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Abstract

This theoretical doctoral thesis investigates the collective effects that emerge in
cold atomic systems caused by light-scattering in free space. Two specific cases are
investigated: the collective atomic recoil laser (CARL) effect in a cold gas, without
optical cavity, and a novel cooperative cooling effect via optical binding (OB) with
cold atoms.

As a main objective, this theoretical project investigates the spatial grating
structures and the backward radiation that appears in a cold atomic cloud when
it is irradiated by a single far-detuned laser beam, also known as CARL effect.
While this effect has traditionally been described using a ring cavity, the study is
performed here in free space, in the absence of such a cavity. Both 2D and 3D clouds
show a transition from single-atom isotropic scattering to collective directional
scattering. The effect is shown by the derivation and numerical solution of a set of
multi-particle motion equations coupled by a self-consistent optical field, which is
inspected with both a scalar model and a vectorial model. New original approaches
are used to address the numerical study of the dynamics of the atomic system, such
as molecular dynamics (MD) algorithms.

A second system emerged, from the attempt to understand the main objective,
where a few atoms rearrange themselves into crystalline atomic structures, with a
periodicity between particles close to the optical wavelength. The atomic system
is initially confined into a 2D plane (or 1D string) using two (or four) counter-
propagating laser beams. Due to the multiple scattering experienced by all the
particles in the system, a dipole-dipole force arises among them, generating a non-
trivial dynamical trapping potential landscape that compels the atoms, to self-
organize at distances multiple of the light wavelength. When atoms are rearranged
into an atomic crystal, the force acting on each particle depends on the position of
the others, thus allowing to study the stability of such optically bound structures.

In addition, it turns out that a non-conservative force is generated from the
dipole-dipole interaction, allowing the system to be cooled by controlling the value
of certain parameters. This new phenomenon arises as a direct consequence of the
use of cold atoms instead of dielectric nanoparticles in an OB system. Therefore,
besides the atomic external motion, internal degrees of freedom (DOF) of the atoms
are considered by treating each atom as a dipole. This latter aspect is investigated
using the coupled dipole equations. When multiple atoms are set in line, the cooling
mechanism is collectively enhanced, generating a novel cooperative cooling effect.
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Synopsis

The objective of this thesis is to present collective optomechanical effects in free
space, and these are described in two different systems. The thesis is organized as
follows.

The thesis introduction, Chapter 1, begins by describing how atoms and elec-
tromagnetic waves (light) interact with each other. The chapter keeps digging into
the light-matter interaction thought the scattering effects, which is presented with
several important representatives. Detailed description of what cold atoms are and
how cold or ultra-cold clouds are obtained is also provided. These atoms can be
exploited to harness and amplify collective effects, such as the amplified scatter-
ing phenomenon, labelled as the collective light scattering effect, which are also
introduced. Several main cooperative phenomena are discussed, resulting from the
collective scattering produced by cold atomic ensembles when they are irradiated
by light.

The body of the thesis has a couple of chapters dedicated to two collective
effects. One the one hand, in Chapter 2, an effect presented in 1994 and regarded
as collective atomic recoil lasing (CARL) [1] is introduced and extended into free
space systems of two and three dimensions. The effect is also investigated taking
into account the vectorial nature of an electromagnetic wave. On the other hand,
in Chapter 3 a novel cooling effect is presented, linked to optical binding (OB) [2]
and based in a one-dimension cold atomic system.

There are two chapters that complete the content of the main body of the thesis:
Chapter 4, contains both the summary or conclusion and a short outlook for each
of the two main topics presented throughout the body of the thesis, and a chapter,
called Appendices, which includes a collection of addenda containing more details
about the concept presented in the main body of the thesis. This last chapter is
composed of three full analytical derivations and a couple of secondary numerical
issues. Furthermore, in addition to the usual bibliography (Chapter References),
the three published Physical Review A papers about the results presented in this
thesis are included in Chapter 5.

Finally, assisting all readers of the digital version of the thesis: sections, equa-
tions, figures, chapter or section citations, references, allusions to certain page
numbers, and entries of the table of contents, are defined as hyperlinks pointing to
the quotation. Moreover, any page number jump back to the table of contents.
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Chapter one

Introduction: basic concepts,
elements and effects

The coming chapter serves as an introduction to the general concept of this PhD
thesis: collective phenomena emerging from the light scattering in cold atoms.
The chapter tries to level the knowledge of the reader in topics like: light-matter
interaction, cold and ultracold atoms, atomic clouds, light scattering, and collective
effects. The listed concepts may seem trivial for the trained mind, but they are not
so common for the general public. In addition, the chapter introduces the progress
achieve to this day, on light scattering, and lay the grounds for the understanding
of the state-of-the-art collective effects emerging from the interaction between light
and cold atoms presented in the two main chapters of this dissertation.
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Chapter 1. Introduction: basic concepts, elements and effects

1.1 Light, matter and light scattering

Atoms are fundamental particles of matter elements, and their internal distribution
is widely accepted, since a model of their structured was introduced by Bohr in
1913 [3]. They are composed of two fundamental parts: the central nucleus, includ-
ing neutrons and protons, neutrally and positively charged, respectively; and the
orbiting electrons, negatively charged and circling around this centre. The elec-
trons constituting an atom are referred to as bounded electrons and they distribute
themselves into different shells or energy levels. Only seven chemical atomic ele-
ments have their outer shell considered to be full, such elements are called noble
gases and they are reckoned to be highly non-reactive. Conversely, the rest of the
known elements have a semi filled outer shell, which makes them more susceptible
to undergo variations of their electronic configuration. In particular, the electrons
contained in the exterior energy level, the valence electrons, are more susceptible to
be excited to a different stage, or even separated of the atom if the right amount of
energy is provided; action that transforms the neutral atom in a positively charged
ion. In addition, an electron can be absorbed by an atom if the valence band (shell)
is not complete, converting the atoms in a negative ion.

Besides matter, there exist electromagnetic radiation, which is ordinarily de-
scribed as light, and it extends from radio waves, passing through the infra-red
and visible light, until the highly energetic gamma radiation. The electromagnetic
waves are composed of elementary quantum particles called photons, which are
discrete packets of electromagnetic energy that behave both as ballistic particles
and as waves. Therefore, they possess wave-particle duality, and they can be ac-
curately described using a quantum mechanical approach. The two simultaneous
properties of light were linked through the theory developed in the doctoral thesis
of de Broglie [4] in 1924, where the wavelength is obtained as the Planck constant
divided by the relativistic momentum of the particle, λ = h/p.

A practical simplified model is generally adopted when considering an atom, in
it the particle is considered as a two-level system. In such system, the atoms are
featured to have two energy levels: a higher or excited state and a lower or ground
state. This approximation is conceivable because in real atoms the energy levels
are split into sub-levels, always leaving one of the bounded electrons less attached
to the nucleus than the rest. Following this model, when an atom is irradiated
by an electromagnetic field, and if the photons building the incoming field have
an energy close to the energy difference between the ground and the excited state
(see Sec.1.2), a photon will be absorbed from this optical field. Consequently, the
action will allow to promote one of the outer electrons from its ground level to a
higher energy level, leaving such atom in an excited state and generating an electric
dipole in the atom itself. Eventually, the atom (i.e., the electron) will decay to its
original ground state, emitting a photon with an energy equal to the energy of the
electronic transition. The new photon will most likely be emitted with a different
direction than the incident one, generating a new radiation mode.

2



1.1. Light, matter and light scattering

Light-matter interaction: light scattering

The phenomenon is regarded as a primal light-matter interaction effect and it
can be defined as the dispersion of radiation (light) into a range of directions
as a result of physical collision or interactions with a particle of matter. Light
scattering phenomena have been widely categorized throughout history into several
interaction between light and matter. This type of light matter interactions can
be distinguished attending different aspects [5], such as: the ratio between the
particle dimensions and the light wavelength, which will determine the whether
the collision is elastic or inelastic, the energy of the incident photon, and the initial
bounding state of the scatterer (particle that absorbs and re-emit a photon). For
instance, Rayleigh scattering [6], which is produced by particles that have a much
smaller diameter than the incident light wavelength, less than one-tenth; represent
the light scattering effects occurring throughout this dissertation.

Some of the main light scattering phenomenon are: Mie scattering [7] involves
particles whose diameter is in the order of the wavelength of the incident electro-
magnetic field (good analysis found in [8]); Raman scattering or Raman effect [9],
scattered photons can have higher or lower energy than the absorbed one (anti-
Stokes or Stokes Raman scattering); Compton scattering [10], due to free charged
particle, usually electrons. Thomson scattering [11], the incident photon’s energy
is smaller than the electron’s mass energy, yet higher than its binding energy. Bril-
louin scattering [12], interaction between a photon and a phonon.1

Figure 1.1: Schematic diagram of a scattering event, where a photon hits a particle,
generating a scattered photon and the displacement of the particle. Such particle
could represent an atom, an electron (free or bound), an ion or any other particle
at the atomic scale.

There exist other more specific light scattering effects like: Rutherford’s, charged
particles mediated by Coulomb interaction; Mott’s, relativistic electrons; Deep
inelastic, represent Rutherford extension to higher energies; Møller’s, electron-
electron in quantum field theory; Bhabha’s, electron-positron; Tyndall’s, sunlight
beams visible due to presence of dust particle; among others.

1A phonon is considered to be a discrete unit of vibrational mechanical energy that arises
when atoms inside a crystal oscillate, as the photon is a discrete unit of electromagnetic energy.
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Chapter 1. Introduction: basic concepts, elements and effects

1.2 Cold atoms

The idea that all physical elements are formed by sets of atoms, is nowadays trivial
for most people. Nonetheless, there are two not-so-well-known subcategories that
have emerged in recent decades: cold and ultra-cold atoms. These specific subsets
of matter are vaguely familiar to the general scientific community and truly trendy
within the circle of atomic, molecular, and optical (AMO) physics. Atoms are
said to be cold or ultracold when their temparature has been reduced to very few
millikelvins (T . mK) or to few tens of microkelvins (T . µK) and beyond,
respectively. The topic has become rather interdisciplinary, besides the awaken
interest among scientists from atomic physics, the topic has also gained attention
in nuclear, condensed matter, solid state and high energy physics, along with the
fields of quantum information, quantum computing and quantum optics, among
others (check Fig. 1.2 for a quick overview).

