
a fully decentralized solution for IoT data integrity. Their goal was to ensure integrity of data from
IoT devices with a blockchain-based Data Integrity as a Service (DIaaS) framework, where Integrity
Management Service (IMS) is available as part of cloud services. Ozyilmaz and Yurdakul [18] used
blockchain to build a decentralized IoT platform standardizing the way data transfers are handled
among IoT devices. At the same time, Blockchain has been heavily used in combination with IoT
to manage devices identity and data provenance, such as in [17], where blockchain is used to
identify/authenticate IoT devices. Shi et al. [28] proposed triple-trusting architecture (SLTA), a
framework for i) checking the collected data before injecting them in the digital world, ii) ensuring
provenance of data, and iii) guaranteeing IoT identity and data authenticity. Similarly, Sigwart et
al. [29] relied on blockchain to track IoT data provenance. The study defined different provenance
granularities, while not considering inconsistencies in the data itself.

To address the above limitations, we define a methodology for the collection and verification of
trustworthy data, which is the basis for any trustworthy IoT processes and systems. Our approach
is based on blockchain and smart contracts, and collects data whose trustworthiness and integrity
are proven over time. Differently from existing solutions, our approach links the data to the way in
which they are collected and verified, as well as to the status and configurations of the collecting
device. Untrustworthy data are then filtered out and not given as input to the autonomic and
adaptive system. IoT Trust, the core of our approach, is presented in Sections 5, 6, and 7.

3 REFERENCE SCENARIO

Our reference scenario considers a smart home, where ICT technologies are employed to automate
many tasks and improve users’ quality of life. Smart homes are composed of a heterogeneous
infrastructure of sensors and actuators where enhanced lighting, energy, heating, air conditioning,
and physical security systems are integrated together to increase users’ experience (e.g., security,
comfort, convenience). Sensors are deployed at different system layers to connect people with
technology, and collect precise and accurate data on the environment status, such as people locations,
energy usage profile, and emergency situations; actuators and controllers use these data to manage
and adapt the homes behavior according to predefined rules and policies. The embedded intelligence
in smart homes can i) provide users with predictive maintenance, for instance, to avoid spending a
cold day without heating or manage refill of restroom supplies, ii) interact with smart grids for

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Ardagna et al.

better energy consumption and management of exceptional events (e.g., increasing availability
of critical services in case of power failures), iii) support services for emergency management.
In this scenario, decisions rely on data collected from sensors. In some cases, a single sensor
can be decisive (e.g., turn lights on when a person is detected); in other cases, decisions can
only be made based on multi-sensor input (e.g., raise a fire alarm to the fire department). Data
trustworthiness as a way to increase users’ confidence that the services and devices behave as
expected is a fundamental requirement and represents the cornerstone of any automation systems.
Our reference scenario requires accurate and trustworthy data collected by sensors that hold
properties of integrity, traceability, authentication, verifiability, security, and privacy, to name but a
few. For example, smart homes rely on hidden sensitive data on the corresponding household/guest.
These data carry sensitive information that can be used to infer people habits and behavior, and
pose strict requirements on their management (property privacy). Trustworthy data on local devices
can be used to produce local claims on the status of a given object/subsystem under evaluation
(e.g., smart home power consumption). Such claims are at the basis of a process-wide assurance
verification, where local claims are composed in process-wide global claims to verify the status of
an IoT-enabled processes, spanning hybrid networks. In this case, the accuracy and provenance of
data is paramount (properties integrity, traceability, and verifiability).

4 TRUSTWORTHY DATA COLLECTION ARCHITECTURE

Our trustworthy data collection architecture is composed of three main components that constantly
monitor and verify data coming from smart devices (e.g., performance, usage). The data target
of our collection process are pieces of information at the basis of any decision processes, which
can be used to trigger an action (e.g., fire alarm) or prove a state (e.g., temperature value). Data
can come from different sources (e.g., sensors, edge nodes, users), have different granularities (e.g.,
single sensor reading, aggregated data, decision), and be of different sensitivity levels (e.g., private
or public data). For instance, every smart home is equipped with a set of power consumption
sensors that measure how much power their appliances consume on an interval base or upon
changes in the power consumption level. Once a day, sensor readings are aggregated to produce
an evidence representing the average power consumed by the smart building. Data, possibly
aggregated, supports system automation and automated decisions (e.g., buildings that have energy
surplus would support possible power trading). Collected data are then verified and stored in the
blockchain balancing trustworthiness, performance, and privacy requirements over time. To this
aim, a set of dedicated smart contracts are used to program various checks and data verification
before persisting the coming data. Checks include ensuring that the data sources are legitimate,
trustworthy and have the correct access rights, as well as the data formatting and content are
correct. Accordingly, our architecture is mapped on three layers, as follows.

e Data Collection Layer. It connects to device streams and collects all data relevant for taking
a decision. Such data can be either measurements returned from the devices (e.g., a power
consumption sensor) or metadata describing physical configurations of the devices. Each
device digitally signs its readings before sending them to the data validation process.

e Data Validation Layer. It verifies the trustworthiness of collected data using the blockchain.
Once data are sent back by smart devices, the smart contract managing the interaction with
the blockchain first verifies the identity of the device registered in the blockchain. The data
validity is then checked based on the type of smart device and external knowledge (see
Section 5 for more details). For instance, data validity can depend on the data timestamps or
on the status of a sensor (e.g., the installation of the latest firmware update), as well as on the
modeling of the correct device behavior.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:7

Blockchain

L| : Syntactic Validation
oa ntic

Valid data

4: Semantic Validation | __6: ML Model

: Data Points Collection

Data points

10: Store Aggregated
Data

9: Data Aggregation

Aggregated data

o 12: Store Decision
11: Decision

Fig. 1. Architecture Overview

e Data Store Layer. It stores trustworthy data on chain using a smart contract. Once the
validation process is successfully executed, a transaction containing the new data is persisted
on the blockchain. Different amounts of data can be stored in the blockchain, that is, single data
points, aggregated data, or decisions taken on trustworthy data, depending on trustworthiness,
performance, and privacy requirements (see Section 6 for more details).

Figure 1 illustrates the execution flow of our architecture. Data collection triggers the execution
flow at predefined intervals or when certain events take place. Upon collecting data (phase 1),
data validation process first validates every data point against a set of syntactic rules, modeling
requirements on physical parameters and configurations specific to each device type (phases 1, 2,
3 in Figure 1). Data validation process then validates data points against semantic rules (phases
4, 5, 6 in Figure 1), employing machine learning techniques to find correlations between data
points coming from different sources (e.g., readings from two neighboring noise sensors).2 Qur
idea is that the problem of identifying untrustworthy data sources due to sensor malfunctioning
or configuration errors can be attacked as a standard classification problem, rather than using
complex deep learning approaches adopted to counteract poisoning attacks (e.g., [12, 26]). We note
that syntactic and semantic rules are pre-loaded in the blockchain to increase the performance of
the validation process. Data points returned by the data validation process are syntactically and/or
semantically correct, and are then used to drive a trustworthy decision process. Data points can be
first stored as is in the blockchain (phases 7 and 8 in Figure 1). Otherwise, if needed according to
the specific use case, data points can be aggregated (phases 9 and 10 in Figure 1), and then used
to take a decision or adapt the system (phase 11 and 12 in Figure 1). The activities and results
of all phases, including syntactic validation, semantic validation, data aggregation, decision, can
be executed/stored in the blockchain to increase traceability, transparency, and trustworthiness,
at the price of a decreased privacy and performance. We will discuss all details our trustworthy
data collection process in Section 5 (discussing smart contracts for data collection and validation),
Section 6 (discussing smart contracts for data store), Section 7 (defining the trustworthy data
collection process), and Section 7.4 (discussing the properties of our process).

5 DATA VALIDATION: IOT TRUST

Traditional holistic approaches to trust verification are not viable when heterogeneous and resource-
constrained devices, fuzzy perimeters, and a multitude of micro-providers are involved (Section 2).
We need to depart from approaches where data trustworthiness is linked to reputation, as well
as from approaches where testing and monitoring techniques are used to evaluate each system

2We note that syntactic validation and semantic validation are optional and their adoption depends on the specific use case.
For instance, when all validation rules are known a priori, the semantic validation can be omitted.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Ardagna et al.

component. Rather, an atomistic approach based on trustworthy data collection can be the basis
for implementing a trustworthy IoT environment, where trustworthy processes and decisions are
employed. Data collected from each smart device must be first validated and then put into service
only if a minimum amount of trust requirements are addressed.

