
ar
X

iv
:2

00
7.

13
34

1v
1 

 [
m

at
h.

D
S]

  2
7 

Ju
l 2

02
0
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Normal modes are intimately related to the quadratic approximation of a potential at its hy-
perbolic equilibria. Here we extend the notion to the case where the Taylor expansion for the
potential at a critical point starts with higher order terms, and show that such an extension shares
some of the properties of standard normal modes. Some symmetric examples are considered in detail.

Dedicated to James Montaldi on his 25+something anniversary

I. INTRODUCTION

The concept of normal modes is a fundamental one in
the study of Hamiltonian dynamical systems [1–4]; it is
based on the quadratic part of the Taylor expansion of
the Hamiltonian around a non-degenerate (isolated and
hyperbolic) stable equilibrium, and under certain fairly
general assumptions it can be conveniently employed also
in considering higher order expansions of the Hamilto-
nian. That is, under such assumptions (including a non-
resonance condition) normal modes persist, at least lo-
cally, when one considers also higher order terms – or for
nonlinear Hamiltonian dynamics [5, 6] – as also studied
by James in a series of papers [7, 8].

Normal modes span the dynamics of the quadratic
Hamiltonian, i.e. any motion for this can be described
as the superposition of normal modes; more precisely,
normal modes define invariant lines in a neighborhood
U ≃ Rn of the equilibrium in the position space, and
these provide a basis for U .

Here we want to discuss the (partial) generalization of
this concept to the case where the equilibrium is stable
and isolated, but not hyperbolic. This resonates with
some recent studies in a different field, i.e. liquid crystals.
More precisely, we will find some connection with recent
studies of liquid crystals described by higher order tensor
order parameter [9–12].

We will show that normal modes – in the sense of in-
variant lines – also exist for the dynamics of fully nonlin-
ear homogeneous Hamiltonian systems (more precisely,
we will confine ourselves to systems with a natural Hamil-
tonian H = T + V and a potential V (x) homogeneous
of degree k > 2). On the other hand, unless some very
special conditions (e.g. based on the symmetry of the full
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system) are met, it is not possible to describe a generic
motion as a (nonlinear) superposition of these higher or-
der normal modes.

II. NORMAL MODES

We will consider natural Hamiltonians

H = T + V =
p2

2m
+ V (q) (1)

with q ∈ Rn; the potential V is such that the origin is
an isolated stable equilibrium point.
Our discussion could be extended to encompass a gen-

eral Hamiltonian on a symplectic manifold M of dimen-
sion 2n, and a non-degenerate equilibrium point p0 for
this; however our considerations will be local, so by Dar-
boux’ theorem we can always consider a standard sym-
plectic form.
The physical interest of the natural Hamiltonian case

surely justifies considering this special case. Moreover
this will help keeping the discussion and notation simpler,
focusing on the key points.[32]
We can then consider the Taylor expansion of V around

q = 0; we thus have, in view of the non-degeneracy as-
sumption,

V (q) = V0 +
1

2
(q, Aq) + h.o.t. ,

where V0 = V (0) is a constant – which can be set to zero
with no loss of generality – and A is a symmetric tensor
of order two, i.e. a symmetric matrix,

Aij =

(
∂2V

∂qi∂qj

)

0

. (2)

We will now truncate the potential at order two, i.e.
omit the higher order terms and deal just with V =
1/2(q, Aq); the relevant case for normal modes is that
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where the origin is a stable fixed point, hence A is a pos-
itive definite matrix.
This matrix A will have eigenvalues λi and correspond-

ing (say normalized) eigenvectors φ(i); these in turn cor-
respond to normal modes in a very well known way, which
we briefly recall to fix notation [1–4].

1. The eigenvectors φ(i) identify invariant lines : if
a motion has initial conditions q(0) = α(0)φ(i),
q̇(0) = β(0)φ(i), then q(t) = α(t)φ(i) (and hence
q̇(t) = β(t)φ(i)) for all t.

2. The eigenvectors φ(i) (i = 1, ..., n) span the linear
space Rn;

3. A general motion, i.e. one with generic initial con-
ditions q(0), q̇(0) can then be decomposed in terms
of normal modes. In fact, by the property just men-
tioned, there will exist constants αi(0), βi(0) such
that

q(0) =

n∑

i=1

αi(0)φ(i) ; ˙q(0) =

n∑

i=1

βi(0)φ(i) .