Figure 1.2: Concept map detailing several physics fields where cold atoms are
being engaged, among others, like determining fundamental constants or quantum
networking. Scheme based on the mind map depicted by the Department of Physics
of the Ohio State University [13].

The alkali metals (generally rubidium “Rb” or caesium “Cs”) has been the
preferred atomic group when it comes to cooling atoms, although currently, an in-
creasing number of physics groups are working with alkaline earth metals (mostly
strontium “Sr”). All alkali metals have a stable excitation/decay electronic transi-
tions (between 2S and 2P), that operate in close-loop cycles, and whose wavelength
are easily achievable with the current existing laser technology. For instance, the
exploited element throughout this thesis is 85Rb, which (main) transition is located
in the near infrared.

It has already been exposed how atoms can modify the energy and propagation
of photons through scattering, but at the same time, photons can alter the motion
of atoms by applying or inducing forces on them. Based on that principle, the
field of laser cooling and trapping of atoms, together with the concept of cold

4



1.2. Cold atoms

atoms, were born in the mid-1970s. At that time, a technique to decelerate atoms
from low temperatures to ∼100µK (or several hundreds of µK), based on the
forces associated to light absorption and scattering by a moving atom [14, 15], was
proposed. The cooling procedure was experimentally proven shortly after, in the
early 1980s [16]. The technique takes advantage of the momentum transfer between
a two-level atom and a laser beam, whose frequency is close to resonance with the
atom’s electronic transition. It is achieved by employing the effects of a paramount
well-known force, which is regarded with many names: dissipative force, scattering
force, light pressure force or, frequently, radiation pressure (force).

Radiation pressure is considered to be dissipative because the action of such
force can not be reversed. It was introduced by Keppler [17] more than three cen-
tury ago, formalized by Maxwell [18], back in 1862, and experimentally proven at
the beginning of the 20th century by Lebedew [19], Nichols and Hull [20]. The cool-
ing method is briefly outlined, and the fundamental physics allowing its operation
are explained using an oversimplified system composed of a two-level atom and a
coherent light field.

Doppler cooling in two-level atoms

A laser beam is employed to irradiate a two-level atom and its wavelength is set to
be close, but not equal, to the difference between the two energy states of the atom.
The field’s frequency is accordingly tuned below the atomic resonance in order to
take advantage of the Doppler effect [21], which allows the momentum exchange
between the photons of the field and the atom. In particular, the Doppler shift
makes the radiation pressure force to depend on the atom’s velocity (F = −βv),
damping the atomic motion thus. In other words, the Doppler effect describes
how the atom sees the frequency of the incoming photons, which are perceived
to be compressed towards higher frequency values when the atom is moving in
opposite direction to the light propagation. Consequently, the light beam needs
to be detuned with a lower frequency than the one given by the atom’s electronic
transition, hence favouring the absorption of a photon: from the atom’s point of
view, the energy of a photon will match the energy difference between its ground
and excited state. Due to the strong dependency of this cooling mechanism on
the Doppler effect, the procedure is referred as Doppler cooling [14, 15], and is
characterised as a laser cooling technique.

When an absorption of a counter-propagating photon takes place, the atom
is forced to slow down, losing some kinetic energy or temperature in the process.
Although associating a dissipative mechanism with a temperature is not completely
appropriate, since in thermodynamics this parameter is used to define the state of
a closed system in thermal equilibrium with the environment, in the field of atomic
physics it is customary to allude to such quantity to characterize a set of atoms,
instead of referring to its average kinetic energy. Due to the the equipartition
theorem, the average kinetic energy of an atomic vapour can be calculated from
the system’s temperature < Ek >= kBT/2.

It can be said that the discovery of laser cooling unveiled a new world, in
which Doppler cooling is without a doubt the most elementary type of laser cooling

5



Chapter 1. Introduction: basic concepts, elements and effects

mechanism. Cooling matter enabled disciplines like condensate or quantum gas
physics and quantum state engineering. In fact, as mention earlier, cold atom have
many application in an increasing number of scientific fields and topics, quoted in
Fig.1.2, yet there is a relevant property that is interesting to highlight. When atoms
are cooled under certain temperature, the large de Broglie wavelength acquired by
all atoms in a system, allows to expose quantum phenomena on a macroscopic scale.
This peculiar characteristic grant the scientist in atomic physics the opportunity
to probe the properties of theoretical quantum system at a macroscopic level. The
resulting new state of matter will be introduced in the coming Sec.1.3.2.

Doppler limit

It seems easy to be inclined to believe that this representation is not necessary
at all, thinking that the dissipative process could be repeated as many times as
necessary until the atom comes to a complete stop, yielding a zero temperature.
After all, an arrangement of three pairs of laser beams could be set to achieve the
momentum transfer between photons and the moving atom in every axial direction
(the subject is covered in segment Cooling an atomic cloud: Optical molasses of
the coming Sec.1.3). However, such outcome is not physically possible, because
there exist a heating process due to the momentum fluctuations caused by the
atom’s recoil when it spontaneously emit photons. In these fluctuations, occurring
at an average rate of Γ, the atom receive a momentum kick and recoils, changing its
momentum by an average value of ~k. Moreover, its total kinetic energy is modified
by at least an average value equal to the recoil energy Er = ~2k2/2m = ~ωr; being
k the wavevector of the photon, ~ the reduced Planck constant and m the atomic
mass. The mean momentum resulting from all kicks averages to zero, but the mean
of the squared momentum, which links to the kinetic energy via Ek =< p2 > /2m,
is not zero. The general picture of the momentum fluctuation is represented by
a Brownian motion2 of the particle in the momentum space, i.e., a random walk
of the velocity. Therefore, the sum of recoil kicks induced by many spontaneously
emitted photons prevents the system from attaining a zero value for the atom’s
kinetic energy; what is more, it adds a heating mechanism to the cooling process.

The diffusion (heating) mechanisms and the dissipative force of the Doppler
cooling compete between each other and their dispute leads to a steady state value
of the kinetic energy. By considering the system to be away from saturation (linear
regime that avoids stimulated emission) and equating the powers of both cool-
ing and heating mechanisms, the steady-state kinetic energy of the atom can be
calculated. The energy heating rate is given by Γ~ωr, and the cooling power is
obtained from the rate of momentum’s loss (~k · kv, with kv as the detuning or
rate) multiplied by the velocity ~k2v2. When the two expressions are equated, the
squared velocity v2 = ~Γ/2m of the steady-state can be obtained. Then, this veloc-
ity can be substituted using the expression of the kinetic energy derived from the
equipartition theorem, Ek = mv2/2 = kBT/2, exposing the minimum temperature

2A Brownian motion describes the dynamics of a particles that constantly undergoes small
and random fluctuations in a medium

6



1.2. Cold atoms

achievable through a Doppler cooling process known as the Doppler temperature
(TD). Since this temperature represents a lower bound, it is also refereed as Doppler
limit, being usually expressed as:

kBTD =
~Γ

2
; (1.1)

where kB and ~ are the Boltzmann and Planck constants, respectively, and Γ is the
linewidth or decay rate from the excited to the ground state. The full derivation
of this limit and a better understanding of the concept can extracted from several
renowned published literature, like [22, 23].

It is shown in Eq. (1.1) that the limiting temperature for the Doppler cooling
technique is directly dependent on the linewidth of the atomic transition or decay
rate Γ. However, the limit indirectly depends on the atom’s squared mean velocity
of the atoms, that in turn depends on the detuning or Doppler shift,3 hence exposing
the limit’s dependency on the difference between the light frequency and the atomic
resonance ∆. The typical value of Doppler temperature is usually around 100µK,
so this technique is just the first step in the cooling process of matter. For future
references, and considering that the present dissertation is based on Rubidium
atoms, the Doppler temperature of the D2 transition of 85Rb [24] is calculated to
be ∼145µK.

Breach of Doppler limit: multilevel atoms

The first cooling experiments, attempting to measure the temperature from a
cooled three-dimensional set of neutral atoms, seemed to agree with the Doppler
limit [25, 26]. However, this threshold was experimentally overcome in 1988 [27],
which somewhat made the Doppler temperature to appear as an artificial limi-
tation. The physicist involve in this latter experiment, employed up to four dif-
ferent methods to measure the temperature of a sodium (Na) gas, among which
the nowadays widely extended time-of-flight (TOF) method4 was included. In
each of the experimental outcomes a temperature below the one predicted by the
Doppler limit (∼10µK alkali atoms) was measured, being some measurements ap-
proximatly equal to a tenth of the predicted Doppler temperature. The breach of
the Doppler limit was ratified for a sodium gas in [28, 29] and for a caesium (Cs)
gas in [30–32]. In addition, another two contemporary experiments recorded aston-
ishing low-temperatures for 4He [30] and Cs [33], where the recoded temperatures
were around 3µK, hence 120 and 50 times lower than the predicted Doppler limit,
respectively.

3A moving atom, with velocity v, can match with the Doppler shifted laser frequency ω if the
angle θ between such atomic velocity v and the light wave vector k satisfies −ωD = ω − ωa =
kv cosθ = ∆; being ωa the resonance frequency. For a frontal collision cosθ = −1, hence ∆ = kv.

4In the TOF method, the light beams involved are switched off and the atomic ensemble starts
to expand as a consequence of the temperature of the atoms. Due to gravity the atoms start falling
and go through a a probe laser light, recording the resulting fluorescence. The measurement has a
temporal spread, caused by the ensemble’s expansion, which allows to determine the temperature
of the atoms when it is calculated.
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Chapter 1. Introduction: basic concepts, elements and effects

The reason for the inconsistency of the two-level model comes from the fact
that the Doppler cooling temperature is limited by the natural atomic linewidth,
and only certain atomic species, with addition controlling measures, are subjected
to this limit. The model works on elements with the presence of a closed cycling
transition, granted by a specific internal energy level structure, which is given
when alkali metals, alkaline earth metals and rare gasses are considered to have
no degeneracy of their energy levels (or suppressed in some way). Therefore, the
two-level atom model can only be applied to atoms where the light field couples
a single ground and excited state, which can be achieved with a low intensities
optical field and, in 1D, with a pair of counter-propagating laser beams with no
polarization gradient (see segment Sisyphus cooling in Sec. 1.3.2).