In this section, we present IoT Trust, our methodology for the validation of data trustworthiness.
We handle data validation in the blockchain using dedicated smart contracts. A smart contract is
composed of a set of data structures modeling collected data, a set of functions that act on the data
and verify trust requirements, and a set of emitted events. We define IoT Trust as a smart contract
specified as follows.

Definition 5.1 (IoT Trust). IoT Trust is a smart contract SC,, defined as a 3-tuple (D, R, &) where:

e Data structure D defines a set {D,} of collected data points (Section 5.1);>
e Validation rules R models trust requirements to be addressed by trustworthy data (Section 5.2);
e Events & defines a set {Ey, ..., E,;} of events emitted during contract execution (Section 5.3).

When a data point (or a set thereof) is collected, the smart contract is executed and associates a
label trustworthy/untrustworthy with it. In the following, after presenting our data structure, we
discuss two types of validation rules used to define trust requirements and corresponding events.

5.1 Data structure

The data structure captures the attributes needed for the validation of data trustworthiness. The
basic piece of data is a measurement A, which describes a fact or a measurement coming from a
smart device (from minuscule sensors to bigger machines). Each measurement is extended with
metadata, that is, a set of attributes that describe the collected data. Examples of measurement
metadata are timestamp and data owner. A measurement A is then formally defined as follows.

Definition 5.2 (Measurement A). A measurement A is a 2-tuple A = (8, M), where J is a device
reading (a, v) pair, with a the measured attribute and v its value, and Mj is a finite set of metadata
pairs (m, v), with m the metadata of a and v its value.

In forensic science, to properly document the collected measurements, its metadata are enriched
with a proof on the integrity of the measurement tools. To this end, we define data point dp as
an augmentation of the measurement A with the device metadata, which represents information
about the devices and their environment. Examples of device metadata are the version of the device
firmware and the digital signature. A data point dp is then formally defined as follows.

Definition 5.3 (Data point dp). Data point dpeD is a 3-tuple dp(A, s, M;), where A is a measure-
ment, s is the device submitting the data point, and M is a finite set of device metadata pairs (m, v),
with m the metadata of s and v its value.

The collected data can be kept at the data point granularity or contain a set of data points to
provide a temporal view of data evolution.

Example 5.1. A smart home can be equipped with a camera recording any accesses. In this
example, the data point contains the video stream (device reading), the timestamp and the data
owner (measurement metadata), and physical parameters of the device such as camera orientation,
firmware version, and frame rate (device metadata).

3When clear from the context, we will use Dy to denote a set of data points

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:9

5.2 Validation Rules

Validation rules R model trust requirements to be addressed by collected data points before being
stored as trustworthy data on chain or used to take a decision. For instance, when a device reading
is submitted, IoT trust compares its value against R to filter out untrustworthy data violating these
rules. In this section, we define two validation rules, syntactic rules (Section 5.2.1) and semantic
rules (Section 5.2.2), evaluating data points in Section 5.1. Data points include measurements (i.e.,
numerical values), measurement and device metadata (i.e., descriptive information), continuous
data (i.e., stream of data points collected in an interval). We note that syntactic rules validate device
metadata, while semantic rules validate the measurement (including measurement metadata). When
clear from the context, we use metadata to refer to both device and measurement metadata.

5.2.1 Syntactic Rules. Syntactic rules introduce requirements on physical parameters and config-
urations of devices. They assume that trustworthy data can only be collected from trustworthy
devices. For instance, semantic rules verify the format of data points and the firmware version of
the device collecting them. They are implemented as threshold-based rules as follows.

Definition 5.4 (R;). Function R; is a membership function that takes as input a data point dp
and returns as output a Boolean value indicating whether a data point is syntactically trustworthy
(true) or not (false), according to a set of thresholds-based conditions c; in the form (dp op value),
with op € {=,#, <, <, >, >} . It assumes the following form:

| True if (et Aca A ... A cn)
Rildp) = { False else

We note that these rules are used to filter out all data points that are syntactically wrong, such
as for instance those data points received from a misconfigured sensor (e.g., using a vulnerable
firmware). They are generally applied to device metadata M.

Example 5.2. Following our reference scenario, syntactic rules verify the correctness of devices
installed in the kitchen of a smart home. For instance, syntactic rules can verify the firmware of
household appliances, the range of the fridge temperature, the correct operation of a light bulb.

5.2.2 Semantic Rules. Semantic rules model the expected behavior of a single device or a collection
thereof. They are generated from the historical data collected by target devices and used to evaluate
the behavior of new data points. They employ machine learning techniques to generate a model
of the expected behavior. This model represents the signature of trustworthy data points and is
then used to classify the new incoming data points (in isolation or batch) as trustworthy or not
according to their behavior. Formally, we consider a standard machine learning algorithm where
a training phase is first used to generate the behavioral model and an inference phase uses the
generated model to mark data points as trustworthy or not. The training phase takes as inputs a
labeled data set T (training set) as a set of pairs of the form:

T = {(dpb l])’ LR (dpn, ln)}

where dp; is a data point and [; is the corresponding label {trustworthy, untrustworthy}. The
output of the classification algorithm is a model Rp that given a data point dp (or a set thereof) as
input returns a label [as output, as follows:

Rp : DP — L such that Rp(dp) =1

We note that our discussion does not force the use of any machine learning algorithms; rather
its selection is left to the domain administrator and aims to maximize the benefit in terms of perfor-
mance and accuracy. We also note that simpler semantic rules using threshold-based conditions

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Ardagna et al.

(Definition 5.2.1) can be used. For instance, a rule can state that the room temperature cannot
exceed 40 degrees in winter.

Example 5.3. Following our reference scenario, semantic rules try to uncover abnormal activities
that diverge from the expected behavior. For instance, a cooking process taking place in the late
evening but with light sensor off; a sport activity taking place in the late night with alarm sensors
activated.

5.3 Events

Events are mechanisms put in place by IoT trust to emit changes in the blockchain state, ac-
cording to those data passing syntactic and semantic checks, which can be used by external
services/applications to take specific actions. Events are defined inside the smart contracts and are
fired when certain conditions occur. Events can be emitted from all contracts depending on the
specific scenario.

Example 5.4. The heating system can register to all events related to temperature changes; this
way, if the temperature exceeds the pre-defined threshold (e.g., 40 degrees), an event of the form
{TD, heating, off} is emitted.

6 DATA STORE

We use blockchain as the data repository that contains all transactions for trustworthy data
collection and validation. The state of a blockchain is represented by a k—v data store BS:k—wv,
where k is a key and v is an arbitrary sequence of data. In our context, v is the data collected at
different levels of abstraction. The blockchain handles data store at various degrees using dedicated
smart contracts, as formally defined below.

Definition 6.1 (Data Store). Data Store is a smart contract SCs defined as a 3-tuple (D, R, E)
where:
e Data structure D defines a set {D,} of trustworthy data points returned by IoT Trust in

Section 5;
e Function calls ¥ manipulates data before storing them on chain;
e Events & defines a set {Ey, . . ., E;,} of events emitted during contract execution.

Data structure D and events & are defined in Section 5, and consists of a set of data points
in Definition 5.3 and events in Section 5.3, respectively. Data store provides three different store
functions that are implemented at different granularities, supporting the store of simple data points,
data aggregations, and decisions.

6.1 Data Point Store

It implements a function that stores trustworthy data points in the blockchain. It is defined as
follows.

Definition 6.2 (EC). Function Data Point Store EC takes as input a data point dp and stores it in
the blockchain BS.

This function tracks all data points that satisfied the trust requirements (validation rules) on
chain.

6.2 Data Aggregation Store

It implements a function that supports the calculation of specific metrics and stores them as
aggregated data directly on chain. It is formally defined as follows.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:11

Definition 6.3 (DA). Function Data Aggregation Store DA: D, X op — A takes as input a
set D,, of data points {dp;, dpz, . . ., dp,} within a specific time interval, an aggregation operator
ope{sum, average, min, max, count }, and produces as output the aggregated data A=o0p(D,) that
is then stored in blockchain BS.

This function calculates and tracks aggregated data on chain.

6.3 Decision Store

It implements a function that supports the calculation of a specific decision based on collected data
points and data aggregation, and stores it in the blockchain. It is formally defined as follows.