The evolution of the system will then just be de-
scribed by

q(t) =

n∑

i=1

αi(t)φ(i) ; ˙q(t) =

n∑

i=1

βi(t)φ(i) ,

with αi(t) and βi(t) being exactly as in the nor-
mal mode solution with initial data {αi(0), βi(0)}.
In other words, any solution for this quadratic
Hamiltonian will be a linear superposition of nor-
mal modes solutions.

4. As a consequence of the previous item, in the case
there exist several normal modes associated with
the same frequency, the whole linear space spanned
by the associated eigenvectors is made of eigenvec-
tors and hence of normal modes with the given fre-
quencies.

As anticipated, we will find that properties (1) and (2)
extend to the higher order case, while properties (3) and
(4), related to linearity, do not.

III. EIGENVECTORS OF TENSORS

We now consider the case where q = 0 is an isolated
critical point, but we will drop the hypothesis it is hy-
perbolic. Actually, we want to assume that the matrix A
defined in (2) is identically zero, i.e. that the potential
V is fully nonlinear at the considered critical point.
Thus we have to go further in the Taylor expansion –

even if we want to stop at the first significant term – and

actually if we want the critical point to be a stable one
it is needed to consider a fourth order[33] tensor T ,

Tijkℓ :=
1

24

(
∂4H

∂qi∂qj∂qk∂qℓ

)

0

. (3)

Thus, disregarding higher order terms, we want to con-
sider a potential expressed in local coordinates which is
homogeneous of order four and which has an isolated
equilibrium at the origin. After getting rid of inessen-
tial (additive and multiplicative) constants, this can be
written as

V = Tijkℓ q
i qj qk qℓ . (4)

The “direct extension” of properties (1) and (2) re-
called above for usual normal modes would require
to consider eigenvectors for the fourth order tensor T
(rather than the matrix A) and see if these span the
whole space.
The notion of eigenvector of tensors is not so well

known in general, but it can be defined and it has been
studied (with a revival of interest in recent times) both
from the algebraic point of view [13–15] and in connec-
tion with dynamics [16–22] (see also [23, 24]); as already
mentioned, it has also been recently considered in connec-
tion with critical points of a constrained potential with
applications in the Physics of Liquid Crystals [9–12].
We will not introduce and discuss the notion of eigen-

vectors of tensors right away, but we will start with a
general discussion of one dimensional eigenspaces of ho-
mogeneous polynomial maps.

A. Eigenspaces of homogeneous polynomial vector

fields

We will simultaneously discuss the real and the com-
plex case in this section. We first recall a classical result
from Algebraic Geometry; see [25] for more about this.

Theorem 1 (Bezout). Let {f1, ...fm} be homogeneous
polynomials of degree n, fi : C

m → C. Then the number
of common zeros of the fi in projective space Pm is either
infinite or equal to nm, counting multiplicities.

For real polynomials this theorem provides only limited
information about the nature of these critical points; in
particular, we cannot infer how many of these are real.[34]
But, since the complex conjugate of every solution is also
a solution (with the same multiplicity, as can be shown),
we conclude that a real solution exists whenever n is odd
(and there are only finitely many solutions).
We now denote by K the real or complex numbers and

consider a homogeneous polynomial map

B : Kq → Kq, x 7→



B1(x)

...
Bq(x)


 (5)
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with each Bi homogeneous of degree p ≥ 2. In coordi-
nates we have

Bi = Bi
j1...jqx

j1 ...xjq . (6)

We stipulate that the coefficients Bi
j1...jq

are symmet-

ric with respect to permutations of j1, . . . , jq; this choice
makes the coefficients unique. It is possible to identify
B with its coefficients, and consider it as an element of
the coefficient space (which is just some KN .) A formal
definition follows next.

Definition. Let B be given as in (5). Then a nonzero
v ∈ Kq is called an eigenvector of B if there exists an
α ∈ K such that B(v) = αv.

