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Abstract

Although diet has traditionally been considered to be a property of the species or populations as a whole, there is
nowadays extensive knowledge that individual specialization is widespread among animal populations. Nevertheless, the
factors determining the shape of interactions within food webs remain largely undiscovered, especially in predatory insects.
We used an aggregation of the digger wasp Bembix merceti to 1) analyse patterns of individual prey use across three flying
seasons in a network–based context; and 2) test the effect of four potential factors that might explain network topologies
(wasp mass, nest spatial distribution, simultaneous nest-provisioning, prey availability). Inter-individual diet variation was
found in all three years, under different predator-prey network topologies: Individuals arranged in dietary clusters and
displayed a checkerboard pattern in 2009, but showed nestedness in 2008 and 2010. Network topologies were not fully
explained by the tested factors. Larger females consumed a higher proportion of the total number of prey species captured
by the population as a whole, in such a way that nested patterns may arise from mass-dependent prey spectrum width.
Conversely, individuals with similar body mass didn’t form clusters. Nested patterns seemed to be associated with a greater
availability of the main prey species (a proxy for reduced intra-specific competition). Thus, according with theory, clusters
seemed to appear when competition increased. On the other hand, the nests of the individuals belonging to a given cluster
were not more closely located, and neither did individuals within a cluster provision their nests simultaneously. Thus, a
female-female copying behaviour during foraging was unlikely. In conclusion, wasp populations can maintain a
considerable individual variation across years under different food web organizations. The tested factors only partially
accounted for the shift in network properties, and new analyses should be carried out to elucidate how diet network
topologies arise in wasp populations.
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Introduction

Populations, or even species, have been long considered to be

composed of ecologically equivalent individuals that utilize the

same set of resources [1], niche having been treated as a property

of the species, or populations, as a whole [2,3]. Nevertheless, there

is nowadays extensive evidence that individual specialization is

widespread in the animal world, and that populations that behave

as generalists that rely on a wide range of resources, may be in turn

composed of individual specialists that consume small subsets of

the population’s niche [4]. In insects, this has been previously

reported within social colonies, where foragers can specialize on

some specific items at individual level (liquids, sugars or proteins)

and even on some specific sugar sources or prey according to

previous experience [5–8]. In general terms, we can consider that

an individual is a specialist when it consumes a narrower subset of

resources than the population it belongs to, for reasons other than

sex, age or morphology [9], or when it has a foraging niche that

shows a low overlap with the population’s one [1,10].

The existence of individual diet specialization may have

implications in population dynamics, stability or persistence, or

species coexistence [11–15], and its presence has been well

documented for both vertebrate and invertebrate animal taxa,

including insects [4–8,16–22]. Nevertheless, it is still not clear how

the partitioning of resources among the members of a population

is accomplished [23]. A number of factors have been proposed as

potential causes for inter-individual diet variation patterns,

including forager’s previous experience [24], neurologic con-

straints [25,26], body size variation [16,18], patchiness of the

environment or fidelity to a foraging area [20,27,28], cultural

transmission or social learning of foraging behaviours [29–33],

frequency-dependent selection [9], or intra-specific competition

[22,34]. Nevertheless, much less is known about how these, or

other, potential factors shape the topology of the diet-based

interactions among individuals.
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Previous studies have demonstrated that the use of network

analysis can be a powerful tool to find out patterns of individual

resource use [23,35,36], having the potential to elucidate which

factors may promote different network topologies [34]. In this

study, the assessment of the network-based inter-individual

variation parameter is used as a starting point that may allow a

subsequent in-depth analysis of the network properties. Inter-

individual variation measures the degree in which the diets of pairs

of individuals of a population differ [23]. If this parameter has a

significant value, the individuals can be considered as specialized.

Such specialized individuals can then structure in the predator-

prey food webs in different ways. A population would be organized

in clusters when different groups of individuals specialize on

different subsets of resources, in such a way that individuals within

a group strongly compete with the rest of the members of that

group, but show little competition with the individuals belonging

to other clusters [34]. Nestedness, on its part, appears when

individuals with both narrow (specialist individuals) and broad

(generalist individuals) niches are found in a population, in such a

way that the resources consumed by the specialists are ordered and

predictable subsets of the resources used by the generalists

[23,35,37]. Additionally, anti-nested patterns could emerge if the

nestedness is lower than expected by chance [38], as happens in

checkerboard patterns, in which pairs of prey species that never

co-occur can be found [39].