Definition 6.4 (TD). Function Decision Store TD: D X df — P takes as input a set D of data
points or aggregated data, a decision function df, and produces as output the decision P=df (D)
that is stored in blockchain BS.

A decision function is then defined as follows.

Definition 6.5 (df). Function df is a membership function that takes as input a set D of data
and returns as output a decision, according to a set of conditions in the form (attr op value), with
op € {=,#,<,<,>,>} . It assumes the following form:

decisionl if conditionl
df(D) =14 decision2 if condition2
decision3 if condition3

This function calculates and tracks a decision on chain.

Each store process requires a different amount of activities to be executed on chain, which
proportionally decrease the system performance. It also affects trustworthiness and privacy provided
to the final user. We will discuss these aspects in the next sections.

7 TRUSTWORTHY DATA COLLECTION PROCESS

Our trustworthy data collection process is built around the concept of IoT Trust in Section 5 and
data store in Section 6, and implements the architecture in Section 4. We propose three different
implementations, varying on the basis of the considered validation rules.

7.1 Syntactic Verification

Figure 2 illustrates Syntactic Verification process. It implements a process where the trustworthiness
of data points dp is checked against a set of syntactic rules R;. For each data point dp, smart
contract SC,, in Definition 5.1 is executed and syntactic rules R; evaluated against dp. Once the
trustworthiness of a data point has been verified, the device gains access rights to the blockchain
and a trustworthy data point dp (or data aggregation or decision) is stored in the blockchain using
smart contract SCs in Definition 6.1. We note that syntactic verification only considers syntactic
requirements to identify trustworthy data, while it does not consider the expected sensor behavior.

Example 7.1. In a smart home, when the data coming from the sensors are submitted to the
smart contract, syntactic thresholds are checked before storing the transactions. For instance, the
threshold (firmware_version>2.0) is checked every time the syntactic verification is triggered.

7.2 Semantic Verification

Figure 3 illustrates Semantic Verification process. It implements a process where the trustworthiness
of data points dp is checked against semantic rules Rp, modeling the correct behavior of a specific

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Ardagna et al.

Syntactic
Rules

Trustworthy
Data

Device
Data
Stream

IoT Trust
(Data Validation)

Data Store Decision

Fig. 2. Trustworthy Data Collection Process: Syntactic Verification

system/device. Semantic Verification is a 2-step process, consisting of phases setup and validation.
Phase setup first builds semantic rules Rp as a behavioral model based on a set of data points
dp used as training set. Phase validation provides these rules as input to IoT trust to evaluate the
trustworthiness of data points dp and classify them on the basis of the level of compatibility with
the behavioral model generated at phase setup. More in details, for each set of data points dp, smart
contract SC,, in Definition 5.1 is executed and semantic rules Rp evaluated against them. Once the
trustworthiness of data points has been verified, the device gains access rights to the blockchain
and trustworthy data points dp (or data aggregations or decisions) are stored in the blockchain
using smart contract SCs in Definition 6.1.

We note that semantic verification models the expected device behavior as a means to verify
trustworthy data. Of course, if training data contain inconsistencies due to syntactic violations,
these inconsistencies will be modeled as well resulting in a decreased quality.

Behavioral
Model

Device Data Stream
(Training Data)

Machine Learning
Algorithm

Semantic
Rules

IoT Trust
(Data Validation)

Device Data
Stream

Data Store Decision

Trustworthy
Data

Fig. 3. Trustworthy Data Collection Process: Semantic Verification

Example 7.2. In the context of smart homes, the training data contain the behavior of a device
under different conditions. For instance, the room temperature sensor can be monitored under
different circumstances and retrieved data used as the ground truth. These data are used to build a
model that represents the temperature sensor behavior during the day. Semantic verification uses
this model to classify the newly coming readings. For instance, when a temperature reading arrives,
the model is able to identify untrustworthy values (e.g., high room temperature in a winter day
during working hours).

7.3 Hybrid Verification

Figure 4 illustrates Hybrid Verification process. It is a 2-step process, consisting of phases setup
and validation, which integrates syntactic and semantic verification processes to increase data
trustworthiness and the overall quality of our approach. Phase setup builds semantic rules Rp
as a behavioral model, using a training set where data points dp have been successfully verified
against syntactic rules. As a result, the created model only represents correct behavior filtering
out inconsistencies due to syntactic violations. Phase validation provides these rules as input to
IoT trust to evaluate the trustworthiness of data points dp. Data points are first filtered according
to syntactic rules and then classified as trustworthy/untrustworthy on the basis of the level of

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:13

Trustworthy

Device Data Stream 10T Trust Data Machine Learning Behavioral
(Training Data) (Data Validation) Algorithm Model

Semantic
Rules

Syntactic
Rules
Device Data ToT Trust -
Stream | (Data Validation) Data Store Decision

Trustworthy
Data

Fig. 4. Trustworthy Data Collection Process: Hybrid Verification

compatibility with the behavioral model generated at phase setup. More in details, for each set
of data points dp, smart contract SC,, in Definition 5.1 is executed, and both syntactic rules R;
and semantic rules Rp evaluated against dp. Once the trustworthiness of data points has been
verified, the device gains access rights to the blockchain and trustworthy data points dp (or data
aggregations or decisions) are stored in the blockchain using smart contract SCs in Definition 6.1.

7.4 Trustworthiness vs Privacy

The three implementation of our trustworthy data collection process permits to balance privacy
and trustworthiness of our solution. Trustworthiness first depends on the amount of operations
done on chain for data validation (IoT Trust) based on smart contract SC,, in Definition 5.1. Highest
trustworthiness is achieved when both syntactic and semantic rules are evaluated on collected
data (Hybrid Verification in Section 7.3); lower trustworthiness is achieved when either syntactic
or semantic rules are evaluated (Syntactic Verification in Section 7.1 and Semantic Verification in
Section 7.2, resp.). Trustworthiness and privacy then depend on the selected data store approach,
that is, the amount of data points collected and stored in the blockchain by devices over time. To
the aim of balancing trustworthiness and privacy, we defined a blockchain-integrated data store
process that stores data on chain at different granularities: i) each single instance of collected data
(data point), ii) an aggregation of a chunk of collected data (data aggregation), or iii) the final
decision calculated based on collected data (decision). The three storing procedures, implemented
as smart contract SCs in Definition 6.1, increase visibility of the logic behind how the data are
aggregated or a decision is made. At the same time, they address the privacy concerns guaranteeing
access to different amount of data. For instance, while the owner of a smart home can access the
full records of data points stored by sensors, the building manager can only access an aggregated
version of the same data. In some cases, all the logic can be exported off chain and only the final
decision stored on chain. We note that each of the options requires a different amount of activities
to be executed on chain, which proportionally affect the system trustworthiness and privacy. In a
nutshell, when single data points are stored in the blockchain, we achieve highest trustworthiness
and lowest privacy, since all data are available for integrity checks and any decisions taken based on
them can be replicated. When data aggregations are stored in the blockchain, privacy substantially
increases, since it permits to hide details about the single data points, while trustworthiness
decreases (decisions cannot be replicated). Finally, when decisions are stored in the blockchain, we
achieve highest privacy and lowest trustworthiness, since all activities for taking a decision are
done on chain, while only the decision is stored on chain.

8 PERFORMANCE EVALUATION

The adoption of a solution based on blockchain can backfire: management of a blockchain is
costly, while a trustworthy data collection and verification process is resource demanding. For
instance, auditing and reproducibility of the trustworthy data collection process require access to

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Ardagna et al.

all transactions history and could involve different participants (e.g., parties involved in generating
the transactions). Performance of our solution mainly depends on two aspects: i) the amount of
data collection and verification done on chain (smart contract SC,, in Definition 5.1) and ii) the
amount/type of data stored on chain (smart contract SCs in Definition 6.1). Considering point i),
the approach where syntactic and semantic rule validations are executed, insisting on the resources
of the ledger, could be extremely demanding especially when the rate of collected measurements
and the number of rules are high, introducing substantial latency. This approach provides high
trustworthiness (see Section 7.4) but low performance.* Considering point ii), when single data
points are stored in the blockchain, highest performance is expected; when data aggregations are
stored in the blockchain, a performance decrease is expected; when decisions are stored in the
blockchain, lowest performance is expected, since all activities for taking a decision are done on
chain. In the remaining of this section, we experimentally evaluate the performance of our solution
varying data collection/verification and data store approaches.

