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More than a century after the inception of quantum theory, the question of which traits and phenomena
are fundamentally quantum remains under debate. Here, we give an answer to this question for temporal
processes that are probed sequentially by means of projective measurements of the same observable.
Defining classical processes as those that can, in principle, be simulated by means of classical resources
only, we fully characterize the set of such processes. Based on this characterization, we show that for non-
Markovian processes (i.e., processes with memory), the absence of coherence does not guarantee the
classicality of observed phenomena; furthermore, we derive an experimentally and computationally
accessible measure for nonclassicality in the presence of memory. We then provide a direct connection
between classicality and the vanishing of quantum discord between the evolving system and its
environment. Finally, we demonstrate that—in contrast to the memoryless setting—in the non-Markovian
case, there exist processes that are genuinely quantum; i.e., they display nonclassical statistics independent
of the measurement scheme that is employed to probe them.
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I. INTRODUCTION

Quantum coherence is considered to be one of the
fundamental traits that distinguishes quantum from classical
mechanics [1–3]. Beyond its mathematical deviation from
classical theory, it plays an important role in the enhancement
of quantummetrology tasks [4,5], constitutes a fundamental
requirement for many quantum algorithms [6,7], and has
been conjectured to be necessary for the formulation of
efficient transport models in biology that are consistent with
spectroscopic data [8–10]. Consequently, the resource theory
of coherence [11–19] has been of tremendous interest in
recent years and has seen rapid development both on the
theoretical and the experimental side [20].

Despite such progress and the growing wealth of
accompanying evidence that links coherence to nonclass-
ical phenomena, the explicit connection between the two
remains unclear and subject to active debate [21–25]. Put
differently, the mere presence of coherence does not
guarantee the existence of effects that cannot be explained
on purely classical grounds, and an unambiguous relation-
ship between coherence and nonclassicality has not been
established yet.
In order to provide such a connection, an operationally

meaningful and clear-cut definition of classicality is cru-
cial. One such possible definition is based on experimen-
tally attainable quantities only, namely, the joint probability
distributions obtained from sequential measurements of an
observable [26]. If these satisfy the Kolmogorov consis-
tency conditions for all considered sets of measurement
times—which provide the starting point for the formulation
of the theory of classical stochastic processes [28,29]—
then they can, in principle, be explained by a fully classical
model; therefore, there is nothing inherently quantum about
the observed phenomenon. If they do not, then there exists
no underlying classical stochastic process that could lead
to the observed joint probability distributions, and the
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corresponding process is considered nonclassical. This
characterization of classicality is in the spirit of the
derivation of Leggett-Garg inequalities, where, instead of
classicality, noninvasiveness and macroscopic realism are
put to the test [30,31]. Indeed, any set of probability
distributions that satisfies the Kolmogorov conditions does
not violate the corresponding Leggett-Garg inequal-
ities [32,33].
Following this line of reasoning, and in a sense to be

further specified more precisely later, in Ref. [34] a one-to-
one connection was derived between the notion of classi-
cality based on the Kolmogorov conditions and the
coherence properties of the dynamics of Markovian (i.e.,
memoryless) quantum processes: Such processes are
classical iff the corresponding dynamical propagators are
unable to create coherence that can be detected at any later
time. Thus, a direct relation between the mathematical
notion of coherence and an operationally well-defined and
broadly applicable notion of classicality has been estab-
lished. In turn, this relation provides a direct interpretation
of Markovian processes that violate Leggett-Garg inequal-
ities in terms of the underlying quantum resources.
However, this connection only holds in the memoryless
case and does not straightforwardly apply to the non-
Markovian scenario, where, amongst other issues, such
propagators cannot be used to compute multitime statis-
tics [35].
Here, we go beyond this paradigm of memoryless

processes and consider the general non-Markovian case.
Such general processes can be described in terms of higher-
order quantum maps, so-called quantum combs [36,37].
Recently, this framework has been tailored to the descrip-
tion of open quantum system dynamics [38,39] and has—
amongst others—found direct application in the charac-
terization of multitime memory effects [40–43] and within
the field of stochastic thermodynamics [44–46]. Here, we
employ it to extend the results of Ref. [34] to the non-
Markovian case. In particular, we link spatial quantum
correlations or, more precisely, the discord between an
observed system and an environment, to the nonclassicality
of the observed measurement statistics. Somewhat surpris-
ingly, for the case of general processes—where memory
effects play a non-negligible role—the presence of non-
classical phenomena is not solely dependent on the ability
of the process to create or detect coherence, in stark contrast
to the memoryless case. As we will show, the absence of
detectable coherence is generally not sufficient to enforce
classical behavior. Rather, classicality of multitime statis-
tics is inherently linked to quantum discord—which was
originally introduced as a means to distinguish classical
spatial correlations from nonclassical ones [47–50]—
between the evolving system and its environment. We
characterize the complete set of classical processes and
derive a concrete relation between the presence and
detectability of discord and the nonclassicality of observed

multitime measurement statistics. This approach, in turn,
allows for the derivation of experimentally accessible
quantifiers of nonclassicality and the categorization of
the resources required for the implementation of a non-
classical, non-Markovian process, paving the way to a
clear-cut understanding of nonclassicality on operational
grounds.
In a similar manner to the analysis of coherences, our

results will predominantly be phrased with respect to
measurements in an arbitrary, but predetermined basis,
i.e., with respect to a fixed observable, raising the issue of
whether classicality is merely a question of perspective; in
principle, for every process, there could exist a sequential
measurement scheme that yields classical statistics. While
this always holds true for processes in classical physics, as
well as memoryless quantum processes, we show, by
means of an explicit example, that this is not necessarily
the case for quantum processes with memory; in the
presence of quantum memory, there exists a fundamentally
new class of processes, which we will call “genuinely
quantum” processes, that lead to nonclassical statistics
independent of how they are probed.
Throughout this article, we investigate the question of

when a physical process—with or without memory—can
be considered classical and what classicality implies if we
assume the underlying theory to be quantum mechanics.
Concretely, for the most part, we consider the scenario of a
quantum system of interest that is sequentially probed in a
fixed basis, that is, interrogated at successive points in time
—like, for example, in Leggett-Garg-type experiments—
and we are interested in characterizing when the multitime
measurement statistics resulting from such a scenario can
be simulated by a classical stochastic process and thus
reasonably be considered classical.
As we make no assumption about the underlying

dynamics, the system of interest can be coupled to an
environment that is out of the experimenter’s control and
can thus undergo an open evolution that displays complex
classical and quantum memory effects. The classicality of
the observed statistics then depends on the interplay of the
dynamics of the system of interest, the pertinent memory
effects, and the way in which the system is probed. We
derive both the structural and the dynamical properties of
general classical non-Markovian processes, providing an
answer to the following question: What is a nonclassical
process, and what are its key features?
Finally, by dropping the restriction to fixed instruments,

we show that an observer-independent notion of non-
classicality exists, i.e., that there are processes that, no
matter how they are probed, display statistics that cannot be
simulated by classical stochastic processes. As such proc-
esses cannot exist in the absence of memory, the interplay
of quantummemory effects and quantum dynamics leads to
a fundamentally new class of processes—genuinely quan-
tum processes—that cannot hide their nonclassicality.
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II. SUMMARY OF MAIN RESULTS

Before providing detailed derivations in the subsequent
sections, here, we give a more concrete overview of the
main results of our work. Throughout this article, we define
the classicality of a process based on observed multitime
statistics Pnðxn; tn; � � � ; x1; t1Þ for measurements at differ-
ent times ft1;…; tng. The number of possible outcomes is
always considered to be finite, and, unless stated otherwise,
the measurements are given by measurements in the
computational basis fjxkihxkjg. With respect to these
statistics, a process is considered classical (on K times),
if the measurements made are noninvasive, i.e., if they
satisfy the Kolmogorov conditions

Pn−1ðxn;tn;…;xj;tj;…;x1; t1Þ
¼
X
xj

Pnðxn; tn;…;xj;tj;…;x1; t1Þ ∀ n≤K; ∀ j: ð1Þ

On the other hand, it is Markovian, i.e., memoryless, if the
respective conditional probabilities satisfy

Pðxnjxn−1;…; x1Þ ¼ Pðxnjxn−1Þ ∀ n ≤ K: ð2Þ

In quantum mechanics, such a process can be modeled
by means of completely positive trace-preserving (CPTP)
maps fΛtj;tj−1g, which act on the probed system and
describe the dynamics between measurements, as well as
an initial system state ρt0 .
Going beyond the results of Ref. [34], we show that (see

Theorem 1) a Markovian process is classical iff it can be
modeled by a state ρt0 that is diagonal in the measure-
ment basis fjxkihxkjg and non-coherence-generating-and-
detecting (NCGD) maps Λtk;tk−1 , i.e., maps that satisfy

Δ ∘Λtjþ1;tj ∘ Δ ∘Λtj;tj−1 ∘Δ
¼ Δ ∘Λtjþ1;tj ∘Λtj;tj−1 ∘Δ ∀ j; ð3Þ

where Δ is the completely dephasing map in the measure-
ment basis and ∘ denotes composition. Intuitively, maps
that satisfy the above equation can create coherences but
not in a way that can be detected at a later time by means
of the employed measurement basis. Thus, Theorem 1
provides a direct connection between coherence and an
experimentally testable notion of classicality in the
Markovian case.
Going beyond the Markovian case, we show that this

direct connection between coherence and classicality
breaks down when memory is present. We provide an
explicit example (Example 1) of a dynamics Utj;ti jl; pi ¼
eiϕlpðtj−tiÞjl; pi acting on a qubit system (represented by l)
coupled to a continuous degree of freedom (represented by
p) that—for the right choice of initial environment state—

never displays coherences in the system state but exhibits
nonclassical statistics nonetheless.
When memory plays a non-negligible role, individual

CPTP maps that act on the system alone are insufficient for
the computation of multitime probabilities. Rather, prob-
abilities are computed by means of higher-order quantum
maps, called quantum combs [37,51]. These maps contain
all information about the underlying process at hand, and
multitime joint probabilities can then be expressed as

PKðxK; tK;…; x1; t1Þ ¼ CK½PxK ;…;Px1 �; ð4Þ

where CK is the quantum comb of the process and fPxjg are
the CP maps corresponding to measurements with outcome
xj, i.e., Pxj ½ρ� ¼ hxjjρjxjijxjihxjj.
We derive a full characterization of combs that lead to

classical statistics in Theorem 2 and make this characteri-
zation more concrete in Theorem 20, employing the Choi-
Jamiołkowski isomorphism (CJI) that allows one to map
higher-order quantum maps Cn onto multipartite quantum
states Cn.
Using this full characterization, a measure MðCÞ for the

nonclassicality of a process C can be derived. We phrase
this problem in terms of the operational task of deciding
whether or not a given comb C is classical, and we show
that the corresponding maximum probability to guess
correctly is given by [see Eq. (54)]

PðCÞ ¼ 1

2
(1þMðCÞ); ð5Þ

where MðCÞ can be computed efficiently via a linear
program [see Eq. (56)] and is accessible experimentally
—and could be evaluated based on already-existing exper-
imental data (e.g., in Ref. [52]). We show that, e.g., in the
two-time case,

MðCÞ ≤
X
x2

����Pðx2Þ −
X
x1

Pðx2; x1Þ
���� ð6Þ

holds, where the right-hand side of the above equation is a
natural quantifier of classicality, which is used both
theoretically and experimentally (for example, in
Leggett-Garg-type scenarios) to quantify the nonclassical-
ity of sequential measurement statistics.
In the same vein as in the Markovian case, the dynamical

properties (in contrast to the aforementioned structural
ones) of classical processes can be obtained. In the non-
Markovian case, a process is fully defined by an initial
system-environment state ηset0 and intermediate system-
environment CPTP maps Γtj;tj−1 . We show that in the
non-Markovian case, rather than the coherences of the
system, it is the (basis-dependent) system-environment
discord [47–50] that determines the classicality of the
observed statistics. In particular, we demonstrate (see
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Theorems 3 and 4) that a process is classical iff it can be
modeled by an initial state ηset0 with vanishing (basis-
dependent) discord, i.e., ηset0 ¼ P

m pmjxmihxmj ⊗ ξm,
and a set of system-environment maps that are non-
discord-generating-and-detecting (NDGD), i.e.,

Δ ∘ Γtjþ1;tj ∘Δ ∘ Γtj;tj−1 ∘Δ
¼ Δ ∘ Γtjþ1;tj ∘ Γtj;tj−1 ∘Δ; ð7Þ

where the completely dephasing map Δ acts on the system
alone. Analogously to the Markovian case, the above
equation implies that the maps fΓtj;tj−1g can create discord,
but said discord cannot be detected by means of later
measurements on the system in the chosen measurement
basis. In turn, this result provides a direct connection
between quantum discord and the classicality of a quantum
process. Additionally, it also gives an a posteriori explan-
ation for why the absence of coherence in Example 1 does
not lead to classical statistics (for an explicit discussion of
the discord that leads to nonclassical statistics in Example
1, see its continuation in Example 10).
While, in principle, these aforementioned results do not

rely on the fact that we assume measurements in one fixed
basis—but could similarly be obtained for different (but
fixed) instruments at every time—they still depend on the
fact that one specific measurement scheme is chosen
beforehand. Classicality (or the absence thereof) of the
observed statistics could thus depend on the respective
choice of measurement schemes. This statement holds true
in the Markovian case, where there is always a choice of
measurement bases that renders the observed statistics
classical. However, as we show by explicit example (see
Sec. VII), there are processes with memory—dubbed
genuinely quantum—that display nonclassical statistics
independent of the employed measurement scheme.
The paper is structured as follows: In Sec. III, we

introduce the basic concepts that will be employed through-
out this article to examine classicality. In Sec. IV, we
reiterate and slightly generalize the results of Ref. [34],
linking nonclassicality and coherence for the Markovian
case, and discuss their breakdown when memory effects are
present. This discussion motivates our consideration of the
non-Markovian case in Sec. V, where we fully characterize
the set of general classical processes by means of the
quantum comb framework. This characterization then
enables us to formulate a quantifier of nonclassicality that
is both experimentally accessible and can be computed
efficiently. Based on these results, in Sec. VI, we
subsequently establish the direct connection between
(basis-dependent) quantum discord and the classicality of
temporal processes. Finally, in Sec. VII, we go beyond the
paradigm of measurements in a fixed basis and provide an
example for processes that appear quantum independent of
the scheme that is used to probe them. The paper concludes

in Sec. VIII with a summary and an outlook on further
research directions and open problems.

III. GENERAL FRAMEWORK

The overarching aim of this paper is to characterize when
a general quantum mechanical process can be considered
classical in an operationally consistent manner and to
identify the structural properties consequently implied on
the underlying evolution. Importantly, our investigation
will be operational in the sense that it is based solely on
experimentally accessible quantities; as such, it applies to
situations where the underlying theory is classical mechan-
ics, quantum mechanics, or some more general theory [53].
Ultimately, any physical theory provides predictions

about possible observations—only these can be tested by
experiments. In other words, any theory must (in principle)
provide the correct probabilities for measurement outcomes
(or sequences thereof) to occur when a system of interest is
experimentally probed. The difference between predictions
made regarding such observable quantities by classical
physics and quantum (or postquantum) theory can then be
used to unambiguously demarcate between the theories on
the investigated spatial and temporal scales.
Following Ref. [34], we thus define our notion of classi-

cality by means of joint probability distributions pertaining to
sequences of measurement outcomes, as these are precisely
what is obtained when a temporal process is probed.

A. Kolmogorov conditions and classicality

In classical physics, a stochastic process on a set of K
times is fully described by a joint probability distribution

PKðxK; tK;…; x1; t1Þ; ð8Þ

which yields the probability to measure the realizations
fxK;…; x1g of the random variables fXK;…; X1g at times
ftK;…; t1g. For example, P2ðx2; t2; x1; t1Þ could describe
the probability to obtain both outcomes fx2; x1g when
measuring the position of a particle undergoing Brownian
motion at times t1 and t2 > t1. In what follows, we will
often omit the explicit time label, with the understanding
that xj denotes an outcome of a measurement at time tj.
Crucially, in classical physics, joint probability distri-

butions describing a stochastic process for different sets of
times satisfy the so-called Kolmogorov consistency con-
ditions [28,29,54,55]: Given a joint probability distribution
PK for a set of times, the probability distributions for all
subsets of times can be obtained by marginalization, that is,

Pn−1ðxn; tn;…;xj; tj;…; x1; t1Þ
¼

X
xj

Pnðxn; tn;…; xj; tj;…;x1; t1Þ ∀ n ≤ K; ∀ j:

ð9Þ
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Just like the Leggett-Garg inequalities [30–32] for temporal
correlations, the satisfaction of these requirements is based
on the assumptions of realism per se, i.e., the assumption
that xj has a definite value at any time tj, and the possibility
to implement noninvasive measurements [56].
Importantly, an experimenter obtaining a family of joint

probability distributions that satisfies the Kolmogorov
conditions when probing a temporal process at different
sets of times would not be able to distinguish said process
from a classical one, as every such finite family can be
obtained from a—potentially exotic—underlying classical
stochastic process. More generally, the Kolmogorov exten-
sion theorem states that if all joint probability distributions
for finite subsets of a time interval ½0; t� satisfy the
consistency conditions of Eq. (9) amongst each other, then
there exists an underlying classical stochastic process on
said time interval that leads to the observed probability
distributions [28,29,54,55]. In other words, if the
Kolmogorov consistency conditions of Eq. (9) are satisfied
(for all considered choices of tj), then there is nothing
inherently quantum mechanical about the observed proc-
ess. We therefore give the following definition:
Definition 1. (K-classical process [34]) Let X be a finite

set. A process defined on a set of times T , with jT j ¼ K, that
is described by the joint probabilities Pnðxn; tn;…; x1; t1Þ,
with tn ≥ … ≥ t1, ti ∈ T , n ≤ K, and xi ∈ X , is said to be
“K classical” if the Kolmogorov consistency conditions of
Eq. (9) are satisfied up to n ¼ K.
Throughout this article, we call a family of joint

probabilities on a set of K times a “K process” and denote
it by fPnðxn;…; x1Þgn≤K. Here, the label n ≤ K is a short-
hand notation for all the subsets of T with n ordered times
tn ≥ … ≥ t1, where ti ∈ T , for any n ≤ K; moreover, from
here on, we will not explicitly indicate the time arguments
in the probability distributions, implying that the outcome
xj refers to time tj.
While the above definition of classicality seems intuitive,

some comments are in order. First, we choose to define
classicality for a finite set of K times. While this choice is
motivated on practical grounds, the general definition of a
classical stochastic process involves the joint probability
distributions associated with any number of ordered time
instants tK ≥ … ≥ t1, with K ∈ N, and any choice of such
instants. In particular, as alreadymentioned, theKolmogorov
extension theorem infers the existence of a stochastic process
from the validity of the consistency conditions on all such
joint distributions. Here, instead, we fix a finite value of K
and the sequence of time instants beforehand so that, given
the K-time joint probability distribution of a K-classical
process, the involved hierarchy of probability distributions
can be constructed by iteratively applying the consistency
conditions at any intermediate time.
Second, the above definition of classicality is a priori

device independent, as it only relies on the inferred
statistics without any assumptions on the underlying theory

and/or measurement devices; as a consequence, the clas-
sicality of a process according to the above definition
depends upon the manner in which the system of interest is
probed. Although often overlooked, this is also the case in
classical physics: Given some underlying classical stochas-
tic process, not every set of measurements that an experi-
menter might be able to perform will lead to a family of
probability distributions that satisfy the above definition of
K classicality. In fact, if performing such measurements
might potentially disturb the system (i.e., the measurement
is invasive), the Kolmogorov condition fails, in general,
even if the underlying evolution is classical [56].
For example, suppose that instead ofmerelymeasuring the

position of a particle at different times when probing a
Brownian motion process, an experimenter chooses to dis-
place the particle at each time depending on where it was
found. In this case, Eq. (9)would generally fail to hold for the
joint probability distributions observed. Consequently, the
Kolmogorov consistency conditions in Eq. (9) are in fact a
statement of the noninvasiveness of the performed measure-
ments: If they hold true, then not performing a measurement
at any given time cannot be distinguished (for the given
experimental situation) from averaging over their probabil-
ities (i.e., forgetting the outcomes of the measurements
performed).
In classical physics, one assumes that, in principle, one

could measure the system without disturbing it and that,
therefore, there exists a family of joint probability distri-
butions that can consistently explain all possible outcome
probabilities. Such a noninvasive and complete measure-
ment is often referred to as an “ideal measurement” in the
literature [57].
On the other hand, in quantum mechanics, any meas-

urement disturbs some system state, and therefore, ideal
measurements do not exist, in general, in the strong sense
discussed above. As a consequence, quantum mechanical
processes generically do not satisfy Kolmogorov condi-
tions [56,58], a fact that fundamentally distinguishes them
from the classical realm.
More generally, the violations of Bell, Kochen-Specker,

or Leggett-Garg inequalities, which can be observed in
quantum mechanics, are different manifestations of the
impossibility to obtain the measured data by noninvasive
measurements. Particularly, in the case of Leggett-Garg
inequalities [30,59], it is precisely the breakdown of
Kolmogorov conditions that is being probed [34,56], and
our above definition of classicality is hence in line with the
wider program of determining fundamentally quantum
traits of nature.