In line with the general scarcity of network-based studies that

characterizes the animal populations, in predatory insects the

variability of contrasting patterns of network organization and

their potential causes are still unknown. For example, wasp body

mass variation may explain segregation of individual diets [17],

but whether it is responsible for a clustered or a nested pattern

within such specialized network is a question that still needs to be

answered.Similarly, competition among wasp individuals may

promote diet segregation [20], but whether it can lead to the

emergence of clustered or nested patterns within the network

remains to be discovered.

In the present study, we focus on this topic. Firstly, four

network-based parameters, namely inter-individual variation,

clustering, nestedness and checkerboardedness, were employed

to study in detail the patterns of specialization in an aggregation of

the solitary predatory wasp, Bembix merceti Parker, 1929 (Hyme-

noptera: Crabronidae). Secondly, four potential factors that could

account for network topologies were considered: wasp body mass,

nest spatial distribution, simultaneous nest-provisioning and prey

availability (as a proxy for intra-specific competition). All these

factors have been previously found to be associated with patterns

of diet segregation in animals [16,18,22,34,40–43]. Previous

studies on B. merceti at both population and individual level have

also attempted to correlate prey use patterns with some of these

factors. In particular, Ası́s et al. [44] showed that, despite the wide

range of dipteran families consumed by the population as a whole,

the wasps made a positive selection of flies with greater mean

masses (even though they were less abundant), in such a way that

prey selection was largely based on prey mass. On the other hand,

Polidori et al. [17] found out that female mass did not correlate

with niche overlap and niche width, while in a further study

Polidori et al. [18] detected significant inter-individual diet

variation for prey taxa, yet neither pairwise size difference nor

inter-nest distance affected prey dissimilarity. All these studies were

performed using different indices and statistics not based on

network theory, so that the topology of interactions among

individuals, and consequently the possible role that different

factors play on the existence of such topology, remain unknown.

Materials and Methods

Subjects and study site
Bembix merceti is a species of progressive-provisioning, solitary

digger wasp whose females capture adults of different dipteran

families to feed their larvae. The species has been cited only from

the Iberian Peninsula [45]. The study was carried out between 28/

VI-07/VII in 2008, between 25/VI-23/VIII in 2009 and between

07/VII/-18/VIII in 2010, in a private old fallow plot of sandy soil

of about 700 m2 in the neighbourhood of Almarail (province of

Soria, NE Spain). Readers are referred to [44,46] for a detailed

description of the study area. Nests were individually marked

when discovered, and their coordinates recorded, with an

accuracy of 6 0.5 cm, in a Cartesian system [47].

Wasps, prey dipterans and environmental dipterans
B. merceti females were individually marked with combinations of

three colour dots on the thorax, using marking pens with fast

drying inks (water-based paint) [48,49] and weighed in the field

with an Ohaus Scout Pro scales (60.001 g). To avoid potential

statistical problems derived from low sample sizes, only females

with$4 prey captured (10 females in 2008, 14 in 2009 and 12 in

2010) were included in the analyses [20]. A total of 153 (year

2008), 176 (2009) and 141 (2010) flies captured by these 36

females, were analysed. Prey flies were identified up to species/

morphospecies level (Table S1).

Prey availability was estimated by means of surveys performed

in the surroundings of the nesting area; these consisted in 5-minute

hourly samplings of Diptera, with an entomological net, between

11:00-17:00 (GMT+2), over 5–19 days in every year. The

samplings were carried out walking from the centre of the area

to the periphery (,300 m), in different directions (approximately

45u sectors) selected randomly. A preliminary collection and

identification of Diptera in the area allowed us to have a reference

to identify individuals in situ during the field samplings. The

sampled flies (n = 563) were weighed upon collection and released

thereafter. Readers are referred to [44] for a more detailed

description of the methodology of prey collection, wasp marking,

wasp and prey weighing and prey-surveying procedures.

Network-based calculations
Our data bases for the network analyses consisted of three

matrices (one per year) with rows being the individual wasp

females and columns being the prey taxa (species/morphospecies).