Some remarks are in order here:

1. Every nonzero scalar multiple of an eigenvector v
is also an eigenvector. Therefore it makes sense to
call K v an eigenspace of B.

2. On the other hand, the notion of eigenvalue is prob-
lematic for homogeneous maps of degree > 1, since

B(βv) = βpαv = (βp−1α) · (βv)

for any β, and thus one may replace the “eigen-
value” α by βp−1α.

3. One may use this property to scale “eigenvalues”
to be either 0 or 1 in the complex case, and also in
the real case when the degree p is even; for the real
case with odd p one may achieve “eigenvalue” 0, 1
or −1 by scaling.

4. Alternatively, one may prescribe that the (Eu-
clidean) norm of an eigenvector should be equal
to 1; then the notion of eigenvalue becomes rele-
vant. This will be done later for tensors and their
gradient systems.

We now list a number of results on eigenspaces of ho-
mogeneous polynomial maps; most of these are based on
the work of H. Rohrl [16–20].

Theorem 2. Let B be as in (5), and K = C. Then the
following hold.

(i) The number of one-dimensional eigenspaces of B is
either infinite or equal to

NR =
pq − 1

p− 1
,

counting multiplicities.

(ii) Test for multiplicity one: Let v ∈ Cq be nonzero
and B(v) = αv with some α 6= 0. Then Cv corre-
sponds to a solution of multiplicity one if and only
if the Jacobian DB(v) does not admit the eigen-
value α.

(iii) If the equation B(x) = 0 has only the trivial so-
lution x = 0 then the number of one-dimensional
eigenspaces of B is finite.

(iv) There is an open and dense subset of coefficient
space such that every B with coefficients in this sub-
set admits a basis for Cq of eigenvectors.

(v) There is an open and dense subset of coefficient
space such that every B with coefficients in this
subset admits exactly NR different one-dimensional
eigenspaces.

(vi) If the coefficients Bi
j1...jq

are algebraically inde-

pendent over the rational number field then the
equation B(x) = 0 has only the trivial solution,
and B admits exactly NR different one-dimensional
eigenspaces.

Proof. We just sketch some arguments for the proofs,
and give references. (See also the review [24].) The first
assertion is due to Rohrl [16, 18], the second is derived
from the familiar criterion for multiplicity one (i.e. in-
vertibility of the linearization). The third assertion is
shown e.g. in [21], based on the fact that any projective
variety of positive dimension intersects every hyperplane.
The fourth and fifth assertion go essentially back to Rohrl
[19], although the full statement given in this paper is not
correct, and the proof has to be modified. See the Ap-
pendix of [22] for a full discussion. The last statement
is again due to Rohrl [16]; the algebraic independence
condition guarantees that the multiplicity one criterion
is always satisfied. ⊙

We turn to the real setting. For proofs and references
concerning the following statements we refer to [24]. (In
some of the proofs analytic techniques enter the picture.)

Theorem 3. Let B be as in (5), and K = R. Then the
following hold.

(i) If the dimension q is odd then there exists a one-
dimensional real eigenspace of B.

(ii) If the dimension q is even and the degree p of B
is even then there exists a one-dimensional real
eigenspace of B.

(iii) If the complexification admits finitely many one-
dimensional eigenspaces, then the number of real
eigenspaces is congruent to NR modulo 2.

B. Radial solutions of fully nonlinear dynamical

systems

Rohrl was interested in (one-dimensional) eigenspaces
of homogeneous polynomial maps because they give rise
to special solutions of an associated differential equation,
similar to the linear case. Rohrl considered first order
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differential equations, and we paraphrase his result here
(see the original work in [16] and [17]).

Theorem 4. Let B be as in (5), and consider the ordi-
nary differential equation

ẋ = B(x)

in Kn. Then every one-dimensional eigenspace of B is
an invariant set for this differential equation.
For nonzero v with B(v) = αv, some α ∈ K, one

obtains solutions with the ansatz x(t) = ξ(t) · v, which

leads to the one-dimensional equation ξ̇ = αξp.

There is a straightforward extension of this approach
to second order equations.

Theorem 5. Let B be as in (5), and consider the second
order ordinary differential equation in Kn

ẍ = B(x) .