Conversely, real atoms are composed of several energy levels, which makes the
interceding light field to couple with more than two levels at the same time. The
strength of the atoms multiple transitions capacity is defined by the orientation
of its atomic dipole moment with respect to the polarization of the light, which
has also been neglected so far. The multilevel nature of the atoms, allows the
ground state to degenerate into two states Zeeman sub-levels and opening the
possibility for the atom to be transferred from one ground sub-level to another by
a fluorescence cycle. Consequently, it appears an additional neat decay rate from
one sub-level to the other one that can be defined as Γ′, representing the width of
the degenerate ground state, that is much smaller than the excited state decay rate
Γ. The probability of pumping the atom into the new ground state is higher than
the probability to do it into the excited state, which explains why slow moving
atoms are able to be cools down even further.

In summary, the experimental measurements of cooled gasses’ temperature
forced an update on the models describing laser cooling, because they made clear
that, in a 3D cooling system, the oversimplified two-level atomic structure is sub-
optimal. A good contrast study comparing the two-level theory of Doopler cooling
in a 3D system and the the theories of multilevel cooling can be found in [34].
Consequently, new models and novel techniques for cooling and trapping atoms
to explain and to control the achievement of these surprising temperatures, below
the Doppler limit, were soon proposed. For the sake of naming a case example,
the laser cooling technique known as resolved sideband cooling can be referred,
which is a technique that is applied in cycles using a harmonic trapping frequency
that exceeds the atomic transition rate from ground to excite level. The idea is
originally attributed to Wineland and Dehmelt [15], and the experimentation was
initially performed in [35], but its contemporary meaning was proven some years
latter in [36]. Nevertheless, before applying these so-called sub-Doppler techniques,
atoms are usually pre-cooled to the Doppler limit employing the Doppler cooling
mechanisms. The most common sub-Doppler techniques, together with a more
specific explanation on the Doppler limit breach, are briefly presented in Sec. 1.3.2.
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1.3. Atomic ensembles with low temperatures

1.3 Atomic ensembles with low temperatures

Along the current subsection, it will be presented the procedure that is often fol-
lowed when cooling atoms. The first subsection contains an initial segment re-
porting how to cool a large assemble of atoms to reach the Doppler limit, and the
subsequent step encompass the tools employed to stabilize this cold vapour. The
second subsection, and the final part, focusses on overcoming the temperature that
can be obtained in Doppler cooling —see Eq. (1.1)—. However, before describing
the usual procedure employed for cooling and trapping matter, a short digression
on the active range or capture temperature of a cooling technique is introduced.

Capture temperature

Any cooling technique has a velocity threshold above which the cooling damping
force, proportional to the velocity, is not effective. This limit is measured by the
capture velocity and, in laser cooling, it is defined as the ratio between the atomic
decay rate Γ, and the radiation wavevector k. As the Doppler limit, this velocity
can also be associated to a characteristic capture temperature. The average kinetic
energy dependency either on the temperature or the average mean square velocity,
is given by the equipartition theorem by the expression Ek = mv2

c/2 = kBTc/2.
For the Doppler cooling mechanism, since the capture velocity vc ≡ Γ/k [22], the
corresponding capture temperature is defined as:

kBTc =
mΓ2

k2
, (1.2)

where the already defined m represents the mass of the atom, Γ the decay rate, k
the wavevector and kB the Boltzmann constant. Although this temperature sets a
limiting range within which the Doppler damping force can be applied, there are
several techniques that grant the means to enhance that range beyond such velocity:
high light intensity [37], inhomogeneous magnetic field [38], curved wavefronts [39],
among others also cited in [22].

1.3.1 Cold atomic clouds

The assembly of atoms into a stable cold atomic vapour is frequently called “cold
atomic cloud”. It is customary to have some number of atoms between 106 and
1010 in these clouds. The continuous chain of events generated by the constant
absorption and re-emission of photons by the atoms in a system, will determine
the diameter of the atomic cloud. This can be explained by following the random
walk experienced by a photon as it jumps from one atom to another. Initially, a
so-called “first” atom that emits a photon will recoil from its position, towards the
backwards direction of the axis outlined by the emitted photon. Next, a “second”
atom absorbing the previously emitted photon will be pushed away, along the
forward direction of the photon, due to the momentum exchanged with the photon.
The push perceived by this second particle will be proportional to the intensity of
the light coming from the first one, ergo the photon. The intensity can obviously
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Chapter 1. Introduction: basic concepts, elements and effects

be derived dividing the power of the scattering light by the squared of the distance
separating the two atoms. All this process leads to a repulsive force that scales as
a Coulomb force, which arbitrates in the final size of the cloud [40]. Usually, cold
atom ensembles have a maximum diameter of a few millimetres, typically 1 or 2
millimetres. The usual techniques to cool and assemble atoms into a cold atomic
cloud are now briefly presented.

Cooling an atomic cloud: Optical molasses

Forming a system of N � 1 cold neutral atoms is initially accomplished with a
technique named optical molasses [25], which was probed in the mid-1980s; up
until that time, only ion cooling had been explored[35, 41]. This technique aids
to slow down a cloud of neutral atoms to the Doppler limit fixed by the element
employed, due to the exposed balance between recoil heating and Doppler cooling.
It consists in a configuration of three pairs of mutually orthogonal laser beams,
where every couple of lasers is orthogonal to the other two pairs, i.e, drafting a
three-dimensional axis of coordinates. As a result of such configuration, atoms
endure a friction force in any of the three spatial dimensions, due to the Doppler
cooling mechanism resulting from the interaction of any laser beam and the atom’s
velocity component that points towards this beam. Therefore, due to the tuned-
below-resonance laser beams, it is like the atoms were experiencing a confinement in
a viscous medium; hence the given named for this technique. Nonetheless, the big
issue that this approach presents, is that it does not trap the particles permanently,
because sooner or later the atoms diffuse, escaping from the centre of action of the
three pairs of lasers. The required next step would be to obtain a stable atomic
gas, a mechanism which keeps the particles from diffusing out of the system.

Trapping a cold atomic cloud: Magneto-optical trap

The method that is most widely adopted for cooling and trapping atoms is the
magneto-optical trap or MOT and it was validated during the last half of the
1980s [42]. The MOT is a hybrid system, because besides the three counter-
propagating mutually perpendicular laser pairs that cool the cloud, it includes
a magnetic trap that keeps the atoms from sliding away from the radiation centre.
The reason why these hybrid systems are broadly employed for cooling matter, is
because they are rather simple experiments to build and they have been proven to
be robust against the undesirable systematic errors. In addition, they have a high
capture velocity/temperature, comparing with the ones achieved by the optical
molasses, being able to trap atom at room temperature. The capture velocity of a
magneto-optical traps is defined as the maximum velocity an atom can have when
entering the trap at one edge, that will become null by the time such atom reaches
the other edge of the trap. The complete arrangement of a MOT can be inspected
in Fig. 1.3. The modus operandi of such apparatus, together with the setting of its
parts, is following briefly described.

The two counter-propagating beams in every cardinal direction are set with op-
posed circular polarization, fixing one with a clockwise rotation σ+ and the other
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1.3. Atomic ensembles with low temperatures

Figure 1.3: Magneto-optical scheme. The magnetic field (blue arrows) is generated
by an anti-align Helmholtz magnetic system, with the current flowing clockwise
(I+) in one coil and counter-clockwise (I−) in the other one. The optical molasses
has three pairs of counter propagating laser beams (in red) with σ+-σ− polariza-
tion: one with a right hand circular polarization σ+ and the other one with its
counterpart σ−. This figure, showing how to generate a cold atomic cloud (in
yellow), is an adaptation from the one compiled in [43].

one with a counter-clockwise rotation σ−. The polarization of every laser pair could
also be fixed to be linear with opposing perpendicular orientation using a lin⊥lin
scheme, but the σ+-σ− polarization is more commonly employed. The molasses
system is intertwined with a couple of identical air-cooled circular coils, that gener-
ate a weak quadrupole magnetic field. The currents within the Helmholtz coils are
anti-aligned, causing them to flow in the opposite direction from each other. This
configuration creates a net field that is zero at the centre of the system ( ~B = 0),
whenever the coils are separated 5/4 times their radii. The task of the coils is to

generate a coaxial inhomogeneous magnet field ~B, that will generate an extra level
of degeneracy in the quantized energy distribution of the atoms (Zeeman effect),
pushing them towards the centre of the optical molasses. The demonstration of
such magnetic action dates from the early 20s of the 20th century [44]. There are
several published text books that can be addressed for a much broader explana-
tion [22, 23], along with many papers. For instance, a straightforward overview of
a MOT with a Rubidium atomic cloud can be found in [45].

1.3.2 Ultracold atomic clouds

Although the temperatures achieved with the laser cooling techniques introduced
so far are extremely low, considering that the temperature in outer space is close to
3K, there exist several methods that allow to reach even lower temperatures, e.g.,
grey-molasses [46]. However, there are two popular approaches, both developed in
the mid-1980s, that successfully acquire lower temperature than the Doppler limit:
Sysiphus cooling [47] and evaporative cooling [48]. Both experimental techniques,
or their consequent results, were awarded the physics Nobel prize in 1997 and in
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2001, in that order. The full explanation on how these two cooling methods operate
falls beyond the scope of this thesis work. However, both technique will be briefly
introduced. The detailed description of each one of them can be acquired from
many different references, including the Nobel lectures of 1997 [49] (together with
optical molasses [50] and MOT [51]) and 2001 [52, 53], respectively. Nevertheless,
before proceeding any further, it is important to introduce another characteristic
temperature it is refereed as the recoil temperature and it can be defined as the
lowest attainable temperature with any laser cooling technique.