We employed different network-based indices recently used

successfully to study diet variation patterns in individual-based

food webs.

Inter-individual variation was calculated through the index E

(see [34] for a detailed description), which is based on the pairwise

diet overlap between individuals and varies between 0 (when diets

are similar among individuals) and 1 (for maximum inter-

individual variation) [23]. We compared our empirical E values

with those of a null model constructed with 10000 bootstraps,

inter-individual variation being considered significant if the

observational value of E was higher than 95% of the null E values

[34], in which case individual wasps can be considered specialized

in their prey use.

The presence of clustering was studied employing the Cws index

for the relative degree of clustering (see [34] for a detailed

description). Cws takes values between -1 (indicating overdispersed

individual diets) and +1 (for maximum clustering). A null model

was constructed with 10000 bootstraps, clustering existing if the

empirical value of Cws was higher than 97.5% of the null values,
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but overdispersion being present if the empirical value was lower

than 97.5% of the null values (two-tailed hypothesis) [23].

Calculation of both E and Cws was carried out with the program

Dieta1 [34], using matrices in which cells included the number of

prey items falling in each taxon for each wasp. Additionally, when

clustering was detected, we utilized the free software Pajek [50] to

graphically visualize the dietary distribution of our individuals

from the binary matrices calculated by Dieta1 (as they can be used

to determine the affiliation of individuals to different clusters [34]).

To measure nestedness we used the index NODF, which varies

between 0 (indicating no nestedness) and 100 (for maximum

nestedness) (readers are referred to [51] for further details on the

index). In this case the data matrices included presence/absence

information for each prey taxon and wasp. We tested our

experimental NODF values against a null model (CE model)

constructed with 10000 restarts, where nestedness was considered

to occur if the empirical NODF was higher than 95% of the null

values [23]. Both NODF and the null models were calculated with

ANINHADO 3.0 [52].

We utilized NODF-Program 2.0 [53] to calculate the co-

occurrence metric C-Score (see [54]). The C-Score quantifies the

mean number of ‘‘checkerboard units’’ among all possible pairs of

individuals in a presence-absence matrix. P-values for the C-Score

were obtained by comparing the empirical values against a null

model constructed with 10000 restarts. The metric varies between

0 and 1, approaching 0 if pairs of prey taxa co-occur more

frequently than expected by chance (no checkerboarders), and 1

when they co-occur less often than expected by chance (up to a

perfect checkerboard pattern).

Trends of E, Cws and NODF interact in populations, in such a

way that specialized individuals in a population may differ in their

arrangement within the network (nested, overdispersed or

clustered) (Fig. 1).

The datasets used to perform the different network-based

analyses can be found as supporting information (Dataset S1).

Potential factors affecting network structure
In the cases where clustering, nestedness or checkerboard

patterns of inter-individual variation were observed, we tested if

wasp body mass, nest spatial distribution, simultaneous nest-

provisioning and prey availability could explain the observed

network topologies.

Availability is one of the most important factors limiting prey

use in wasps [16,55]. To analyse if the number of wasps preying on

a particular prey species depended on its availability in the

environment, a Pearson correlation test was conducted. Decreased

prey availability may be used as a proxy for greater competition

[8,15,20]. In order to look for differences in the environmental

availability of prey among years, the number of suitable dipterans

found each day during the samplings (considering as suitable those

species captured by the wasps in a given flying season) was

normalized by the daily number of sampling events, and these

values were compared with an ANOVA (with a post-hoc Tukey

HSD-test for pairwise comparisons). A similar analysis was done

using only the availability values of the main prey species (such

species being the same in all three years, see Results).

Time is also an important factor affecting prey use variation in

wasps [20]. When dietary clusters were detected, we tested for the

possibility that they were constituted on the basis of the temporal

simultaneity of the activity of the wasps belonging to the same

cluster. Thus, a scoring was given to every prey captured by the

wasps, ranging from 1 (for the captures performed during the first

day of observation) to 17 (for the captures done in the last day);

then, the mean scoring for every female was calculated, and an

ANOVA (with a post-hoc Tukey HSD-test for pairwise compar-

isons) was used to look for scoring differences among the clusters

(significant differences among clusters would mean captures, and

thus wasps’ activity, not overlapping in time). Furthermore, within

a single nesting season, wasps might change their prey use habits,

as has been observed in other predators [27,56,57]. Thus, we

compared the percentage (considering as 100% the total number

of prey species captured in each year by the population as a whole)

of prey species captured by each female for its first and its last nest

observed, with a paired t-test (only for females with $2 nests; n =

8).