B. Measurement setup

As mentioned above, the structural properties of families
of joint probability distributions depend on the way in
which a system of interest is probed. Consequently, before
being able to analyze the set of quantum processes, it is
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crucial to fix the measurements that are used to probe a
process at hand. Although there are no ideal measurements
in quantum mechanics, projective measurements share
some basic features with the classical ideal measurements
discussed above and are thus a natural choice. In particular,
they guarantee repeatability, i.e., that two sequential mea-
surements (without any evolution in between) would give
the same value with unit probability, as well as a weaker
form of ideality, namely, that if an outcome occurs with
certainty, then the state of the system before the measure-
ment is not disturbed by the latter [60]. Therefore, it
suggests starting our analysis on the classical reproduc-
ibility of quantum processes by focusing on projective
measurements; moreover, also following Ref. [34], we
further restrict ourselves to the case of orthogonal rank-1
projectors, like, e.g., projective measurements with respect
to the eigenbasis of any nondegenerate self-adjoint
operator.
In many experimental situations of interest, there is a

preferred basis to select. For instance, if the dynamics is
such that the system dephases to a given basis, the latter
provides a natural choice. Which occurs, e.g., in the case of
open quantum systems dynamics that are subject to
environmental fluctuations. In other cases, it may make
sense to choose the basis more arbitrarily (in advance), for
instance, when analyzing a specific protocol or attempting
to optimize it (see Ref. [61] for more details). Finally, the
experimental setup might only allow for a measurement of
one particular observable, in which case the chosen basis
would correspond to the eigenbasis of said observable.
In what follows, we will analyze the classicality of a

process based on the joint probability distributions obtained
from sequential sharp measurements in a fixed basis
fjxigdx¼1—henceforth also called the classical, standard,
or computational basis—with the action of a measurement
with outcome x on a state ρ given by

ρ ↦ Px½ρ� ≔ jxihxjρjxihxj: ð10Þ

See Fig. 1 for a graphical depiction.
This freedom in the considered measurements makes the

property of classicality fundamentally contingent on the
respective choice of measurement basis. However, this
basis dependence is unsurprising and mirrored by coher-
ence theory [2]. There, the existence of off-diagonal
elements hmjρjni, i.e., coherences, depends on the choice
of the basis a quantum state is represented in. As they are
considered to be a fundamentally quantum property, it is a
natural question to ask how coherences (with respect to the
computational basis) and classicality of a process (with
respect to the same basis) are interrelated. Importantly,
while the existence of coherences cannot be determined by
projective measurements in the computational basis alone,
the prevalence of non-classical effects can be. Thus, as we
shall see below, providing an operationally accessible

notion of classicality allows one to link coherence (and,
more generally, quantum correlations) in a quantitative
manner to experimentally observable deviations from
classical physics.

C. Open (quantum) system dynamics
and memory effects

The definition of classicality we use (introduced in
Ref. [34]) answers the question of whether or not there
exists a classical stochastic process that can explain the
multitime probabilities obtained by measuring a quantum
system at given times in the computational basis. To make
our analysis as general as possible, we consider the pos-
sibility that themeasured system interactswith a surrounding
environment, which can influence the resulting statistics.
Explicitly, assuming that the system and environment in state
η are, together, closed and described by quantummechanics,
their joint dynamics between measurements is given by
unitary evolution: U tjþ1;tj ½η� ¼ Utjþ1;tjηU

†
tjþ1;tj . The resulting

joint probability distributions read

Pnðxn;…; x1Þ ¼ trfðPs
xn ⊗ IeÞ ∘ U tn;tn−1 ∘ � � �

� � � ∘ ðPs
x1 ⊗ IeÞ ∘ U t1;t0 ½ηset0 �g; ð11Þ

where ηset1 is the system-environment state at time t1, Ie

signifies the identity channel on the environment, Ps
xj

corresponds to ameasurement on the system in the computa-
tional basis at time tj with outcome xj, and ∘ denotes
composition (see Fig. 2 for a graphical representation).
Whenever there is no risk of confusion, we will drop the
additional superscripts s and e throughout this paper.
Naturally, the classicality of the family of joint probability
distributions obtained via Eq. (11) crucially depends on the

FIG. 1. Probing a process with projective measurements. At
each time tj, the process (depicted in blue) is probed by a
projective measurement (depicted in green) with outcomes xj,
where each xj belongs to the same finite set X . If the resulting
family of probability distributions Pn (depicted are the cases
n ≤ 4) satisfies the Kolmogorov consistency conditions, then not
performing a measurement at a time tj cannot be distinguished
from performing a measurement and averaging over the out-
comes. In this case, this experiment cannot be distinguished from
a classical one, even though the underlying evolution might be
quantum mechanical.
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properties of the intermediate evolutions U tjþ1;tj and the
initial state ηset0 .
In general, such a multitime statistics displays memory

effects; i.e., it is non-Markovian: At any point in time tj, the
future statistics not only depends on the measurement
outcome xj at time tj but also on (potentially) all previous
outcomes xj−1;…; x1. Indeed, all information about future
statistics at tj is contained in the joint state of system and
environment, which depends upon the previous measure-
ment outcomes. As this total state cannot be accessed by
measurements on the system alone, this dependence on past
measurements manifests itself as memory effects on the
system level (see Sec. V for a detailed discussion).
However, under some specific circumstances, the influ-

ence of such memory effects on the multitime statistics can
be neglected; this is essentially the case when the quantum
regression formula (QRF) can be applied [29,62–64].
Under this assumption, the observed statistics can be
understood in terms of dynamical propagators that act
on the system alone, which, in turn, enables one to directly
link the classicality of a process to the properties of said
propagators in terms of coherence production and detec-
tion. The corresponding result has been obtained in
Ref. [34], and we will reiterate and expand upon it in
the next section. Subsequently, employing quantum combs
—a powerful framework for the description of general,
possibly non-Markovian open quantum processes—we
characterize the set of quantum processes that can be
described classically.

IV. COHERENCE AND CLASSICALITY

In this section, we reiterate the main result of Ref. [34]
on the connection between coherence and classicality for
the memoryless case, generalizing it to the case of a
divisible (but not necessarily semigroup [29,65,66])
dynamics. As mentioned above, such a direct connection
may be established because memoryless processes can be
understood in terms of propagators that are defined on the
system alone, while this property fails to hold in the
general, non-Markovian case.

After introducing an operational notion of Markovianity
associated with the multitime statistics due to sequential
measurements of a (nondegenerate) observable, we present
a one-to-one connection between the nonclassicality of
such statistics and the capability of the open system
dynamics to generate and detect coherences with respect
to the relevant basis. We also clarify the relation between
the notion of Markovianity used in this paper and the QRF,
which allows us to straightforwardly recover the main
result of Ref. [34]. Finally, we lay out the subtleties that
arise when generalizing the framework to allow for
memory effects, motivating the main results of this work.

A. One-to-one connection in the Markovian case

Classically, a process is Markovian (i.e., memoryless) if,
for any chosen time tj, the future statistics only depend
upon the outcome at time tj but not on any prior outcomes
at tj−1; tj−2; � � �; explicitly, a classical stochastic process is
Markovian if its statistics satisfy

Pðxjjxj−1;…; x1Þ ¼ Pðxjjxj−1Þ ∀ j; ð12Þ

where Pðxjjxj−1;…; x1Þ is the conditional probability to
obtain outcome xj at time tj given that outcomes
xj−1; xj−2;… were measured at earlier times tj−1; tj−2;…
[29]. Extending this definition to general (i.e., not neces-
sarily classical) statistics and taking into account that, in
practice, one only deals with systems probed at a finite
number of times, we obtain the following definition of K
Markovianity:
Definition 2. Let X be a finite set. A process defined on

a set of times T , with jT j ¼ K is called “K Markovian” if it
satisfies

Pðxnjxn−1;…; x1Þ ¼ Pðxnjxn−1Þ ∀ n ≤ K; ð13Þ

for all ordered tuples of times tn ≥ … ≥ t1, with ti ∈ T ,
and xi ∈ X .
Just like our earlier definition of classicality and coher-

ence, the absence of memory effects as defined in
Definition 2 is basis dependent: A process that appears
Markovian in one basis may appear non-Markovian
when probed in a different one. While there exist basis-
independent notions of Markovianity in the quantum case
[38,39,67–69], the basis-dependent one introduced here is
best suited for the experimental situation we envision; as
such, in what follows, we predominantly understand
Markovianity with respect to measurements in the compu-
tational basis. We briefly return to the relation between this
basis dependence and the basis-independent notion of
Markovianity in Sec. V.
To establish a connection between nonclassicality of a

Markovian process and the coherence properties of the
underlying dynamics, we need to introduce the maps that
characterize the dynamical evolution of the open system.

FIG. 2. General open quantum process. The state of the system
at time t1 is correlated with the environment (depicted by the
yellow triangle representing the joint state). Measurements on the
system (green boxes) are performed at times t1; t2;…. In
between, the system and the environment undergo a unitary
evolution (blue boxes). The distinction between system and
environment is given by the degrees of freedom that the
experimenter controls (system) and those that remain inaccessible
to experimental control (environment).
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To this end, assume that at an initial time t0 (with t0 ≤ t1),
the system and the environment are in a product state ηset0 ¼
ρt0 ⊗ σt0 (for some fixed environment state σt0), so we can
define the CPTP dynamical maps fΛtj;t0g of the open
system evolution between the initial time and the meas-
urement times tj [29,70] as

ρtj ¼ Λtj;t0 ½ρt0 � ¼ tre½Utj;t0ðρt0 ⊗ σt0ÞU†
tj;t0 �; ð14Þ

where tre denotes the trace over the environmental degrees
of freedom. Additionally, let us also assume that the
dynamics is divisible [71]; i.e, we can define the corre-
sponding propagators fΛtk;tjg between any two times via
the composition rule

Λtk;t0 ¼ Λtk;tj ∘Λtj;t0 ∀ tk ≥ tj ≥ t0; ð15Þ

and they satisfy the composition law Λtl;tj ¼ Λtl;tk ∘Λtk;tj

for all times tl ≥ tk ≥ tj. Under these assumptions, it is
natural to ask what conditions the propagators fΛtk;tjgmust
satisfy in order for the resulting statistics to be classical.
However, Eq. (15) does not yet tell us how to obtain
multitime statistics [72].
The relation we seek is provided by the QRF, which, for

example, holds in the weak coupling and the singular
coupling limits [73] and constitutes a relation between the
definition of Markovian processes given by Definition 2
and the corresponding open system dynamics (see also
Ref. [69] for an extensive discussion of the QRF and its
generalizations). For the case of rank-1 projective mea-
surements (in the computational basis), the QRF states that
the multitime probability distributions in Eq. (11) can be
equivalently expressed by

Pnðxn;…; x1Þ
¼ trfPxn ∘Λtn;tn−1 ∘ � � � ∘Λt2;t1 ∘Px1 ∘Λt1;t0 ½ρt0 �g: ð16Þ

Importantly, this expression means that the full multitime
statistics can be obtained by means of maps that are
independent of the respective previous measurement out-
comes and that act on the system alone (see Fig. 3 for a
graphical representation).

It is straightforward to see that satisfaction of the QRF
[see Eq. (16)] implies Markovian statistics in the sense of
Eq. (13), and in particular, we have the identities

hxkjΛtk;tj ½jxjihxjj�jxki ¼ PðxkjxjÞ ∀ j ≥ 1; ð17Þ

and hx1jΛt1;t0 ½ρt0 �jx1i ¼ Pðx1Þ: ð18Þ

In other words, the action of the propagators on the
populations (i.e., the diagonal terms of ρtj , the state of
the system at tj) can be identified with the conditional
probabilities between any two times. Crucially, this gen-
erally is not the case, and it breaks down in situations where
the QRF cannot be applied [74].
More generally, even if the QRF applies, the composition

rule on the level of propagators does not imply a compo-
sition rule on the level of the resulting measurement
statistics; i.e., for a divisible process that satisfies the
QRF, we generally have

X
xk

PðxljxkÞPðxkjxjÞ ≠ PðxljxjÞ; ð19Þ

which captures the deviation of quantum Markovian
processes from classical ones. As mentioned previously,
in order for the resulting process to be classical, not
performing a measurement must be indistinguishable from
performing a measurement and averaging over all possible
outcomes. Put differently, for an observer that can only
perform measurements in a fixed basis, the process is
classical if it cannot detect the invasiveness of measure-
ments in said basis.
A measurement at time tj in the fixed basis where the

measurement outcomes are averaged over can be repre-
sented by the completely dephasing map

Δ½ρ� ¼
X
xj

Pxj ½ρ� ¼
X
xj

hxjjρjxjijxjihxjj: ð20Þ

The natural property of the propagators to examine in
relation to classicality is thus that for all tj,

Δjþ1 ∘Λtjþ1;tj ∘Δj ∘Λtj;tj−1 ∘Δj−1

¼ Δjþ1 ∘Λtjþ1;tj ∘ I j ∘Λtj;tj−1 ∘Δj−1

¼ Δjþ1 ∘Λtjþ1;tj−1 ∘Δj−1; ð21Þ

where I j and Λj are the identity map and the completely
dephasing map at time tj, respectively (see Fig. 4 for a
graphical representation). In the last line of Eq. (21), we
used the composition law Λtjþ1;tj−1 ¼ Λtjþ1;tj ∘Λtj;tj−1.
Equation (21) is, e.g., satisfied if none of the maps
fΛtjþ1;tjg create coherences. More generally, each of the
maps in Eq. (21) can, in principle, create coherences, as
long as these coherences cannot be detected at the next time

FIG. 3. Markovian process. For a Markovian process, the
system dynamics in between intermediate times (depicted as
the blue boxes) can be modeled by maps Λtjþ1;tj that do not
depend on previous outcomes (i.e., there is no memory). The
measurement statistics are obtained by measuring in the classical
basis at times t1; t2; t3;… (depicted in green); before the first
measurement, the system is in the state ρt1 (depicted in yellow).
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by means of measurements in the classical basis. Therefore,
such a collection of maps satisfying Eq. (21) are called non-
coherence-generating-and-detecting (NCGD) maps [34].
The precise connection between NCGD and classicality
is expressed by the following theorem:
Theorem 1. Let fPnðxn;…; x1Þgn≤K be a K-Markovian

process (Definition 2). Then, the process is also K classical
(Definition 1) if and only if there exists a system state ρt0 (at
a time t0 ≤ t1) that is diagonal in the computational basis
fjxigx∈X and a set of propagators fΛtj;tj−1gj¼1;…;K

that

are NCGD with respect to fjxigx∈X , such that ρt0 and
fΛtj;tj−1gj¼1;…;K

yield fPnðxn;…; x1Þgn≤K via Eq. (16).

Proof.—We first show that if a Markovian process can be
reproduced by means of NCGD propagators fΛtjþ1;tjg and
an initial diagonal state (both properties with respect to the
computational basis), then it yields classical statistics. If the
statistics is Markovian, then it follows from Eq. (13) that
the joint probability distribution on any set of times
tn ≥ … ≥ t1, with ti ∈ T , is given by

Pnðxn;…; x1Þ ¼ Pðxnjxn−1Þ � � �Pðx2jx1ÞPðx1Þ: ð22Þ

As the process can, by assumption, be reproduced by the
maps fΛtj;tj−1g via Eq. (16), then for any time tj, for j > 1,
we have

X
xj

Pðxjþ1jxjÞPðxjjxj−1Þ

¼
X
xj

trfPxjþ1
∘Λtjþ1;tj ½Πxj �gtrfPxj ∘Λtj;tj−1 ½Πxj−1 �g

¼ trfPxjþ1
∘Λtjþ1;tj ∘Δj ∘Λtj;tj−1 ½Πxj−1 �g

¼ trfPxjþ1
∘Λtjþ1;tj−1 ½Πxj−1 �g; ð23Þ

where we have set Πxj ¼ jxjihxjj and the NCGD property
was used in the last line. This equation implies

X
xj

Pðxjþ1jxjÞPðxjjxj−1Þ ¼ Pðxjþ1jxj−1Þ: ð24Þ

Moreover, the (initial) diagonal state ρt0 guarantees that we
have

X
x1

Pðx2; x1Þ ¼ Pðx2Þ: ð25Þ

As a consequence of these two previous relations, the
family of joint probability distributions computed via
Eq. (22) satisfies Kolmogorov conditions and is thus
classical.
Conversely, if the process is classical and Markovian,

Eq. (24) holds. We can then define the maps

Λ̃tjþ1;tj ½jxjihyjj� ¼ δxjyj
X
xjþ1

Pðxjþ1jxjÞΠxjþ1
; ð26Þ

and the initial diagonal state

ρ̃t0 ¼
X
x1

Pðx1ÞΠx1 ; ð27Þ

which also means that we identify the initial time as the
time of the first measurement, t1 ¼ t0. The set of maps
fΛ̃tjþ1;tjg defined in this way, in conjunction with ρ̃t0 ,
reproduces the correct statistics via Eq. (16). As they are
diagonal in the computational basis for any pair of times tj
and tjþ1, they form a NCGD set. ▪
Crucially, the connection between classicality and

NCGD dynamics is one-to-one: If the obtained
Markovian statistics cannot be reproduced by a set of
maps that are NCGD, then the process is nonclassical.
Before discussing classicality in the presence of memory
effects below, it is worth discussing the intuitive meaning of
this theorem and NCGD dynamics, in particular.
If the process at hand is Markovian and classical, the

maps fΛ̃tjþ1;tjg (as well as the initial state ρ̃t0) introduced in
the proof of Theorem 1 define an artificial reduced
dynamics of the system, whose propagators correctly
reproduce all joint probability distributions for measure-
ments in the (fixed) classical basis via Eq. (16). Note that
the actual propagators of the dynamics [i.e., those fixed by
the unitary evolution in Eq. (11) via Eqs. (14) and (15)]
might differ from the maps Λ̃tjþ1;tj above (and ρ̃t0 might
differ from the actual initial state ρt0); indeed, the fact that
they do not coincide is simply a manifestation of the basis
dependence of the (sequential) measurement schemewe are
focusing on here.
Crucially, a composition rule on the level of the actual

propagators does not imply a composition rule on the level
of the propagators of the populations. This implication only
holds if the propagators of the dynamics are NCGD, and
the resulting statistics can be computed via Eq. (16), in
which case Eq. (21) results in

FIG. 4. NCGD dynamics. If the process is NCGD, then for a
classical observer, “doing nothing” (i.e., performing the map I)
cannot be distinguished from a measurement in the classical basis
and averaging over the outcomes (i.e., performing the map Δ) at
any point in time.
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Λ̃tjþ1;tj−1 ¼ Λ̃tjþ1;tj ∘ Λ̃tj;tj−1 ∀ tj; ð28Þ

with

Λ̃tk;tj ½jxjihyjj� ¼ δxjyjhxkjΛtk;tj ½jxjihxjj�jxkiΠxj ð29Þ

[see Eqs. (17) and (26)]. These reduced propagators still
produce the correct populations, which are the only relevant
part for the considered statistics, and set all coherences to
zero. This composition law is then—as already seen in
Eq. (24)—equivalent to the well-known classical
Chapman-Kolmogorov equations

X
xj

Pðxjþ1jxjÞPðxjjxj−1Þ ¼ Pðxjþ1jxj−1Þ; ð30Þ

which hold for classical Markovian processes: If the
measurement statistics of a Markovian process can be
reproduced by a set of NCGD maps fΛtj;tj−1g, then it can
also be reproduced by the set of maps fΛ̃tj;tj−1g, which act
nontrivially on only the populations of the computational
basis and satisfy a composition law; thus, the process is
classical.
Conversely, if the classical composition rule of Eq. (30)

holds for a Markovian process, then there exists a set
fΛ̃tjþ1;tjg of propagators [e.g., those defined in Eq. (26)]
that are NCGD and correctly reproduce all joint probability
distributions for measurements in the (fixed) classical basis.
Theorem 1 is a generalization of the main result of

Ref. [34] in two ways. First, it does not impose any
restriction on the propagators of the underlying quantum
evolution, while in Ref. [34], these were required to form a
semigroup, i.e., Λtjþ1;tj ¼ eLðtjþ1−tjÞ, for some Lindbladian
L [65,66].
Second, the definition of Markovianity used here coin-

cides with the standard definition of classical stochastic
processes, whereas in Ref. [34], a definition based on
Eq. (16) (for semigroups) was used. Consequently, while
the maps fΛtjþ1;tjg cannot be fully probed by measurements
in the computational basis alone, the requirement of
Eq. (30) can be tested by simply performing sequences
of measurements in the classical basis at the relevant times,
thus making our theorem fully operational. However, this
feature comes at the cost of dealing with propagators
fΛ̃tjþ1;tjg, which might not correspond to those of the
actual reduced dynamics.
On the other hand, as we show in the Appendix A, a one-

to-one correspondence between the dynamical propagators
Λtjþ1;tj and the nonclassicality of the multitime statistics can
also be established in the general (nonsemigroup) divisible
case, when the QRF applies, provided that one assumes a
proper invertibility condition on the restriction of the
dynamical maps to the populations of the computational
basis. Indeed, this correspondence also allows one to

recover, in a straightforward way, the main result of
Ref. [34] as a corollary by further imposing the semigroup
composition law.
Importantly, Theorem 1 characterizes the connection

between coherences and the classicality of a Markovian
process. While it is not necessary that the underlying
propagators create no coherences in order for a
Markovian process to be classical, it is necessary and
sufficient that coherences—should they be created—cannot
be detected at a later point in time by means of measure-
ments in the computational basis. Put differently, the
propagators must be such that a classical observer could
not decide whether, at any point in time, an identity map or
a completely dephasing map was performed (which is
depicted in Fig. 4). This requirement is exactly encapsu-
lated in the NCGD property of the propagators.