Recoil temperature

As it has been introduced earlier that the stimulated emission of a photon can be
controlled using a lower intensity pump. Once an atom has been excited to an
excited state, it will eventually and unavoidably decay to a ground state. This
random emission produce a small variation in the atom’s kinetic energy, triggering
a heating mechanism that defines a cooling limit. The resulting kinetic energy can
be linked to the recoil velocity, which can be determined by dividing the momen-
tum of the involved photon ~k by the mass of the atom, rendering vr = ~k/m.
As in the Doppler limit, it can also be related to a temperature, which is straight-
forwardly labelled as the recoil temperature. This characteristic temperature is
usually regarded as the lowest temperature for any optical cooling processes and,
once again, it is easily determined making use of the kinetic energy derived from
the equipartition theorem, Ek = mv2

r/2 = kBTr/2, which gives:

kBTr =
~2k2

m
. (1.3)

A more thorough derivation for such temperature is covered in several publications,
like the broadly used when teaching/learning atomic physics written by Christo-
pher J. Foot [23], or others like [22]. In order to have a fair comparison of the
enhancement that this limit means to the already known Doppler temperature of
the D2 transition of 85Rb (145µK), the recoil temperature for this elements is an-
nounced. The temperature is roughly a four hundred times —more than two orders
of magnitude— lower than the Doppler limit, being close to 357nK [24].

Sisyphus cooling

It has been referred how the Doppler cooling was crushed by the experimental result
obtained when cooling an atomic cloud in a three-dimensional system, together with
the incomparability of the two-level system to explain these results. Therefore, a
novel model able to explain these low temperatures was presented by the groups of
Claude Cohen-Tannoudji [31, 54] and Steven Chu [29, 55], who defined and exploit
a new cooling mechanisms to reach sub-Doppler temperatures. The mechanism
was labelled as polarization-gradient cooling, nowadays more often regarded as
Sisyphus cooling [56], because it is based on the evidence that the optical field’s
polarisation varies with position in the optical molasses.

In any direction of an optical molasses a dipole potential is defined, due to
the standing wave generated by the pair of counter-propagating laser beams. The
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potential gradient caused by the specific opposing polarizations (lin⊥lin or σ+-σ−)
defined in the standing wave of each axis, which changes its orientation along a
wavelength distance, affects the atoms while it moves along such axis every. The
atoms climb up the hills of that potential, loosing some of its kinetic energy, and
that loss is enhanced further in the process of excitation an decay of the atom
between the degenerate ground state and the excited stated. The atom has higher
chances of being optically pumped to the excited state once it reaches the top of
the higher degenerate ground sub-level, and it has higher probability to decay from
the excited state into the valley of the degenerate ground sub-level. Therefore, like
in the Sisyphus myth,5 the atoms will always travel uphill, gradually reducing its
kinetic energy. By exploiting the polarization-gradient mechanism, atomic cooling
can be achieved in standing waves with frequencies below the atomic resonance
(red-detuned) [27, 33] and above an atomic resonance (blue-detuned), using a grey
molasses [57] or a dark optical lattice [58].

Evaporative cooling

Evaporative cooling consist in a selective removal of high-energetic atoms from an
atomic cloud, together with the collision balance of those that remain in the sys-
tem. The first process reduced the number of atoms in the system, decreasing the
phase-space density of the cloud,6 and the second one needs a low phase-space den-
sity in the ensemble to be optimal. Nevertheless, to achieve an effective cooling the
phase-density needs to be sufficiently high. Both techniques can be applied simulta-
neousness to increase this density by shrinking the ensemble overcompensating for
the loss of atoms [59] ; thus decrease the temperature of the cloud. Simplifying the
scheme, evaporating cooling works much like cooling a cup of hot liquid (e.g. tea or
coffee), by blowing on the surface one can cool down such liquid. Although, in this
case, instead of blowing over cold cloud, it is done by increasing the phase space
density. The evaporative cooling mechanism was originally proposed by Hess in
1986 with the goal of achieving the Bose-Einstein condensate or BEC. He targeting
to trapping and cooling of hydrogen atoms, which was successfully experimented
a couple of years later [48]. The technique was complemented with laser cooling
to achieve the same goal for alkali neutral atoms, and a simple formalism was
introduced in 1994 [60].

Even though, the main flaw of the evaporating cooling technique is that the
atomic density of the cloud is sorely diminish, it was the first technique to keep
it high enough to achieve a 70-years-old theorized rare state of matter, the Bose-
Einstein condensate [61] (physics Nobel prize 2001). Under a certain critical tem-
perature, atoms start to condense in a single quantum state, overlapping into a
unique synchronized wave. The average temperature in the BEC are below 1µK
and under such threshold, matter is no longer labelled as cold, but as ultracold

5Sisyphus was a Greek mythology character whom the gods punished to roll up a boulder to
the top of a hill, which would roll off every time it hit the top.

6Quantum mechanics shows that each state must occupy a certain volume in phase space all
by itself, hence the number of states per element of volume in phase space is the phase-density of
states
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atoms. The amount of atoms present in this ultracold clouds can decrease a couple
of orders of magnitude from the smallest cold atomic ensemble, down to 104 or
a few tens of thousands. An important advantage of evaporative cooling is that
it has no fundamental lower limit, granting the possibility of achieving tempera-
tures below the sub-recoil limit. Other techniques that allow to attain sub-recoil
temperatures are velocity-selective coherent population trapping [30], and Raman
cooling [62].

Figure 1.4: Rearranged and embellished sequence of images (adaptation from
NASA’s Cold atom Laboratory (CAL) website [63]), showing a BEC formation
as the temperature is decreased under a critical temperature (Tc), below which
atoms have practically zero kinetic energy. The diameter of the atomic cloud is
reduced and the red areas (or peaks), in each figure, indicates higher density.

An important observation, although not relevant for the present work, is that
the introduction of an optical resonator7 assists to achieve a stable cold system
and to reach very low temperatures. The possibility of cavity-assisted cooling for
a single atom was first investigated at the end of the 20th century [64], based on
previous experiments of quantum electrodynamics assisted with an optical cavity
(CQED) [65, 66]. The system losses can be controlled trough the cavity losses, or
cavity linewidth κ, instead of occurring in random fluctuations due to the photon
spontaneous emission by the atoms [67]. Adding such cavity reduces the recoil
heating and grant the opportunity to manage other problems, like the photon re-
absorption or the pumping into different states. In addition, the temperature is
limited by the cavity linewidth and can be set to kBT ≈ ~κ, far below from the
Doppler limit —see Eq. (1.1)—. A good summary on the matter can be found in
a theoretical review from the begging of the 2000s [68].

7An optical cavity or optical resonator is an arrangement of optical components (mirrors) that
forces a beam of light to propagate in a closed loop path, e.g., a laser device contains an optical
cavity as one of its components, causing a gain amplification due to constructive interference.
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1.4 Collective light scattering in cold atomic clouds

The explanation of what constitute the light scattering effect, together with a few
renowned examples, has been given in previous subsection 1.1, but so far, the phe-
nomenon has only been discussed for an scenario where a lone scatterer is present.
When a cold atomic cloud —regarded as a two-level system— is irradiated by an
optical field within a certain parameters, the response of the system is reshaped
greatly as a result of the collective behaviour originated from optical forces pro-
duced by several scattering events. Both the atomic cloud and the external field
hold the key to this feedback: the laser via its intensity, its angle of incidence and
its detuning with respect to the electronic transition of the atom; the clouds by
means of its dimension, density, and shape. Every atom in the cloud is affected
by the scattering produced by the others, that is the reason why many studies
of collectivity with cold and ultracold atoms exploit optical cavities [69, 70]. An
optical resonator allows to increase the interaction time between matter and light.
A review on the cavity-generated dynamical optical potentials using cold atoms
can be found in [71]. Moreover, a very short review on the cooperative dynamics
of collective light scattering phenomena using optical fibres, lasers and amplifiers
can be found in [72].

As it has been shown, the average momentum of an atomic cloud can be com-
parable to the recoil momentum resulting from light scattering, which means that
light-matter interactions contribute significantly to the internal and external dy-
namics of each atom. When similar multiple-scattering events happen in the same
system, they act together and generate a varied range of collective phenomena,
which outcome does not result from a direct sum of the individual scattering events
(or classical result for many-body system). Generally, it is of extreme importance
to control these cooperative effects in cold atomic ensembles, by developing an in-
terpretation both at a quantum and at a classical level. If such interpretation is
obtained, making possible the extraction of conclusions from the system, new phys-
ical properties can be unveiled. In addition, atomic clouds seem to be outstanding
study cases to investigate deviation from the classical many-body features.

The collective phenomena in quantum optics, more precisely the coherent spon-
taneous radiation caused by gases when these interact with an electromagnetic field,
were originally introduced in 1954 by Dicke [73]. At the time, Dicke had to come
up with a new solution to describe the measured fluorescence light from an excited
atomic vapour, after establishing the incapability of the accepted model. Back
then, particles were considered to behave as independent radiators, where they
did not see each other. Hence, within a cloud of neutral atoms, one would ex-
pect to have similar behaviours to those of occurring in an ideal gases, seeing only
short-range interactions (collisions) among the particles. However, when a system
composed of some millions of atoms is forced to react with even the least complex
source of light (a very weak incident field, e.g., a photon) and if the density of the
cloud is sufficiently large, collective/cooperative responses are generated. In reality,
every scatterer of an atomic cloud can be devised as a new wave front, since any
re-emitted photon from a single atom can be reabsorbed by another one. Thus,
every time an atom re-emits a new photon, the whole cloud will see it as a new
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spherical wave. The sum of N events translates into a collective behaviour of the
cloud [40], transforming N one-body problems into a unique many-body problem.
As a peculiar example, the radiation pressure that determines the size of the cloud
can successively lead into photon bubbles [74].

Nowadays, there is still some controversy on how to label the many-body prob-
lems produced by an atomic cloud when it interacts with light. They are mainly
cited as collective or cooperative effects and can stem from local or long-range inter-
actions, being the latter ones sometimes wrongly regarded themselves as collective
effects. There have been attempts to elucidate which are the distinct characteris-
tics that allow to distinguish between collective and cooperative phenomena [75].
An easy-to-grasp definition is given on the website of the Deutsches Elektronen-
Synchrotron (DESY), where cooperativity is seen as a consequence of collectivity,
and it quotes [76]: “Cooperative emission describes a number of optical phenom-
ena that result from the collective interaction of an ensemble of identical two-level
atoms with a common, resonant radiation field”. Nonetheless, Dicke’s statement
that cooperative/collective effects are those occurrences not explained by the tra-
ditional single-particle theory approach, is rather accepted. Atomic clouds are not
seen and as ensembles of point-like dipolar emitters, because atomic homogeneous
distributions have a tendency to scatter cooperatively [77]. Consequently, it is not
the ambition of the present dissertation to determine how these many-body effects
are labelled. The exclusive plain fact to bear in mind is that whenever an atomic
gas is lighted with a radiation field close to its resonance (or even with a significant
detuning), it triggers a collective/cooperative response from the whole cloud, which
is not equivalent to the one calculated by adding the individual responds of each
atom independently.