Wasp body mass often rules prey use, since generally wasp mass

and prey mass are correlated [16,44,58]. Moreover, wasps with

different masses may be skilful in hunting different prey types [18],

so that lower variance in body mass may also be used as a proxy

for greater competition. The variance in wasp mass was compared

among years with a Levene’s test. An ANOVA (with post-hoc

Tukey HSD-test) was employed to ascertain whether the females’

body mass of the different clusters accounted for the aggregation of

the females into dietary clusters. In the cases where checkerboard-

edness was detected, we controlled for the possibility that the pairs

of species never co-occurring have extremely different mean body

masses, in such a way that the choice of a determinate prey mass

would have necessarily implied the rejection of other prey species

with different masses. To do that, we calculated the difference

between the mean body masses of every prey species pair, and

then we compared the difference values of species co-occurring,

with those of the species not co-occurring, with a Student’s t-test.

Finally, in the cases where nestedness was found, linear regressions

were employed to check whether the percentage of resources

utilized by the individual females (considering as 100% the total

number of prey species captured in each year by the population as

a whole) was related to the female’s body mass.

Nest-nest distance has been recently observed to affect diet

segregation in a population of digger wasps [18]. Here, a Student’s

t-test was used to check if the mean distances between pairs of

nests belonging to the same cluster were significantly different

(shorter or longer) than the mean distances between pairs

belonging to different clusters.

The availability of dipteran species for each year was ln-

transformed, and the daily number of suitable flies per sampling

event, as well as the daily number of items of the main prey species

per sampling event and the inter-nest distances, were square-root

transformed, to achieve normality.

All statistics were performed with the software XlStat 2012

(Addinsoft).

Ethics statement
The necessary permits to perform the observation, manipula-

tion and collection of insects were yearly obtained from the Junta

de Castilla y León. The experiments performed for the develop-

ment of this study obey the current Spanish law.

Results

Prey of B. merceti consisted of Diptera belonging to the families

Bombyliidae, Calliphoridae, Syrphidae, Sarcophagidae, Stratio-

myidae, Tabanidae and Tachinidae. A total of 29 species/

morphospecies were captured by the females of the population

through the three years of the study; among those, the syrphid

Sphaerophoria scripta (L., 1758) was by far the most abundant prey

species (representing the 50.35–54.90% of the hunted dipterans,

depending on the year) (Table S1).
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Figure 1. Schematic representation of alternative ways in which specialized individuals can subdivide the population diet niche.
The upper curve represents the population diet niche, and the smaller curves represent individual niches. (A) Individuals have different niches, one
within each other in a nested pattern. (B) Individuals are so highly specialized that neither nestedness nor clustering is possible (overdispersion). (C)
Individuals group in different clusters. Modified from Araújo et al. [23].
doi:10.1371/journal.pone.0102325.g001
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Individual specialization (significant E) was detected in all three

years (Table 1). Significant clustering (a pattern corresponding to

the arrangement of individuals depicted in Fig. 1C) was only

detected in 2009 (Table 1), when the females were clumped into

three groups (Fig. 2A). Upon mapping the prey dipterans onto the

groups, we could generalize that Group_1 is characterized by the

simultaneous capture of Amictus variegatus (Meigen in Waltl, 1835)

and Systoechus gradatus (Wiedemann in Meigen, 1820), and by the

omission of the capture of S. scripta. Group_2 is more eclectic, and

groups together females capturing the species of Odontomyia

Meigen, 1803 present in the environment, plus S. scripta; or S.

scripta plus one or various of the following species: Miltogrammi-

nae sp. 2, Tachinidae sp. 1, Eupeodes corollae (Fabricius, 1794), or a

species of Peleteria Robineau-Desvoidy, 1830, none of which is

present in the other groups; in Group_2, S. scripta doesn’t

necessarily represent a great presence among the captures, varying

between 22–70% for individual females. On its part, Group_3 is

characterized by the dominance of S. scripta (more than 50% of the

captures in every individual female), plus one of the following

species: Bombylisoma croaticum (Kertész, 1901), Miltogramminae sp.