8.1 Experimental Settings

The setup of the experiments consisted of 6 virtual machines running Ubuntu 16.4 deployed on top
of CloudLab® data center. Each virtual machine was equipped with 20 vCPUs Intel Xeon E5-2640 v4
@ 2.40GHz and 64GB RAM and installed hyperledeger fabric. Hyperledger fabric is an open-source,
permissioned ledger platform featuring smart contract (Chaincode) functionality. Hyperledger
fabric employs channels and access control lists to manage controlled access and enable privacy
among the network participants. It provides a modular and extendable architecture that permits
plug in of different components to perform specific functions.

Contrary to the permissionless platforms such as Bitcoin and Ethereum, where all the nodes
assume similar roles, fabric nodes have different roles (i.e., peers and orderers, endorsers), where
the peers maintain copies of the ledger, orderers provide the communication channels and generate
the new blocks (mining), and endorsers validate the submitted transactions. We configured a test
network composed of 4 organizations, each one including two endorsing peers (they host ledgers
and smart contracts), one orderer node used to generate the new blocks of data in the blockchain
and one peer to keep a copy of the blockchain state. Each pair of organizations shared a channel
with the total of 3 channels. Each channel specified relevant smart contracts (chaincode) to test all
possible configurations of our solution as follows:

(1) Data Collection and Verification (Section 8.2): one smart contract validating syntactic rules
and one smart contract validating semantic rules;

(2) Data Store (Section 8.3): one smart contract for data point store, one smart contract for data
aggregation store, and one smart contract for decision store;

(3) Trustworthy Data Collection Process (Section 8.4): one smart contract for syntactic veri-
fication, one smart contract for semantic verification, and one smart contract for hybrid
verification. These contracts provide the entire trustworthy data collection process as a
sequential composition of contracts for data collection/verification and data store.

To assess the network performance, we relied on hyperledger caliper,® another project within the
hyperledger family. Caliper benchmarks and measures the performance of different hyperledger
blockchain networks including fabric. It providers an easy way to configure the network, smart
contracts, channels, and workload. In our experiments, all the contracts have been implemented

4We note that the latency can be partially reduced by selecting a blockchain with high performance and fixed latency
Shttps://www.cloudlab.us
Chttps://www.hyperledger.org/projects/caliper

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://www.hyperledger.org/projects/caliper

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:15

using Golang’. The results discussed in this section represent the average over 5 executions of the
experiments.

8.2 Data Collection Verification

We first evaluated the performance of our network measuring the average latency and throughput
retrieved by executing portions of our data collection/verification process (smart contract SC, in
Section 5) on chain, that is, syntactic rule validation and semantic rule validation. All tests were
executed varying the transactions per second (tps) in 100, 200, 300, 400, 500 and the cardinality of
syntactic rules in 10, 20, 30, 40, 50. We note that we are considering a challenging setup, as in many
real scenarios the number of rules could be even less that 10. Semantic rule was implemented as a
single classification model based on SVM classifier.

Every collected data point underwent a validation involving all syntactic rules, while semantic
rule validation involved a single check on a batch of 50 data points. We note that since the semantic
verification requires significant amounts of computational power and resources, our solution used
the blockchain just to guarantee the integrity of the model by storing the hash of the model and
the service endpoint. Figure 5(a) shows the latency when syntactic or semantic rules are validated.
Concerning syntactic rule validation, the more the syntactic rules, the higher the performance
decrease (higher latency, lower throughput). Also, a linear increase in latency was observed in the
number of tps. Concerning semantic rule validation, the latency was low (<5s in the worst case)
with respect to the latency of the syntactic rule validation (>24s in the worst case).

Figure 5(b) shows the throughput when 50 syntactic rules and one semantic rule are validated. The
trend is similar to the one observed for the latency, where higher throughput (better performance)
is retrieved for semantic rule validation: 12.5tps for semantic rule validation and 7.5tps for syntactic
rule validation, in the worst case. This is due to the fact that semantic validation is usually based on
a single rule consisting of a ML model, while syntactic validation considers a variety of syntactic
rules (50 rules in our experiment) that affects the throughput.

8.3 Data Store

We then evaluated the performance of our network measuring the average latency and throughput
retrieved by executing portions of our data store process (i.e., data point, data aggregation, decision
store in smart contract SC; in Section 6) on chain. All tests were executed varying tps in 100, 200,
300, 400, 500. Figure 5(c) show the latency when validating a single syntactic rule and varying
the number of stored data points in 10, 30, 50. We note that the latency introduced by data point
store (~2.5s in the worst case), still not negligible, is an order of magnitude less with respect to the
latency introduced by syntactic rule validation in Figure 5(a) (~25sec in the worst case). Figure 5(d)
shows similar results for the throughput, presenting a small decrease of less than 5tps when the
number of validated data points is increased from 10 to 50.

Figure 5(e) and Figure 5(f) show the increase in latency and decrease in throughput when
different parts of the data store process are executed on chain with 50 data points. We note that the
overheads introduced by data aggregation and decision depend on the specific adopted function.
In these experiments, we used standard functions for both, that is, average, min, max for data
aggregation and a function based on threshold verification for decision. Data point store, still the
most demanding in terms of performance, is the lowest in terms of latency increase and throughput
decrease. Data aggregation and data decision are in fact sequential activities adding some latency
on top of the data point store. In other words, the performance of data point store for latency and
throughput (Figure 5(e) and Figure 5(f)) are increased by a fixed amount when data aggregation

"https://golang.org/

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://golang.org/

Average Latency (s)

/

Syntactic - 10 Rules —+— Syntactic - 40 Rules —s- -
Syntactic - 20 Rules — x— Syntactic - 50 Rules —e—
Syntactic - 30 Rules - &= - Semantic —e—

(a) Latency of syntactic and semantic rule validation

200 400 500

300
Transactions per second (tps)

5

Latency

10 Data points ——
30 Data points - - -
50 Data points ---x--

0 300 400 500
Transactions per second (tps)

(c) Latency of data point store

»
&

Average Latency (s)
a 8

Data point —+—
Aggregation = *
Decision - -» -

200 300 400
Transactions per second (tps)

(e) Latency of data store

Average Latency (s)
R

Syntactic verification —+—
Semantic verification =
Hybrid verification - -» -

(g) Latency of trustworthy data collection process

0 300 400 500
Transactions per second (tps)

Ardagna et al.

30
Syntactic - 50 Rules —+—
Semantic = »
251 1
20 1
]
a F -
£ -~
154 i S R
8 S-w- ol
E - -5
£

q 00 200 400 500

300
Transactions per second (tps)

(b) Throughput of syntactic and semantic rule validation
30

10 Data points ——

30 Data points - - -
50 Data points ---x---

]
a
£
°
Ef
°
£
£
101 1
5L]
0 . .
100 200 300 400 500
Transactions per second (tps)
(d) Throughput of data points store
15
Data point ——
Aggregation - »
Decision - - -
3
a
=
=)
3
2
]
S
5|]
100 200 300 400 500
Transactions per second (tps)
(f) Throughput of data store
20

Syntactic verification —+—
Semantic verification - - -
Hybrid verification ---x---

Throughput

[}
100 500

0 300 400
Transactions per second (tps)

(h) Throughput of trustworthy data collection process

Fig. 5. Performance evaluation

and decision store are used. Data aggregation increases latency of 17% on average and decreases
throughput of 5% on average, while data decision increases latency of 19% on average and decreases
throughput of 12% on average.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:17

8.4 Trustworthy Data Collection Process

Figure 5(g) and Figure 5(h) finally show the total latency and throughput for the three implemen-
tations of our trustworthy data collection process in Section 7. We consider a scenario with 50
syntactic rules and data point store, varying the transactions per second in 100, 200, 300, 400, 500.
Comparing semantic and syntactic verification, as expected, semantic verification introduced the
lowest latency (<5s in the worst case) and achieved the highest throughput (~12tps in the worst
case), while syntactic verification introduced the highest latency (~25s in the worst case) and
achieved the lowest throughput (between 7tps and 8tps in the worst case). Hybrid verification
summed up the latency in syntactic and semantic verification, while decreased the throughput to
less than 6tps in the worst case.

To conclude, we note that different configurations, which have an impact on the provided level
of trustworthiness (see Section 7.4), introduce a not-negligible cost in terms of performance. This
suggests the importance of selecting the proper level of trustworthiness for the domain of interest
to keep the overall performance under control.