1.4.1 Superradiance

Among all collective effects the one that stands out, deserving a distinct explana-
tion, is the collective spontaneous emission, widely known as superradiance [73].
The phenomenon is broadly regarded as the most noticeable and studied collective
phenomenon and it has been proven to exist both in experiments employing optical
cavities [78] and free space [79]. It involves an acceleration of the decay process
of the atomic cloud, with the first experimental observations in the far and near
infrared spectrum respectivelly reported in the 1973 [80] and in 1976 [81]. Dicke
originally stated that a small dense collection of N cold atoms radiates as NΓ,
instead of Γ, when the collection is forced to interact with a resonant field. Ba-
sically meaning that N atoms, strongly coupled, re-emit light much faster than a
single atom.8 Dicke defined a ‘small dense cloud ’ as the vapour that has a diameter
smaller than the incident wavelength. The system response can also be explained
if a macroscopic mode (or a unique macroscopic dipole) is defined, subsequently

8Remember that Γ is regarded as the decay rate of the electron transition in a two-level atom,
therefore a rate that should be constant if there was no collective process and the N scatterers
were to re-emit independently.
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allowing to treat the system with mean-field theory. 9 Moreover, besides the accel-
erated decay of excited atoms, superradiance is also responsible for transforming a
possible initial isotropic incoherent spontaneous emission of the ensemble of dipoles
into a coherent directional radiation.

Superradiance is considered as a long-range effect and, recently, it has been
shown that the effect also emerge in cold atomic clouds with much smaller density
and larger volumes [82]. In such dilute systems, atomic clouds have an inter-atomic
distance much larger than the wavelength of the incident light and their radiation
rate is not proportional to the density anymore, but to the optical thickness as b0Γ.
The optical thickness parameter is defined as b0 = aN/(kR)2 at resonance [83];
being k the wavenumber of the incident light, R the radius of the atomic cloud, N
the number of atoms, and with a constant factor that varies its value depending
on the nature of the optical external field: set to a = 2 for a scalar field, with no
polarization, and a = 3 for a vectorial one.

An extensive review unifying several points of view and formalisms from dif-
ferent investigations, and introducing the basic physical concepts to the superra-
diance phenomenon can be followed in [84]; it was written in the 1980s by Gross
and Haroche. A comparison between the responses of a cold atomic cloud with or
without cooperative effects, can be inspected in Fig. 1.5.

Figure 1.5: This illustration, borrowed from [83], displays the time evolution of
the normalized excited stated computed in a linear process. A cold atomic cloud
is exposed during a certain time to a coherent light source, letting the system to
achieve a steady state from the starting ground state. Once the beam has been
disconnected, the decay rate of the cloud (continuous line) is compared with the
single atom decay (dashed line), labelling the two evolution regimes regarded as
the collective phenomena of superradiance and subradiance. In addition, inside the
upper right circle, the emission diagram of these two effects is depicted, being the
superradiance a unique directional forward lobe (in blue) and the subradiance a
quasi isotropic, but mostly backscattered, multi-lobe radiation.

9The mean-field theory approach states that the effect on one atom of the cloud caused by the
rest of atoms can be approximated to a single averaged phenomenon.
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1.4.2 Additional cooperative effects

Even though collective effects were discovered more than 70 years ago by Dicke,
it has not been until recently that some attention and recognition has been given
to them. Collective effects seem to be a rising new sub-field of atomic physics,
perhaps becoming a new branch of the field, due to an increasing computational
power that allows to test old and new theoretical models. Moreover, the number
of experimental set-ups assembled by different groups around the globe, where
many are specially focusing their attention on quantum computation and quantum
information, might hold the key for real upraise of the subject. Two recent awards
could be considered as significant forefathers of what is to come related to the
collective effects study. They are the physics’ Nobel prizes awarded in 1995 and
2018, associated with a new state of matter (BEC) and the manipulation of matter
at an atomic level, respectively. The first one has already been introduced and will
be latter regarded in the first section of chapter 2, whilst the second one will be
briefly introduced in the first section of chapter 3. Yet, the awards do not prize
the collective effects emerging from the awarded findings.

The collective behaviours emerging in cold atomic systems are the origin of other
phenomena like: self-organization [85–87], reviewed in chapters 2 and 3; collective
cooling [88–90], with new cases exposed in chapter 3; symmetry breaking [86, 91,
92]; and pattern formation [74, 93–96], exposed in chapter 2 as well; among others.
For the sake of attaining a better grip on how collective effects alter the responses of
an interacting atomic cloud, several renowned collective/cooperatives phenomena
will be shortly described in a qualitatively manner. The coming list is not essential
to understand the collective effects exposed along the main core of the current
dissertation, and the more experimented readers can resume their reading after
this itemization with Sec. 1.5.

Subradiance

Intrinsically linked to superradiance, there is another cooperative effect long for-
gotten, but that has attracted some attention in recent years; for instance in [97],
among many others. The phenomenon was coined as subradiance and it was also
proposed in 1954 by Dicke himself [73], yet it was not experimentally proven until
30 years later [98]. Essentially, it is described as a partial trapping of light by the
system due to a destructive interference effect, which means that there is a coop-
erative inhibition of spontaneous emission. The atomic decay is utterly suppressed
when an antisymmetric state is decoupled from the environment. However, in real
systems, there exits always some coupling with the environment, thus leading to
longer decay times in comparison with ensembles of completely independent atoms
when this collective effect occurs (check Fig. 1.5).

Recently, it has been experimentally proven, that a dilute cloud —theory con-
ceived in [83]— is indeed an ideal system to reproduce this effect and that the
trapping time is strongly related to a parameter already introduced, the optical
thickness; being the decay time delayed when such parameter has large values [99].
Contrary to superradiance, in subradiance, the states are metastable and frag-
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ile but they do not get suppressed close to resonance [100]. It can be observed, in
Figure 1.5, how subradiance is somehow related with superradiance; where superra-
diance is the first response of an irradiated atomic cloud, followed by a subradiance
emission response afterwards.

Superfluorecence

The phenomenon of superfluorescence or cooperative spontaneous emission [101,
102] is the collective emission of fluorescent radiation. It is produced by a system of
excited atoms, or ions, due to the spontaneous correlation of excited atomic states.
The main difference between this effect and superradiance is due to the absence of
the initial macroscopic coherent dipole phase.

An initial step is required to observed this collective phenomenon, so it is nec-
essary to generate a cloud of uncorrelated excited atoms; for instance, using an
specific pump. In such a cloud, the population difference between the excited and
the fundamental state is uniform and, initially, no macroscopic dipole moment can
be considered. Finally, the initially absent macroscopic dipole builds up sponta-
neously and the synchronized atoms release the stored energy in a pulse of light,
which has a decay rate proportional to N and a maximum emission peak of light
intensity that scales as N2. Therefore, the pulse maximum experience some delay,
and the total pulse duration is actually shorter than the atomic decay rate.

Anderson localization

During the 1950s, Anderson [103] derived the initial theory to model the absence of
diffusion in certain random potential lattices. The model was initially introduced
for localizing electrons in a lattice potential, explaining the phase transition from a
conductor to an insulator. In solid state physics, it is difficult to find non-interactive
waves and there are few suitable scattering materials, like semi-conductor pow-
der [104] or white paint [105] (suggested by Anderson hemself [106]). Instead, in
atomic physics, cold atoms are used as effective scatterers and a non-interacting
wave is easily achieved by using light, i.e., during a scattering process in linear
optics (or linear process), photons do not interact with each other. Due to this
preliminary research, the collective interference effect studying how the localized
light in a region of a cloud is prevented to diffuse to other regions of the same cloud,
has been coined as Anderson localization. It is also known as strong localization of
light.

The trapping time elapsed when a photon is thrown into a system, can be
explained by radiation trapping or random walking, but these latter processes do
not involve interference effects. Dicke’s subradiance can also help to keep a photon
in the system by making the atoms oscillate together in and out of phase, sharing
the excitation state, but that is not the case either. In this phenomenon there are
some modes of the system, which are shared with several atoms at a sector of the
system, but the mode sharing is not notice by atoms located in other regions of
the cloud.
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Despite that Anderson localization have been already observed and more or
less well understood for system of one and two dimension, the three dimensional
transition of light from diffusion to localization remains unsolved; only 3D metal-to-
insulator transition has been observed. Therefore, neither macroscopic exact theory
of Anderson localization exists, just some numerical simulation models, nor has the
effect been observed so far. Some rare observation has been announced [107], but
the results were disputed by the very same authors [108]. The question hovering
on the scientific community is whether this 3D case does exist. Indeed, there are
some theories that claim that it does not exist [109, 110] and other ones that
are on the way of trying to unveil the conundrum. Regarding this latter ones,
there is an approach working with cold atoms called weak localization or Coherent
Backscattering of Light (CBS) [111–113], which was demonstrated in the 1980s and
that it is believed to be the precursor of Anderson localization.

Single-photon superradiance

By using the tinniest laser intensity to radiate a cold vapour, the one generated by
a single photon, it is possible to generate a cooperative feedback from the system.
The effect is dubbed as single-photon superradiance, and it was proposed just a
few years ago in 2006 [114, 115]. A decade later in 2014, an experiment capable
of tuning the decay rate by controlling the number of atoms in the ensemble was
reported [116]. This collective effect starts the path for a methodical bottom-up
study of superradiance.

The effects proves that a unique photon can be absorbed and stored by an
atomic cloud and due to the presence of this relativistic particle any atom can
be excited. Although this pumped atom will be unknown, it will still constitute
a superposition Dicke state.10The photon is shared among the atoms inside the
cloud, triggering a collective spontaneous decay, which can become superradiance
when the atoms are set in the proper phase. With only one atom excited, one would
expect that the decay rate was equal to the one corresponding with the decay of a
single atom, Γ, but if the atoms within the cloud are symmetrically organized, the
observed decay rate is actually NΓ.