1 or Tachinidae sp. 2, none of which appears in the other two

groups.

The mean mass of the wasps was not significantly different

among groups (ANOVA, F2,11 = 0.139, R2adj. = 20.153, P =

0.872) (Table 2). Mean distances between the nests of the females

within clusters were not different from those found between nests

of the females of different clusters (Student’s t-test, t64 = 20.266,

P = 0.791) (Table 2). Dietary clusters were not organized on the

basis of the simultaneity in time of their females’ activity (ANOVA,

F2,12 = 0.760, R2adj. = 20.036, P = 0.489).

In 2009, higher C-Score values than those expected by chance

were detected (Table 3). Thus, a checkerboard pattern was

observed in that year, with a total of 66 pairs of prey species that

never co-occurred across female wasps’ prey spectra (Fig. 3). There

were no differences between the mass differences of the pairs of

prey species never co–occurring, and those of the species co–

occurring at least once (Student’s t-test, t118 = 0.242, P = 0.809).

Nestedness was found in 2008 and 2010 (Table 3), in such a way

that in these years the arrangement of individuals resembled the

pattern depicted in Fig. 1A.

Wasp mass was a factor accounting for the percentage of prey

species that a wasp captures (taking as 100% the total number of

prey species captured by the population in each year) (linear

regression, R2adj. = 0.229, F1,20 = 7.220, P = 0.014), larger

females capturing a higher percentage of prey species. The

number of wasps that hunt for a given prey species is positively

correlated with the environmental availability of that species

(Pearson test, 2008: r = 0.867, P, 0.0001, n = 15; 2010: r =

0.738, P = 0.0005, n = 18). The comparison of the percentage of

prey species captured by individual females for their first and last

nest reported no significant differences (Paired t-test, t7 = 20.179,

P = 0.470). Despite the lower mass variance present among the

wasps in 2009 (coefficient of variation, CV = 0.17) with respect to

2008 and 2010 (CV = 0.24 and 0.21 respectively), no significant

differences of wasp mass variance were found among the three

years of the study (Levene’s test, F2,33 = 1.241, P = 0.302). A

strong relationship between the mass of a prey item and the species

it belongs to, was found (ANOVA, F28,1004 = 82.388, R2adj. =

0.688, P,0.0001). The normalized number of suitable prey

available in the environment each day averaged 2.45, 1.67 and

Table 1. Values and significance of E, experimental Cws values, and 97.5% confidence intervals of Cws for the captured species.

Population E P (E) Cws 97.5% CI (Cws)

2008 0.772 0.000 0.099 0.061 – 0.179

2009 0.762 0.000 0.182 0.034 – 0.139

2010 0.672 , 0.001 0.102 0.027 – 0.144

Significant values are shown in bold.
doi:10.1371/journal.pone.0102325.t001

Figure 2. Graphic representation of the females’ dietary distribution, performed with Pajek. (A) For the experimental female population
of 2009. Three clusters (superimposed ellipses) appear, on the basis of similar or dissimilar captures among the individuals. (B) For a hypothetical
population of the same sample size in which individuals arrange randomly.
doi:10.1371/journal.pone.0102325.g002
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2.64 for the years 2008, 2009 and 2010, respectively, yet the

differences were not significant among the three years (ANOVA,

F2,35 = 2.711, R2adj. = 0.085, P = 0.080), suggesting no effect of

variation of the overall prey availability on competition. However,

when only the most hunted prey species was considered (S. scripta,

with average normalized availabilities of 1.48, 0.65 and 1.31 for

2008, 2009 and 2010, respectively), significant differences among

normalized values were detected (ANOVA, F2,35 = 9.04, R2adj. =

0.30, P = 0.001). The a posteriori test showed that the 2009

normalized availability was significantly lower than that of 2008

and 2010 (P = 0.008 and P = 0.002 for the comparisons between

2008 and 2009, and between 2009 and 2010, respectively).