(i) Then every nonzero v with B(v) = αv, some α ∈
K, gives rise to special solutions of the differential
equation, via the ansatz x(t) = γ(t) · v, which leads
to the one-dimensional second order equation γ̈ =
αγp.

(ii) In case K = R a phase plane analysis of the asso-
ciated system

ẏ1 = y2, ẏ2 = α
(
y1
)p

yields the first integral ψ = 2α
(
y1
)p+1 − (p +

1)
(
y2
)2
. When α 6= 0 then the level sets of ψ are

bounded if and only if α < 0 and p is odd. In this
case, the level sets are orbits of periodic solutions
of the second order system; in all other cases ev-
ery nonconstant solution obtained by the ansatz is
unbounded.

Proof (Sketch). Note that 0 is the only stationary point
of the system. It is elementary to see that the level sets
are bounded, hence compact, if and only if α < 0 and
p is odd. By standard Poincaré-Bendixson theory for
planar systems, the only possible limit sets of points on
a compact level set containing more than one point are
closed orbits, thus they must coincide with the level sets
by connectedness. In every other case, each level set that
contains more than one point is unbounded, and any α
or ω limit point of a solution starting on such a level set
consists of a stationary point, by Poincaré-Bendixson.
Unboundedness of the solution follows. ⊙
Remark 1. It is worth noting that in the case p = 2
the special solutions from the theorem correspond to a
well-known class of special functions. Indeed, the second
order equation

z̈ = α z2

becomes, upon employing the first integral,

ż2 =
2

3
α z3 + c

with some constant c, and this is the differential equation
for a Weierstrass ℘-function. So, elliptic functions appear
in a natural manner. ⊙

C. Critical points on the unit sphere

In this section we are only interested in the real case
K = R. We consider a symmetric tensor Ti1...in of order
n on Rm, and we associate with this a polynomial

Pn(x) := Ti1...inx
i1 ...xin ;

note that here the dimension m of the ambient space and
the degree n of the polynomial are not related. In the fol-
lowing, Pn will also be called the potential ; it will also be
just denoted as P , when we do not need to emphasize its
degree. Conversely, as is well known, the algebra of ho-
mogeneous polynomials of degree n in Rm is isomorphic
to the algebra of symmetric tensors of the same order n
over Rm.
Consider now the gradient of Pn, i.e. the m-

dimensional vector

∇Pn =

(
∂Pn

∂x1
, ... ,

∂Pn

∂xm

)
;

here of course each component is a homogeneous function
of degree (n− 1) in the xi.
We define an eigenvector of the tensor T to be an eigen-

vector of (∇Pn).
For eigenvectors of tensors we obtain an improvement

of earlier results concerning the real case. We collect
them in the following.

Theorem 6. Let v ∈ Rm be of Euclidean norm one.
Then

(i) v is an eigenvector of ∇Pn if and only if v is a
critical point of Pn on the unit sphere Sm−1 ⊂ Rm.

(ii) The real homogeneous gradient map ∇Pn admits a
real eigenvector.

(iii) If we have finitely many critical points xk, then the
sum of the indices of all critical points is equal to
the (Euler-Poincaré) characteristic χ(Sm−1) of the
ambient sphere, thus:

∑

k

ι(xk) = χ(Sm−1) =

{
2 if m is odd
0 if m is even

(7)

Proof. To prove the first assertion (i), introduce a La-
grange multiplier λ and consider the modified potential

P̂ (x) := P (x) − 1

2
λ |x|2 . (8)
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The gradient of P̂ is given by

∇P̂ = ∇P − λx ;

hence the solutions to ∇P̂ = 0 are exactly the points on
the unit sphere such that (∇P )(x0) is collinear to x0;
these identify (unit length) eigenvectors of T and hence
eigenspaces. The second assertion (ii) is then clear since
Pn attains maximum and minimum on the compact unit
sphere. The notion of index of a critical point a is defined
in [26] via the Brouwer degree. When a is nondegenerate
(i.e., the derivative at a is invertible) it is equal to the
sign of its Jacobian determinant. For the proof of the
last assertion (iii) see [26, 27]. ⊙