Cooperative radiation force

The radiation pressure force has already been announced for a lone scattered in
section 1.1. However, when many atoms get together under the influence of such
force, due to a coherent light source, a new collective effect can be generated.
When radiation force acts on a large cloud of atoms, combining itself with the
cooperative emission of the ensemble, results in a drastic reduction of the measured
radiation emission. The effect occurs because there is an increase of directionality

10A Dicke state is a coherent superposition state of multiple particles, where N atoms behave
collectively as a unique particle. For instance, if all atoms in a cloud are excited an only one
decays, the Dicke state is the superposition of all possible states where just a single atom is in
the ground state
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on the scattering picture (forward scattering emerging) and a reduction in the total
scattering cross section,11 which implies a modification of the absorption process.

The described collective effect is known as cooperative radiation force [77, 117].
A good analytical derivation can be found in [118] and some experimental proofs
in [117–119]. It provides a mean of measuring the amount of disorder in a sys-
tem, which can be controlled by the optical thickness of the cloud [77, 119]. The
phenomenon is a sort of primal consequence of light-matter interaction, granting
a mechanism to study other cooperative effects like superradiance, subradiance
and localization of light. Radiation pressure force can lead to pattern formation,
compressing atomic clouds due to intensity attenuation in the scattering direction.

Collective Lamb shift

It was predicted that superradiance escorts a radiative shift of the atomic transition
energy, which is based on the Lamb shift12 [120] that founded quantum electrody-
namics (QED) in 1947 and for which Lamb received the Nobel prize in 1955 [121].
Such collective effect is designated as collective Lamb shift or cooperative frequency
shift. The effect was theoretically calculated in the mid-1970s [122], recently ex-
tended in [123]. However, its experimental confirmation was proven more than 35
years later, in 2010 [124], and in excellent agreement with theoretical predictions.
The connection between collective Lamb shift with single-photon superrandiance
has recently been studied in [125].

In this effect, besides the transition energy correction due to vacuum fluctua-
tions characteristic from the Lamb shift, there is an additional collective contri-
bution emerging when a virtual photon generated by one atom is not re-absorbed
by the same atom, but by another identical atom within the ensemble. A cloud of
identical atoms can be devised as a huge atom, where the constant emission and
re-absorption of photons within itself leads to self-energy correction of the transi-
tion energy. This correction represents both the collective Lamb shift, with its real
part, and the superradiant decay width, with its imaginary part. Consequently, a
distinct red shift appears in the radiation emitted by the atomic cloud, comparing
to the frequency that would be detected if the scatterer were to be an isolated
atom.

11The scattering cross section is the probability that scattering takes place in a collision of two
particles, e.g. interaction between a photon and an atom. It is generally larger than the geometric
size of the particles because of dipole-dipole interaction

12The Lamb shift is defined as the slightly energy shift beyond the fine structure energy sub-
levels of an atom, not explained by the Dirac equation [126], as result of the interaction between
the fluctuations of the vacuum electromagnetic field and the atom itself. This frequency shift
happens when an excited atom emits and re-absorbs light several times, before its final decay to
the ground state
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1.5 Concepts to recall throughout this thesis

This PhD thesis is developed employing rubidium cold atoms (85Rb) as the matter
that interacts with a light field, which is assumed to be scalar (with no polarization
effects) unless otherwise stated.

On the one hand, and regarding matter, the two-level atom model is character-
ized by using the D2 transition13 of 85Rb, which is established to have a wavelength
approximately of 780nm or what is the same, an energy difference between ground
and excited state close to 1.5eV [24].

On the one hand, and regarding the electromagnetic radiation, the incident
photons are set with a red detuning frequency, which gives them an energy that
is below the atomic transition energy, hence allowing the atom to absorb the ones
moving in its opposite direction (explained Doppler effect). Since the atoms are
known to have dimensions within the order of magnitude of the Angstrom unit
(1Å = 10−10m), and the two-level model adopted only allows for two energy levels,
it can be asserted that Rayleigh scattering is the scattering effect taking place
throughout the whole work.

In addition, the interaction between light and matter is described adopting
semiclassical models, where quantum mechanics is exploited to describe the atoms’
discrete energy levels, and light is treated as a classical electric field, i.e. a plain
wave.

13Electronic transition energy from 52S1/2 to 52P3/2; where S/P is defined as the
ground/excited state.
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Chapter two

Collective light-matter interactions
using the atomic recoil of

cold atoms

The chapter present a known collective scattering effect generated when a 1D
atomic ensemble in free space is irradiated by a single coherent optical filed (pump
field). The coupled dipoles model is extended to provide a 2D and 3D description of
the phenomenon. The so-called pump field is far-detuned from the atomic decay or
electronic transition of a two-level system, and the effects of the polarization vector
on this interaction are also regarded. As a consequence of the cooperative scatter-
ing, a spatial structure emerges in the cold atomic vapour, which makes the initial
homogeneous density distribution to become periodic, with a separation between
bunches of atoms related to the laser beam’s wavelength. Moreover, this atomic
cloud endure a transition from an isotropic spontaneous emission to a stimulated
anisotropic scattering following a preferred direction.
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Chapter 2. Collective atomic recoil lasing effect

2.1 Historical introduction

The novel tunable laser concept denoted as collective atomic recoil laser (CARL)
or collective atomic recoil lasing effect (CARL effect), was originally proposed in
1994 by Bonifacio and De Salvo [1]. Both of them also contributed to further
explain the effect by co-authoring and authoring another two letters [127] and [128],
respectively. The mechanism has its roots in the free electron laser (FEL), which
was developed a little over a decade earlier by Madey [129]. Bonifacio, who co-
authored some articles on FEL some years before [130–132], and De Salvo make
constant reference to the similarities between FEL and CARL in their three articles,
where the CARL is described as the atomic equivalent of the FEL, which works
through electrons.

Essentially, the CARL effect needs two elements to be generated: an atomic
cloud, considered as a system composed of several two-level particles —uniformly
arranged, or following a Gaussian distribution, in one, two, or three dimensions—,
and a coherent external monochromatic optical field, labelled as “pump”. CARL
is nowadays mainly reproduced, theoretically and experimentally, using a third
element, an optical cavity. By placing the cold atomic cloud within an optical
resonator, a longer transient CARL operation is achieved, which was originally
indicated by Bonifacio et al., and the effective coherence time of the system is
increased. The latter fact means that the chances of the photons to interact with
an atom are higher, because they keep travelling among the particles for extended
longer times before leaving the cavity. The optical cavity is also essential to have
a single radiation mode and a small cavity damping rate. The usual type of cavity
employed is called ring cavity1.

The effect is based in a combination of Rayleigh light scattering and collective
behaviours, both concepts presented in the introductory Chapter 1. The cold
atomic cloud produces a scattered field intensity that varies with the number of
atoms I ∼ N and that stems from the independent scattering of the N atoms
randomly distributed inside the cloud. The phenomenon is driven by a coherent
optical source, with certain intensity and a accurately defined detuning with the
cloud’s electronic transition (devised as a two-level system). Here is a more detailed,
step-by-step explanation of how the CARL process works, graphically supported
with a simple scheme represented in Fig. 2.1 (mentioned several times):

– Initially the two-level system composed of many particles, with neglecting
initial velocity, is illuminated by a far detuned laser beam with weak intensity,
or within linear optical regime (check upper left schematic (a) in the figure).

– Using this pump field, with such detuning, allows to neglect the population
of the excited state, hence granting the possibility to consider the system at
the fundamental level.

1There are two typical types of optical cavities: the standing-wave cavity, the light bounces
back and forth (the one used in a laser), and the ring cavity, the light can do round trips in two
opposing directions
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– Shortly after this first event is initiated, a counter-propagating field arises
from the intrinsic atomic noise fluctuations, or spontaneous photon emission,
backscattering the pump field (see opposing overlapped arrows in panel (b)
of the same figure).

– The new backscattered field is coined as “probe” and, as stated, it can be
originated from the weak and incoherent scattered light in the same axial
direction as the probe mode.

– Once there are two fields facing each other in the same axial direction, they
start to interfere, producing a weak standing wave that creates a periodic
optical potential (still in the given figure, see (d) representation).

– The potential starts to generate a bunching effect (modulation) in the cloud
density by displacing the center-of-mass of the atoms, arranging them into
bunches with a periodicity that coincides with λ/2; half of the external field’s
wavelength (inspect both right panels, (b) and (d), of the figure).

– The bunching process is perceived by the pump as a polarization grating in
the active medium, hence resulting into a stimulated emission that favours
the backscattering direction, i.e., the probe field.

– Finally, the gain on the strength of the probe triggers an increase of the
standing wave, which translates into more bunching that contributes to the
backscattering.

The whole process works in a loop, allowing to amplify both the bunching or grating
contrast and the gain or intensity of the probe field, which grows exponentially
from a tiny fluctuation into a rather strong signal. This feedback mechanism is the
hidden engine that generates the CARL effect, although the phenomenon survives
only for an interval that is in the order of the cooperative time, which can be some
tens of microseconds.

There are two predominant displacement possibilities for the center-of-mass
motion of each atom, due to the dipolar force that stems from photon scattering.
This force, together with the atomic cloud’s geometry, usually assumed with a cigar
shape, favouring the scattering along the longer axis if no cavity is present [133],
generate a stimulated emission onto the two directions of the pump axis. On
the one hand, with a roughly 50% chances, the atoms are likely to experience a
double momentum kick in the forward direction: one resulting from the scattering
of a pump photon, and another one due to the backscattering of a photon into
the probe. On the other hand, with the other 50% chances, the atom may remain
nearly motionless in the same position, due to the counteracting effect of scattering
a photon, which pushes the atom forward, and the forward scattering a photon,
which provides the atom with a recoil kick in the backward direction. The latter
outcome is because the wave vector of the external field and the atomic transition
can be considered to be close to each other (k ≈ k0), even when the detuning
assumed is large. The main advantage of working with a large-detuned pump is to
neglect the radiation pressure force pushing the atoms away; in practice, scattering
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Chapter 2. Collective atomic recoil lasing effect

Figure 2.1: Carl Schematics displaying the cloud rearrangement from the initial
random distribution (a) to the grating formation at time t > 0 (b). The bunching
formation is portrayed in a simplified 1D example, where atoms are uniformly
distributed at t = 0 (c) and are periodically gathered at time t > 0 (d) due to
the appearance of an optical potential, consequence of the interference between the
laser beam and the backscattered light (arrows in b).

dominates over absorption. Under this circumstances, and using the photon picture
of a scattering event, the two more likely atomic final momenta can be described
by: ~ (k − [−k0]) ≈ 2~k and ~ (k − [+k0]) ≈ 0, respectively. This scenario is
depicted in Fig. 2.1(b), where the atomic cloud shows some bunching formation at
a certain time t> 0; there are some atoms moving forward with a momenta ∼ 2~k
and others staying at rest with negligible momenta.