9 QUALITY EVALUATION

We experimentally evaluated the quality of our trustworthy data collection process in two scenarios,
which cover the entire spectrum of our approach. Scenario 1 “Smart Home Monitoring” considers
data collected from more than one hundred sensors in two smart homes. It is a simulated scenario
testing the trustworthy data collection process using semantic and hybrid verifications. It generates
the ML model of the smart home behavior, and simulates streams of sensor data points whose
trustworthiness needs to be verified. Scenario 2 “Mobile Network Roaming” considers data collected
from the switching infrastructure of the ETISALAT Mobile Network. It is a real-world scenario
testing the trustworthy data collection process using syntactic and hybrid verification, and real
streams of data describing roamers traffic on the mobile network. It also evaluates how a decision
process for high-usage warning can improve in quality when data filtered by our approach are
used.

9.1 Scenario 1: Smart Home Monitoring

Smart Home Monitoring uses data for activity recognition in the data set Home Setting Using Simple
and Ubiquitous Sensors.® The data set contains data collected by two smart homes using a partially
overlapped sets of 77 sensors and 84 sensors, respectively. It aimed to verify the quality of our
trustworthy data collection process when filtering those untrustworthy sensor data that might
hamper a sound decision process.

Our evaluation process was composed of the following steps: smart contract definition, syntactic
rule validation, and semantic rule validation. We note that we both executed semantic verification
in Section 7.2 and hybrid verification in Section 7.3. Semantic verification applied semantic rule
validation in isolation, while hybrid verification applied syntactic and semantic rule validation in a
sequence, both followed by the data point store in Section 6. For conciseness, in the following, we
focused on syntactic and semantic rule validation only.

9.1.1 Smart Contract Definition. We defined two smart contracts for syntactic and semantic rule
validation (see the execution flow in Figure 1). Each contract was composed of two parts: i) main
functions modeling rule validation, ii) utility functions reducing the code complexity and improving
performance. A total of five functions have been implemented.

e Main Functions

8Data set available at https://courses.media.mit.edu/2004fall/mas622j/04.projects/home/.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://courses.media.mit.edu/2004fall/mas622j/04.projects/home/

1:18 Ardagna et al.

— SyntacticValidation: it takes as input a data point and the device signature; it then loads
the rules relevant for the specific device type. Only if the data point satisfies all the rules a
positive response is returned (see Section 5.2.1).

— SemanticValidation: it takes as input a data point and loads the ML model that has been set
using function SetModel. Function SemanticValidation then calls an external REST API to
perform the verification off chain (see Section 5.2.2).

e Utility Functions includes AddRules to insert new rules for SyntacticValidation, SetModel to
update the ML model that is used for SemanticValidation, AddDevice to register a new device
signature in the blockchain.

9.1.2 Syntactic Rule Validation. We manually prepared and cleaned data for our experiments
retrieving a final data set containing 503 data points collected from 91 unique sensors as follows.
One-hot encoding was first performed to properly encode and represent the features of the data set.
In addition, to simulate the quality of the sensor data, we labeled rare data points as untrustworthy
due to incorrect sensor measurements (i.e., syntactic errors resulting in syntactic rule violations).’
The rest of the data points were labeled as trustworthy. Accordingly, the data set contained 360
trustworthy data points (sensor measurements) and 143 untrustworthy data points that, where
possible, were manually corrected according to syntactic rules. These activities resulted in a data set
used as the baseline of our experiments with 468 trustworthy data points and only 35 untrustworthy
data points. Starting from this data set, we evaluated the performance of semantic verification
(using all 503 data points) and hybrid verification (using only the 468 trustworthy data points)
in Section 7. The reason why syntactic verification was not tested alone is that its quality highly
depended on the amount of syntactic errors in the data set and could then be biased by how the
data set was built.

9.1.3 Semantic Rule Validation. The quality evaluation passed through the definition of the be-
havioral model representing the semantic rule in Section 7. To this aim, we executed an extensive
analysis that we conducted to better understand the data and its characteristics as follows.

e We first identified those features (sensors) that could contain more information in the target
data set. This was done by building a Random Forest model using Scikit-learn implementation,
a feature engineering tool. In building this model, we set the number of trees to 1000 and the
model criteria to the Gini impurity. According to our analysis, the most valuable features in
predicting the trustworthiness of a sensor measurement were mainly related to the time of
the activity (i.e., starting time) and the length of the performed activity (i.e., how long the
activity goes on). In addition, different sensors also contributed to the quality of prediction.
The top-most informative sensors were sensor number 74 (i.e., Kitchen, Refrigerator), 141
(i-e., Living room, TV), and 115 (i.e., Kitchen, Microwave).

e We then evaluated the correlation between different features (sensors) and, more impor-
tantly, with the target class labels (i.e., trustworthy/untrustworthy), using Pearson Correlation
(NumPy implementation) with its Coefficient ranging from -1 (showing negative correlation)
to +1 (showing positive correlation). Overall, our analysis showed that a large number of fea-
tures had considerable correlation. For example, sensors 144 (i.e., Kitchen, Refrigerator) and
145 (i.e., Kitchen, Cereal) were highly and positively correlated with the trustworthiness of
the data. On the other hand, sensors 133 (i.e., Kitchen, Cabinet) and 135 (i.e., Kitchen, Drawer)
were highly but negatively correlated with the trustworthiness of the data. In addition to the
sensors, the execution window of an activity presented a high and positive correlation with
the class labels. Hence, in addition to the sensor features, the time-related features could be

9We note that this assumption does not apply in all scenarios and rare points can be managed using unsupervised approaches.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:19

possible sources of information to predict the validity of the measurements within the IoT

environments.
e We then used Principal Component Analysis-PCA (Scikit-learn implementation) to reduce
the dimensions and sparsity of our data set, retrieving a smaller data set with very repre-
sentative dimensions. The retrieved results showed that data clearly formed two groups.
This was probably due to the fact that the original data contained activities of two people in
two different smart homes. Moreover, we noticed that the majority of untrustworthy sensor
measurements were within one of the two groups. Since all untrustworthy sensor measure-
ments originated from rare sensors with lowest number of activations, they can correlate
with the frequency of activation. Overall, our results can indicate that the untrustworthy
measurements were mainly obtained from one of the smart homes and from sensors with
less frequency of activation.
We applied Elbow method to retrieve an indication of the best number of clusters modeling
our data set. Our results showed that the optimal number of clusters could be within 10 and
20, where the distortion (clustering error) had the largest drop and then became (more or less)
stable. We also performed clustering based on the identified number of clusters. Each cluster
can represent part of the data with considerable similarity. The results of the clustering could
help in identifying the most common trustworthy or untrustworthy sensor measurements
(these are basically the centroids of the clusters).

After this analysis, we used a portion of our data set to build predictive models (classifiers)
capable of performing classification and predicting the trustworthiness of a measurement. To this
aim, we applied k-fold cross validation evaluation methodology, with k=10 and k=20 (the optimal
number of clusters boundaries). We note that since we obtained similar results with k=20, for
conciseness, we only present the results for k=10.

e The data set was randomly split into 10 non-overlapping subsets, where in every iteration,
1—90 of data points were used to train the prediction model (classifier) and the rest 1—10 was used
to test it.

e The quality of the prediction was measured in terms of popular metrics, namely, accuracy,
precision, and recall [25].

It is important to recall that our experiments aim to evaluate the need of an architectural pattern
(Section 3) for filtering out untrustworthy data (sources) due to unintentional sensor malfunctioning
and failures, and the quality of corresponding trustworthy data collection process (Section 7). To
this aim, we adopted standard classification models (i.e., Support Vector Machines (SVM), Logistic
Regressions, K-Nearest Neighbors, Random Forest and Gradient Boosting) with no optimization, to
test whether the untrustworthiness identification problem can be reduced to a standard classification
problem. With these models, we have run the experiments with the following model parameters:
support vector machines with Radial Basis Function (RBF) kernel, gamma factor set to 0.10 and
regularization parameter set to 10.0. With gradient boosting, we chose deviance as for the choice of
loss function to be optimized. With logistic regressions, we used L2 norm for the regularization
and limited-memory BFGS solver for the optimization algorithm. With random forest, we set
the number of trees in the forest to 10. Finally, with K-Nearest Neighbors, we set the number of
neighbors to 10. We trained these models on each training set, and evaluated them on each test set.
The models predicted the trustworthiness of a measurement within the test set and the predictions
were compared against the human-annotated class labels (i.e., ground truth).