In view of the results above we will adopt the con-
vention that whenever reference is made to eigenvalues
associated with eigenvectors, it is understood that these
are associated with eigenvectors of unit length.[35]
We also note that (like for matrices) if T depends on

parameters then the eigenvectors and eigenvalues will
in general depend on these parameters. We anticipate
that also the number of independent eigenvectors (that
is, eigenspaces) can vary depending on such parameters.
This situation is met already in the simplest nontriv-
ial case, i.e. for completely symmetric cubic tensors in
three-dimensional space[36]. For a full discussion of this
case we refer to [10] (with a more physical approach) and
especially to [12].
The situation is specially simple when the ambient

space is R3 (a case of clear physical interest!) and hence
we work in S2 ⊂ R3 and all critical points are non-
degenerate. In this case maxima and minima have index
+1 while saddle points have index -1.
In any case, it is elementary to classify all possible com-

binations of non-degenerate critical points compatible
with the formula (7) and with Bezout’s theorem, which
provides the maximal number of real critical points[37].
In view of the special nature of the potential considered
here (homogeneous of degree n), it is either even or odd,
depending on the parity of n, hence all critical points are
dual to each other under reflection. Thus in the odd case
there will be as many maxima as minima while in the
even one these numbers will necessarily be even, as well
as (in all cases) the number of saddles of any given index.
For example, in [12] it is argued that in the case of a cu-

bic potential (and hence a quadratic gradient mapping)
in three-dimensional space (and hence a two-dimensional
ambient sphere) with non-degenerate extremals (but pos-
sibly degenerate saddles) only the possibilities listed in
Table I arise.[38]
Here we are more interested in even degree, and es-

pecially in quartic potentials, and hence cubic gradient
mappings. In this case, already for ambient space R3

we get up to (33 − 1) = 26 critical points and a com-
plete classification would make little sense. We remark,
however, that Table I is still valid in that it concerns
topological features; on the other hand, in this context

Max Min S1 S2 S3 NCP

1 1 0 0 0 2

2 2 2 0 0 6

3 3 4 0 0 10

3 3 0 2 0 8

4 4 6 0 0 14

4 4 2 2 0 12

4 4 0 0 2 10

TABLE I: Different possibilities for the number and type of
critical points in the case of a cubic potential in three dimen-
sions; here “Max”and “Min” represent the number of max-
ima and minima, while “Sk” represents the number of saddle
points of index −k. Finally, “NCP” is the total number of
critical points.

it does not provide a complete classification of the possi-
ble situations, but only of those with no more than four
maxima or minima.

We also note that when the ambient space is R2, and
hence the relevant sphere is just a circle S1, then we
always have as many maxima as minima, whose number
is of course limited by the degree of the potential; and of
course no saddles. E.g. for p = 3 and q = 2 we have at
most four maxima and four minima.

Some simple Examples will be considered in detail in
Section IV.

IV. EXAMPLE. INVARIANT LINES;

EXISTENCE AND NUMBER OF HIGHER

ORDER NORMAL MODES

As the simplest possible example of the situation we
have been studying, we consider a point particle of mass
m = 1 in R2 (with cartesian coordinates x, y) evolv-
ing under the action of a quartic potential (a cubic one
would not satisfy the requirement that the origin is a
stable equilibrium); in order to reduce the complexity of
the potential (and hence of the analysis) we assume it
depends on x and y only through their squares. That is,

V (x, y) = a x4 + b y4 + 2 c x2 y2 . (9)

Note that this is symmetric under Z2 × Z2 (these acting
as reflections in x and in y); if we wish to require this to
be also invariant under the Z2 involution exchanging x
and y then we should require b = a. In this case it would
be convenient, with a suitable redefinition of constants,
to rewrite this as

V (x, y) = α (x2 + y2)2 + β x2 y2 . (10)

We will refer to these cases as the lower symmetry and
the higher symmetry cases respectively.
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A. The higher symmetry case

We will first consider the case where the system is Z2×
Z2 ×Z2 symmetric, i.e. the potential is in the form (10).
Note that in order to have a stable point at the origin,

the coefficients α should be positive; we will assume this
to be the case from now on.
Moreover, we can always rescale V (which amounts to

a rescaling of time) and choose α = 1. Then in order to
have a minimum at the origin we can ask β > −4; this
is obtained by looking at the behavior of the potential
Vm(x) := V (x,mx) along all lines y = mx (including the
m = ∞ case, i.e. the y axis). We will moreover assume
β 6= 0 to avoid the fully degenerate case with rotational
symmetry.
When we pass to polar coordinates (we consider θ ∈