B. Coherence in the non-Markovian case:
Preliminary analysis

The above connection between quantum coherence and
nonclassicality fails to hold in the non-Markovian case. On
the one hand, in this case, propagators between two times
are no longer sufficient to fully characterize the multitime
statistics [75]. On the other hand, even if the state of the
system is diagonal in the computational basis at all times,
dephasing can still be invasive due to correlations with the
environment, breaking the connection between coherences
and the classicality of statistics. We will discuss the former
problem in the subsequent sections. Using an open system
model from Refs. [68,78,79], an explicit ante litteram
example of the latter case has already been provided in
Ref. [34] (note, also, a similar investigation in Ref. [80]),
albeit not with an emphasis on the lack of coherence in the
system state at all times (even in between the measure-
ments). Here, we reiterate this example, focusing on the
absence of coherences in the state of the system. The details
of this discussion can be found in Appendixes B and C. A
simpler, although noncontinuous, example for a non-
Markovian process that yields nonclassical statistics but
never displays coherences in the system state is provided in
Appendix D.
Example 1. Let the system of interest s consist of a

qubit described by ρsðtÞ which is coupled to a continuous
degree of freedom p of the environment. The global
dynamics of the system and environment is governed by
the unitary evolution Utj;ti , acting as

Utj;ti jl; pi ¼ eiϕlpðtj−tiÞjl; pi; ð31Þ
where fjligl¼0;1 is the eigenbasis of the system
Pauli operator σ̂z and ϕl ¼ ð−1Þl. The initial system-
environment state is assumed to be of product form
ηð0Þ ¼ ρsð0Þ ⊗ jφeihφej, with jφei ¼ R

∞
−∞ dpfðpÞjpi,

where fðpÞ satisfies the normalization conditionR∞
−∞ dpjfðpÞj2 ¼ 1. By defining
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kðtÞ ≔
Z

∞

−∞
dpjfðpÞj2e2ipt; ð32Þ

it is straightforward to show that, expressed in the eigen-
basis of σ̂z, the free open evolution of the state of the system
(i.e., without intermediate measurements) is given by

ρsðtÞ ¼
�

ρ00 kðtÞρ01
k�ðtÞρ10 ρ11

�
; ð33Þ

where ρmn ≔ hmjρsð0Þjni.
If ρsð0Þ is initialized in a convex mixture of the

eigenvectors fj�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p g of the σ̂x operator,
i.e., ρsð0Þ ¼ αjþihþj þ ð1 − αÞj−ih−j, then

ρsðtÞ ¼
1

2

�
1 kðtÞð2α − 1Þ

k�ðtÞð2α − 1Þ 1

�

¼ 1

2
fjþihþj½1þ ð2α − 1ÞReðkðtÞÞ�

− jþih−jð2α − 1ÞImðkðtÞÞ
þ j−ihþjð2α − 1ÞImðkðtÞÞ
þ j−ih−j½1 − ð2α − 1ÞReðkðtÞÞ�g; ð34Þ

i.e., no coherence with respect to σ̂x will be generated if kðtÞ
is a real function of time (as noted in Ref. [34]); this is, e.g.,
the case if fðpÞ corresponds to a Lorentzian distribution
centered around zero,

jfðpÞj2 ¼ Γ
πðΓ2 þ p2Þ ↦ kðtÞ ¼ e−2Γjtj: ð35Þ

A priori, the fact that there are no σ̂x coherences created in
the free evolution does not mean that none are created if the
system is probed at intermediate times. However, here,
no σ̂x coherence is generated even when we take into
account how the measurements modify the system’s state.
Specifically, immediately after a measurement in the σ̂x
basis is performed at time t1 (yielding outcome�), the total
system-environment state is of product form

ηð�Þðt1Þ ¼ j�ih�j ⊗ ξð�Þðt1Þ; ð36Þ

where ξð�Þðt1Þ is a state of the environment that depends on
the measurement outcome. As we show in Appendix B, any
state of the system evolved from the postmeasurement state
of Eq. (36) according to the described dynamics remains
diagonal in the fj�ig basis; this also holds true for the state
of the system after any sequence of such measurements.
Together with the fact that the statistics resulting from
measurements in the fj�ig basis is nonclassical (i.e., it
does not satisfy Kolmogorov conditions, as has been shown
in Ref. [34]), this constitutes an example of a nonclassical
process without any coherence with respect to the measured

observable ever being generated. Evidently, this behavior is
only possible since the chosen example is non-Markovian.
Unlike in the Markovian case, where the absence of

coherences trivially leads to classical statistics, when
memory effects are present, it is the coherences of the
system state as well as the nonclassical correlations
between the system and its environment that can lead to
nonclassical behavior—in a way that will be specified in
the following. Intuitively, while the completely dephasing
map leaves the system unchanged if no coherences are
created, it does not necessarily leave the overall system-
environment state invariant. In detail, in general, we can
have Δ½ρstj � ¼ I ½ρstj � ∀ tj, without implying Δ ⊗ Ie½ηsetj � ¼
I ½ηsetj � ∀ tj. As we will see, the latter property is sufficient,
but not necessary, for the satisfaction of the Kolmogorov
conditions. First, though, in order to be able to go beyond
the investigation of Markovian processes and extend the
existing connection between classicality and coherences, it
is important to introduce quantum combs—a suitable
framework to describe general quantum processes [37,38].

V. NON-MARKOVIAN CLASSICAL PROCESSES

The previous example illustrates the subtle relation
between coherence and classicality in the case of open
quantum processes with memory. There, although no
coherence is ever generated on the level of the system
with respect to the chosen measurement basis, the system-
environment correlations built up throughout the dynamics
lead to nonclassical statistics. To develop a more in-depth
understanding of the interplay between coherences and
classical phenomena, we require a suitable operational
framework for approaching such scenarios. We can then
employ this framework to comprehensively characterize all
quantum processes that display classical statistics.

A. Classicality and processes with memory

The necessity of such a novel framework for the descrip-
tion of quantum processes that displaymemory effects stems
from the breakdown of their modeling in terms of propa-
gators that could be used in the Markovian case; this can
already be seen for classical stochastic processes. Here, a
joint probability distributionPKðxK;…; x1Þ fully describes a
K process. This probability distribution can equivalently be
represented in terms ofmultitime conditional probabilities as

PKðxK;…; x1Þ
¼ PKðxKjxK−1;…; x1Þ � � �P2ðx2jx1ÞP1ðx1Þ: ð37Þ

Importantly, all of the above conditional probabilities gen-
erally depend upon all preceding measurement results, in
contrast to the Markovian case where they only depend on
the most recent outcome. Consequently, two-point transition
probabilities of the form Pðxjjxj−1Þ are not sufficient, in
general, to build up all joint probability distributions and thus
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do not completely describe the process. Similarly, two-time
propagators fΛtj;tj−1g are generally not sufficient to compute
multitime joint probabilities in the quantum case and there-
fore fail to fully characterize the process [74,81].
For classical statistics, the joint probability distribution

PKðxK;…; x1Þ contains all information about theK process
since all distributions for fewer times, as well as all
conditional probabilities, can be derived once PK is known.
In exactly the same way, a general quantum K process is
fully characterized by the joint probabilities for all possible
sequences of K measurements (at times t1;…; tK), includ-
ing nonprojective and nonorthogonal ones.
As discussed in the previous section, if the complete

system-environment dynamics is known, then all joint
probability distributions (on times ftjgnj¼1) obtained from
sequential measurements of the system can be computed via

Pnðxn;…;x1Þ
¼ trfðPxn ⊗ IeÞ ∘ U tn;tn−1 ∘ � � � ∘ ðPx1 ⊗ IeÞ½ηset1 �g: ð38Þ

Here, fPxjg corresponds to a set of projectivemeasurements
in the computational basis, but evidently, the same relation
canalsobeused toobtain thecorrectprobabilitieswhenusing
different probing instruments, e.g., instruments thatmeasure
sharply in a different basis or those that perform generalized
measurements. More formally, an instrument J k ¼ fMxkg
(at time tk) is a collection of CP maps that add up to a CPTP
map [60]. For instance, the instrument corresponding to a
measurement in the computational basis is given by
J k ¼ fPxkg, and all of its elements add up to the CPTP
map

P
xk Pxk ¼ Δk. Intuitively, each outcome of an instru-

ment corresponds tooneof its constituentCPmaps,which, in
turn, describes how the state of the system changes upon the
realization of said measurement outcome. Thus, the proba-
bility to obtain the sequence of outcomes x1;…; xK , given
that the instruments J 1;…;J K were used to probe the
system, is given by

PKðxK;…; x1jJ K;…;J 1Þ
¼ trfðMxK ⊗ IeÞ ∘ U tK;tK−1

∘ � � � ∘ ðMx1 ⊗ IeÞ½ηset1 �g
≕ CK½MxK ;…;Mx1 �; ð39Þ

indeed, the joint probability distribution for any subset of
ordered times tn ≥ … ≥ t1, with n < K, can be obtained
from the formula above by replacingMxj with the identity
operator, in correspondencewith the times tj not contained in
the subset of interest.
In what follows, whenever we drop the explicit instru-

ment labels, it is understood that the probabilities are the
result of a measurement in the computational basis at
each time. The multilinear functional CK introduced above
is a special case [82] of a quantum comb [37,51], which
provides a natural generalization to the concept of quantum

channels that, by construction, allows for the inclusion of
memory effects [38,39,83,84] (see Fig. 5 for a graphical
representation). It maps any sequence of possible exper-
imental transformations enacted on the system to the
corresponding joint probability of their occurrence. In this
sense, CK plays exactly the same role that the joint
probability distribution PK plays in the classical setting
and thus allows one to decide on the classicality of the
resulting statistics. For example, for the completely mem-
oryless case, i.e, the case of Markovianity with respect to
measurements in any basis, the evolution between any two
points in time is described solely by a sequence of
independent CPTP maps fΛtj;tj−1g that act on the system
alone [39,85], and we have

CMarkov
K ½MxK ;…;Mx1 �
¼ trfMxK ∘ΛtK ;tK−1

∘ � � � ∘Mx2 ∘Λt2;t1 ∘Mx1 ½ρt1 �g: ð40Þ

In general, however, the comb of a K process does not split
into independent portions of evolution between times, in
contrast to the above. Thus, when analyzing the relation
between coherence and classicality in the presence of
memory, instead of investigating the properties of indi-
vidual CPTP maps (or collections of them), one must
consider those of the multitime comb CK.
The comb CK is an operationally well-defined object that

can—just like the joint probability distribution PK—be
obtained by means of probing measurements on the
system alone, through a generalized tomographic scheme
[38,86]. Specifically, for its reconstruction, it is not
necessary to explicitly know the system-environment
dynamics: The comb does not contain direct information
about the environment but solely that of its influence on the
multitime statistics observed from measurements on the
system. As such, it encapsulates all that is out of the control
of the experimenter and thereby clearly separates the
underlying process at hand from what can be controlled
(i.e., the experimental interventions). An explicit example
of the comb formalism is provided in Appendix C, where
we rephrase Example 1 in terms of the comb description.

FIG. 5. Comb of a general open quantum evolution. The
probabilities characterizing a quantum process can be computed
via as the action of a comb CK on the sequence of CP maps
fMxjg that correspond to the respective measurement outcomes.
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Crucially, the comb framework allows us to consider
what it means for a stochastic process with memory to be
classical, thereby permitting an extension of the results of
Ref. [34] to the non-Markovian case: Given the comb CK of
a process on times in T , all combs correctly describing the
process on fewer times T 0 ⊆ T can be deduced by letting
CK act on the identity map at the appropriate superfluous
times [38,56]. For example, we have (see also Fig. 6)

CK−1½MxK ;…;Mxjþ1
;Mxj−1 ;…;Mx1 �

¼ CK½MxK ;…;Mxjþ1
; I j;Mxj−1 ;…;Mx1 �: ð41Þ

As we have discussed in the previous sections, classicality
of a process means that the action of the completely
dephasing map cannot be distinguished (by means of
measurements in the classical basis) from not performing
an operation. With the method of “generalized marginali-
zation” given by Eq. (41), we obtain the following
characterization of classical combs:
Theorem 2. (K-classical quantum combs) A comb CK

on times T , with jT j ¼ K, yields a K-classical process iff it
satisfies

CK
h
⊗

tj∈T 0
I j; ⊗

tk∈T nT 0
Pxk

i

¼ CK
h
⊗

tj∈T 0
Δj; ⊗

tk∈T nT 0
Pxk

i
; ð42Þ

for all subsets T 0 ⊆ T and all possible sequences of
outcomes on T nT 0.
In a slight abuse of notation, here, the argument ⊗tj∈T 0

aj;⊗tk∈T nT 0 bxk of the comb CK signifies that it acts on the
maps aj at times tj ∈ T 0 and on bxk at times tk ∈ T nT 0.
Theorem 2 expresses, in a concise way, that a general

process is K classical iff measurements in the computa-
tional basis cannot distinguish the action of completely
dephasing maps from the action of identity maps. Let us
emphasize again that the completely dephasing map not
only destroys coherences of the system’s reduced state but
also quantum correlations between the system and the
environment. Therefore, Theorem 2 does not directly link
coherence and nonclassicality as Theorem 1 did for the case
without memory, where any correlations built up between

the system and environment do not affect the subsequent
evolution.
Proof.—TheproofofTheorem2 is thus straightforward: If

a comb satisfies Eq. (42), then the resulting statistics satisfy
Kolmogorov conditions. Conversely, any joint probability
distribution on a set of times T 0 ⊆ T can either be obtained
by direct measurement or by marginalization of the corre-
sponding distribution onT . The former can be computed via
the first line of Eq. (42), the latter via the second one. If the
statistics of the process appear classical, then both resulting
distributions have to coincide, and Eq. (42) must hold. ▪
In the (basis-dependent) Markovian case that we dis-

cussed in the previous section, Eq. (42) directly reduces to
Eq. (28), i.e., the NCGD property at the level of propa-
gators of populations. Theorem 2 therefore provides the
proper generalization of the results of Ref. [34] to the non-
Markovian case. Nonetheless, its consequences for the
structural properties of classical combs—and, in particular,
the relation of classicality and coherence—remain some-
what opaque in the way Theorem 2 is presently phrased. In
order to address these questions, we now introduce a
representation of quantum combs that is favorable for
the purposes of our work.

B. Choi-Jamiołkowski representation
of general quantum processes

Both the quantum comb describing theK process at hand
and the experimental interventions applied at each time are
linear maps (the former being a higher-order multilinear
map). Any such map can be represented in a variety of
ways, but the most natural one for our present purposes
makes use of the Choi-Jamiołkowski isomorphism
[87,88] between quantum maps and positive semidefinite
Hermitian matrices.
A general quantum map—e.g., one that corresponds to a

generalized measurement—at time tk is a CP transformation
Mxk∶BðHi

k Þ → BðHo
k Þ that takes bounded linear operators

on the (input) Hilbert space Hi
k onto bounded linear

operators on the (output) Hilbert spaceHo
k . Throughout this

paper, we consider the input and output spaces of such maps
to be isomorphic (and of finite dimension), and the labels i
and o, as well as the time label, are merely introduced
for better accounting of the involved spaces. Any such
quantum map Mxk can be isomorphically mapped onto a
positive semidefinite Hermitian matrix that we call its
“Choi state,” Mxk ∈ BðHo

k ⊗ Hi
k Þ, by letting it act on

half of an unnormalized maximally entangled state
Φþ ¼ P

xk;yk jxkxkihykykj ∈ BðHi
k ⊗ Hi

k Þ, i.e.,

Mxk ≔ ðMxk ⊗ IÞ½Φþ� ∈ BðHo
k ⊗ Hi

k Þ: ð43Þ

This isomorphism implies, e.g., the following identifications
for the identity map, projective measurement map and the
completely dephasing map respectively:

FIG. 6. Generalized marginalization for combs. Letting a comb
defined on times T act on identity maps at a set of times T nT 0
(i.e., the set of times in T but not in T 0) yields the correct comb
on T 0. Depicted is the situation for T ¼ ft1; t2; t3g
and T 0 ¼ ft1; t3g.
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Ik ⇔ Φþ
k ; ð44Þ

Pxk ⇔ jxkihxkj ⊗ jxkihxkj; ð45Þ

Δk ⇔
X
xk

jxkxkihxkxkj ≔ Dk: ð46Þ

Here and throughout this article, we typically denote maps
with calligraphic uppercase letters (as we have already done
above) and their Choi state with the corresponding noncalli-
graphic variant—with the exception of the identity map
[Eq. (44)] and the completely dephasing map [Eq. (46)]. For
better orientation, we will continue to denote the respective
time at which the maps act by an additional subscript.
Analogously, as a quantum comb CK is a multilinear

map, it can—in a similar way to Eq. (43)—be mapped onto
a positive semidefinite Hermitian matrix CK [35,37,38].
The action of a quantum comb on a sequence of CP maps
fMxK ;…;Mx1g is then equivalently given by [37]

CK½MxK ;…;Mx1 � ¼ tr½ðMT
xK ⊗ � � � ⊗ MT

x1ÞCK�; ð47Þ

where •T denotes the transposition with respect to the
computational basis. Equation (47) constitutes the Born
rule for temporal processes [89,90], where CK plays the
role of a quantum state over time and the Choi states
MxK;…;Mx1 play the role that positive operator-valued
measure (POVM) elements play in the standard Born rule.
Concretely, given an instrument sequence J K;…;J 1,

by combining Eqs. (39) and (47), the joint probability over
the sequence of outcomes xK;…; x1 is given by

PKðxK;…; x1jJ K;…;J 1Þ ¼ tr½ðMT
xK ⊗ � � � ⊗ MT

x1ÞCK�:
ð48Þ

Through this isomorphism, memory effects of the
temporal process correspond directly to structural proper-
ties of its Choi state [35,40–43]; analogously, the classi-
cality of a process is reflected in the properties of CK .
Represented in this way, quantum combs and the

channels that they generalize have particularly nice proper-
ties. Complete positivity and trace preservation for a
quantum channel M correspond, respectively, to M ≥ 0
and satisfaction of tro½M� ¼ 1i. Analogously, the Choi
state of a quantum comb has to satisfy CK ≥ 0 as well as a
hierarchy of trace conditions that fix the causal ordering of
events [37]; i.e., they ensure that later events cannot
influence the statistics of earlier ones.
It is important to note that all K processes can be

represented through the Choi-Jamiołkowski isomorphism
as (unnormalized) quantum states CK. In the converse
direction, any operator satisfying the aforementioned prop-
erties admits an underlying open quantum dynamics
description [37,38,51]. Specifically, this means that for
every proper comb, there is a (possibly fictitious)

environment and a set of system-environment unitaries
such that the action of the comb on any sequence of
instruments can be written as in Eq. (39). Quantum combs
are hence the most general descriptors of open quantum
system processes (when the system of interest is probed at
fixed times). We call any respective underlying unitary
description that includes the environment a “dilation” of the
comb. As is the case for quantum channels, any such
dilation is nonunique. On the other hand, the comb CK
resulting from some underlying evolution is unique, and—
just like the joint probability distribution PK in the classical
case—constitutes the maximal descriptor of the process on
the respective set of times.

C. Structural properties of classical combs

As a first step to a structural understanding of classical
combs, we rephrase Theorem 2 in terms of Choi states:
Theorem 20. (K-classical quantum combs). A comb CK

on times T , with jT j ¼ K, yields a K-classical process iff
its Choi state satisfies

tr
h�

⊗
tj∈T 0

Φþ
j ⊗
tk∈T nT 0

Pxk

�
CK

i

¼ tr
h�

⊗
tj∈T 0

Dj ⊗
tk∈T nT 0

Pxk

�
CK

i
: ð49Þ

for all subsets T 0 ⊆ T and all possible sequences of
outcomes on T nT 0.
Using the relations (44)–(46) as well as Eq. (48), it is

straightforward to see that this theorem is indeed equivalent
to Theorem 2. Importantly, as it is stated in terms of
Choi states, Theorem 20 allows one to derive a direct
connection between general correlations and the classical-
ity of a K process.
To see how the requirement in Eq. (49) translates to

structural constraints on classical combs, first note that
any comb that yields the joint probability distribution
PKðxK;…; x1Þ when probed in the classical basis can be
written as

CK ¼ C̃Cl
K þ χ; ð50Þ

where the term

C̃Cl
K ¼

X
xK;…;x1

PKðxK;…; x1ÞPxK ⊗ � � � ⊗ Px1 ð51Þ

contains the joint probability distribution PK on its diago-
nal and tr½ðPxK ⊗ � � � ⊗ Px1Þχ� ¼ 0 for all xK;…; x1 [86].
Intuitively, C̃Cl

K corresponds to the part of CK that can be
probed by measurements in the classical basis alone, while
χ contains all the information about the underlying process
that such measurements are blind to. If χ ¼ 0, then CK

clearly satisfies the conditions of Eq. (42), as tr½PxjΦ
þ
j � ¼

tr½PxjDj� for all xj [91]. In other words, for χ ¼ 0, the
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corresponding comb is classical, as it is diagonal in the classical
product basis. However, the comb need not be diagonal in the
classical product basis for Eq. (42) to hold; rather, it suffices if χ
is such that it does not allow one to distinguish between the
action of the identity map and the completely dephasing map.
We thus arrive at the following lemma:
Lemma 1. Let CK be the comb of a K process on T ,

with jT j ¼ K, and let Aj ≔ Φþ
j −Dj. CK yields a

K-classical process iff it is of the form

CK ¼ C̃Cl
K þ χ; ð52Þ

where C̃Cl
K is obtained from some joint probability distri-

bution PK via Eq. (51) and χ satisfies

tr
h�

⊗
tj∈T 0

Aj ⊗
tk∈T nT 0

Pxk

�
χ
i
¼ 0 ð53Þ

for all subsets T 0 ⊆ T and T 0 ¼ ∅.
Proof.—It is straightforward to see that a comb of the

form of Eq. (52) satisfies Eq. (49), whenever χ fulfills
Eq. (53), and thus yields K-classical statistics. Conversely,
any comb CK on K times can be written as CK ¼ C̃Cl

K þ χ,
where C̃Cl

K is of the form of Eq. (51) for some PK and
tr½ðPxK ⊗ � � � ⊗ Px1Þχ� ¼ 0 [86]. When measuring (in the
computational basis) at K times, the resulting joint prob-
ability distribution is given by PK. As, by assumption, the
process is classical, summation over outcomes obtained at
any time CK is defined on must yield the same statistics as
letting the comb act on the identity channel at this time. As
this has to hold for any collection of times in T , χ has to
satisfy the additional requirements given by Eq. (53). ▪
Intuitively, Eq. (53) ensures that the action of Δj cannot

be detected at any point in time by means of measurements
in the classical basis. Therefore, Lemma 1 is equivalent to
Theorem 20. However, the former provides an explicit
constraint on the structure of such combs that contain
coherences that can be present in the process without
making the resulting statistics nonclassical.
Indeed, if χ ¼ 0, then the corresponding comb CK is

diagonal in the classical product basis and, as such, cannot
create coherences and destroys any kind of coherences that
could be fed into the process (e.g., by performing coher-
ence-creating operations at some time). On the other hand,
if χ ≠ 0 and the comb contains off-diagonal terms (with
respect to the classical basis), then coherences can be
created over the course of the process. However, if χ
satisfies Eq. (53), then these coherences—or rather, the
invasiveness of the completely dephasing map—cannot
be detected at any later time by measurements in the
classical basis. This understanding of classical non-
Markovian combs mirrors the intuition that we built in
the Markovian setting for the case of NCGD dynamics.
Consequently, Lemma 1 fully characterizes the relation
between coherences and the nonclassicality of a process

(see Fig. 7 for a graphical representation of the different
sets of processes we consider).
Somewhat unsurprisingly, the above lemma implies that

combs leading to classical processes are of measure zero in
the set of all combs: While any comb can be written in the
form of Eq. (52), Eq. (53) places further linear constraints on
the χ term, which must be satisfied by combs leading to
classical processes but not by general combs. The set of
combs leading to classical processes is thus confined to a
lower-dimensional subset, implying that it is of zeromeasure
(with respect to any reasonable measure in the set of all non-
Markovian combs). This fact falls in line with the intuition
built above; for a randomly chosen comb, the action of a
completely dephasing map in a given basis will generally be
detectable. Furthermore, the vanishing volume of classical
combs within the set of all combs mirrors the analogous
property in the spatial setting: There, quantum states that
display no discord are of measure zero in the set of all
bipartite quantum states [92] (the relation between quantum
discord and classicality of processes is discussed in detail
in Sec. VI).
In the non-Markovian case, the characterization of

classical processes comes at a price. In order to decide on
theK classicality of a given process, it is no longer sufficient
to investigate propagators between pairs of times, but rather,
the full part of the comb CK that is relevant for sequential
projective measurements must be known, due to the impor-
tance of multitime effects. However, this behavior is to be
expected, as can already be seen in the case of classical
stochastic processes: The full characterization of a non-
Markovian process only happens on the level of the full joint
probability distribution PK and not by way of transition
probabilities between adjacent times only. Despite the addi-
tional complexity brought in by the presence of memory, as
wewill see in the following section, measures for classicality
that are both experimentally and computationally accessible
can be derived based on the characterization of classical
processes that we have provided.