Discussion

Our results reinforce the view that network-based approaches

are useful at the individual level and that they can help to uncover

peculiar patterns of resource use within populations [19,23,34].

Inter-individual variation (E) was detected in our aggregation in all

three years studied, agreeing with previous results obtained for this

species using slightly different, not network-based indices of prey

overlap [17,19]. Such resource partitioning among individuals

showed, however, different shapes depending on the year. Though

not fully explaining all the observed patterns, the considered

potential factors gave some insights on the possible causes behind

the different network topologies observed in the three years.

Intra-specific competition is known to favour diverging prey

spectra [22,34,59]. Interestingly, in our study competition seemed

to affect the topology of the interaction network, but not the

degree of prey divergence (individual specialization). Thus, both in

2008 and 2010 (when prey availability of the main prey species

was higher, and hence competition probably lower) and in 2009

(when the opposite situation took place), E was highly significant.

On the other hand, the structure of the network seemed to change

according to the level of competition, being nested in years of

higher availability of the main prey, and clustered when its

availability decreased. In 2009, three clusters were defined, each of

them characterized by the capture, the lack of capture, or the

capture in different proportions of different prey, by the females

constituting each of them. This result is interesting, as it has been

recently suggested, through the analysis of 10 vertebrate-prey

networks, that nestedness may be an almost universal pattern in

individual predator-prey webs [35]. Such view is now losing

support, since new studies on both vertebrates [42,60] and

invertebrates (present study) are suggesting that clustered patterns

of networks are not uncommon under certain conditions instead.

Our results seem to agree with theories predicting that clustering

may appear under a greater competition pressure within the

competitive-refuge model (individuals share the preferred resource

but differ in their preferences for alternative resources) [35]; also,

these results support, to some extent, those found in previous

empirical studies. For example, Moleón et al. [42], in an

investigation on eagles’ individual diets, discovered that after a

disturbance that caused a decrease in the abundance of their main

prey, populations changed from nested to clustered patterns of

individual food use. Moreover, in a vertebrate-fruit network

(opossums) it has been recently reported that nestedness occurs

only in the warm season, when fruits are more abundant [60].

Clustering is predicted also within the distinct-preferences

model (individuals have different top-ranked resources), but only

in cases of greater prey availability and decreased competition

[35], which seems unlikely in the present study. Conversely, theory

[35] also predicts that nestedness may appear under a greater

competition pressure in the framework of the shared-preferences

model (individuals from different phenotypes have similar rank

preferences but differ in their acceptance rate of resources in

response to the abundance of resources in the environment). Given

that in our case study nestedness was present in the years when

competition was more likely to be reduced (greater prey

availability),this one is also an unlikely scenario.

An alternative hypothesis involves that an increase in nest

density or mass similarity among the females (decreased mass

variance) is related to the existence of a clustered pattern in 2009,

since both traits could affect the level of competition. Nevertheless,

in the studied aggregation nest density was not higher in 2009

[46], and neither was mass variance of the females lower in that

year, in such a way that the organization of the females in 2009

seems not to be influenced by such traits.

Thus, the association between a low availability of the main

prey and the existence of a clustered network seems possible in B.

merceti, although a long-term survey of individual diets of wasps

Table 2. Mean (6 SD) wasp mass for the three clusters observed in 2009, and mean (6 SD) inter-nest distances on that year.

Group Wasp mass (mg) Inter-nest distance (cm)

Group_1 92.33367.767 intra-group = 33.204616.051

Group_2 98.625620.206 inter-group = 34.303615.147

Group_3 97.333615.044

doi:10.1371/journal.pone.0102325.t002

Table 3. Experimental values of NODF with associated P-values, and C-Scores with associated P-values and 97.5% confidence
intervals.

Population NODF P (NODF) C-Score P (C-Score) 97.5% CI (C-Score)

2008 42.80 0.010 0.045 0.267 0.018 – 0.062

2009 29.15 0.110 0.048 0.003 0.014 – 0.041

2010 30.11 0.020 0.030 0.061 0.008 – 0.033

Significant values are shown in bold.
doi:10.1371/journal.pone.0102325.t003
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across many years is necessary to confirm this suggestion.