As it has been summarized, the CARL effect emerges when a cold atomic cloud
is irradiated by a coherent optical field. Such a system has implicitly been shown
to be characterised by two main responses: a gain in the strength of the so-called
probe, which results from the organized backscatter radiation of the cloud (op-
posing the incident field), and the self-organization of the system into a grating.
These two phenomena, a consequence of the feedback of the system to an external
stimulus, are closely coupled and this was proved by Hemmer et al. in [134] using
a hot steam cell2, shortly after the idea of CARL was presented. Hemmer’s study
represents the first time that the effect was experimentally probed using a strongly
driven hot atomic vapour. That experimental investigation matches its outcomes
with the effect described by Bonifacio et al. and the complementary picture el-
egantly probed by Courtois et al. in [135], which is based on theory developed
by Guo et al. [136, 137] and later [138]. The theoretical idea presented by Guo,
where the gain —hence the resonance structures— is considered to be a result of

2Shielded nuclear radiation containment chambers, commonly referred as hot cells, are usually
employed as a containment chambers for radioactive materials (meaning of the word ”hot”). In
this case, it provides a good containment box for an atomic sample.
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the atomic recoil occurring due to absorption or emission of radiation, is nowadays
known as the recoil-induced resonances (RIR). The RIR were experimentally inves-
tigated by Zimmermann’s group in [139] and the theoretical comparison between
this transitions and CARL can be found in a single-authored article, signed by
Berman, in [140]. Anyway, the important fact is that Courtois et al. measured the
gain of the recoil-induced probe using cold caesium atoms, which are proven to be
more effective to see self-organization (greater bunching factor), whilst Lippi et al.
worked with hot sodium atoms [141].

Although both Courtois and Lippi succeed in explaining the formation of the
self-organizing grating that allows to maintain the CARL instability for a long time,
they missed to show how the probe feedback mechanism works. Therefore, despite
having cited some CARL experiments, with other extant verifications not cited,
the feedback mechanism needed to see the CARL long time scale instability and
characterizing the entire effect had not yet been tested. It was not until a decade
later that Kruseet al. formally presented the first CARL experimental results [139],
by applying a high-Q optical ring cavity3 [142] in a collision-free environment. In
order to represent this lower collisions environment, they employed 85Rb atoms at a
temperature of several 100µK, achieving atomic clouds of 106 particles and densities
higher than 2·1011 atom/cm3. There is one main point where this experiments
diverge from what was envisioned in the original CARL theory: the usage of an
optical molasses to achieve the desired environment, allowing the system to reach
a constant emitting-light steady-state.

At the beginning of the 2000s’, the aforementioned Zimmermann’s group, set
an experiment placing the CARL system into a cavity to test the properties of the
effect (see schematic in Fig 2.2) and they were very prolific in achieving results
from that experimental set-up. Soon after having observed the recoil lasing effect,
studying its relationship with the RIR [139], they probed the linked between the
effect and the Kuramoto model [143] (theoretically studied in [144]), studying the
threshold behaviour of CARL as a phase transition of the Kuramoto type [145].
By extending their original setting, they targeted the steady-state of CARL, which
they labelled as ”viscous CARL” [146]. Such stable and adjustable CARL emission
frequency was achieved by adding an optical molasses to the set-up. They also
compared the collective effect of superradiant Rayleigh scattering (SRyS) produced
by a BEC [133] with the recoil lasing effect a couple of years later in [147]. In that
latter comparison, they concluded that there is an intrinsic link between SRyS
and CARL, which comes from tuning the cavity decay width κ —whenever the
temperature is sufficiently cold, there is no need of a cavity for SRyS to occurs—.
The CARL effect is obtained when this decay is smaller than the collective gain,
obtaining superradiant emission otherwise. The explanation is simple, when the
cavity losses are above a threshold value, the coherence time is too short for the
initial fluctuations to work as a seed for the probe, so they exit the cavity in form
of superradiance. The whole experiment has a relevance for this thesis, because
it showed that CARL (also SRyS) is not based on quantum statistics, but on

3A high-Q cavity simple characterize how well an optical cavity stores light: the higher the Q,
the longer the cavity confines the light.
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cooperativity. This fact was extended and further extended in the next study of
the group a few months later [148].

Figure 2.2: The optical layout of the CARL experiment employed in the re-
view [146] is here depicted. Captured cold atoms from a magneto-optical trap
are loaded in a dipole potential generated by a ring cavity and, afterwards, they
are exposed to an optical molasses. The phase shifts of the standing wave are mon-
itored using the frequency beat of the cavity modes, which propagate in opposite
direction.

A few years later of the initial CARL proposal, where the CARL equations
were presented semi-classically considering a quantized optical field and ballistic-
like particles with continuous motion, the regime was extended to a fully quantum
approach [149], by also describing the atomic center-of-mass motion with quantum
mechanics. The extension was needed because the original model fails to explain
such effect when the temperature of the cloud is lower than the recoil temperature
(Eq. 1.3). Employing such enhanced model in the late 1990s’, allowed to theo-
retically prove that the SRyS generated by a BEC can be described by a CARL
mechanism [150].

The theory was later simplified by Bonifacio’s group, who explained that the
semi-classical approach [151] could be employed, instead of the full quantum equa-
tions, for large atomic densities. The group also improved and simplified the full
quantum model [152] (later extended in [153]), allowing to described the system’s
response at recoil temperatures easily, which enabled an interpretation of the exper-
imental results obtained in [133]. They defined an ingenious parameter, denoted as
“collective parameter” (ρ), which represents the average number of scattered pho-
tons or, equivalently, the average number of momentum kicks the atoms receives.
The system is in the quantum regime when the collective parameter is less than
one and it describes the situation where all atoms backscatter coherently a single
photon. They studied the light scattering from a BEC using these equations in
different CARL schemes/configurations: variation of the angle of incidence of op-
tical field; extending the common 1D system to a bidimensional description [154];
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studying the quantum fluctuations and the atom-photon entanglement [155]; the
propagations effect of short pulses using the quantum model [156]; and the accel-
eration of superradiance and the recoil lasing effect using two-frequency pumps in
an optical cavity [97]. In addition, together with Zimmermann’s group, they also
analysed the CARL effect including friction and diffusion effects [157].

During the last decade, and after the experimental proof of the existence of the
BEC, the attention over CARL has faded away, with just a couple of studies released
by Zimmermann’s groups: one placing a BEC in the optical ring resonator CARL
scenario (setup presented in [147]) to investigate its stability diagram [158], and
the other one comparing these findings with the CARL’s diagram [159], where the
theoretical description is performed using the classical CARL equations introduced
in [143]. The present chapter picks up from this point, although away from the
low temperatures that characterized the BEC. It presents the multimode model
that allows to describe the CARL effect in two and three-dimensions without the
assistance of an optical resonator, i.e., in free space. The time evolution results
for either a 2D and a 3D system, considering both scalar and polarized light, are
accompanied with numerical simulations showing the two characteristic responses
of the CARL effect: atomic self-organization and coherent backscattering.

2.2 Models for the dynamics of an atomic cloud

So far, the features of the CARL effect have been described by exploiting different
single-mode/mean field models. Good approximate results are obtained employing
such models, which are suited for specific cases where the atomic ensemble has a
certain favoured scattering axis. In this approach, the propagation of the scatter-
ing radiation is forced along one axis and within a single mode; for instance, when
the atomic cloud is placed in an optical cavity. Although, in general, the shape of
real atomic clouds has more than a single spatial mode, especially in free space,
and the phenomenon of collective scattering is generated accordingly due to the
collaboration of many modes. That is why in the current model, contrary to pre-
vious works, the incident photons are scattered into all possible three-dimensional
vacuum modes. This particularity is taken into consideration when deriving the
equations of motion. Furthermore, the superradiant scattering of the system that
takes place along a certain direction is not determined by a cavity, but by the
spatial distribution of the cloud; for example, when its shape is elongated along a
particular axis.

Throughout this section, two main models will be studied, one considers the
external laser beam as a scalar field, without polarization effects, and the other
treats the vector components of this external field. The atomic cloud is obliviously
compose of cold atoms, which are assumed to be 85Rb for this thesis, and is regarded
as a two-level system. As mentioned above, both models have been derived from
a multimode theory, expanding on previous mean field theories. In addition, the
vacuum radiation modes are adiabatically eliminated. There is an analogy between
the models presented here and the characteristics observed with a BEC in [133],
where a density grating appearance gives way to an enhancement in the light
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scattering intensity due to collective effects. However, there is also a main difference
between the current study and the one performed with the BEC. While in [133],
the bunching of the system is observed in the momentum space for ultracold atoms,
with spacing ~q = ~(k0−k) —where ~k0 and ~k are the momentum of the incident
and scattered photon, respectively—, cold atoms are employed in the current case,
the grating is observed in real space, and the atoms rearrange themselves into
groups with a period of 2π/q.

Alongside the scalar and vectorial approaches, a relevant observable parameter
is reported in a third subsection. It is not a third model per se, but it has been given
a dedicated subsection due to its importance when describing an atomic system
under CARL. It is the optical magnetization and is often regarded as “bunching
factor”; describes the grating strength in a specific axis direction.