D. Quantifying nonclassicality

As we have seen above, the set of combs leading to
classical processes is of measure zero in the set of all

FIG. 7. Nested set of processes. Processes that cannot produce
coherence and destroy any coherence that is fed in (i.e., their Choi
states are diagonal in the computational basis) form a strict subset
of processes that appear classical when sequentially probed in the
computational basis. Both of these sets, as well as the set of all
quantum processes, are convex.

WHEN IS A NON-MARKOVIAN QUANTUM PROCESS … PHYS. REV. X 10, 041049 (2020)

041049-15



combs. Importantly though, this fact does not render our
original definition of classicality meaningless, but rather—
in conjunction with Lemma 1—it allows for the derivation
of a meaningful measure of nonclassicality that is exper-
imentally accessible and can be formulated by means of a
linear program (LP).
More specifically, we can exploit the characterization of

classical processes provided by Eqs. (52) and (53) in order
to define a measure of nonclassicality with a clear opera-
tional meaning. Such a measure not only classifies whether
or not a comb is nonclassical but also quantifies the degree
to which it is. This quantification is crucial when assessing
whether any potential nonclassicality arises from inherently
quantum features of the experiment or from experimental
errors. In order to clarify its operational interpretation, we
formulate our measure in the context of a game with two
adversaries, Alice and Bob, and one referee, Rudolph. The
task of Alice is to construct a classical stochastic process
that is a good model for a comb she receives from Rudolph.
The task of Bob is to design a test that distinguishes this
model from the original comb. Let C be the given comb in
its Choi representation (i.e., a positive operator with some
additional causality constraints). The game then proceeds
as follows:
(0) Rudolph begins with a given comb C and sends its

description to both Alice and Bob.
(A) Alice prepares a classical process CCl and sends it to

Rudolph.
(R1) Rudolph sends the description of the classical

process CCl prepared by Alice to Bob.
(B1) Bob prepares a testing sequence fTiðx⃗Þgx⃗ and sends

it to Rudolph.
(R2) Rudolph randomly takes either C or CCl and applies

the testing sequence chosen by Bob. He yields an
outcome x⃗, which he announces.

(B2) Bob announces whether the comb is C or CCl.
(R3) Rudolph announces whether Bob is correct or not

and hence who wins the game.
Let us recall at this point that our definition of classi-

cality relies exclusively on the statistics obtained by
probing the process with projective measurements in fixed,
orthonormal bases. Therefore, to only probe what is
relevant within our framework, we restrict the testing
sequences that Bob is allowed to prepare to only involve
such measurements; i.e., the testing sequence must be of
the form Tiðx⃗Þ ¼⊗tj∈τi Φ

þ
j ⊗tk∈τci Pxk . The figure of merit

that we are interested in is the probability for Bob to win if
both players play optimally. This operational quantity
describes how well said comb can be distinguished from
its best classical approximation, given that one only has
access to the aforementioned restricted testing strategies
that can be used to probe classicality. Making use of the
arguments of Lemma 1 to simplify the structure of the
classical combs, in Appendix E, we derive this quantity;
here, we simply present the main results.

The probability for Bob winning the game is given by

PBðCÞ ¼
1

2
ð1þMðCÞÞ; ð54Þ

with MðCÞ being one-half of the solution of

minimize∶ max
i

X
x⃗

jtr½ðCCl − CÞTiðx⃗Þ�j

subject to∶ CCl ¼
X

yK;…;y1

PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 ;

PKðy⃗Þ joint prob distribution: ð55Þ

This program can be transformed into the following linear
program (and hence can be solved efficiently numerically;
the error can be estimated, and one can compute the optimal
CCl and Tiðx⃗Þ [93]):

minimize∶ a

subject to∶
X
j

bij − a ≤ 0;

X
k

pkαijk − βij − bij ≤ 0;

−
X
k

pkαijk þ βij − bij ≤ 0;

X
k

pk − 1 ¼ 0;

pk ≥ 0; a ≥ 0; bij ≥ 0; ð56Þ

where we have defined αijk ≔ tr½ðPyKðkÞ ⊗ � � � ⊗
Py1ðkÞÞTiðx⃗jÞ�, βij ≔ tr½CTiðx⃗jÞ�, and pk ≔ PKðy⃗ðkÞÞ. For
completeness, we also give the dual program, which, by
definition, turns a minimization into a maximization.
The dual problem is useful to give bounds on the found
solution, to solve the problem, and potentially to find
different interpretations of the quantity in question. The
dual of the program above can be formulated as

maximize∶ Z

subject to∶ Z ≤
X
ij

ðαijk − βijÞð2Yij − XiÞ ∀ k;

X
i

Xi ¼ 1;

Xi; Yij; Xi − Yij ≥ 0;

Z ∈ R:

It follows directly from the interpretation as the solution of
the game defined above that the quantityMðCÞ is faithful—
i.e., its value is zero if the statistics is classical—and that it
measures how difficult it is to simulate the given comb by a
classical stochastic process. As such, it provides us with a
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properly motivated quantifier of the degree of nonclassi-
cality of quantum processes, which describes how well the
obtained statistics can be simulated by a classical process.
The full evaluation of MðCÞ would, in principle, require

testing over every sequence of projective measurements [to
compute the maximization in Eq. (55)] and the comparison
with every classical multitime probability distribution [to
compute the minimization in Eq. (55)]. Practically, it is then
useful to consider bounds to this quantifier of nonclassi-
cality, which can be accessed via a limited number of
measurements. In particular, lower bounds can be obtained
by using a subset of measurement sequences Tiðx⃗Þ (in a
similar way to how one can use entanglement witnesses to
construct bounds on meaningful entanglement measures
[94–97]). Finding such a lower bound to be nonzero is
already sufficient to conclude that the comb is nonclassical.
On the other hand, upper bounds can be attained by
restricting our consideration to some classical combs. As
a relevant example, for any given comb C, one can focus on
a single classical comb C̄Cl, realized by applying a
dephasing map before and after each measurement. This
process yields the statistics resulting from the marginals of
the joint statistics one would obtain by measuring at every
time. Note that, while this specific choice of a classical
comb only provides us with an upper bound on our measure
defined above, it is nonetheless faithful. In the simplest case
where only two times are involved, K ¼ 2, one can easily
see that by replacing CCl with C̄Cl in Eq. (55), we derive the
following upper bound:

MðCÞ ≤
X
x2

����Pðx2Þ −
X
x1

Pðx2; x1Þ
����: ð57Þ

Quantifiers as those on the r.h.s. of Eq. (57) have already
been used to investigate coherence properties in transport
phenomena [98] and, more recently, to control the depar-
ture from any classical random walk via the manipulation
of quantum coherence in a time-multiplexed quantum walk
experiment [52]. Let us note, at this point, that the
experimental data that were used in Ref. [52] to evaluate
the right-hand side of Eq. (57) allow one to calculateMðCÞ,
too. Hence, MðCÞ can be evaluated without further acquis-
ition of experimental data, which demonstrates the appli-
cability of our measure to current experiments. In addition,
our measure—or lower bounds thereof—can be employed
to investigate more complex experiments with K > 2.

VI. DYNAMICAL PROPERTIES OF
K-CLASSICAL PROCESSES

Theorem 2 and Lemma 1 provide a full characterization
of processes that yield classical statistics. Together, they
allow for the derivation of classically testable quantifiers of
nonclassicality. For further clarification, and in order to
connect nonclassical processes to the respective underlying

evolution, we now discuss some concrete cases of under-
lying non-Markovian dynamics that lead to classical
statistics. Moreover, we connect the classicality of temporal
processes to vanishing quantum discord in the joint state of
the system and the environment.

A. Discord and classicality

Recall that in the Markovian case, the classicality of a
process can be decided solely in terms of propagators
between pairs of times that are defined on the system of
interest alone, and it is linked to the ability of those maps to
create and detect coherences. In particular, the set of
dynamics that does not create coherences on the level of
the system is contained in the set ofmaps that lead to classical
statistics [34]. As we have seen above, this fails to hold in the
non-Markovian case, where, even if the state of the system is
diagonal in the computational basis at all times, i.e., no
coherence on the system level is ever generated, the statistics
might not satisfy the Kolmogorov conditions.
As soon as memory effects play a non-negligible role, it

is both the coherences of the system state and the
correlations between the system and its environment that
can lead to nonclassical behavior. It is thus desirable to
derive a more explicit relation between coherence, corre-
lations, and classicality.
To do so, first recall that while the completely dephasing

map leaves the system unchanged if the state of the system
is classical at all times, it does not necessarily leave the
overall system-environment state—which, at every time tj,
contains all relevant memory—invariant. Specifically, in
this case, we have Δj½ρstj � ¼ I j½ρstj � ∀ tj but not neces-
sarily Δj ⊗ Ie

j ½ηsetj � ¼ Ise
j ½ηsetj �∀ tj. While the latter is not

necessary for the satisfaction of the Kolmogorov condi-
tions, it is sufficient:
Lemma 2. Let fpm

ti g be sets of probabilities that sum to
unity, fΠm

j g orthogonal projectors (not necessarily rank 1)
on the system that are diagonal in the computational basis,
and fξmj g states on the environment. If at all times tj ∈ T ,
with jT j ¼ K, the system-environment state is of the form

ηsetj ¼
X
m

pm
tjΠ

m
j ⊗ ξmj ; ð58Þ

then the underlying process is K classical; i.e., it satisfies
the Kolmogorov conditions of Eq. (9).
Note that we assume the computational basis to be the

same at every time, so the additional subscript of Πm
j is

somewhat superfluous and merely added to clearly signify
the respective time at which the state is defined. In
principle, one could define classicality with respect to
projective measurements in different bases at each time tj,
in which case the additional subscript of Πm

j would denote
projectors in different bases, and the above lemma would
still hold. Analogously, all other results of this paper can
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straightforwardly be adapted to these more general probing
schemes, but for simplicity, we understand classicality with
respect to a fixed basis that does not change in time (the
only exception being Sec. VII, where we extend the setting
to allow for arbitrary measurement schemes in order to
examine the nature of genuinely quantum processes.).
Naturally, the environment states ξmj in Eq. (58) can be
diagonal in arbitrary bases, as we are only concerned with
invasiveness with respect to measurements on the system.
Before we prove Lemma 2, it is insightful to discuss

the relation between the concept of classical temporal
processes and the classical spatial system-environment
correlations it introduces. First, recall that the full sys-
tem-environment state at each time encapsulates all memory
effects. Concretely, in contrast to the state of the system
alone, they contain all information that is relevant to predict
the future statistics. In particular, for states of the form given
in Eq. (58), at each time tj, this memory is stored in the
probabilities fpm

tjg and the environment states fξmj g. States
of said form have vanishing quantum discord [47–50,99];
i.e., they do not display any genuinely quantum correlations
between the system and the environment. For a general
zero-discord state, the set fΠm

j g in Eq. (58) could be any set
of mutually orthogonal projectors, and the correlations
between the system and the environment are considered
to be classical since there exists a measurement on the
system with perfectly distinguishable outcomes, which,
overall, leaves the total state undisturbed [49,50] (see also
the proof below).
As we only consider measurements on the system in a

fixed basis in our setting, here, vanishing discord at all
times does not yet force the resulting statistics to be
classical; rather, the discord must vanish in the correct
basis, i.e., the one in which the experimenter’s measure-
ments act. While discord is often considered as a
basis-independent quantity—obtained by a minimization
procedure over all possible measurement scenarios [50]—
here, and throughout the remainder of this article, we
always consider its basis-dependent formulation [47–
50,61,100] and call states of the form in Eq. (58) “discord
zero with respect to the classical basis.” In other words,
whenever we consider a state to be of zero discord, we
always implicitly mean that it can be represented as per
Eq. (58) with the projectors being diagonal in the classical
basis of the measurements. Importantly, this basis depend-
ence mirrors the basis dependence of coherence, which is
also always defined with respect to a fixed classical basis.
Proof.—For states of the form in Eq. (58), the completely

dephasing map Δ on the system has the same effect as the
“do-nothing” identity channel I , i.e.,

Δj ⊗ Ie
j

hX
m

pm
tjΠ

m
j ⊗ ηmj

i

¼ Is
j ⊗ Ie

j

hX
m

pm
tjΠ

m
j ⊗ ηmj

i
: ð59Þ

Consequently, if the system-environment state is of this
form at all times, the resulting statistics satisfies the
Kolmogorov conditions. ▪
It is insightful to reexamine Example 1 in light of Lemma

2. There, we provided an example of a process for which
the state of the system never displayed coherence but
nonetheless led to nonclassical statistics. Consequently, the
system-environment state must have nonzero (basis-
dependent) discord over the course of the dynamics:
Example 10. As we discuss in Appendix B, in Example

1. The system-environment state before the first measure-
ment ðt < t1Þ is given by

ρseðtÞ ¼
1

4

X
i;j∈f−;þg

jiihjj ⊗ ði · jjψ−ðtÞihψ−ðtÞj

þ ið2α − 1Þjψ−ðtÞihψþðtÞj
þ jð2α − 1ÞjψþðtÞihψ−ðtÞj
þjψþðtÞihψþðtÞjÞ; ð60Þ

where both

jψþðtÞi ¼
Z

∞

−∞
dpfðpÞeiptjpi ð61Þ

and

jψ−ðtÞi ¼
Z

∞

−∞
dpfðpÞe−iptjpi ð62Þ

are valid quantum states. This state has zero discord with
respect to the eigenbasis of σ̂x iff

jψþðtÞihψþðtÞj − jψ−ðtÞihψ−ðtÞj ¼ 0 ð63Þ

and either α ¼ 1=2 or

jψþðtÞihψ−ðtÞj − jψ−ðtÞihψþðtÞj ¼ 0: ð64Þ

In the case of the Lorentzian distribution, it follows from

hψ−ðtÞjψþðtÞi ¼ kðtÞ ¼ e−2Γjtj ð65Þ

that Eq. (63) cannot be satisfied for t > 0; i.e., basis-
dependent discord is created during the evolution (and
subsequently destroyed by the measurement at t1). Since
the state of the system itself is not altered by the
measurement, but the probabilities to obtain � at a later
time are (as has been discussed in Ref. [34]), the discord
necessarily must be converted into populations by the
following portion of evolution. Below, we examine this
connection between the creation and detection of basis-
dependent discord and nonclassicality in a rigorous
manner.
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If a state is of zero discord, it displays neither coherences
on the level of the system nor nonclassical correlations
between the system and the environment, which is, to
reiterate, sufficient for the classicality of the resulting
process but not necessary. In this sense, Lemma 2 is a
direct extension of the analogous statement in the
Markovian case; there, the absence of coherence in the
system state at all times is also sufficient but not necessary
for the process to be classical. Put differently, if all of the
individual maps making up a Markovian dynamics are
maximally incoherent operations (MIO) [2,101], i.e., they
map all incoherent states onto incoherent states, then the
resulting dynamics satisfies Kolmogorov conditions.
However, MIO operations are a strict subset of NCGD
maps [34].
While somewhat intuitive, the above lemma sheds light

on the properties that a general non-Markovian dynamics
has to satisfy in order to appear classical. For system-
environment states that are discord zero in the computa-
tional basis (with respect to the system), a measurement on
the system in the computational basis is noninvasive; i.e., it
leaves the full state unchanged (and not just the system
state, as would be the case if the system state is incoherent
at all times). For comprehensiveness, in Appendix F, we
provide a characterization of non-discord-creating proc-
esses in terms of their dynamical building blocks.
In general, the absence of discord at all times is not

necessary for a process to appear classical. However, what
is necessary is that at no time can there be coherences or
nonclassical system-environment correlations that can be
detected by means of measurements in the computational
basis at a later time. This necessity mirrors the requirement
for classical processes in the Markovian case, where the
individual propagators have to be NCGD; i.e., the propa-
gators must be such that they cannot create coherences
whose existence can be picked up at a later time by means
of measurements in the classical basis; yet, it is still
possible that the individual maps create coherences [34].
NCGD maps are the fundamental building blocks that
constitute classical Markovian combs. In what follows,
utilizing the connection of classicality and discord dis-
cussed above, we provide a characterization of the building
blocks that make up classical non-Markovian processes.

B. Non-discord-generating-and-detecting dynamics
and classical processes

In the Markovian case, classicality of a process can be
decided on the level of CPTP maps since, in the absence of
memory, all higher-order probability distributions can be
obtained from the system state ρt1 and the two-time
propagators fΛtj;tj−1g. It suggests itself to employ this
intuition in the non-Markovian case, as every non-
Markovian process corresponds to a Markovian one if
enough additional degrees of freedom are taken into
account.

In detail, as we discussed, every non-Markovian process
can be dilated to a concatenation of a (potentially corre-
lated) system-environment state and unitary total dynamics
[37,38], interspersed by the operations of the experimenter
on the system alone that are performed at times ftjg (see
Fig. 5 for reference). If the experimenter had access to all
the degrees of freedom necessary for the dilation, then the
underlying process would appear Markovian, and the
results of Ref. [34] could be applied on the system-
environment level for the characterization of a classical
process. Here, using the Markovian case as a guideline, we
aim for a similar characterization of classical processes
when only the system degrees of freedom can be accessed.
To compactify notation and simplify later discussions,

we can equivalently consider a general open process as a
concatenation of CPTP maps that act on both the system
and the environment, interspersed by the operations on the
system alone. This way of describing general open system
dynamics is simply a notational compression of the general
case with global unitaries that allows for an easier con-
nection to the Markovian case but does not lead to a
different set of possible combs. In what follows, we denote
these CPTP maps by Γtj;tj−1 to clearly distinguish them from
the memoryless scenario (where the respective maps Λtj;tj−1

act only on the system), so Eq. (11) generalizes to

Pnðxn;…;x1Þ
¼ trfðPxn ⊗ Ie

nÞ ∘ Γtn;tn−1 ∘ � � � ∘ ðPx1 ⊗ Ie
1Þ½ηset1 �g: ð66Þ

Moreover, for the sake of generality and to ease the
comparison with the Markovian case, we allow for the
state before the first measurement to be evolved from some
other state at an initial reference time t0 ≤ t1, i.e.,

ηset1 ¼ Γt1;t0η
se
t0 ; ð67Þ

of course, if the first measurement occurs at the initial time,
then t1 ¼ t0.
On this dilated level, the dynamics is Markovian—there

are no additional external “wires” that can carry memory
forward—and all higher-order joint probability distribu-
tions could be built up when the individual CPTP maps
fΓtj;tj−1g (and the initial system-environment state) are
known. Thus, we can define NDGD dynamics:
Definition 3. (NDGD dynamics) A global system-

environment dynamics with CPTP maps fΓtj;tj−1gj¼1 is
called NDGD if it satisfies

Δjþ1 ∘ Γtjþ1;tj ∘Δj ∘ Γtj;tj−1 ∘Δj−1

¼ Δjþ1 ∘ Γtjþ1;tj ∘ I j ∘ Γtj;tj−1 ∘Δj−1 ð68Þ

for all ftj−1; tj; tjþ1g, where the maps Γtk;tk−1 act on the
system and the environment, while Δk acts on the sys-
tem alone.
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We provide a graphical representation of this definition
in Fig. 8.
Formally, Definition 3 is equivalent to the definition of

NCGD dynamics, with the difference that the involved
intermediary maps between times are now the system-
environment maps, instead of the maps fΛtj;tj−1g acting on
the system alone in the Markovian case.
Analogously to the case of NCGD, a NDGD dynamics

cannot create discord (with respect to the classical basis)
that can be detected at the next time (and, as such, at any
later time) by means of classical measurements. Or,
equivalently, an experimenter who can only perform
measurements in the classical basis cannot distinguish
between a completely dephasing map and an identity
map implemented at any time in T . As such, it provides
the natural extension of NCGD to the non-Markovian case.
We then have the following theorem:
Theorem 3. (NDGD dynamics and classicality)