(−π, π], and of course ρ ∈ [0,∞))

x = ρ cos(θ) , y = ρ sin(θ)

and constrain the potential on the unit circle ρ2 = x2 +
y2 = 1, call it W (θ), we get

W =
1

8
[8 − β cos(4 θ) + β] . (11)

Thus we have

dW

dθ
=

1

2
β sin(4 θ) ;

critical points are obtained for

θ = θk := k
π

4
, |k| ≤ 4 .

That is, we get eight critical points on the unit circle,
corresponding to four invariant lines; this applies for any
nonzero value of β (as already remarked β = 0 is the
fully rotationally invariant and hence infinitely degener-
ate case; we excluded this from our considerations).
The stability of the critical points is controlled by

[
d2W

dθ2

]

θk

= 2 β cos(4 θk) .

Thus we have a bifurcation at β = 0; for this value of β
all the stabilities are exchanged. In particular, for β <
0 the lines identified by θ = ±π/4 are stable and the
axes (θ = 0, π/2) are unstable, while for β > 0 the lines
identified by θ = ±π/4 are unstable and the axes are
stable; see Figure 1.[39]
The effective potentials along the invariant lines, call

these as Vθ where θ is the (invariant) angular coordinate
in the (x, y) plane, is always of the form Vθ(r) = cθ r

4

with cθ a constant. We actually get (recall we assumed
β > −4)

c0 = cπ/2 = 1 ; cπ/4 = c−π/4 = 1 + β/4 .

This is coherent, of course, with the stability of the equi-
librium point at the origin.

-3 -2 -1 1 2 3

0.8

0.9

1.1

1.2

FIG. 1: The potential W (θ) as in eq.(11) for different values
of β; here β = −1,−0.5, 0.5, 1. The exchange of stability takes
place at β = 0.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(a) (b)

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(c) (d)

FIG. 2: Numerical integration of the motion generated by the
potential (10) with the choice β = 1 for initial conditions near
to normal modes. In all cases, initial data correspond to zero
speed and position at r = 1 along eigenvectors, with an offset
of 0.001 from the latter. The simulation show the outcome,
for t ∈ (0, 100), for initial data: (a) near the eigenvector θ =
0, (b) near the eigenvector θ = π, (c) near the eigenvector
θ = π/4, (d) near the eigenvector θ = −π/4.

We stress that, apart from the stability exchange for
W (θ), in this case there are no qualitative changes as the
parameters (which in this case means just the parameter
β) are varied: we always have four critical lines and hence
four normal modes; two of them are stable and two of
them unstable.

Some numerical simulations of this dynamics for initial
data near to the (higher order) normal modes are shown
in Figure 2; they confirm stability as discussed above.[40]

B. The lower symmetry case

We will now consider the general form (which has only
Z2 × Z2 as symmetry), i.e. the potential (9). With no
loss of generality, we can assume a > b (if not, just switch
x and y). Here again stability requires that both a and b
are positive; by a rescaling we can set a = 1, and hence
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0 < b < 1, and deal with the potential

V (x, y) = x4 + αy4 + 2 β x2 y2 , (12)

where 0 < α < 1.
By looking at this along the line y = mx we get

Vm(x) := V (x,mx) = (1 + 2βm2 + αm4) x4 ;

stability of the origin requires therefore that

1 + 2 β m2 + αm4 > 0

for all choices of m, and this implies

β > −
√
α ,

which we assume from now on.
After passing to polar coordinates, the restriction of V

given by (12) to the unit sphere reads

W (θ) = cos4(θ) + α sin4(θ) + 2 β sin2(θ) cos2(θ) ,
(13)

and from this we get at once

dW

dθ
= − [1 − α + (1 + α− 2β) cos(2θ)] sin(2θ) .

Thus critical points of W are identified either by
sin(2θ) = 0, i.e. by θ = 0,±π/2,±π; or by

cos(2θ) =
α− 1

α+ 1− 2β
.