From the results in Table 1, we observe an increase in the quality of the data after both semantic
and hybrid verification, with substantially higher quality when hybrid verification is used. Hybrid
verification, in fact, used the syntactically correct data set composed of 468 trustworthy records

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Ardagna et al.

Table 1. Quality results

Trustworthy Data Collection ‘ Prediction Model ‘ Accuracy | Precision | Recall
Logistic Regression 0.29 0.62 0.65
K-Nearest Neighbors 0.38 0.59 0.66

Semantic Verification Support Vector Machines 0.46 0.55 0.60
Random Forest 0.31 0.60 0.63
Gradient Boosting 0.30 0.61 0.64
Logistic Regression 0.48 0.84 0.88
K-Nearest Neighbors 0.77 0.83 0.91

Hybrid Verification Support Vector Machines 0.86 0.83 0.89
Random Forest 0.67 0.83 0.90
Gradient Boosting 0.63 0.83 0.89

for building the ML model used in semantic rule validation. We also observe that the increase in
data quality is independent from the prediction model. For accuracy metric, the best results were
achieved by support vector machines. The accuracy of this model reached 0.86 when the syntactic
errors were filtered out using syntactic rules (hybrid verification in Section 7); it reached 0.46
when the syntactic errors were not filtered (semantic verification in Section 7). All other classifiers
performed inferior to this classifier in terms of accuracy, but still clearly showing a substantial
increase in the quality when hybrid verification in Section 7 was used.

In terms of precision, all prediction techniques performed well and achieved relatively similar
results. Still, the best results were obtained by logistic regression model with the precision of 0.84,
for hybrid verification, and 0.62, for semantic verification. In terms of recall, K-Nearest Neighbors
technique marginally outperformed the other algorithms by reaching a recall of 0.91 for hybrid
verification and 0.66 for semantic verification.

Our results show the potential of machine learning techniques as an important means for in-
creasing the trustworthiness of data collection and verification with their prediction quality and
performance improvement. Our results also prove that the problem of identifying untrustworthy
data (sources) can be attacked as a standard classification problem, especially when the cause of
untrustworthiness is a sensor malfunctioning or a configuration error. This is extremely different
from existing solutions (e.g., [12, 26]) that often focus on poisoning attacks carried out by active ad-
versaries and employ complex deep learning techniques to separate trustworthy and untrustworthy
data sources.

9.2 Scenario 2: Mobile Network Roaming

Mobile Network Roaming used a data set coming from ETISALAT mobile network consisting of a
Transferred Account Procedure (TAP) file. TAP is the mechanism supported by wireless operators
in the exchange of roaming billing information. It is distributed and involves multiple networks
including the home network of and external networks visited by the users. TAP files include usage
profiles in the form of call detailed records (CDRs), generated for mobile calls/service requests and
contain information on subscriber identification, call charging, and obtained services (call/Internet
browsing). When a user (roamer) visits another mobile network (visited network) and accesses
its services a CDR is created. These records are transferred to the billing system for rating and
pricing. TAP files are continuously sent to roaming partners on a regular basis (TAP-out process),
as frequently as possible to enable monitoring of high usage and possible fraud.

Today, a contractual agreement between a user and its home network provider requires to notify
the user when a high-usage roaming profile is identified and the trend is towards exceeding a
specific threshold value. This notification is under the responsibility of the visited network, which
adopts the same threshold agreed by the home network provider and the user. The more the

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:21

Table 2. CDR features of Interest

Feature Description

RECORD_TYPE Record type

CALL_REFERENCE Unique identifier for the call

CALL_NO The number of the callees

TOTAL_DURATION Activity duration

CHARGED_UNITS How many units have been charged for a specific call

MSISDN A number used to identify a mobile phone number
internationally (caller number)

CALLEVENT_START TIMESTAMP | When the conversation started

accuracy and precision of this notification system, the higher the revenue for the home and visited
network operators, on one side, the lower the risk of incurring in penalties for missing contractual
agreements, on the other side. CDRs in TAP files are therefore continuously analyzed to show the
roamer usage trends; in particular, the derivative of the usage is used to predict when the high-
usage threshold value will be exceeded according to the observed trend. This prediction is however
affected by untrustworthy data: TAP files might contain CDRs with wrong data (measurement
error), wrong service (error in the identification of the used service), inconsistent data due to
network errors or malicious users wanting to hide their real behavior.

Scenario 2 aimed to verify the accuracy of our approach when filtering untrustworthy CDRs in
TAP files and its impact on the final decision process (high-usage warning for Internet service only).
Our evaluation process considered a TAP file from the ETISALAT network consisting of 43,521
CDRs from 14 users monitored over a period of one week (September 30, 2019 — October 6, 2019).
It is composed of the following activities: smart contract definition, data preparation, syntactic rule
validation, semantic rule validation, decision accuracy. We note that we both executed syntactic
verification in Section 7.1 and hybrid verification in Section 7.3. Syntactic verification applied
syntactic rule validation in isolation, while hybrid verification applied syntactic and semantic rule
validation in a sequence, followed by decision store in Section 6.

9.2.1 Smart Contract Definition. We defined three smart contracts for syntactic and semantic rule
validation based on CDR features in Table 2. The first smart contract defined two syntactic rules
(i.e., PingSequence and IsValidPing) for syntactic rule validation, the second smart contract defines a
semantic rule (i.e., AbnormalActivity) for semantic rule validation, the third contract a function
(i.e., SendWarning) for decision store, as follows.

e PingSequence: it takes a set of CDRs as input and summarizes n consecutive ping messages in
a single one (the one with the most recent timestamp). Ping messages are used for network
management and should not be considered in the high-usage monitoring process. They have
0 as the call number (CALL_NO) and 0 as the total charged prize (CHARGED_UNITS).

e IsValidPing: it takes a CRD as input and returns a Boolean value stating whether it is a
valid ping message as output, that is, it contributes to filter out those ping messages with
CHARGED_UNITS higher than 0.

o AbnormalActivity: it takes a CRD as input and returns a Boolean value stating whether it is a
valid CDR as output, that is, it contributes to filter out those CDRs with a cost per unit of
time (CHARGED_UNITS/TOTAL_DURATION) that is much lower/higher than the average
cost per unit of time.

e SendWarning: it takes a CRD, the high-usage threshold H of the roamer, the time threshold
T used for triggering a high-usage warning message as input, and returns a Boolean value
stating whether a warning should be sent as output, according to the trend modeled by the
first derivative calculation for CDRs of type Internet service.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Ardagna et al.

Table 3. Filtering results

(a) Syntactic Rule Validation (b) Semantic Rule Validation
Automatic Filter —

Day # of subsets | Avg. # of errors 3 5 7 9 Day Precision | Recall
September 30, 2019 97,54% 70,08%

September 30, 2019 12 14 63,40% | 83,13% | 88,57% | 92,86%
October 1, 2019 96,28% | 64,71%

October 1, 2019 12 20 60,10% | 82,11% | 90,01% | 91,11%
October 2, 2019 92,38% | 73,31%
October 2, 2019 12 18 56,20% | 85,91% | 87,75% | 97,71% Sciober 32019 soisn 72877
October 3, 2019 12 23 55,21% | 80,09% | 85,32% | 92,86% October 42019 93’46; 65’95;
October 4, 2019 12 21 60,07% | 84,19% | 87,12% | 93,81% October 5 2019 95’35; 68’597"
October 5, 2019 12 18 65,11% | 86,32% | 89,41% | 94,50% October 62019 94’857" 70’81;
October 6, 2019 12 21 55% | 74,31% | 98,21% | 90,90% - d o itald
95,00% 47%

[Average | 12 | 1928 | 5930% | 82,30% | 89.49% | 9340% | | verdge [9500% | 6947

9.2.2 Data Preparation. The first step of our process consisted in the preparation of the TAP file
retrieved from the ETISALAT network for data analysis. First, all features of interest in Table 2
were selected and CDRs ordered according to MSISDN and CALLEVENT_START TIMESTAMP.
Then, starting from the original data set, we generated two additional data sets. The first data set
(manual data set) was generated by manually filtering the CDRs in the original data set. To this aim,
we classified each CDR according to its type, namely call records, Internet records, ping records,
and only maintained the Internet records. Internet records with abnormal cost per unit of time was
then filtered out. Finally, PingSequence and IsValidPing were manually and recursively applied to
remove all consecutive and invalid ping messages sent by a mobile device to the visited network.
We note that the manual data set represented our baseline with 100% accuracy. The second data set
(filtered data set) was generated by automatically filtering errors according to our syntactic and
semantic rule validation as presented in Sections 9.2.3 and 9.2.4.