Consider a general, possibly non-Markovian, process on
T , with jT j ¼ K, obtained from a system-environment
dynamics as in Eqs. (66) and (67); then, the process is K
classical if the initial system-environment state ηset0 and the
set fΓtj;tj−1g of maps that corresponds to it are zero discord
and NDGD, respectively.
The proof of this theorem is provided in Appendix G. It

relies on the fact that measurements in the classical basis
commute with the completely dephasing map and proceeds
along the same lines as the analogous proof for NCGD
dynamics in the Markovian setting provided in Ref. [34].
Importantly, though, it is not a necessity for classical
statistics that the corresponding maps are NDGD, as we
discuss below.
In order to further elucidate the relation of discord and

classicality for general quantum stochastic processes, it is
insightful to discuss the proximity of Theorem 3 to the
corresponding results in Ref. [34] for the Markovian case.
Theorem 3 establishes the importance of the role of
quantum discord for the classicality of non-Markovian
processes. In the memoryless case, it is coherence—or the
impossibility of detection thereof—that makes a process
classical. Here, this role is played by discord, with the only
difference being that instead of describing the process in
terms of maps that are solely defined on the system of

interest, we are forced to dilate the process to the system-
environment space, where it is rendered Markovian.
Consequently, the classicality of a process cannot be
decided based on the master equation or dynamical maps
that describe the evolution of the system alone (as has
already been pointed out in Ref. [34]). However, given,
e.g., a Hamiltonian that generates the corresponding
system-environment dynamics, whether or not the resulting
process can be simulated classically can be decided by
checking the validity of Eq. (68).
It would be desirable for NDGD dynamics to be a

sufficient and necessary criterion for the classicality of non-
Markovian processes; however, this is not the case. We
provide an example of dynamics that is not NDGD, but
nevertheless leads to classical dynamics, in Appendix H.
NDGD, as defined in Eq. (68), is a statement about the
entire system-environment dynamics and holds for any
possible initial state on the environment. However, by
means of projective measurements on the system alone,
one only has access to the system part, and the system-
environment dynamics cannot be fully probed. Conse-
quently, the criterion of Eq. (68) will, in general, be too
strong for a given experimental scenario. Crucially,
though, Theorem 3 allows us to understand the role of
the discord generated by the system-environment interac-
tion and subsequently detected via projective measure-
ments on the system in establishing nonclassical statistics.
Nonetheless, even though it is not necessary for the

underlying dynamics to be NDGD in order for a non-
Markovian process to display classical statistics, for any K-
classical process, there always exists a dilation that is
NDGD. In other words, there exists a set fΓ̃tj;tj−1g of
system-environment CPTP maps that are NDGD and a
zero-discord system-environment state η̃set0 that yields the
correct classical family of joint probability distributions
when probed in the classical basis. Specifically, we have the
following theorem:
Theorem 4. Let fPnðxn;…; x1Þgn≤K define a process on

T , with jT j ¼ K, coming from an underlying evolution,
fixed by the system-environmentmaps fΓtj;tj−1g and the state
ηset0 , according to Eqs. (66) and (67). The resulting statistics
fPnðxn;…; x1Þgn≤K is K classical iff there exists a NDGD
evolution given by system-environment maps fΓ̃tj;tj−1g
defined on times in T and a zero-discord state η̃set0 that yield
Pnðxn;…; x1Þ when probed in the classical basis.
Beforewe prove this statement, it is important to contrast it

with Theorem 1, the analogous result for Markovian proc-
esses. There, NCGD propagators of the system dynamics
guarantee that the process associated with sequential pro-
jective measurements is classical, and classical Markovian
processes can be reproduced by a set of NCGD maps
(which do not necessarily coincidewith the actual dynamical
propagators). Analogously, here, the NDGD property of the
actual system-environment evolution ensures the classicality

FIG. 8. NDGD system-environment dynamics. From the per-
spective of a classical observer performing projective measure-
ments in a fixed basis, the identity map at any time tj cannot be
distinguished from the completely dephasing map. Any discord
(with respect to the classical basis) that is present in the system-
environment state, and/or created by the system-environment
CPTP maps, cannot be detected by such a classical observer.
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of the process; while the converse holds for particular
dilations, there can be non-NDGD dilations that nonetheless
yield classical statistics.
In both cases, the projective measurements in a fixed basis

only provide a limited amount of information about the
overall evolution underlying the probed statistics. While in
the Markovian case the statistics can be traced back to
dynamical maps acting on the open system alone, in
the more general non-Markovian case, it is the whole
system-environment evolution that enters into play. As a
consequence, only the former case allows one to establish a
one-to-one correspondence between classicality and the
properties of the actual evolution by enforcing a proper
condition on the dynamics, as discussed at the end of
Sec. IVA.
Proof.—As we have already seen in the discussion of

Theorem 3, the joint probability distributions obtained
from a NDGD dynamics are always classical. We thus
only need to prove the opposite direction. Let the
underlying system-environment dynamics of the pro-
cess between times be given by the maps fΓtj;tj−1g.
As the process is classical, the set of maps fΓ̃tj;tj−1 ¼
Δj ∘ Γtj;tj−1 ∘Δj−1g together with a state η̃set1 ¼ Δ1½ηset1 �,
where, again, Δk only acts on the system degrees of
freedom, yields the same joint probability distributions
when probed in the classical basis (see Fig. 9 for reference).
The process given by this set fΓ̃tj;tj−1g is NDGD by
construction, and η̃set1 has vanishing discord, which means
that for every K-classical process, there is a NDGD dilation
that reproduces it correctly, where we identify the initial
time as the time of the first measurement, t0 ¼ t1. ▪
Theorems 3 and 4 complete our results for the non-

Markovian setting and provide an intuitive connection
between nonclassical spatial correlations (i.e., discord)
and classical processes.

VII. GENUINELY QUANTUM PROCESSES

As we have alluded to throughout this article, the
classicality of a process depends on the measurement
scheme that is employed to probe it; a process that appears
classical in one basis—and is thus NDGD with respect
to said basis—might display nonclassical correlations
when probed differently, thus raising the question of
whether nonclassicality is merely a matter of perspective.
In principle, for any process, there could exist a probing
scheme that yields classical statistics. More concretely, for
an experimenter that can perform arbitrary measurements,
it might always be possible to “hide” the quantum nature of
a process by choosing their respective measurements at the
times ftjg such that the resulting statistics are classical.
Naturally, such schemes with (potentially nonprojective)

measurements go beyond the discussion of classicality that
we have conducted so far. As wewill not limit the employed
instruments of such schemes to be the same at every time,we

call them “unrestricted” in what follows. However, we still
assume that the instrument at each time is fixed in advance
and is independent of previousmeasurements—if the choice
of instruments depends on previous outcomes, then the
employed probing scheme would be temporally correlated
and marginalization at a given time would not be well
defined.
In this case, our previous results allow us to show that

there exist genuinely quantum processes, i.e., processes
that display nonclassical statistics with respect to every
unrestricted measurement scheme (in the sense described
above) that reveals something about the probed process.
To reiterate, up to this point, our discussion of

Markovianity has focused on situations where an experi-
menter measures in the computational basis only, thus
employing the same instrument J ¼ fPxjg at each time,
where all of the (projective) CP maps Pxj comprising
the instrument add up to the completely dephasing map Δj.
More generally, an experimenter could use instruments
J 1 ¼ fMx1g;J 2 ¼ fMx2g;…, each adding up to the
CPTPmapsM1;M2;…, respectively, to sequentially probe
the systemof interest. Thus, for a process defined on timesT ,
they could collect the joint probability for all subsets T 0 ⊆ T
and check if Kolmogorov consistency holds. For example, in
the simplest case of two times, with T ¼ ft1; t2g and a given
comb C2 on T , an experimenter would consider the process
classical, if Pðx2jJ 2Þ ¼

P
x1
Pðx2; x1jJ 2;J 1Þ holds for all

x2, i.e., if

C2½Mx2 ; I1� ¼ C2½Mx2 ;M1� ∀ Mx2 ∈ J 2: ð69Þ

Note that, because of causality, the second Kolmogorov
condition, i.e., C2½I2;Mx1 � ¼ C2½M2;Mx1 � for allMx1 ∈
J 1, holds automatically, independent of whether the process
is classical or not.
In principle, there could always exist a set of instruments

fJ K;…;J 1g for a given process CK on T , such that the
resulting statistics appear classical. Naturally, for this
question to make sense, the respective instruments actually
have to extract information from the process at hand. In
principle, an instrument could consist of a random number
generator and a set of CPTP maps that the experimenter
implements, depending on the respective output of the
random number generator. Considering these outputs as
outcomes of the instruments, the experimenter could then
collect statistics that are independent of the process at hand

FIG. 9. Transformation to NDGD dilation. Any dilation of an
open dynamics can be mapped onto a NDGD one by inserting
completely dephasing maps on the level of the system. If the
process is classical, then the transformed dilation yields the same
statistics as the original one when probed in the classical basis.
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(they only depend on the statistics of the random number
generators) and satisfy Kolmogorov consistency conditions
(if the respective random number generators at different
times are independent of each other). However, this
apparent classicality would not be a statement about the
properties of the underlying process, and we thus exclude
such pathological instruments. We can do so by demanding
that at any time tj, none of the elements Mxj of the
instrument J j is proportional to a CPTP map. Under this
reasonable assumption,wenow show that there are processes
that are genuinely quantum; i.e., they violate Kolmogorov
conditions for arbitrary choices of instruments.
To this end, in the first step, we argue that genuinely

quantum processes can only exist in the non-Markovian
setting, while in the memoryless case, there always exists a
measurement scheme that yields classical statistics. This
conclusion follows from the fact that all features of a
Markovian process are governed by the dynamical maps
acting on the space of the system alone. Suppose, then, that
a Markovian process is deemed to be nonclassical with
respect to some basis of measurements, which means that
the dynamical maps constituting the process generate and
detect coherence with respect to said basis. However, at
each point in time throughout the process, the system to be
measured is diagonal in some basis (namely, its eigenba-
sis); thus, in principle, if the experimenter were able to
choose an unrestricted measurement scheme that is always
diagonal in the same basis as the system, no coherence with
respect to this basis will ever be generated and detected,
implying that the statistics measured will appear classical.
Consequently, in our proposed framework, genuinely
quantum processes can only exist in the presence of
(quantum) memory.
A similar argument as in the Markovian case holds for

the special case of non-Markovian dynamics where the
system-environment state at each time is of zero discord in
a basis-independent sense, i.e., when there exists a basis
with respect to which the joint state at each time has zero
discord. Recall that if the system-environment dynamics is
NDGD (with respect to a fixed basis), then the statistics
observed are classical. Now, if at each time, the system-
environment state has zero discord, then an experimenter
can (in principle) choose the measurement basis at each
time to be the one with respect to which the performed
measurement is noninvasive. For such a sequence of
measurements, the experimenter would not be able to
distinguish between having implemented the identity
map or the dephasing map (with respect to the chosen
basis) at any time since the measurement is noninvasive on
the joint system-environment state (due to the lack of
discord). Thus, in such a scenario, there always exists some
choice of bases in which such a process looks classical. It
follows then that no non-Markovian process with zero
basis-independent discord between system and environ-
ment at every time is genuinely quantum.

However, the above logic fails in the general setting,
which we now show by explicit example. To provide
intuition, we first outline the logical implication that is a
consequence of the classicality demand for a chosen (two-
step) process (depicted in Fig. 10 and described below).
While for two times it is always possible to find a
measurement scheme such that the statistics appear classical
(even in the non-Markovian case), when a non-Markovian
process extends over multiple times, finding such a meas-
urement scheme is not possible in general. We show this
statement in detail in Appendix I by considering a variant of
the process shown in Fig. 10 that is extended over four times,
proving the existence of genuinely quantum processes.
The explicit example process we consider begins with an

initial system-environment Bell state φþ
se ¼ 1

2

P
ij jiiihjjj.

The experimenter can choose to measure the system (in
whichever basis, or, more generally, employing any non-
pathological instrument they like) at time t1. Following
this interrogation, the dynamics consists of a system-
environment CPTPmapΓz∶BðHsi ⊗HeiÞ→BðHso ⊗HeoÞ
whose action is to measure its joint inputs in the Bell
basis and output the state φþ if the measurement out-
come indeed corresponds to φþ, or else output a system-
environment state whose system part is a pure state in
the z basis. The action of Γz on a system-environment state
ηse is thus given by

Γz½ηse� ¼ tr½ηseφþ
se�φþ

se

þ tr½ð1se − φþ
seÞηse�j0ih0js ⊗ τe; ð70Þ

where τe is some quantum state on the environment. It is
straightforward to check that such a map is indeed CPTP.
Following this part of the dynamics, the experimenter has
access to measure the system at time t2.

FIG. 10. First two times of a genuinely quantum process. The
system and environment begin in a Bell state φþ

se. Between times
t1 and t2, the map Γz is implemented, which biases the system in
the z basis if any CPTP map M1 ≠ I1 is performed [see
Eq. (70)]. The label ηse2 refers to the joint system-environment
state immediately prior to t2 [see Eqs. (71) and (72)]. Classicality
implies that the POVMΠ2 must be chosen such that it is unable to
detect biases in the z basis. Although this is always possible when
only two times are considered, in general, classicality requires
satisfaction of a growing number of constraints on the choices of
later measurements, which can eventually lead to contradiction,
implying the existence of genuinely quantum processes (see
Appendix I).
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For a genuinely quantum process, we demand that the
statistics are nonclassical with respect to any possible
measurement choices at times t1 and t2; if this is not the
case, then there exists a POVM at t2 that cannot distinguish
between the experimenter having implemented the identity
map I1 or an arbitrary CPTP map M1 at time t1, such that
the statistics look classical with respect to said measure-
ment scheme. By tracking the joint system-environment
state for either choice of operation at t1, we first show
that for our example, such a POVM always exists, which
implies that this is not a genuinely quantum process on two
times. However, the POVM that works is constrained by the
demand of classicality, as we now detail. Extending the
considered process to more times then imposes a number of
constraints on the employed measurement devices that
must be concurrently satisfied, such that, finally, there is no
unrestricted measurement scheme that can yield classical
statistics.
Suppose that the experimenter implements I1 at time t1;

then, the system-environment state at t2 is given by

ηse2 ðI1Þ ≔ Γz½ðI s
1 ⊗ IeÞ½φþ

se�� ¼ φþ
se; ð71Þ

where the notation ηse2 ðI1Þ refers to the joint state immedi-
ately prior to t2 given that the experimenter implemented
the identity map at t1. On the other hand, if the experi-
menter implements, overall, some CPTP map M1 ≠ I1

(corresponding to their instrument J 1 at t1), then the initial
Bell pair will be perturbed (as it is only locally invariant
under the identity map), and therefore, the system-envi-
ronment state prior to t2 is

ηse2 ðM1Þ ≔ Γz½ðMs
1 ⊗ IeÞ½φþ

se��
¼ pφþ

se þ ð1 − pÞj0ih0js ⊗ τe; ð72Þ

where p ≔ tr½φþ
seðM1 ⊗ IeÞ½φþ

se�� < 1. The statistics
observed are gathered by making measurements on only
the system, so we are now interested in the reduced system
state at t2 in either case: From Eq. (71), we have the
maximally mixed state ηs2ðI1Þ ¼ 1=2, whereas from
Eq. (72), we yield a state that is biased in the z basis,
ηs2ðM1Þ ¼ p 1=2þ ð1 − pÞj0ih0j. As previously men-
tioned, classicality dictates that the POVM implemented
at t2 must not be able to distinguish between these two states,
which leads to the fact that the chosen measurement must be
blind to any bias in the z basis. Mathematically, we demand

P2ðx2jI1Þ ¼! P2ðx2jM1Þ; ð73Þ

which can only be satisfied if the experimenter chooses a

POVM Π2 ¼ fΠðx2Þ
2 g such that

tr½Πðx2Þ
2 ηs2ðI1Þ� ¼ tr½Πðx2Þ

2 ηs2ðM1Þ� ∀ x2: ð74Þ

A POVM that satisfies the above equation can be readily

constructed: The elements fΠðaÞ
2 ; 1 − ΠðaÞ

2 g can always be

described byΠðaÞ
2 ¼ rð0Þ2 1þ r⃗2 · σ⃗, where r⃗2¼ðrðxÞ2 ;rðyÞ2 ;rðzÞ2 Þ

and σ⃗ ¼ ðσðxÞ; σðyÞ; σðzÞÞ is the vector of Pauli matrices
(note that we have changed notation and use the letter a to
label the measurement outcome in order to avoid potential
confusion with the x-basis direction). Demanding classi-

cality, i.e., Eq. (73), then implies that rðzÞ2 ¼ 0. In other
words, any POVM that is not able to detect biases in the z
basis satisfies Eq. (74), and thus, the statistics measured by
such a POVM will appear classical. Importantly, here, and
in what follows, we can restrict our analysis to the case of
POVMs or instruments with only two elements, as any
other POVM or instrument (except for the trivial case of
single-element ones) can always be coarse grained to a two-
element one. If such a coarse-grained instrument can detect
nonclassicality of statistics, then so too can the original one
since it necessarily reveals more information about the
process upon implementation.
However, although it might be possible to find a basis (or

POVM) such that the two-time statistics for a non-
Markovian process look classical, this is not the case in
general. Intuitively, demanding that the experimenter can-
not distinguish between implementing the identity map and
an arbitrary CPTP map at different times leads to a number
of constraints (e.g., above, we have the constraint rðzÞ2 ¼ 0)
on the later measurement bases. In Appendix I, we consider
a process defined across four times that is a logical
extension of the two-time process considered here: In each
of the first three times, depending on whether or not the
system has previously been biased in either the x, y, or z
basis, the process either performs an identity map (in the
affirmative case) or acts to bias the system in one of the
bases. In the end, for an arbitrary CPTP map being
implemented at each one of the first three times (with
the identity map being enacted at the others), the system
state at the fourth time is biased in one of the three basis
directions, and it is completely unbiased (i.e., maximally
mixed) only if three consecutive identity maps are imple-
mented. The only possible POVM at the final time that
yields classical statistics must not be able to detect biases in
any of the basis vector directions; the only POVM that
achieves this is the one with elements proportional to the
identity matrix, which corresponds to one of the measure-
ments that we excluded because it reveals nothing about the
process. Thus, the process is nonclassical with respect to
every possible nonpathological measurement scheme and is
therefore genuinely quantum.
A relevant side note seems in order here. Suppose that

someone claims that a given process is genuinely quantum.
To falsify such a statement, it is enough to probe the process
by whatever (nontrivial) devices one chooses; if the
statistics one gets is classical, the statement is wrong.
The processes that are not genuinely quantum can therefore
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be device-independently verified [102] [103–106]. In turn,
this result makes the genuinely quantum processes quite
peculiar, as it is impossible to hide their quantumness, and
it might be surprising that the set of these processes is
nonempty; in fact, we even conjecture that almost all many-
time processes are genuinely quantum.

VIII. CONCLUSIONS AND OUTLOOK

A. Conclusions

In this paper, we have provided an operationally moti-
vated definition of general classical stochastic processes
and discussed its structural consequences and relation to
quantum coherence in a system’s evolution as well as to the
generation and activation of nonclassical correlations
between the system and the surrounding environment.
While we phrased our results predominantly in the lan-
guage of quantum mechanics, there is—a priori—nothing
particularly quantum mechanical about the notion of non-
classicality we introduced. Rather, any process for which
the potential invasiveness of performed measurements can
be detected by means of said measurements is nonclassical,
independent of the underlying theory; as such an invasive-
ness is experimentally detectable, this is a fully operational
notion. The question of whether or not a process is classical
can thus be answered on experimentally accessible grounds
and is a priori independent of concepts that the experi-
menter might not be able to check for, like, e.g., coherences
in the system of interest.
Nonetheless, our definition allows for the derivation of a

direct connection between the classicality of a process and
coherences or nonclassical correlations that might be
present. While this connection can be formulated in terms
of a necessary and sufficient condition for memoryless
processes, there are additional subtleties to be considered
in the non-Markovian case. In general, it is not sufficient for
the state of the system to be diagonal in the classical basis at
all times for the resulting multitime statistics to be classical.
Rather, it is the interplay of coherences, nonclassical system-
environment correlations, and the underlying dynamics that
is of importance, as we have highlighted through a number
of examples presented throughout this paper. Using the
comb framework—which can encapsulate this complex
interplay—for the description of general quantum processes
with memory, we have provided a characterization of
quantum processes that yield classical statistics and derived
the structural properties of such processes. In principle,
analogous structural properties could be derived for proc-
esses that display classical statistics when probed by means
of different measurements, e.g., nonprojective and/or non-
orthogonal ones. However, while still enabling the derivation
of structural properties, the clear connection between clas-
sicality and quantum discord would be lost as soon as sharp
measurements in the computational basis are not the probing
mechanism of choice anymore. In this paper, orthogonal

projections were chosen as the kind of measurements that
come closest to the ideal noninvasiveness displayed by
classical measurements. More generally, our results could,
in principle, also be extended to postquantum theories. As
the definition of classicality we provided is fully operational,
the structure of classical processes in such theories could be
derived in the same vein as we presented in this paper, with
coherence and discord being replaced by the analogous
properties of the respective theory.
Unsurprisingly, the set of classical processes turns out to

be of measure zero within the set of all quantum processes.
The full characterization we have provided equips the set of
classical processes with an experimentally accessible mea-
sure of nonclassicality that can be formulated as a linear
program, thereby providing an operationally clear-cut
quantification of the degree of nonclassicality of a given
quantum process and a general theoretical framework to
define practically useful measures of nonclassicality. As an
example, we showed how, within our approach, one can
recover and motivate a quantifier of nonclassicality, which
is exploited in different contexts [98] and has been used to
analyze the properly quantum features of a given exper-
imental setup [52].
Furthermore, we investigated the relation between the

nonclassicality of the statistics observed throughout a process
and the quantumness of the prevalent spatial system-envi-
ronment correlations in the underlying dynamics. While the
absence of coherence in the state of the system of interest is
no longer sufficient in the non-Markovian case to guarantee
classicality, the absence of (basis-dependent) discord is. This
latter fact is somewhat intuitive, as the absence of discord at
all times means that there are neither nonclassical system-
environment correlations nor coherences in the system that
could influence the multitime statistics deduced. Specifically,
we have shown that the non-Markovian case, to some extent,
mirrors the memoryless one: If the underlying dynamics is
NDGD, i.e., any discord that is created at some point in time
cannot be detected at a later time, then the process appears
classical. While the converse of this statement does not hold,
we have further shown that any classical process admits a
NDGD dilation.
Finally, we demonstrated that, even if we extend our

notion of classicality to the case of unrestricted measure-
ment schemes, there exist processes that display non-
classical statistics independent of how they are probed.
This phenomenon can happen only for non-Markovian
processes, thus showing that genuine nonclassicality can be
seen as a further degree of complexity introduced by the
presence of memory effects in the multitime statistics of
quantum systems.
As our definition of classicality is tantamount to the

assumptions of realism and noninvasiveness that underlie
the derivation of Leggett-Garg inequalities, our results
furnish experiments that test for the aforementioned proper-
ties with a clear interpretation: If the observed statistics
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satisfy a Leggett-Garg inequality, then the underlying
process can be assumed to be NDGD. It does not have
to be composed of fully classical resources though. On the
other hand, violation of a Leggett-Garg inequality implies
that quantum discord must have been created (and later
detected) over the course of the experiment.