Solutions to this equation exist only in the regions β < α
and β > 1 (recall that we assumed 0 < α < 1), but not
for α < β < 1.
Thus we conclude that β lies in the range β > −√

α,
and that for β taking the values β = α and β = 1 there
are bifurcations changing the number of critical points
for W , i.e. of invariant lines for our potential V (x, y).
More precisely, we always have four critical points at

θ = 0,±π/2, π; moreover for suitable β we also have four
more critical points at

θ = ± 1

2
arccos

[
1− α

1 + α− 2β

]
:= ±θ∗ .

That is, we have either eight or four critical points for
the potential W restricted on the sphere, corresponding
to four or two critical lines and hence normal modes,
depending on the value of β. See Figure 3.
The stability of critical points is controlled by

d2W

dθ2
= − 2 [(1− α) cos(2 θ) + (1 + α− 2β) cos(4θ)] ;

in particular at the various critical points identified above
we have

(d2/dθ2)θ=0 = (d2/dθ2)θ=π = − 4 (1− β) ;

(d2/dθ2)θ=π/2 = (d2/dθ2)θ=−π/2 = − 4 (α− β) ;

(d2/dθ2)θ=θ∗ = (d2/dθ2)θ=−θ∗ = 8

[
(α− β) (1 − β)

1 + α− 2β

]
.
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FIG. 3: The potential W (θ), see (13), for α = 1/4 and various
choices of β. Here θ is measured in units of π.

This immediately shows that the critical line corre-
sponding to θ = 0 (equivalently, to θ = π) undergoes a
change of stability at β = 1; and the critical line corre-
sponding to θ = π/4 (equivalently, to θ = 3π/4) under-
goes a change of stability at β = α. As for the critical
lines corresponding to θ = ±θ∗, existing in the regions
β < α and β > 1, noting that α < (1 + α)/2 < 1, we
have that these are stable for β < α and unstable for
β > 1. (Numerical simulations, not shown for the sake
of brevity, confirm again our analysis.)

V. DISCUSSION AND CONCLUSIONS

In this note we have considered natural Hamiltonians
for point particle, H = K + V , for which the dynamics
in local coordinates is simply ẍ = −∇V . We have con-
sidered the neighborhood of a stable equilibrium x0, and
studied the case where the Taylor expansion of V starts
with terms of order k higher than two (we have of course
given special attention to the case k = 4).
We have discussed how the notion of normal modes is

modified in this case; this is based essentially on known
results concerning eigenvalues of (homogeneous) tensors.
It results that higher order normal modes do exist, but
while some of their properties extend from the standard
(i.e. k = 2) case to the present one, other do not. In
particular, their number is not fixed and can exceed the
dimensionality of the ambient space; moreover the most
general dynamics near the equilibrium is in general[41]
not a superposition of normal modes, at difference with
the standard case.
It should be mentioned that a question which arise

naturally has not been studied here, and should be con-
sidered in the future. This is of course the persistence
of these higher order normal modes under perturbations,
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i.e. when one considers also higher order terms in the
series expansion for the potential around the equilibrium
point. We recall that for standard normal modes a the-
ory of persistence exists [5, 6]; this is based on variational
analysis and guarantees persistence of some of the normal
nodes under certain conditions. Apart from an extension
to the new higher order normal modes along this line
of attack, one could also consider an approach based on
the theory of Poincaré-Birkhoff normal forms [28, 29] (or
some generalization thereof).
It is worth noting that for the examples discussed in

Section IV, persistence of some modes can be guaranteed
by symmetry arguments if the symmetry is preserved by

higher order perturbations: In both cases, the potential
then admits symmetries sending x 7→ x, y 7→ −y, resp.
x 7→ −x, y 7→ y (analogously for the time derivatives),
hence the fixed point spaces of these symmetries are nec-
essarily invariant. The fixed point spaces correspond to
the cases θ = 0, ±π above. In the higher symmetry case
one also has symmetries exchanging x and y, resp. x and
−y, with invariant fixed point spaces corresponding to
θ = π/4 resp. θ = 3π/4.
We plan to tackle the persistence problem generally in

a later publication.
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