9.2.3 Syntactic Rule Validation. The data in the original data set contained syntactic errors that
could affect the quality of the high-usage warning process. To this aim, we applied our syntactic
validation in Section 7.1 to filter them out and increase trustworthiness of collected CDRs. We
then applied functions PingSequence and IsValidPing in Section 9.2.1 to filter ping messages, not
contributing to the total amount of charged units used by the high-usage warning process, as
follows: i) we removed all invalid pings, that is, ping messages with CHARGED_UNITS greater
than zero, using function IsValidPing; ii) we summarized n consecutive valid pings, that is, messages
with no CALL_NO and CHARGED_UNITS equals to 0, with one ping (i.e., the one with the most
recent timestamp) using function PingSequence.'® The main difference between automatic and
manual filtering is that manual filtering recursively applied function PingSequence achieving a
higher filtering accuracy.

We computed the accuracy of our syntactic rule validation, by comparing the number of erroneous
pings that remained unfiltered in the filtered data set. Table 3(a) shows our results, discussing the
accuracy of our syntactic verification day-by-day and on average. For each day, we present the
accuracy of our automatic filtering considering all 14 users. The last row presents the average on
the whole week. It is important to note that the accuracy of our filtering process increases as the
number n of consecutive pings to be summarized increases. This is due to the fact that our syntactic
rule PingSequence is not recursive and for small n leaves a not-negligible numbers of consecutive
pings in the data set. On the other side, having a value of n too big might bring to the opposite
scenario, where less than n consecutive pings are not even considered for filtering. According to
our data, the optimum choice was n=9, where 93.4% of the ping errors were filtered out.

19We note that consecutive pings can be created due to cell changes and network delays.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:23

9.2.4 Semantic Rule Validation. The data filtered according to syntactic rule validation were
checked against a semantic rule aiming to remove those CDRs whose type was not Internet service.
We then applied function AbnormalActivity in Section 9.2.1 to filter CDRs as follows. First, we
calculated the average cost per unit of time and standard deviation of Internet records. Then, we
filtered out all CDRs above the 95th percentile.

We computed the accuracy and precision of our algorithm in filtering CDRs, by observing i) the
number of CDRs of type Internet service with abnormal cost per unit of time and the number of
type call that remained unfiltered in the filtered data set, ii) the number of CDRs of type Internet
service that were filtered out. Table 3(b) shows our results discussing the accuracy and precision of
our semantic rule validation day-by-day and on average. For each day, we present the quality of
our filtering considering all 14 users. The last row presents the average on the whole week. We
note that our aim was to maximize the accuracy of our algorithm (95% on average), minimizing
the number of unfiltered CDRs at point i), at the price of a decrease precision (69,47% on average)
due to a not-negligible amount of filtered CDRs at point ii). The reason driving our choice was to
test our decision quality in a challenging scenario where a substantial amount of correct data were
filtered out, while a negligible amount of incorrect data remained in the data set.

9.2.5 Decision Accuracy. We used the three data sets produced in the previous steps to evaluate the
effects our approach had on the quality of the high-usage warning process for Internet service: i) the
original TAP file including all syntactic errors (original data set), ii) the filtered TAP file, that is, the
noisy TAP file with untrustworthy CDRs filtered according to our approach (filtered data set), iii)
the manually filtered TAP file (manual data set). The TAP files were used to identify the cumulative
distribution of network usage (CHARGED_UNITS) over time. We considered the notification
process of roamer high usage as our decision process and evaluated its quality. The decision process,
inspired by ETISALAT, was a simplified approach based on first derivative calculation; this choice
was done to reduce the impact of the selected algorithm on the quality of our results. The high-usage
warning process worked as follows.

(1) The three data sets were partitioned in 98 data sets each, where each data set referred
to a specific user (MSISDN) and day of observation (CALLEVENT_START_TIMESTAMP).
The high-usage threshold H and the time threshold T were also defined. The cumulative
distribution of network usage over time was calculated per user, per day.

(2) Upon selecting a specific data set, the first derivative f’(t) at time t was calculated as the
secant passing through two consecutive points (x;,y;) and (x;+1,Y¢+1)-

(3) The predicted time f needed to reach the threshold H was calculated by solving the system of
two equations including the high-usage threshold y=H and the straight line y=ax+b modeling
f(t). The solution (x,,y,,) was such that t=x,—t.

(4) If t<T, a warning was triggered.

(5) If no warning was triggered the same process was repeated from Step 2 with t=t+2. Otherwise,
if a warning was triggered or the data set completed with no warning, the next data set (if
any) was analyzed starting from Step 2 and ¢=0.

We executed the above algorithm on our three data sets, fixing high-usage threshold H=30
charged units and time threshold T=30 min. We then compared the average difference in warning
time using the data sets and taking the manual data set as our benchmark. For all data sets, the
same number of warnings was triggered. However, the error distance in minutes substantially
varied. Using the original data set, we triggered the high-usage warnings 79 minutes in advance
on average with respect to the one retrieved with the manual data set. This was due to the
fact that the original data set contained many unfiltered CDRs with high cost per unit of time
(CHARGED_UNITS/TOTAL_DURATION). On the other hand, the filtered data set while removing

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 Ardagna et al.

the majority of the outliers, also erroneously removed part of CDRs of type Internet service. We
recall that this was due to the choice of testing our approach in a suboptimal and challenging
scenario. We then observed a delay of 18 min on average in the forwarding of the high-usage
warning, clearly outperforming the performance of the original data set. We also observe that no
warning notification happened after the threshold was breached.

To conclude, it is very important to underline that our approach is prone to optimization, since
all parameters of the decision are stored on chain and can be tuned over time, according to the
performance observed. Better tuning the percentile in Section 9.2.4 for semantic rule validation,
and the two thresholds H and T used for decision, as well as smarter ways of calculating the first
derivative, can bring to better results and performance. The overall trustworthiness, instead, is not
affected by optimization, since all steps of our analysis are stored on chain and can then be used
for assurance verification.

10 CONCLUSIONS

In this paper, we presented a methodology for collecting trustworthy data that complements existing
trustworthy decision processes. The intuition behind our approach is that the more trustworthy
data, the higher the decision quality. Our methodology for trustworthy data collection in IoT
environments filters out untrustworthy data coming from smart devices on the basis of either
syntactic rules and semantics rules. It is based on blockchain and smart contracts supporting
traceability of decisions taken according to collected data and generated behavioral model. This
approach has been also referred to as open execution in literature [23], since it provides full
visibility of the system execution. We also specified different implementations of the trustworthy
data collection process with varying trustworthiness and privacy, which have been experimentally
evaluated in a real-world scenario using Hyperledeger fabric blockchain. The solution in this
paper leaves space for future work. First, we will investigate formal properties of our approach
with particular reference to properties trustworthiness and privacy. Then, we will investigate the
impact of standard classification algorithms on the performance of semantic rule validation. We will
investigate how the approach in this paper can be extended to consider complex scenarios where
different processes and systems are composed. Finally, we will consider penalty-based unsupervised
machine learning techniques when dealing with application-specific verticals.

ACKNOWLEDGMENTS

Research supported, in parts, by EC H2020 Project CONCORDIA GA 830927 and Universita degli
Studi di Milano under the program “Piano sostegno alla ricerca 2019”.

REFERENCES

[1] M. Ambrosin, M. Conti, A. Ibrahim, A. Sadeghi, and M. Schunter. 2018. SCIoT: A Secure and sCalable End-to-End
Management Framework for IoT Devices. In Proc. of ESORICS 2018. Barcelona, Spain.

[2] C.A. Ardagna, R. Asal, E. Damiani, C. Pahl, N. El Ioini, and C. Pahl. 2019. Trustworty IoT: An Evidence Collection
Approach based on Smart Contracts. In Proc. of SCC 2019. Milan, Italy.

[3] C.A. Ardagna, R. Asal, E. Damiani, and Q.H. Vu. 2015. From Security to Assurance in the Cloud: A Survey. ACM CSUR
48,1 (August 2015), 2:1-2:50.