B. Outlook

While we have provided a comprehensive picture of the
interplay between the nonclassical resources that are
present in the underlying process and the nonclassicality
of the resulting non-Markovian multitime statistics, the
mechanisms that lead to the emergence of classical behav-
ior on macroscopic scales remain unclear. Naïvely, the fact
that classical processes only constitute a vanishing fraction
of the set of all processes renders it puzzling that classical
processes can be observed at all. This apparent “puzzle” is
reminiscent of the superposition principle, which restricts
the set of states that are diagonal in a fixed basis to be of
measure zero in the set of all pure states; yet superpositions
are generally not observed in the macroscopic domain,
where one fixed basis seems to be singled out [107]. While
for the latter case, decoherence has been identified as the
mechanism that fixes a preferred basis—and as such, leads
to the emergence of classicality in the spatial setting
[111,112]—an analogous investigation for temporal proc-
esses remains outstanding. Our results pave the way
towards the analysis of the onset of classicality in general
quantum processes when the system and/or environment
size increases.
Beyond this foundational perspective, the characterization

of the set of classical processes, as well as the measure of
nonclassicality we have provided, naturally lends itself to the
development of a resource theory of nonclassicality in
which processes defined by Eqs. (52) and (53) are free.
Additionally, our approach yields a definite theoretical
background, which allows one to deal with different quanti-
fiers of the degree of nonclassicality, related to practical
situations where different sets of operations are available to
investigate the quantumness of physical processes.
On the structural side, we have fully characterized the set

of classical processes and have shown that there exist
processes that are genuinely quantum. However, the
explicit partitioning of the set of quantum processes into
classical, nonclassical, and genuinely quantum processes
remains opaque and requires further investigation. It
suggests itself to assume that the set of genuinely quantum
processes is of full measure: As the set of discordant states
is of full measure in the set of all states [92], for a randomly
chosen process, at any time tj, there generally will not exist
a measurement that leaves the respective system-environ-
ment state invariant, and the subsequent dynamics would
have to be highly fine-tuned in order to disguise this
invasiveness. More specifically, based on the arguments
employed in the explicit construction example of a

genuinely quantum process we provided, where four
measurement times were necessary to prove the genuine
quantumness, we conjecture that almost all processes
associated with a d-dimensional system are genuinely
quantum, if the system is probed d2 or more times. A
rigorous proof of this statement is the subject of future
research. Moreover, since genuinely nonclassical processes
lead to nonclassical statistics in a device-independent
manner, their quantumness cannot be disguised. It then
seems natural to explore if these processes can be used for
technological applications.
Finally, the full characterization of general, non-

Markovian quantum processes possessing an equivalent
classical descriptionwill likely be useful to better understand
the different facets of memory effects in the classical and
quantum realms. Although the operational framework of
quantum combs does not a priori concern any inherent
timescales, as the choice of the discrete set of times is
arbitrary, from a physical perspective, one expects a con-
nection between some relevant timescales of an underlying
system-environmentHamiltonian generating a dynamics and
the properties of the corresponding comb that arises upon
specification of a set of times. Analogously, the timescales—
and number of measurements—over which the nonclassi-
cality of a process can be deduced experimentally will be
related to the pertinent timescales of the dynamics. However,
determining the properties of an underlying system-envi-
ronment Hamiltonian that leads to classicality and how the
different timescales relate is an interesting, yet multilayered
and far from trivial, open problem.
The complexity arises due to the various temporal effects

that play a significant role in determining the classicality
(or absence thereof) of a given process and the relevant
timescales over which it can be detected. For instance, we
have already seen that the presence of multitime memory
effects is one such property; however, the connection
between memory and classicality is a subtle one. One of
the key differences between classical and quantum memory
effects arises from the generically invasive nature of
measurements in quantum mechanics, which leads to an
inherent dependence of memory effects on the probing
instruments employed [43]. The very notion of relevant
memory timescales associated with the evolution of a
quantum system therefore crucially depends on whether
one wants to infer such timescales via sequential measure-
ments over the course of the evolution or only at some final
(possibly varying) time, as is done, e.g., in master equation
approaches. In the latter case, the memory of the final
statistics on the previous states of the system is dictated by
the interplay of different timescales, related to the system of
interest, its environment, and their mutual interaction [29].
Such a memory ultimately determines the complexity of the
description of the system evolution, as provided, e.g., by
memory kernels [113,114], Green functions [115], or path
integrals [116].
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In the case where the temporal correlations of the
environment rapidly decay, the process can often be approxi-
mated as a Markovian one. When the process is indeed
Markovian, i.e., described by a sequence of individual
channels between times, as we have shown, it is the
NCGD property of the evolution that is necessary and
sufficient for classicality; however, this is not easy to relate
to the relevant timescales. A property that would be sufficient
for classicality, and more straightforwardly related to the
inherent timescales of a Hamiltonian generating the evolu-
tion, is the forgetfulness of any initial system state.
For instance, suppose one has a Markovian process

generated by some Hamiltonian, which has a natural
timescale of system forgetfulness, e.g., one that leads to
an exponential decay of correlations between any prepa-
rations and final measurements. Then, if one probes such a
process at sufficiently spaced time instants, one should
expect to see classicality: The Markovianity property
means that all relevant information can be determined
solely on the system level, and forgetfulness ensures that
any temporal correlations—in particular, the ability to
detect a distinction between a complete dephasing and
an identity map—between adjacent times vanish. Strictly
speaking, in the standard setting of testing for classicality,
where a choice of measurement basis is fixed, one only
requires forgetfulness with respect to projective measure-
ments in said basis, rather than complete forgetfulness, for
this argument to hold; however, besides being too strict a
requirement, connecting such an instrument-specific for-
getfulness to the relevant timescales is—like in the NCGD
case—a difficult task.
In the presence of memory, the connection between

classicality and the relevant timescales of the evolution is
more involved yet. Here, we have a subtle interplay
between the question concerning the forgetfulness of the
system of any initial nonclassicality and how much any
nonclassical effects can be transmitted through the envi-
ronment via the memory mechanism. The fact that for-
getfulness of the system alone here is insufficient to imply
classicality is related to the crucial point that all multitime
effects must be captured in order to properly describe
processes with memory. Thus, in the non-Markovian
setting, the relevant timescales must typically be deter-
mined via sequential measurements over the course of the
evolution.
However, different interrogation procedures will lead to

the exhibition of different multitime memory effects. For
instance, when the system is left unperturbed, the memory
can be solely attributed to properties of the underlying
Hamiltonian (e.g., those leading to the decay of environ-
mental correlations), whereas when the system is measured,
the effect of conditioning the environment state also plays a
role. Similarly to the Markovian setting discussed above, the
question of classicality of a non-Markovian process does not
necessarily concern all such temporal correlations in the

process (both those transmitted on the level of the system
itself and the genuine memory effects due to the environ-
ment) but rather only those that can distinguish between the
completely dephasing instrument and the identity map
applied to the system. These memory effects are, in turn,
a special case of instrument-specific quantumMarkov order,
which has recently been introduced using the quantum comb
formalism [40,41]. Connecting such memory effects of the
process, and their subsequent impact on the classicality of
observed statistics, with the timescales associated with the
corresponding Hamiltonian that generates a given process
poses a promising avenue for future research.
While we anticipate that the above open questions will

generate much theoretical interest, we also expect our
results to find immediate application in a broad range of
situations where it is relevant to assess whether experi-
mental outcomes are not amenable to a classical description
in order to certify some type of quantum advantage or
benchmark some genuinely quantum behavior. The former
include metrological schemes operating beyond the stan-
dard quantum limit [117–120], while the latter can refer to
the simulation of many-body quantum systems [121–126].
Also, the role that the emergence of classicality plays in
system thermalization and homogenization can be inves-
tigated in a systematic and quantitatively tractable manner
within our proposed approach.
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APPENDIX A: CONNECTION TO
PREVIOUS RESULTS

In this section, we show that the result derived in the
main text for the Markovian case (that is, Theorem 1)
implies the preceding one in Ref. [34]. For the ease of the
reader, we restate both results here (slightly changing the
terminology of the latter to the one used here).
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Theorem 10. Let fPnðxn;…; x1Þgn≤K be a K-
Markovian process (Definition 2). Then, the process is
also K classical (Definition 1) if and only if there exists a
system state ρt0 (at a time t0 ≤ t1), which is diagonal in the
computational basis fjxigx∈X , and a set of propagators
fΛtj;tj−1gj¼1;…;K

, which are NCGD with respect to

fjxigx∈X , such that ρt0 and fΛtj;tj−1gj¼1;…;K
yield

fPnðxn;…; x1Þgn≤K via Eq. (16).
Theorem 5. (Theorem 2 of Ref. [34]) Let

fPnðxn;…; x1Þgn≤K be the process fixed by the QRF,
Eq. (16), with respect to a set of propagators forming a
CPTP semigroup, i.e., Λtl;tj ¼ eLðtl−tjÞ for any tl ≥ tj, with
L a Lindblad generator [65,66], and an initial state ρt0 .
Then, the process fPnðxn;…; x1Þgn≤K is K classical
(Definition 1) for any ρt0 diagonal in the computational
basis if and only if the family of propagators is NCGD in
the sense that

Δ ∘Λs3;s2 ∘Δ ∘Λs2;s1 ∘Δ
¼ Δ ∘Λs3;s1 ∘Δ ∀ s3 ≥ s2 ≥ s1 ≥ t0: ðA1Þ

While the two theorems are clearly related, there are two
relevant differences. The new result is more operational in
the sense that the statements only depend on the statistics
one obtains by making the measurements in the classical
basis at the specified times, whereas the statement in
Ref. [34] relies on two underlying assumptions on the
Markovianity of the quantum dynamics. The first of these
assumptions is that the system multitime statistics satisfy
the QRF [Eq. (16)], and the second is that the dynamics
forms a semigroup. As we see below, the second of these
assumptions can be relaxed, but the first is crucial if one
wants to have the benefit of the statement in Ref. [34],
which not only relates possible models for the statistics
[128] but also makes a statement about how the possibility
of modeling a process classically implies that the propa-
gators referred to the actual underlying evolution have to
satisfy NGCD. To be able to make this connection between
the statistics and the underlying quantum evolution, we
need to restrict, by assumption, the types of evolutions we
are considering. For the Markov case considered here, the
natural choice is the QRF [Eq. (16)], as we discussed in the
main text that they are closely related.
To prove the connection between the two theorems, it is

useful to consider the following corollary to Theorem 1 of
the main text:
Corollary 1. Let fPnðxn;…; x1Þgn≤K be the process

fixed by the QRF, Eq. (16), with respect to a set of divisible
propagators and an initial state ρt0 .
Let the classical dynamics of this process be invertible, that

is,P1ðxjÞ ≠ 0 for an initial diagonal state that is full rank, for
any tj < ∞. Then, the process fPnðxn;…; x1Þgn≤K is K
classical (Definition 1) for any ρt0 diagonal in the

computational basis if and only if the family of propagators
is NCGD, see Eq. (A1).
Proof.—Let fPnðxn;…; x1Þgn≤K be a process satisfying

the QRF, Eq. (16), with respect to a set of divisible
propagators satisfying Eq. (A1). Since the latter implies
Eq. (21) and the QRF implies that the process is K
Markovian, for any initial diagonal state in the computa-
tional basis, K classicality follows from Theorem 1.
Conversely, let the assumptions hold and the process be

K classical, in particular, for an initial diagonal full-rank
state. NCGD follows from the equation

trfPx3 ∘Λs3;s2 ∘Δ ∘Λs2;s1 ∘Px1 ∘Λs1 ½ρ0�g
¼

X
x2

trfPx3 ∘Λs3;s2 ∘Px2 ∘Λs2;s1 ∘Px1 ∘Λs1 ½ρ0�g

¼
X
x2

P3ðx3; x2; x1Þ

¼ P2ðx3; x1Þ
¼ trfPx3 ∘Λs3;s1 ∘Px1 ∘Λs1 ½ρ0�g ðA2Þ

(for s3 ≥ s2 ≥ s1 in T ) by linearity since, from the
assumptions (invertibility of the classical dynamics and
taking a diagonal, full-rank initial state), we have that
Px1 ∘Λs1 ½ρ0�≠0∀ x1;s1<∞ (for s1;s2;s3→∞, Λsi;sj → 1
and NCGD holds trivially). ▪
The only difference between this corollary and Theorem

2 of Ref. [34] is that here we have the divisibility of the
“full” propagators and invertibility of the classical propa-
gators in the assumptions, while there, the dynamics was
assumed to be of Lindblad type. However, this latter
assumption is strictly stronger, as it implies divisibility
and that Pxj ∘ eLtj ½ρ� ≠ 0 ∀ xj; tj < ∞ and for any full-
rank ρ, since (finite-dimensional) semigroup evolutions
cannot decrease the rank of a state on a finite time [129].
In total, we have shown, in this section, that Theorem 2 of

Ref. [34] can be interpreted as a corollary of Theorem 1 by
using the connectionbetween theQRFandMarkovianity and
further restricting to the case of Lindblad evolution.
Moreover, Corollary 1 shows how, by relaxing such a
restriction and assuming a proper invertibility condition
on the classical dynamics, it is possible to establish a one-
to-one correspondence between the classicality of a process
satisfying the QRF and the NCGD property, where the latter
concerns the propagators of the actual dynamics.

APPENDIX B: ABSENCE OF COHERENCE FOR
A MODEL SYSTEM: QUBIT COUPLED TO A

CONTINUOUS DEGREE OF FREEDOM

In this Appendix, we provide the mathematical details
missing in the main text for Example 1. We begin with the
expression of the global state at time t1, immediately before
the first measurement:
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ρseðt1Þ ¼
Z

∞

−∞
dpdp0fðpÞf�ðp0Þðρ00eiðp−p0Þt1 j0pih0p0j

þρ01eiðpþp0Þt1 j0pih1p0j þ ρ10e−iðpþp0Þt1 j1pih0p0j
þρ11e−iðp−p

0Þt1 j1pih1p0jÞ: ðB1Þ

After a measurement at time t1 with outcome�, the state is
subsequently given by

ρð�Þ
se ðt1Þ ¼ j�ih�j ⊗

Z
∞

−∞
dpdp0fð�Þ

1;t1
ðp; p0Þjpihp0j; ðB2Þ

where we emphasize that we have a tensor product state and
have introduced the amplitude

fð�Þ
1;t1

ðp;p0Þ≡ 1

Cð�Þ
t1

fðpÞf�ðp0Þðρ00eiðp−p0Þt1

�ρ01eiðpþp0Þt1 �ρ10e−iðpþp0Þt1 þρ11e−iðp−p
0Þt1Þ;

as well as the normalization factor Cð�Þ
t1 ¼ R∞

−∞ dpjfðpÞj2×
(1� 2Reðρ01e2ipt1Þ). Note that no σ̂x coherence is present
at this stage.
If we now let the system and environment evolve up to a

certain time τ > t1, the global state will be

ρð�Þ
se ðτÞ ¼ 1

2

Z
∞

−∞
dpdp0fð�Þ

1;t1
ðp; p0Þðeiðp−p0Þðτ−t1Þj0pih0p0j

�eiðpþp0Þðτ−t1Þj0pih1p0j � e−iðpþp0Þðτ−t1Þj1pih0p0j
þe−iðp−p0Þðτ−t1Þj1pih1p0jÞ; ðB3Þ

where the superscript � refers to the outcome of the first
measurement at time t1. The corresponding system state at
time τ is then given by tracing out the environmental
degrees of freedom, resulting in

ρð�Þ
s ðτÞ ¼ 1

2

�
1 �kð�Þðτ; t1Þ

�kð�Þ�ðτ; t1Þ 1

�
; ðB4Þ

with

kð�Þðτ; t1Þ ¼
Z

∞

−∞
dpfð�Þ

1;t1
ðp; pÞe2ipðτ−t1Þ

¼ 1

Cð�Þ
t1

Z
∞

−∞
dpjfðpÞj2ð1� ρ01e2ipt1

� ρ10e−2ipt1Þe2ipðτ−t1Þ

¼ 1

Cð�Þ
t1

ðkðτ − t1Þ � ρ01kðτÞ � ρ10kðτ − 2t1ÞÞ:

ðB5Þ

Once again, we see that if the initial system state is a convex
mixture of jþi and j−i and kðtÞ is real (e.g., a Lorentzian
distribution centered at 0), then no σ̂x coherence is pre-
sent at any time τ. This fact can be seen because the
reduced state can be written as in Eq. (34) for the real
α ¼ ð�kð�Þðτ; t1Þ þ 1Þ=2. As a side remark, we note that
even if the initial state had some coherences with respect to
σ̂x, these would have been destroyed after the first meas-
urement at time t1 and, as long as ρ01 ∈ R, would not have
been “regenerated” by the subsequent evolution.
Indeed, the argument above can be reiterated for the

subsequent measurements; for instance, if we consider the
global state after the second measurement at time t2, we
find

ρðsÞse ðt2Þ ¼ j�ih�j ⊗
Z

∞

−∞
dpdp0fðsÞ2;t2;t1

ðp; p0Þjpihp0j

with

fðsÞ2;t2;t1
ðp;p0Þ ¼ 1

CðsÞ
t2;t1

fð�Þ
1;t1

ðp;p0Þðeiðp−p0Þðt2−t1Þ

þsgðsÞeiðpþp0Þðt2−t1Þ þ sgðsÞe−iðpþp0Þðt2−t1Þ

þ e−iðp−p0Þðt2−t1ÞÞ; ðB6Þ

where s denotes the sequence of þ and − obtained in the
measurements and sgðsÞ the sign of the corresponding
product. The entire procedure can be iterated, by replacing

fð�Þ
1;t1

ðp; p0Þ with fðsÞ2;t2;t1
ðp; p0Þ, so that the state at any

subsequent time would remain in the form of Eq. (34),
with the off-diagonal elements given by a linear combina-
tion with real coefficients of the real function kðtÞ evaluated
at different times. In Appendix C, we show how Example 1
can be described using a comb representation as introduced
in Sec. V.