Interestingly, if appropriate conditions favouring clustering (i.e.

high intra-specific competition) occur for a long period of time

(many years or wasp generations), the resulting persisting

segregation of female diets could represent an evolutionary

starting point for ecological speciation. In fact, while sympatric

speciation is relatively rare, it seems to be associated with a

previous period of individual specialization [8,9].

The causes that might explain the association of the single

individuals in the observed clusters are less clear, and we can only

attempt to discard the effect of some of the factors, as well as to

provide preliminary suggestions for the effect of others. First, a

difference in wasp body mass among clusters (which could create a

divergence of prey spectra owing to the different body masses of

the different prey species) was not found. Such result is similar to

that obtained in a recent study on a seabird [61], in which

similarity in morphology (in this case, bill length) did not correlate

with similarity in diet, in such a way that clustering seemed not to

be driven by morphology. Second, a shorter nest-nest distance

between the females belonging to a same cluster was not detected,

in accordance with a previous investigation which found that nest-

nest distance rarely affects diet similarity [18]. Third, the temporal

simultaneity of hunting activity was not responsible for the

different capture preferences of the females. Prey similarity among

closely nesting and/or simultaneously hunting females could

suggest the existence of a copying behaviour among them (females

could tend to travel to, feed and/or hunt their prey in locations

where they can see conspecifics hunting) [62], a feature that seems

not to fulfill in B. merceti.

Factors other than those abovementioned have not been taken

into account to try to explain the existence of clusters, but we can

at least preliminarily hypothesize about the effect of a further one,

based on previous studies with wasps. In particular, the use of

different hunting patches or the fidelity to certain foraging areas by

the different females could account for segregation among clusters,

since its influence has been already reported for wasps. For

example, females of the digger wasp Stizus continuus Klug, 1835

captured only grasshoppers living on tall grass, bushes and shrubs,

ignoring those that lived on the ground [20]. However, in

captivity, S. continuus females accepted ground-living grasshopper

species [63]. Thus, S. continuus females carry out a microhabitat-

driven prey hunting, which could occur also in the case of B.

merceti. Nevertheless, experimental studies are necessary to test for

this hypothesis.

Nested patterns were detected in 2008 and 2010. Nestedness in

prey consumption is expected when two traits are present together

in a population: (a) when the population is composed of both

specialist and generalist individuals, and (b) when the prey ranges

captured by the specialist individuals are ordered subsets of the

pools captured by the generalist ones [23]. In relation to the first

requirement (a), the question remains on why some of the

individuals behave as specialists while others behave as generalists.

The explanation could be related to the moment of the season

when the provisioning activity is developing, as a shift in prey use

along the foraging season has been observed owing to changes in

prey availability [57], or associated with a possible increase of the

females’ level of specialization as they get older [27]. Nevertheless,

we failed to detect a seasonal prey shift in the studied wasps, so

that age did not influence our results regarding specialization

patterns. Other studies have explained nestedness occurring in a

population through the presence of dominant (which would use

the optimal resources) and subordinate (which would consume the

suboptimal resources) individuals [64]. Though it is unknown if

hierarchies for prey taxonomic spectra exist in B. merceti, our data

suggest that they could be present for the prey mass spectrum. In

fact, mass differences among females could impose constraints in

the case of the smaller individuals, which would be able to hunt

only smaller prey (and thus a more limited prey taxonomic range),

while larger females would be able to prey upon a greater mass

(and hence taxonomic) prey spectrum [16,20,44,58,65]. Owing to

this reason, larger females would be generalists, while smaller ones

would act as specialists. The presence of a significant correlation

Figure 3. Pairs of prey species never co-occurring together, or co-occurring at least once. Black cells: pairs of prey species that never co-
occurred; white cells: pairs of prey species that co-occurred at least once within the pool of a given female wasp. SpSc = Sphaerophoria scripta; Odo =
Odontomyia sp.; SysG = Systoechus gradatus; AmVa = Amictus variegatus; UsAe = Usia aenea; HeVe = Hemipenthes velutinus; StLu = Stomorhina
lunata; Pel = Peleteria sp.; ViHo = Villa hottentotta; Mi(II) = Miltogramminae sp. 2; UTa(I) = Tachinidae sp. 1; Mi(I) = Miltogramminae sp. 1; ChAr =
Chrysotoxum arcuatum; UTa(II) = Tachinidae sp. 2; BoCr = Bombylisoma croaticum; EupC = Eupeodes corollae.
doi:10.1371/journal.pone.0102325.g003
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between the wasp mass and the percentage of different prey

species captured, together with the association between dipteran

species and their mass, could suggest such a scenario. In relation to

the second requirement (b), a relationship between the number of

wasps which capture each prey species and the availability of these

prey species was found; thus, more abundant prey species will be

captured by a greater number of wasps, but certain species would

be only present in the diets of larger individuals (point (a)).