[4] C.A. Ardagna, E. Damiani, J. Schutte, and P. Stephanow. 2017. A Case for IoT Security Assurance. In Internet of
Everything, B. Di Martino, K. Ching Li, L. Yang, and A. Esposito (Eds.). Springer.

[5] S.Bonomi, M. Casini, and C. Ciccotelli. 2018. B-CoC: A Blockchain-based Chain of Custody for Evidences Management
in Digital Forensics. arXiv preprint arXiv:1807.10359 (2018).

[6] E. Damiani T. Dimitrakos N. El Ioini C. Pahl C. Ardagna, R. Asal. 2018. Certification-Based Cloud Adaptation. IEEE
Transactions on Services Computing PP (01 2018). https://doi.org/10.1109/TSC.2018.2793268

[7] C.Dai, D. Lin, E. Bertino, and M. Kantarcioglu. 2008. An approach to evaluate data trustworthiness based on data
provenance. In Proc. of SDM 2008. Auckland, New Zealand.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1109/TSC.2018.2793268

From Trustworthy Data to Trustworthy loT: A Data Collection Methodology Based on Blockchain 1:25

(8]

(9]
(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

Ericsson. 2016. Bootstrapping Security - The Key to Internet of Things Access Authentication and Data Integrity.
(February 2016). Ericsson white paper, 284 23-3284, http://www.ericsson.com/res/docs/whitepapers/wp-iot-security.
pdf.

D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods. 2017. Cloud-Trust, a Security Assessment Model
for Infrastructure as a Service (IaaS) Clouds. IEEE TCC 5, 3 (July 2017), 523-536.

M. Irfan, H. Abbas, Y. Sun, A. Sajid, and M. Pasha. 2016. A framework for cloud forensics evidence collection and
analysis using security information and event management. Security and Communication Networks 9, 16 (2016),
3790-3807.

U. Jayasinghe, A. Otebolaku, T.-W. Um, and G.M. Lee. 2017. Data centric trust evaluation and prediction framework
for IoT. In Proc. of ITU K 2017. Nanjing, China.

S. Kariyappa and M.K. Qureshi. 2019. Improving adversarial robustness of ensembles with diversity training. In
arXiv:1901.09981.

N. Karthik and V.S. Ananthanarayana. 2017. Data trust model for event detection in wireless sensor networks using
data correlation techniques. In Proc. of ICSCN 2017. Chennai, India.

L. Li and A. Ghasemi. 2019. IoT-Enabled Machine Learning for an Algorithmic Spectrum Decision Process. IEEE
Internet of Things Journal 6, 2 (April 2019), 1911-1919.

B. Liu, X.L. Yu, S. Chen, X. Xu, and L. Zhu. 2017. Blockchain based data integrity service framework for IoT data. In
Proc. of ICWS 2017. Honolulu, HI, USA.

Augqib Hamid Lone and R. N. Mir. 2019. Forensic-chain: Blockchain based digital forensics chain of custody with PoC
in Hyperledger Composer. Digital Investigation 28 (2019), 44-55.

B.K. Mohanta, S.S. Panda, U. Satapathy, D. Jena, and D. Gountia. 2019. Trustworthy Management in Decentralized IoT
Application using Blockchain. In Proc. of ICCCNT 2019. Kanpur, India.

KR. Ozyilmaz and A. Yurdakul. 2017. Work-in-progress: integrating low-power IoT devices to a blockchain-based
infrastructure. In Proc. of EMSOFT 2017. Seoul, South Korea.

JH. Park, J.Y. Park, and E.N. Huh. 2017. BLOCK CHAIN BASED DATA LOGGING AND INTEGRITY MANAGEMENT
SYSTEM FOR CLOUD FORENSICS. Computer Science & Information Technology (2017), 149-159.

R. Rani, S. Kumar, and U. Dohare. 2019. Trust Evaluation for Light Weight Security in Sensor Enabled Internet of
Things: Game Theory Oriented Approach. IEEE Internet of Things Journal 6 (2019), 8421-8432.

M. Raya, P. Papadimitratos, V.D. Gligor, and J.-P. Hubaux. 2008. On data-centric trust establishment in ephemeral ad
hoc networks. In Proc. of INFOCOM 2008. Phoenix, AZ, USA.

J. Rowley. 2007. The wisdom hierarchy: representations of the DIKW hierarchy. Journal of Information Science 33, 2
(2007), 163-180.

K. Salah, E. Damiani, A. Al-Fuqaha, T. Martin, K. Taha, and M.K. Khan. 2018. Open Execution — The Blockchain Model.
IEEE Blockchain Technical Briefs (December 2018).

H. Sato, A. Kanai, S. Tanimoto, and T. Kobayashi. 2016. Establishing Trust in the Emerging Era of IoT. In Proc. of IEEE
SOSE 2016. Oxford, UK.

M. Schedl, H. Zamani, C. Chen, Y. Deldjoo, and M. Elahi. 2018. Current challenges and visions in music recommender
systems research. International Journal of Multimedia Information Retrieval 7, 2 (01 Jun 2018), 95-116. https:
//doi.org/10.1007/s13735-018-0154-2

S. Shen, S. Tople, and P. Saxena. 2016. Auror: Defending against poisoning attacks in collaborative deep learning
systems. In Proc. of ACSAC 2016. Los Angeles, CA, USA.

A. Sheth. 2016. Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual Computing. IEEE
Intelligent Systems 31, 2 (March-April 2016), 108-112.

P. Shi, H. Wang, S. Yang, C. Chen, and W. Yang. 2019. Blockchain-based trusted data sharing among trusted stakeholders
in IoT. Software: Practice and Experience (August 2019), 1-14. https://doi.org/10.1002/spe.2739

M. Sigwart, M. Borkowski, M. Peise, S. Schulte, and S. Tai. 2019. Blockchain-based data provenance for the internet of
things. In Proc. of IoT 2019. Bilbao, Spain.

S. Suhail, C.S. Hong, M.A. Lodhi, F. Zafar, A. Khan, and F. Bashir. 2018. Data trustworthiness in iot. In Proc. of ICOIN
2018. Chiang Mai, Thailand.

Salman Taherizadeh, Andrew C. Jones, Ian Taylor, Zhiming Zhao, and Vlado Stankovski. 2018. Monitoring self-adaptive
applications within edge computing frameworks: A state-of-the-art review. Journal of Systems and Software 136 (2018),
19 - 38. https://doi.org/10.1016/j.js5.2017.10.033

F. Xia, LT. Yang, L. Wang, and A. Vinel. 2012. Internet of Things. International Journal of Communication Systems 25
(September 2012), 1101-1102. Issue 9.

Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao. 2017. A Survey on Security and Privacy Issues in Internet-of-Things. IEEE
Internet of Things Journal 4, 5 (October 2017), 1250-1258.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

http://www.ericsson.com/res/docs/whitepapers/wp-iot-security.pdf
http://www.ericsson.com/res/docs/whitepapers/wp-iot-security.pdf
https://doi.org/10.1007/s13735-018-0154-2
https://doi.org/10.1007/s13735-018-0154-2
https://doi.org/10.1002/spe.2739
https://doi.org/10.1016/j.jss.2017.10.033

1:26 Ardagna et al.

[34] Z. Yang, K. Yang, L. Lei, K. Zheng, and V.C.M. Leung. 2018. Blockchain-based decentralized trust management in
vehicular networks. IEEE Internet of Things Journal 6, 2 (2018), 1495-1505.

[35] I Yen, F. Bastani, N. Solanki, Y. Huang, and H. San-Yih. 2018. Trustworthy Computing in the Dynamic IoT Cloud. In
Proc. of IRI 2018. Salt Lake City, UT, USA.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	3 Reference Scenario
	4 Trustworthy Data Collection Architecture
	5 Data Validation: IoT Trust
	5.1 Data structure
	5.2 Validation Rules
	5.3 Events

	6 Data Store
	6.1 Data Point Store
	6.2 Data Aggregation Store
	6.3 Decision Store

	7 Trustworthy Data Collection Process
	7.1 Syntactic Verification
	7.2 Semantic Verification
	7.3 Hybrid Verification
	7.4 Trustworthiness vs Privacy

	8 Performance Evaluation
	8.1 Experimental Settings
	8.2 Data Collection Verification
	8.3 Data Store
	8.4 Trustworthy Data Collection Process

	9 Quality Evaluation
	9.1 Scenario 1: Smart Home Monitoring
	9.2 Scenario 2: Mobile Network Roaming

	10 Conclusions
	References