APPENDIX C: COMB REPRESENTATION OF A
MODEL SYSTEM: QUBIT COUPLED TO A
CONTINUOUS DEGREE OF FREEDOM

In Appendix B, we showed the absence of coherence in
the state of the system at all times for the dynamics of
Example 1. To do so, we computed the full system-
environment dynamics; however, the full knowledge of
the system-environment dynamics is not necessary to
understand the multitime probabilities of observables of
the system alone. Moreover, the state of the environment is
often not experimentally accessible in practice, as it is
typically highly complex. Therefore, it is convenient to
only describe the influence that the environment has on the
multitime probabilities. Importantly, this influence, and the
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resulting correct descriptor of the underlying process, can
be deduced by probing the system alone.
Such a descriptor can be derived using the concept of

quantum combs [37,51], which we briefly reviewed in
Sec. V. A quantum comb contains all statistical information
that can be inferred about the process it describes (on the set
of times upon which it is defined). While here we construct
the comb for Example 1 by explicitly solving the system-
environment dynamics, it is important to note that it could
be reconstructed experimentally by means of measure-
ments on the system alone, without any access to or
knowledge of the environmental degrees of freedom,
through a generalized tomographic scheme [38].
In a slight deviation from the notation of the main text, in

this Appendix, for better orientation, here we explicitly

write the labels of the Hilbert spaces a comb acts on, and
the times it is defined upon, as subscripts and superscripts,
respectively.
As described in Example 1, we start with a system-

environment state ηseðt0 ¼ 0Þ ¼ ρsðt0 ¼ 0Þ ⊗ jφeihφej,
where jφei is fixed. As shown in Fig. 11, the initial system
state ρsðt0Þ is associated with the Hilbert space with label 1.
The channel

Ct1∶t0ðρsÞ ¼ U t1;t0ρs ⊗ jφeihφej ðC1Þ

maps the initial system state to the full system-environment
state at time t1 directly before the intervention. The
corresponding channel in the comb description is given by

Ct1∶t0
2α1 ¼

X
i;j

Ut1;t0

�
jiihjj2 ⊗

Z
∞

−∞
dp

Z
∞

−∞
dqfðpÞf�ðqÞjpihqjα

�
U†

t1;t0 ⊗ jiihjj1

¼
X
i;j

Z
∞

−∞
dp

Z
∞

−∞
dqfðpÞf�ðqÞeiðϕip−ϕjqÞt1 jiihjj2 ⊗ jpihqjα ⊗ jiihjj1; ðC2Þ

where the superscripts denote the intervention times and the
subscripts the Hilbert spaces on which the comb is acting.
The object Ct1∶t0

2α1 above is nothing other than the Choi state
associated with the channel. The dynamics from time t1 to
time t2 is similarly given by the channel

Ct2∶t1ðρseÞ ¼ U t2;t1ρse ðC3Þ

applied to the combined system-environment state directly
after the first intervention. Again, this channel admits a
Choi state description

Ct2∶t1
4β3α¼

X
i;j

Z
∞

−∞
dp

Z
∞

−∞
dqeiðϕip−ϕjqÞðt2−t1Þjipipihjqjqj4β3α:

ðC4Þ

The next step is to eliminate the explicit description of the
environment state on Hilbert space α. To do this, we
contract the Choi states of the two channels described
above using the link product ⋆ described in Refs. [37,51].
This process leaves us with the comb describing the
dynamics on both times,

FIG. 11. Labeling of Hilbert spaces used for the comb description of Example 1. The grey box contains the combCt1∶t0
2α1 and the red box

the comb Ct2∶t1
4β3α. The comb Ct2∶t1∶t0

4β321 corresponds to everything inside the dashed box and consists of the contraction of the two combs

Ct1∶t0
2α1 and Ct2∶t1

4β3α.
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Ct2∶t1∶t0
4β321 ¼ Ct2∶t1

4β3α⋆Ct1∶t0
2α1

¼ trα½ð14β3 ⊗ Ct1∶t0
2α1

TαÞðCt2∶t1
4β3α ⊗ 121Þ�

¼
Z

∞

−∞
dshsjα

X
i;j

Z
∞

−∞
dp

Z
∞

−∞
dqfðpÞf�ðqÞeiðϕip−ϕjqÞt1 jiqiihjpjj2α1

×
X
k;l

Z
∞

−∞
dr

Z
∞

−∞
dteiðϕkr−ϕltÞðt2−t1Þjkrkrihltltj4β3αjsiα

¼
X
i;j;k;l

Z
…

Z
∞

−∞
dsdpdqdrdtδðs − qÞδðs − tÞδðp − rÞfðpÞf�ðqÞeiðϕip−ϕjqÞt1 jiiihjjj21

× eiðϕkr−ϕltÞðt2−t1Þjkrkihltlj4β3
¼

X
i;j;k;l

ZZ
∞

−∞
dsdpfðpÞf�ðsÞeiðϕip−ϕjsÞt1 jiiihjjj21eiðϕkp−ϕlsÞðt2−t1Þjkpkihlslj4β3

¼
X
i;j;k;l

ZZ
∞

−∞
dsdpfðpÞf�ðsÞeiðϕip−ϕjsÞt1eiðϕkp−ϕlsÞðt2−t1Þjkpkiiihlsljjj4β321: ðC5Þ

We can also describe the projectors corresponding to the observed measurement outcomes using Choi states, e.g., if we
measured in the eigenbasis of σ̂x and obtained outcome +, the corresponding Choi state is given by

Mþ ¼ jþihþj ⊗ 1
X
i;j

jiiihjjjjþihþj ⊗ 1 ¼ 1

4

X
i;j;k;l

jijihlkj: ðC6Þ

Again, using the link product, we can obtain the unnormalized joint system-environment state directly after the second
intervention at time t2, conditioned on the initial state of the system ρsð0Þ and the interventions Mx1 ;Mx2 (where the
superscripts xi refer to the outcomes) as follows:

ρðx2;x1Þse ðt2Þ5β ¼ Ct2∶t1∶t0
4β321 ⋆ρsðt0Þ1⋆Mx1

32⋆Mx2
54

¼ tr4321½ρsðt0ÞT1 ⊗ Mx1
32

T2 ⊗ Mx2
54

T4Ct2∶t1∶t0
4β321 �: ðC7Þ

For instance, if we observed the outcomeþ twice, the joint state after the second intervention is given by

ρðþ;þÞ
se ðt2Þ5β ¼

X
i;j;k;l;m;n;x;y;a;b;c;d;f;g;h;o

hfghoj4321ρmnjnihmj1 ⊗
1

4
jcxihdyj32 ⊗

1

2
jþihþj5 ⊗ jaihbjβ

×
ZZ

∞

−∞
dsdpfðpÞf�ðsÞeiðϕip−ϕjsÞt1 jiiihjjj21eiðϕkp−ϕlsÞðt2−t1Þjkpkihlslj4β3jfghoi4321

¼ 1

8
jþihþj5 ⊗

X
i;j;k;l

ρij

ZZ
∞

−∞
dsdpfðpÞf�ðsÞeiðϕip−ϕjsÞt1eiðϕkp−ϕlsÞðt2−t1Þjpihsjβ

¼ 1

8
jþihþj5 ⊗

ZZ
∞

−∞
dpdsf̃ðþ;þÞ

2;t2;t1
ðp; sÞjpihsjβ; ðC8Þ

where we have introduced

f̃ðþ;þÞ
2;t2;t1

ðp; sÞ ¼
X
i;j;k;l

ρijfðpÞf�ðsÞeiðϕip−ϕjsÞt1eiðϕkp−ϕlsÞðt2−t1Þ

¼ fðpÞf�ðsÞðρ00eiðp−sÞt1 þ ρ01eiðpþsÞt1 þ ρ10e−iðpþsÞt1 þ ρ11e−iðp−sÞt1Þ
× ðeiðp−sÞðt2−t1Þ þ eiðpþsÞðt2−t1Þ þ e−iðpþsÞðt2−t1Þ þ e−iðp−sÞðt2−t1ÞÞ

¼ fðþ;þÞ
2;t2;t1

ðp; sÞ ðC9Þ

and checked the consistency with the direct description in Appendix B.
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Since we are mainly interested in the question of whether
the obtained measurement statistics can be explained
classically, we restrict our attention to the unnormalized
state of the system alone because the probability of
obtaining a specific sequence of measurement outcomes
is encoded in the trace of the corresponding system state.
Therefore, we eliminate the description of the environment
by tracing over the Hilbert space β, which we can do
directly at the level of the comb itself,

C̃t2∶t1∶t0
4321 ¼ trβ½Ct2∶t1∶t0

4β321 �

¼
X
i;j;k;l

Z
∞

−∞
dqjfðqÞj2eiðϕi−ϕjÞqt1

× eiðϕk−ϕlÞqðt2−t1Þjkkiiihlljjj4321: ðC10Þ

Following the same procedure as above, we then obtain the
system state after the second intervention,

ρðx2;x1Þs ðt2Þ5 ¼ C̃t2∶t1∶t0
4β321 ⋆ρsðt0Þ1⋆Mx1

32⋆Mx2
54: ðC11Þ

Similarly, the probability to obtain, e.g., twice the meas-
urement result þ is given by

P2ðþ; t2;þ; t1Þ ¼ tr½ρðþ;þÞ
s ðt2Þ5�: ðC12Þ

If we introduce τn ≔ tn − tn−1, by way of induction, we
find that

Ctn∶∶t0 ¼
X

i2n…i1;j2n…j1

ZZ
∞

−∞
dpdqfðpÞf�ðqÞjpihqj ⊗2n

a¼1
eiðϕiap−ϕja qÞτa jiaiaihjajaj2a;2a−1;

C̃tn∶∶t0 ¼
X

i2n…i1;j2n…j1

Z
∞

−∞
dpjfðpÞj2 ⊗

2n

a¼1
eiðϕia−ϕja Þpτa jiaiaihjajaj2a;2a−1; ðC13Þ

where we suppressed the subscripts of the combs. As
above, Ctn∶∶t0 denotes the comb including the outgoing
environment and C̃tn∶∶t0 the comb describing the system
alone; see Fig. 12 for a pictorial representation. Therefore,
the joint probability distribution for sequences of meas-
urement outcomes is given by

Pnðxn; tn;…; x1; t1Þ ¼ tr½ρsð0ÞT1 ⊗
n

a¼1
ðMxa

2aþ1;2aÞTC̃tn∶∶t0 �:

ðC14Þ

APPENDIX D: ALTERNATIVE EXAMPLE FOR
NONCLASSICAL DYNAMICS THAT DO NOT

CREATE COHERENCES

Here, we provide an alternative example of a process
where the state of the system is diagonal in the computa-
tional basis at all times but does not yield classical statistics.

To this end, consider the following circuit (see Fig. 13): Let
the initial system-environment state at time t0 be a
maximally entangled two-qubit state φþ that undergoes
trivial evolution between t0 and t1. At t1, the system alone
is thus in a maximally mixed state ρt1 ¼ 1=2. Between t1
and t2, the system and the environment undergo a CPTP
map Et2;t1 (which could, in principle, be dilated to a unitary
map [130], but for conciseness, we restrict ourselves to the
relevant part of it), which yields output j0i on the system, if
the system and environment are in the state φþ, and j1i
otherwise, i.e., when the system-environment state is
orthogonal to φþ. Consequently, its action can be written
as

Et2;t1 ½η� ¼ trðφþηÞj0ih0j þ tr½ð1 − φþÞη�j1ih1j: ðD1Þ

It is easy to check that Et2;t1 is indeed CPTP, and the state of
the system at t2 is a convex mixture of j0ih0j and j1ih1j for

FIG. 12. Dilation for Example 1. Pictorial representation of the quantum combs describing Example 1 with two interventions.
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all possible experimental interventions at t1; there are thus
no coherences in the state of the system at any of the times
ft1; t2g. However, this process does not satisfy the
Kolmogorov consistency.
To see this, consider the probabilities for a measurement

in the computational basis at t2, with no operation per-
formed at t1. In this case, the system-environment state
before the action of Et2;t1 is equal to φþ, which means that
we have ρt2 ¼ j0ih0j. Consequently, a measurement in the
computational basis at t2 yields the probabilities

P1ð0; t2Þ ¼ 1 and P1ð1; t2Þ ¼ 0: ðD2Þ

On the other hand, performing a measurement at t1 and
discarding the outcomes amounts to performing the com-
pletely dephasing map Δ1. Immediately after this map, i.e.,
right before Et2;t1 , the system-environment state is of the
form

ηset1 ¼ 1

2

X
x1

jx1ihx1j ⊗ jx1ihx1j ¼
1

2
ðφþ þ φ−Þ; ðD3Þ

where φ− ¼ ðσz ⊗ 1Þφþðσz ⊗ 1Þ is a Bell state.
Consequently, in this case, the final system state ρt2 is
of the form ρt2 ¼ 1

2
ðj0ih0j þ j1ih1jÞ. Finally, the obtained

probabilities for a measurement in the computational basis
at t2 are

PΔ1

1 ð0; t2Þ ¼
X
x1

P2ðx1; t1; 0; t2Þ ¼
1

2

and PΔ1

1 ð1; t2Þ ¼
X
x1

P2ðx1; t1; 1; t2Þ ¼
1

2
; ðD4Þ

which do not coincide with Eq. (D2). Even though the state
of the system is incoherent at all considered times, i.e., the

state itself appears to be classical, the multitime statistics do
not satisfy the Kolmogorov condition.

APPENDIX E: MEASURE OF
NONCLASSICALITY

In this Appendix, we derive the optimal solution of the
game, which defines our measure of nonclassicality
MðCÞ, and show that it can be formulated as a linear
program. We also derive the dual of this problem for
completeness.
In our game, Bob can choose the points in time at

which he wants Rudolph to perform projective measure-
ments and those for which Rudolph should not interfere
with the natural evolution of the system. Bob's choices
define a sequence of measurements Tiðx⃗Þ ¼⊗tj∈τi Φ

þ
j

⊗tk∈τci Pxk . Given the choice of any sequence of this form
and labeling the obtained outcome sequence of the
experiment by x⃗, the best strategy for Bob is to announce
that the comb that was tested is C if the probability for
measuring outcome x⃗ with said sequence Tiðx⃗Þ is higher
for C than for CCl [i.e., if tr½ðCCl − CÞTiðx⃗Þ� < 0] and
announcing CCl otherwise. The probability that he is
correct when announcing C, given that the outcome
obtained was x⃗, is given by

PðCjx⃗Þ ¼ PðC; x⃗Þ
Pðx⃗Þ ¼ Pðx⃗jCÞ

Pðx⃗Þ PðCÞ; ðE1Þ

where the prior probability is PðCÞ ¼ 1=2. Denoting by
SCl the set of all x⃗ such that tr½ðCCl − CÞTiðx⃗Þ� > 0 and
SClc its complement, the probability that Bob wins the
game is given by

X
x⃗∈SClc

PðCjx⃗ÞPðx⃗Þ þ
X
x⃗∈SCl

PðCCljx⃗ÞPðx⃗Þ

¼ 1

2

�X
x⃗∈SClc

Pðx⃗jCÞ þ
X
x⃗∈SCl

Pðx⃗jCClÞ
�

¼ 1

2

�X
x⃗∈SClc

tr½CTiðx⃗Þ� þ
X
x⃗∈SCl

tr½CClTiðx⃗Þ�
�

¼ 1

2

�
1þ

X
x⃗∈SCl

ð−tr½CTiðx⃗Þ� þ tr½CClTiðx⃗Þ�Þ
�
: ðE2Þ

Assuming that both Alice and Bob play ideally, using
Lemma 1, the probability PBðCÞ that Bob wins is given by

PBðCÞ ¼
1

2
ð1þMðCÞÞ; ðE3Þ

where MðCÞ is the solution of

FIG. 13. Nonclassical process that does not display coherences.
The state of the system is classical; i.e., it does not contain
coherences with respect to the classical basis, at any step of the
process. However, the corresponding statistics do not satisfy the
Kolmogorov conditions. Potential measurements are depicted as
green circles. The blue dotted line signifies the comb of the
process (see Sec. V).
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minimize∶ max
i

X
x⃗∈SCl

tr½ðCCl − CÞTiðx⃗Þ�

subject to∶ SCl ¼ fx⃗jtr½ðCCl − CÞTiðx⃗Þ� ≥ 0g;
CCl ¼

X
yK;…;y1

PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 þ χ;

tr½χ · ð⊗tj∈τi Aj ⊗tk∈τci PzkÞ� ¼ 0;

CCl ≥ 0;

trKi ½CCl� ¼ 1ðK−1Þo ⊗ ΘK−1;

..

.

tr2i ½Θ2� ¼ 11o ⊗ ρ1i ;

PKðy⃗Þ joint prob distribution;

where we defined Aj ≔ Φþ
j −Dj and ρ1i is a valid

quantum state. The hierarchy of partial trace conditions
on the comb written above ensures that the overall action of
any instrument at a later time cannot influence previous
statistics [36,37].
Starting from the above program, we see that χ does not

contribute to the trace, as tr½χTiðx⃗Þ� is, by definition, a
marginal of a zero distribution (due to the third constraint
above); see also the proof of Lemma 1. This result leaves us
with contributions only from the diagonal parts of the
operator CCl, where the nonzero entries are those that
correspond to PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 , which must satisfy
tr½CCl� ¼ 1 andCCl ≥ 0 due to the requirement thatPKðy⃗Þ is
a valid probability distribution. Note that for any such
operator, there exists a χ such that the total operator satisfies
the additional requirements in the above program since one
simply must add terms of the form

P
yK;…;y1 PKðy⃗ÞPyK;zK ⊗

� � � ⊗ Py1;z1 , where the Pyj;zj are projectors up to a permu-
tation on the input basis (i.e.,Pyj;zj ¼ jyjihyjjo ⊗ jzjihzjji).
We are then left with

minimize∶ max
i

X
x⃗∈SCl

tr½ðCCl − CÞTiðx⃗Þ�

subject to∶ SCl ¼ fx⃗jtr½ðCCl − CÞTiðx⃗Þ� ≥ 0g;
CCl ¼

X
yK;…;y1

PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 ;

PKðy⃗Þ joint prob distribution:

Since both C and CCl represent (up to a noncontributing χ)
deterministic quantum combs, we have

X
x⃗

tr½ðCCl − CÞTiðx⃗Þ� ¼ 0 ðE4Þ

and thus

X
x⃗

jtr½ðCCl − CÞTiðx⃗Þ�j ¼ 2
X
x⃗∈SCl

tr½ðCCl − CÞTiðx⃗Þ�: ðE5Þ

This result allows us to expressMðCÞ as half of the solution
of

minimize∶ max
i

X
x⃗

jtr½ðCCl − CÞTiðx⃗Þ�j

subject to∶ CCl ¼
X

yK;…;y1

PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 ;

PKðy⃗Þ joint prob distribution:

In order to transform this program into a LP, for every testing
sequence fTiðx⃗Þgx⃗, we define an arbitrary order of the
outcomes x⃗; i.e, we label them as x⃗j. Then,

max
i

X
x⃗

jtr½ðCCl − CÞTiðx⃗Þ�j ðE6Þ

is the solution of

minimize∶ a

subject to∶ a ≥
X
j

jtr½ðCCl − CÞTiðx⃗jÞ�j;

which is equivalent to

minimize∶ a

subject to∶ a ≥ si;

si ¼
X
j

bij;

bij ≥ cij ≥ −bij;

cij ¼ tr½ðCCl − CÞTiðx⃗jÞ�:

Combining this solution with the outer minimization, we
finally have that MðCÞ is half of the solution of

minimize∶ a

subject to∶ a ≥ si;

si ¼
X
j

bij;

bij ≥ cij ≥ −bij;

cij ¼ tr½ðCCl − CÞTiðx⃗jÞ�;
CCl ¼

X
yK;…;y1

PKðy⃗ÞPyK ⊗ � � � ⊗ Py1 ;

PKðy⃗Þ joint prob distribution;

which is a linear program.
In order to simplify the numerical implementation and

the derivation of the dual program, we also order the
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vectors y⃗ (arbitrarily), identify pk with PKðy⃗ðkÞÞ, and
define αijk,

tr½CClTiðx⃗jÞ� ¼
X
k

pkαijk ðE7Þ

for all pk, i.e.,

αijk ¼ tr½PyKðkÞ ⊗ � � � ⊗ Py1ðkÞTiðx⃗jÞ� ðE8Þ

for the sequence yKðkÞ;…; y1ðkÞ corresponding to y⃗ðkÞ. In
addition, we define

βij ¼ tr½CTiðx⃗jÞ�; ðE9Þ

which allows us to write

cij ¼ tr½ðCCl − CÞTiðx⃗jÞ�
¼

X
k

pkαijk − βij: ðE10Þ

Then, the above optimization problem is equivalent to

minimize∶ a

subject to∶
X
j

bij − a ≤ 0;

X
k

pkαijk − βij − bij ≤ 0;

−
X
k

pkαijk þ βij − bij ≤ 0;

X
k

pk − 1 ¼ 0;

pk; a; bij ≥ 0:

The Lagrangian corresponding to this problem is

Lða; pk; bij; Xi; Yij; Zij;WÞ
¼ a½1 −

X
i

Xi� þ
X
ij

bij½Xi − Yij − Zij�

þ
X
k

pk½
X
ij

αijkðYij − ZijÞ −W�

þW þ
X
ij

βijðZij − YijÞ; ðE11Þ

and the dual function is explicitly written

qðXi; Yij; Zij;WÞ
¼ inf

pk≥0;a;bij
Lða; pk; bij; Xi; Yij; Zij;WÞ; ðE12Þ

where we used that a; bij ≥ 0 is implicit in the remaining
conditions. The dual problem is then given by

maximize∶ W þ
X
ij

βijðZij − YijÞ

subject to∶
X
i

Xi ¼ 1;

Xi − Yij − Zij ¼ 0 ∀ ij;X
ij

αijkðYij − ZijÞ −W ≥ 0 ∀ k;

Xi; Yij; Zij ≥ 0;

W ∈ R;

which can straightforwardly be reformulated as

maximize∶ Ω

subject to∶ Ω ≤
X
ij

ðαijk − βijÞð2Yij − XiÞ ∀ k;

X
i

Xi ¼ 1;

Xi; Yij; Xi − Yij ≥ 0;

Ω ∈ R:

Evidently, the above considerations are amenable to many
extensions, but that is a matter of future work.

APPENDIX F: NON-DISCORD-CREATING MAPS

Here, for comprehensiveness, we characterize the set of
maps Γ∶BðHi

s ⊗ Hi
e Þ → BðHo

s ⊗ Ho
e Þ that map discord-

zero states to discord-zero states, where we mean discord
zero with respect to the classical basis. Such system-
environment maps form a subset of the NDGD maps of
Definition 3 [in the sense that a set of them would satisfy
Eq. (68)] and would thus lead to classical statistics on the
level of the system. However, for classical statistics, it is not
necessary that the underlying maps do not create discord.
To facilitate notation, throughout this Appendix, we

denote discord-zero states as DØ states and maps that do
not create discord as DØ maps. We have the follow-
ing lemma:
Lemma 3. (Structure of DØ maps) The Choi state G of

a DØ map Γ∶BðHi
s ⊗ Hi

e Þ → BðHo
s ⊗ Ho

e Þ is of the form

G ¼
Xds
k;j¼1

pkjjΠo
k ⊗ Πi

j ⊗ Ooi
jk þ G⊥; ðF1Þ

where fΠi=o
l g are orthogonal rank-1 projectors on Hi=o

s

that are diagonal in the computational basis, Ooi
jk ∈

BðHo
e ⊗ Hi

e Þ is the Choi state of a CPTP map
Ωjk∶BðHi

e Þ → BðHo
e Þ, pkjj is a conditional probability

distribution, i.e.,
P

k pkjj ¼ 1 and pkjj ≥ 0, and G⊥ ∈
BðHo

s ⊗ Ho
e ⊗ Hi

s ⊗ Hi
e Þ is orthogonal to the set of
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DØ states, i.e., tr½ð1 ⊗ ρÞG⊥� ¼ 0 for all DØ states
ρ ∈ BðHi

s ⊗ Hi
e Þ.