A checkerboard pattern was observed in 2009. The fact that

anti-nestedness was found in this year is remarkable, as clustering

has also been detected in this case. Poulin & Guégan [65]

suggested anti-nested patterns to be as common as nested ones in

nature [66–69], although this concept has been poorly developed

in the context of intra-population diet variation. Interestingly,

Dupont et al. [70] considered nestedness and compartmentaliza-

tion (a concept that could be equated to clustering) as opposite

extremes of a continuum, in such a way that the existence of an

anti-nested pattern would be somehow supporting the existence of

clustering in 2009. The causes that could explain the existence of

pairs of prey species that never co-occurred in that year are not

clear. The hypothesis that some prey species didn’t co-occur due to

their differences in body mass must be discarded, since mass

differences between pairs of species that co-occurred were similar

to those of species that didn’t co-occur. Alternatively, it could be

hypothesized that the existence of checkerboardedness in 2009

indicates that different microhabitats or foraging areas are

exploited by the different wasp females, with some prey species

occurring only in certain areas or habitats [20] (see also above). It

could be also speculated that different wasp females use different

hunting strategies, depending on prey species, since such a

behavioural plasticity has been shown for other predatory

Hymenoptera. For example, in the ant Ectatomma ruidum Roger,

1860, different prey types are hunted by means of different

strategies [71]. The proficient use of such different strategies may

be achieved by accumulating experience on the same type of prey,

and might be advantageous in terms of the reduction of the time

devoted to hunt. Thus, in the spider wasp Pepsis mildei Stål, 1857,

the time required for the wasp to approach, recognize, and

paralyze its spider prey decreases in the second encounter as

compared with that needed by naı̈ve wasps on their first encounter

[72]. This possibility remains to be formally tested in future

experimental studies for B. merceti.

In addition to the factors discussed above, it is worth noting that

the population of 2009 could have suffered the consequences of an

alteration occurred in the nesting area between the nesting seasons

of 2008 and 2009, as a fence crossing a portion of the area was

placed by the owner of the plot where the study was being

developed, probably destroying a proportion of the cocoons from

which adults were to emerge in the following months, and/or

changing the compactness of the ground. This could have meant a

disturbance powerful enough to modify the individual predation

patterns of the population from nestedness to clustering, in line

with the effects observed by Moleón et al. [42] taking place after

the occurrence of an alteration.

Conclusions

Inter-individual variation was present in our wasp aggregation

through all three years of the study, reinforcing the current

knowledge that it is widespread among animal species. Neverthe-

less, such individual specialization was associated with different

predator-prey network structures, tailored by several potential

factors, and subjected to complex interactions. Wasp mass

variation and prey availability may partially explain nested

patterns, with larger wasps being more generalist than smaller

ones. On the other hand, the shift of the population structure from

a nested to a clustered pattern could be related with a change in

the availability of the main prey, and thus in the competition

pressure (competitive-refuge model); a future, long-term monitor-

ing program could confirm such suggestion. However, how the

clusters organize is a question that remains largely unclear, since

differences in wasp body mass, nest-nest distance or temporal

simultaneity in females’ activity were not able to explain cluster

segregation. In the same way, the checkerboard pattern was not

explained by mass differences among the prey. Experimental

studies, particularly focused on the analysis of the possible role of

the hunting experience, variance of hunting strategies and

variance of foraging areas among females, on the patterns of

inter-individual variation, should be done. These factors have been

largely studied in vertebrates [73–77]) and couldalso reveal how

individual-based predator-prey network structures arise in pred-

atory wasps.
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(2008) Network analysis reveals contrasting effects of intraspecific competition on

individual vs. population diets. Ecology 89: 1981–1993.
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