Before we prove this lemma, we emphasize its structural
relation to the representation of MIOs, i.e., the structure of
maps F∶BðHi

s Þ → BðHo
s Þ that map incoherent states ρ ∈

Ξ ⊂ BðHi
s Þ onto incoherent states ρ0 ¼ F ½ρ� ∈ Ξ ⊂ BðHo

s Þ,
where Ξ denotes the set of incoherent states with respect to
the computational basis. The Choi state F of the map F is a

positive element ofBðHo
s ⊗ Hi

s Þ. Choosing a basis fτokgd
2
s

k¼1

and fωi
j gd

2
s

j¼1 for BðHo
s Þ and BðHi

s Þ, respectively, any F can
be written as

F ¼
X
j;k

fjkτok ⊗ ωi
j ; ðF2Þ

where fjk ∈ R. We can choose the basis fωi
j g to consist of

the ds rank-1 projectors Πi
j in the computational basis and

dsðds − 1Þ elements Π̃i
s that are orthogonal to these projec-

tors, i.e., such that trðΠi
j Π̃i

s Þ ¼ 0 [e.g., one could choose
the off-diagonal elements jmihnj þ jnihmj and iðjmihnj−
jnihmjÞ]. With this choice of basis elements, Eq. (F2) reads

F ¼
X
j;k

fkjτok ⊗ Πi
j þ

X
r;s

f̃rsτor ⊗ Π̃i
s : ðF3Þ

Imposing the requirement that F does not create coherences
with respect to the classical basis then yields

F ¼
X
j;k

pkjjΠo
k ⊗ Πi

j þ
X
r;s

f̃rsτor ⊗ Π̃i
s ; ðF4Þ

wherepkjj ≥ 0,
P

k pkjj ¼ 1, and τor ∈ BðHo
s Þ. Indeed, anF

of the form of Eq. (F4) yields an incoherent output state for
any incoherent input state ρcl ¼

Pds
r¼1 qrΠi

r ∈ Ξ:

F ½ρcl� ¼ tri½ð1o ⊗ ρTclÞF� ¼
X
kr

pkjrqrΠo
k : ðF5Þ

Importantly, Eq. (F4) constitutes a decomposition of the form
F ¼ Fk þ F⊥, whereFk ¼ P

j;k pkjjΠo
k ⊗ Πi

j encapsulates
the action of F on incoherent states, and F⊥ is such that all
incoherent states lie in its kernel, i.e., trðρF⊥Þ ¼ 0 for all
ρ ∈ Ξ. The fact thatF⊥ does not have to vanish in order forF
to be a MIO demonstrates, in a transparent way, the (well-
known) fact that there are MIOs that necessitate coherent
resources for their implementation [5,15,17].
As emphasized throughout the main body of this paper,

DØ states reduce to incoherent ones when the environment
is trivial. Consequently, DØ maps are the natural extension
of MIOs, and the proof of Lemma 3 follows similar logic to
the above proof for the structural properties of MIOs:
Proof.—Employing the reasoning that led to Eq. (F4),

any DØ map Γ has a Choi state G of the form

G ¼
X
kjμν

gkμjντok ⊗ Πi
j ⊗ Noi

μν

þ
X
rsμν

g̃rμsντor ⊗ Π̃i
s ⊗ Noi

μν ; ðF6Þ

where gkμjν; g̃rμsν ∈ R and fNoi
μν gd

2
e

μ;ν¼1 is a basis of
BðHo

e ⊗ Hi
e Þ. As for the case of MIOs, Eq. (F6) constitutes

a decomposition G ¼ Gk þ G⊥, where G⊥ is orthogonal to
the set of DØ states. Consequently, the action of Γ on any
DØ state is entirely encapsulated in Gk, and it remains to
show that this term is of the form given in the lemma. To
this end, we note that a map Γ is DØ iff it maps any state of
the form Πi

l ⊗ ηil to a DØ state. Letting Γ act on such a
product state, we obtain

Γ½Πi
l ⊗ ηil� ¼ trif½1o ⊗ ðΠi

l ⊗ ηilÞT�Gkg ðF7Þ
¼

X
kμν

gkμlντok ⊗ tri½ð1o ⊗ ηiTl ÞNoi
μν �

¼!
X
r

prjlΠo
t ⊗ ξorjl; ðF8Þ

where
P

r prjl ¼ 1 and prjl ≥ 0, and ξor ∈ BðHo
e Þ are

states of the environment. The last line of Eq. (F8) stems
from the requirement that Γ is a DØmap, and the remaining
open index l signifies that the resulting output state
depends on the input state Πi

l ⊗ ηil. In the same way as
above, we can choose the basis fτokg to consist of projectors
fΠo

kg onto the computational basis and elements that are
orthogonal to these projectors. Then, comparing Eqs. (F7)
and (F8), we see that all of the terms of Gk, where τok is
not a projector onto the computational basis, must
vanish. Finally, the terms Noi

μν have to be such that
tri½ð1 ⊗ ηiTl ÞPμν gkμlνN

oi
μν � yields the correct output state

pkjlξokjl. Consequently,
P

μν gkμlνN
oi
μν can be chosen to be

(up to normalizationpkjl) the Choi stateOoi
kl of aCPTPmap.

Putting these observations together yields Eq. (F1). ▪

APPENDIX G: PROOF THAT NDGD ⇒
CLASSICAL PROCESS

For the proof of Theorem 3, we employ the fact that the
completely dephasing map has no influence on the out-
comes of a measurement in the computational basis, i.e.,

Pxj ¼ Δj ∘Pxj ¼ Pxj ∘Δj ∀ xj: ðG1Þ

The probability Pkðxk;…; x1Þ to measure outcomes
fxk;…; x1g at times ftk;…; t1g is given by [see Eq. (66)]

trfðPxk ⊗ Ie
kÞ ∘ � � � ∘ Γt2;t1 ∘ ðPx1 ⊗ Ie

1Þ½ηset1 �g; ðG2Þ

where fΓtj;tj−1g are system-environment CPTP maps and
ηset1 is the system-environment state at time t1. Summing
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this probability distribution over the outcomes at time tj
amounts to replacing Pxj in Eq. (G2) by Δj. “Zooming in”
on the relevant time (and leaving the Ie implicit), we see
that

Pxjþ1
∘ Γtjþ1;tj ∘Δj ∘ Γtj;tj−1 ∘Pxj−1

¼ Pxjþ1
∘Δjþ1 ∘ Γtjþ1;tj ∘Δj ∘ Γtj;tj−1 ∘Δj−1 ∘Pxj−1

¼ Pxjþ1
∘ Γtjþ1;tj ∘ I j ∘ Γtj;tj−1 ∘Pxj−1 ; ðG3Þ

where we have used Eq. (G1) in the first line and both the
fact that the dynamics is NDGD and Eq. (G1) in the second
line. As Eq. (G3) holds for arbitrary times tj, it implies that
for NDGD dynamics, the completely dephasing map
cannot be distinguished from the identity map when the
process is probed by measurements in the computational
basis, which implies that the Kolmogorov condition holds
for any joint probabilities with at least three different times.
For the two-time joint probabilities, we can exploit, along
with the NDGD property, the fact that the initial state has
zero discord. We have

X
x1

P2ðx2; x1Þ

¼ trfPx2 ∘ Γt2;t1 ∘Δ1 ∘ Γt1;t0 ½ηset0 �g
¼ trfPx2 ∘Δ2 ∘ Γt2;t1 ∘Δ1 ∘ Γt1;t0 ½ηset0 �g
¼ trfPx2 ∘Δ2 ∘ Γt2;t1 ∘Δ1 ∘ Γt1;t0 ∘Δ0½ηset0 �g
¼ trfPx2 ∘ Γt2;t0 ½ηset0 �g ¼ P1ðx2Þ; ðG4Þ

where we used Eq. (G2) and
P

x1 Px1 ¼ Δ1 in the first line,
Eq. (G1) in the second line, the invariance of the initial
zero-discord state with respect to Δ0 in the third line, and
finally, the definition of NDGD dynamics, Eq. (G1), and
the invariance of ηset0 in the fourth line. Consequently, the
resulting statistics satisfy all of the Kolmogorov conditions
and are thus classical.

APPENDIX H: CLASSICALITY⇒NDGD

Here, we provide an example of dynamics that are not
NDGD yet lead to classical dynamics, thus demonstrating
that it is not necessary for a dynamics to be NDGD in order
for it to appear classical. We consider the following
situation (see Fig. 14 for a graphical representation): Let
the system of interest be a qubit that is initially in state j0i,
and let the initial environment be in a plus state, i.e.,
τet0 ¼ 1ffiffi

2
p ðj0iþj1iÞ. The first evolution Γt1;t0 from t0 to t1 is

a CNOT gate, such that the system-environment state at t1 is
a maximally entangled state. The second evolution Γt2;t1
from t1 to t2 is such that it yields a system-environment
state 1s=2 ⊗ j0ih0j if the se0 input state is φþ

se0 , and 1s=2 ⊗
j1ih1j otherwise. Consequently, when the completely
dephasing map is applied at t1, the system-environment

state at t2 is 1s=2 ⊗ 1e=2, while it is equal to 1s=2 ⊗ j0ih0j
if the identity map was implemented, and as such, the
dynamics is not NDGD. However, the system state is
always maximally mixed, independent of whether Δ1 or I1

was implemented at time t1. To make the example non-
trivial, we add a third free dynamics Γt3;t2 from t2 to t3. We
choose Γt3;t2 such that it induces a unital dynamics on the
level of the system, independent of the environment state at
t2. This result happens, e.g., when the corresponding
system-environment Hamiltonian is of product form, i.e.,
Hse ¼ Hs ⊗ He, independent of the explicit form of the
respective terms [76]. With this final dynamics, the system
state at each of the times t1, t2, and t3 is maximally mixed,
and the resulting statistics satisfy Kolmogorov conditions;
i.e., they are classical.

APPENDIX I: EXAMPLE OF A GENUINELY
QUANTUM PROCESS

Consider the following process, depicted in Fig. 15, which
is a variation on that presented in Sec. VII. The process
begins with a two-qubit system-environment state in the
Bell pair φþ

se, the system part of which the experimenter
has access to measure at t1. Next, the process performs
the CPTP system-environment map Γsez

z ∶BðHsi ⊗ HeiÞ →
BðHso ⊗ Heo ⊗ HzoÞ, whose action is as follows: It mea-
sures its joint inputs in the Bell basis, and if themeasurement
outcome corresponds to φþ

se, it outputs a φþ
se system-

environment state as well as a classical flag state j0iz; on
the other hand, if the measurement outcome does not
correspond to φþ

se, it outputs a system-environment state
whose system part is a pure state in the z basis and sets the
flag state to j1iz to indicate that the system state has been
biased in the z basis. Thus, the action of themap is as follows:

Γsez
z ½ηse� ¼ tr½φþ

seηse�φþ
se ⊗ j0ih0jz

þ tr½ð1se −φþ
seÞηse�j0ih0js ⊗ τe ⊗ j1ih1jz: ðI1Þ

FIG. 14. Non-NDGD dynamics that leads to classical statistics.
The first map Γt1;t0 (blue transparent box) performs a CNOT gate
on the system and the environment. The subsequent CPTP map
Γt2;t1 maps φþ and 1=4 onto two different system-environment
states with the same reduced system state ρt3 ¼ 1=2. The final
CPTP map Γt3;t2 is such that it induces a unital dynamics on the
system. Consequently, the system state at t1, t2, and t3 is
maximally mixed independent of whether the completely de-
phasing or the identity map was implemented at t1 and t2.
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For this map (and all that follow in this example), the output
state of the environment when the φþ

se outcome is not
recorded is irrelevant for our argument; as such, we simply
write a generic quantum state τe.
Following this part of the dynamics, the experimenter has

access to measure the system at time t2. The subsequent
dynamics of the process is controlled on the state of the
classical z flag: If it is in the state j0iz, the system-
environment state is subject to a similar dynamics as before,
Γsey
y ∶BðHsi ⊗ HeiÞ → BðHso ⊗ Heo ⊗ HyoÞ; however,

this time, if the Bell basis measurement outcome does not
correspond toφþ

se, the system is biased in the y basis, e.g., set
to the −1 eigenstate of σðyÞ, j−ðyÞi ≔ 1ffiffi

2
p ðj0i − ij1iÞ, with a

classical y flag set to the state j1iy and sent forward. If, on the
other hand, the z flag is in the state j1iz, the system-
environment state undergoes trivial dynamics (i.e., is subject
to the identitymap), and the y flag is set to j0iy. In either case,
the previous z flag state is also sent forward unperturbed.
Thus, between t2 and t3, the system-environment state
evolves conditionally according to

z ¼ 0∶Γsey
y ½ηse� ¼ tr½φþ

seηse�φþ
se ⊗ j0ih0jy

þ tr½ð1se − φþ
seÞηse�j−ðyÞih−ðyÞjs ⊗ τe ⊗ j1ih1jy;

z ¼ 1∶Ise½ηse� ⊗ j0ih0jy: ðI2Þ

Then, the experimenter has access to the system at t3.
The final portion of the dynamics between t3 and t4

follows a similar construction as above, but the imple-
mentation of the map Γsex

x ∶BðHsi ⊗ HeiÞ → BðHso ⊗
Heo ⊗ HxoÞ is controlled on the joint state of the z and
y classical flags. If zy ¼ 00, the system-environment state
is measured in the Bell basis: If the measurement outcome
does not correspond to φþ

se, the system is biased in the x
basis, e.g., set to the −1 eigenstate of σðxÞ,

j−ðxÞi ≔ 1ffiffi
2

p ðj0i − j1iÞ, with a classical x flag set to the

state j1ix and sent forward. If, on the other hand, zy ≠ 00,
system and environment undergo trivial dynamics (i.e., is
subject to the identity map), and the x flag is set to j0ix.
Mathematically, the controlled dynamics is described as

zy ¼ 00∶Γsex
x ½ηse� ¼ tr½φþ

seηse�φþ
se ⊗ j0ih0jx

þ tr½ð1se − φþ
seÞηse�j−ðxÞih−ðxÞjs

⊗ τe ⊗ j1ih1jx;
zy ¼ 10; 01∶I se½ηse� ⊗ j0ih0jx: ðI3Þ

Note that the flag state zy ¼ 11 cannot occur. Finally, the
environment and all flag states are discarded, and the
experimenter has access to the system at t4, concluding
the process.
We now show that there exists no (nonpathological)

unrestricted measurement scheme for this process such that
the statistics observed are classical; i.e., we prove that the
process is genuinely quantum. As in the main text, we
achieve this goal by considering the state of the system to
be measured at the final time t4 conditioned on a history of
identity maps and arbitrary CPTP maps fM1;M2;M3g
implemented at various sets of earlier times. In each case,
by demanding classicality, we end up with a different
constraint on the structure of the POVM required such that
no invasiveness can be detected at the final time, and the
only valid POVMs that simultaneously satisfy all condi-
tions are the pathological ones that do not reveal anything
about the process. The conclusion is that any nonpatho-
logical POVM at t4 will be able to distinguish between
previous implementations of the identity map or an
arbitrary nonpathological instrument at a given time, there-
fore picking up on the invasiveness of (at least some of)

FIG. 15. Genuinely quantum process. The system and environment begin in a maximally entangled Bell state φþ
se. As described in the

text, the process dynamics consists of a sequence of maps, Γsez
z ;Γsey

y ;Γsex
x , that either output φþ

se or else bias the system in either the z, y,
or x basis, respectively [see Eqs. (I1)–(I3)]. The overall implementation of each of these maps is controlled on the joint state of all
previous classical flag states z, y, x, which encode whether or not the system has already been biased. We show that this process is
genuinely quantum by tracking the system-environment state throughout the dynamics, conditioned on whether the identity map I or an
arbitrary CPTP map Mi was implemented at time ti; the labels η

sez
2 ; ηsezy3 , and ηsezyx4 refer to the overall joint state immediately prior to

the interrogation at the relevant time [see Eqs. (I4), (I6), (I8), (I9), (I11), and (I12)]. In particular, we show that there does not exist a
nonpathological POVM Π4 that an experimenter can implement at t4 such that the four sequences fI1; I2; I3g, fM1; I2; I3g,
fI1;M2; I3g, and fI1; I2;M3g cannot be distinguished, thereby proving that the process is genuinely quantum.
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the previous interrogations and leading to nonclassical
statistics.
Consider first the scenario where the experimenter

implements identity maps at the first three times, I1, I2,
I3. In this case, the overall state immediately prior to the
measurement at t4 is

ηsezyx4 ðI1; I2; I3Þ ¼ φþ
se ⊗ j000ih000jzyx: ðI4Þ

The reduced system state is then maximally mixed:

ηs4ðI1; I2; I3Þ ¼
1
2
: ðI5Þ

Next, consider the case where the experimenter imple-
ments the identitymap at the first two times, I1, I2, followed
by an arbitrary CPTP map M3 ≠ I3 at t3. The system-
environment joint state immediately prior to t3 is φþ

se since
the previous identity maps on the system and the dynamics
Γsez
z ;Γsey

y leading up to t3 preserve the initial state; moreover,
the zy flag is in the joint state 00 since both previous Bell
basis measurements are necessarily successful. Now, the
system-local CPTP map M3 ≠ I3 will perturb the joint
system-environment state, so the map Γsex

x (which is imple-
mented due to the joint state of the input flags) only
successfully records the outcome corresponding to φþ

se with
some probability r ¼ tr½φþ

seðMs
3 ⊗ IeÞ½φþ

se�� < 1; other-
wise, the system is biased in the x basis. The total joint
state immediately prior to t4 in this scenario is then

ηsezyx4 ðI1; I2;M3Þ
¼ rφþ

se ⊗ j000ih000jzyx
þ ð1 − rÞj−ðxÞih−ðxÞjs ⊗ τe ⊗ j001ih001jzyx: ðI6Þ

The reduced system state is thus biased in the x basis:

ηs4ðI1; I2;M3Þ ¼
r
2
1þ ð1 − rÞj−ðxÞih−ðxÞj: ðI7Þ

Next, consider the case where the experimenter imple-
ments the identitymapat the first and third times,I1,I3, with
an arbitraryCPTPmapM2 ≠ I2 implemented in between at
time t2. The system-environment joint state immediately
prior to t2 isφþ

se since the previous identitymap on the system
and the dynamics Γsez

z prior to t2 again preserve the initial
state;moreover, the z flag is in the state 0 since the earlierBell
basis measurement is necessarily successful. Again, the
system-local CPTP map M2 ≠ I2 will perturb the joint
system-environment state, so the map Γsey

y (which is imple-
mented due to the state of the input flag) only successfully
records the outcome corresponding to φþ

se with some
probability q ¼ tr½φþ

seðMs
2 ⊗ IeÞ½φþ

se�� < 1; otherwise,
the system is biased in the y basis. The total joint state
immediately prior to t3 in this scenario is then

ηsezy3 ðI1;M2Þ ¼ qφþ
se ⊗ j00ih00jzy

þ ð1 − qÞj−ðyÞih−ðyÞjs ⊗ τe ⊗ j01ih01jzy:
ðI8Þ

In this case, the experimenter then implements the identity
map to the system at t3, which leaves the overall state
invariant. The subsequent system-environment dynamics
Γsex
x will be enacted when zy ¼ 00, i.e., with probability

q: in each such run, the system-environment state is
guaranteed to be in the state φþ

se; thus, the system-environ-
ment state output byΓsex

x will be also. In theother cases,when
zy ≠ 00, the subsequent dynamics will be trivial. Thus, the
total joint state immediately prior to t4 in this scenario is

ηsezyx4 ðI1;M2; I3Þ
¼ qφþ

se ⊗ j000ih000jzyx
þ ð1 − qÞj−ðyÞih−ðyÞjs ⊗ τe ⊗ j010ih010jzyx: ðI9Þ

The final reduced system state is thus biased in the y basis:

ηs4ðI1;M2; I3Þ ¼
q
2
1þ ð1 − qÞj−ðyÞih−ðyÞj: ðI10Þ

Lastly, consider the scenario where the experimenter first
implements an arbitrary CPTP map M1 ≠ I1 at t1,
followed by identity maps at the second and third times,
I2, I3. Just as in the main text, M1 ≠ I1 will perturb the
initial system-environment state, so the map Γsez

z will only
successfully record the outcome corresponding to φþ

se with
some probability p ¼ tr½φþ

seðMs
1 ⊗ IeÞ½φþ

se�� < 1; other-
wise, the system will be biased in the z basis. The total joint
state immediately prior to t2 in this scenario is then

ηsez2 ðM1Þ ¼ pφþ
se ⊗ j0ih0jz

þ ð1 − pÞj0ih0js ⊗ τe ⊗ j1ih1jz: ðI11Þ

The identity map implemented by the experimenter on the
system at t2 does not change this state. Thus, Γsey

y will
subsequently be enacted with probability p, i.e., when
z ¼ 0. In such cases, the system-environment state is φþ

se,
and the output of the map Γsey

y will be also, accompanied by
the classical y flag with the value 0. In the other cases,
system and environment undergo trivial dynamics. Again,
at t3, implementation of the identity map on the system
leaves the joint state unperturbed. Only when the joint state
of zy is 00 will the map Γsex

x be implemented. In each such
run, the system-environment state is guaranteed to be φþ

se,
and thus so, too, will be the output of the map. In the other
cases, trivial dynamics ensues. The overall joint state in this
scenario immediately prior to t4 is then

SIMON MILZ et al. PHYS. REV. X 10, 041049 (2020)

041049-38



ηsezyx4 ðM1;I2;I3Þ¼pφþ
se⊗ j000ih000jzyx

þð1−pÞj0ih0js⊗ τe⊗ j100ih100jzyx;
ðI12Þ

so the reduced system state is biased in the z basis:

ηs4ðM1; I2; I3Þ ¼
p
2
1þ ð1 − pÞj0ih0j: ðI13Þ

We are now in a position to prove the claim that we set
out to, namely, that the process considered is genuinely
quantum. Demanding classicality means that the experi-
menter cannot distinguish whether an identity map or a
dephasing map was implemented at any subset of previous
times. To allow for arbitrary and possibly unrestricted
interrogation schemes, here we have considered the more
general case where the experimenter is allowed to imple-
ment arbitrary CPTP maps, of which any POVM meas-
urement followed by an arbitrary preparation is a special
case. This more general notion of classicality (with respect
to a general, possibly unrestricted, interrogation scheme)
means that the experimenter cannot distinguish between the
implementation of the identity map or the CPTP map at any
subset of previous times and thereby provides a valid notion
of a genuinely quantum process. Above, in Eqs. (I7), (I10),
and (I13), we have calculated the system state that would be
measured at t4 conditioned on the fact that a CPTP map was
implemented at each one of the previous three times [as
well as the case where only a sequence of identity maps was
implemented in Eq. (I5)]. Intuitively, in each of the three
cases where an active interrogation is made, the system is
biased in one of the x-, y-, or z-basis directions, and in the
case where the experimenter interacts only trivially with the
system, i.e., implementing a sequence of identity maps, it is
completely unbiased. The only way that a measurement at
t4 cannot distinguish between these four scenarios is if it is
blind to biases in every basis. The only types of POVM that
can achieve this are trivial, with all elements proportional to

the identity matrix, fΠðx4Þ
4 g ∝ 1 ∀ x4. Thus, there is no

(nontrivial) measurement scheme for this process such that
the full statistics appears classical, and thus, it is a
genuinely quantum process.
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