2.2.1 Scalar external field

Following the line applied in the published investigation [160] —attached in Sec. 5.3—
, where the model is described, a N two-level atoms driven by a laser field is consid-
ered. The optical field has a frequency ω0 = ck0, with wave number k0 = k0ẑ, and
propagates along the z axis. The Rabi frequency is defined by Ω0 = dE0/~, where
E0 is the electric field, d the atomic dipole and, ~ the well-known educed Planck
constant. The external field frequency is far detuned from the atomic frequency ωa
by ∆0 = ω0−ωa � Γ, with Γ = d2k3

0/2πε0~ is the atomic linewidth or spontaneous
decay rate. Furthermore, in the far-detuned limit and when a dilute gas is deemed,
the re-absorption from scattered photons can be neglected, thus reducing the pro-
cess in the cloud to single-scattering. Therefore, each vacuum mode k results from
the atomic scattering of the incident light with the mode k0. The atoms experience
the recoil motion every time they scatter a photon from the incident light, and the
energy of this shift is proportional to the recoil frequency ωrec = ~k2/2M

The complete derivation of the atoms’ motion equation can be followed in the
appendix of Sec. 5.3. In such derivation, the excited state population has been
neglected, due to the large or weak detuning field (linear optical regime). As
previously stated, considering Γ � ωrec, the internal degree of freedom of the
atoms is adiabatically eliminated assuming it is synchronized with their external
motion. The radiated field has been incorporated into the moment equation by
disregarding the vacuum fluctuations, only reckoning the radiation field due to
Rayleigh scattering. Adding all these radiated modes, a set of N coupled equations
is obtained, thus describing how each atom j endures the radiation force exerted by
the otherm-atoms (N−1) contained in the system. Adding all these considerations,
results in the following differential equations describing the position rj and the
momentum pj of each j-atom.

ṙj =
pj
M
, (2.1)

ṗj = A
∑
m 6=j

{
(ẑ − r̂jm)

sin[k0(rjm − zjm)]

k0rjm
− r̂jm

cos[k0(rjm − zjm)]

(k0rjm)2

}
, (2.2)
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with the constant A, reported separately in a third expression for future reference,
being described as

A = Γ~k0

(
Ω0

2∆0

)2

. (2.3)

The atomic mass is symbolized by M and a change of variable, representing the
distance between two atoms, is applied rjm = rj−rm, with r̂jm = rjm/rjm (where
m 6= j).

The oscillating force represented by Eq. (2.2) couples each atom j with all the
other ones along two direction components: the one related to the external field, ẑ,
and the one connecting the atom j toward the other atoms, r̂jm. In addition, the
force has a finite range, having two terms that decrease with the atoms separation
as 1/rjm or 1/r2

jm.

2.2.2 Optical field including polarization effects

The derivation above is extended to include the vectorial components of the light,
which is no longer considered scalar. This polarization is linear, perpendicular to
the propagation direction, and it will be shown that it produces a suppression or
alteration of the grating that appears in the cloud. Adding such polarization will
allow to study new aspects of the system, but it will make the expression describing
the system’s motion somewhat denser. The derivation of the new equations of
motion is performed along the first two sections of the appendix B and the final
expressions that give a description of the momentum and the position of every
atom “j” inside the cloud is:

ṙj =
pj
M
, (2.4)

ṗj = A
∑
α,β

(ε̂∗0αε̂0β)
∑
m 6=j

{
(ẑ − r̂jm) (δαβ − r̂αr̂β)

sin[k0(rjm − zjm)]

k0rjm

+ [ẑ (δαβ − 3r̂αr̂β)− 2r̂jm (δαβ − 2r̂αr̂β)]
cos[k0(rjm − zjm)]

(k0rjm)2

− (ẑ − 3r̂jm) (δαβ − 3r̂αr̂β)
sin[k0(rjm − zjm)]

(k0rjm)3

+3r̂jm (δαβ − 3r̂αr̂β)
cos[k0(rjm − zjm)]

(k0rjm)4

}
, (2.5)

being the constant A the same one utilized for the scalar model and introduced in
Eq. (2.3).

These new vectorial equations of motion, (2.4) and (2.5), have some similarities
to those of the scalar model, (2.1) and (2.2). In the vectorial equations the com-
ponents of the pump polarization unit vector ε0 are included. The force on the jth
atom is proportional to the same constant A proportional to the pump intensity.
There are three differences in the force equation of each atom “j” that stand out:
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– The ’long-range’ term 1/rjm has not changed from the scalar model, but
additional ’short-range’ terms (1/rnjm with n ≥ 2) have made an appearance.
There are two new terms that affect the particles at a shorter range (the
last two terms containing the 1/(k0rjm)3 and 1/(k0rjm)4) and the term with
n = 2 has an additional factor 2.

– A new polarization factor δαβ −nr̂αr̂β , with n = 1, 2 or 3, has made its
presence. It comes as a consequence of an additional sum that arise due to
the interaction between the vacuum modes and the two possible perpendicular
polarization vectors (refer to appendix B, specifically Eq. (B.11)). The unit
vectors in these factor, r̂α and r̂β , represent the components of rij along the
components α and β of the pump polarization units vector; they are the short
representation of (r̂jm)α and (r̂jm)β , respectively

– There is a new sum Σα,β , which represents the projections of the polarization
onto the two axes perpendicular to the direction of propagation of the optical
field, when the system is in a real 3D free space. However, when the system
is confined into a plane, there is only one projection, leaving the other one as
null.

It can be noticed from the momentum’s expression (2.5), that if the atomic
motion is constrained to a 2D plane —the (x, z) plane— and the pump is linearly
polarized along ŷ, then ε̂0α = δαy, which makes the terms r̂αr̂β equal to zero (see
Fig. 2.12 of future Sec. 2.6 for graphic interpretation). The differences between
this model and the one with scalar light is that now the short-range terms of the
radiation force have more representation, i.e., 1/rnjm with n ≥ 2. Therefore, the
scalar model can be considered a good approximation for a 2D case, as long as the
long-range interaction is dominant.

2.2.3 Bunching parameter

The “bunching” is a parameter that will be measured for both scalar and vectorial
model. The concept is a reminiscence of the free-electron laser [129] and, since
CARL is labelled as its atomic version, it is an important parameter to study the
phenomenon. While in the case of FEL the bunching described the ensemble of
electrons, in CARL the bunching give a knowledge of how periodically distributed
the atoms are. Therefore, by calculating such parameter, it is possible to know
how strong the density grating formation is in the cloud along a certain axis. It
can take values between zero, when the atoms are uniformly distributed with no
detectable organised set, and one, when the atoms are periodically distributed with
a ∼ λ/2, or π/k0, spacing between bunches of atoms (given k ≈ −k0).

The bunching produced by all the atoms contained in a cold cloud is described
by the following expression:

M(k, t) =
1

N

N∑
j=1

ei(k0−k)·rj(t), (2.6)
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2.2. Models for the dynamics of an atomic cloud

where rj(t) is the position of a particle at a certain time, k0 and k are the wavevec-
tors of the incident field and the scattered modes, respectively. The bunching
derivation for both models is provided in: the appendix of one of the aggregated
paper [160] in Sec. 5.3 for the scalar system, and Sec. B.III of the chapter Appen-
dices for the vectorial case.

The bunching parameter appears in the expression of the light intensity scat-
tered in the direction k, through the following expression.

Is(k) = I1N
2P |M(k, t)|2, (2.7)

where I1 = (~ω0Γ/8πr2)(Ω0/2∆0)2 is the single-atom Rayleigh scattering intensity,
the parameter P is manually introduced to distinguish between the scalar (P = 1)
and the vectorial (P = sin2 ψ) models, and ψ is the angle between the pump vector
and a scattering direction.

On the one hand, the only step required to achieve an analytical expression for a
bidimensional system is to considerer the radiation mode with two components k =
k sin θx̂ + k cos θẑ, and the optical field propagation along k0 = k0ẑ. Then, these
two considerations are both included in Eq. (2.6) to obtain the polar expression of
the bunching

M(k, t) =
1

N

N∑
j=1

e−i[ (sin θ)kxj(t)− (k0−k cos θ)zj(t) ] (2.8)

The two orthogonal components of the plane are represented by xj and zj , where
the second component belongs to the axis along which the pump field propagates.
It would be possible to attain a polar plane intensity profile inserting Eq.(2.8)
into Eq. (2.7), but such intensity will no be displayed throughout this dissertation.
On the other hand, the bunching profile is also investigated in three-dimensional
radiation pattern for a 3D cloud. To attain such an expression, it is enough to
transform the bunching equation (2.6) into spherical coordinates, which renders

M(k, t) =
1

N

N∑
j=1

e−i[ (sin θ cosϕ) kxj(t) + (sin θ sinϕ) kyj(t)− (k0−k cos θ) zj(t) ] (2.9)

Again, the propagation of the optical field occurs along the z axis and an intensity
profile could be calculated if the expression (2.9) were to be applied into Eq. (2.7).

There are three direction cosines that are contained in three possible planes of
the this last three-dimensional case. In sub-section 2.5, 2.6 and 2.7, the 3D lobes
representing the bunching formation are accompanied by each of the 2D Bunch-
ing factor calculations for each one of these cardinal planes. Such bidimensional
bunching pictures are obtained scanning the radial angle 0 < ϕ < 2π and the az-
imuthal angle 0 < θ < π (using an extended range until 2π) in the conversion of the
scattered wave vector into spherical coordinates k = k(sin θ cosϕ, sin θ sinϕ, cos θ).
The values to see the emission in each plane are:

– For (x, z) plane: setting ϕ = 0, gives k̂ = (sin θ, 0, cos θ).
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– For (y, z) plane: fixing ϕ = π/2, yields k̂ = (0, sin θ, cos θ).

– For (x, y) plane: assuming θ = π/2, renders k̂ = (cosϕ, sinϕ, 0).

2.3 Particle interaction inside an atomic cloud

The concept of particles interacting in vapour was first introduced by Johannes
Diderick van der Waals in his PhD thesis in 1873 [161] and was described and
published by Maxwell in [162]. The scientist proposed a model that modified the
ideal gas law, a system of non-interacting particles, which explains the effective
interactions between particles. For this reason, the known particles interacting
forces or intermolecular forces are sometimes regarded as “van der Waals forces”.
Due to the significance of the discovery, van der Waals was awarded the Physics’
Nobel prize in 1910 [163].

The way in which atoms interact with each other plays a fundamental role in
the numerical resolution of the equations of motion of a system. If only two atoms
in a system made up of a few thousand of them get too close, the whole system
runs the risk of exploding like a bomb; all particles start escaping radially from the
cloud in a very short time. For instance, considering the motion equations for the
scalar model (2.1) and (2.2), and imagining that atoms j and m reduce the distance
between them to a value in the order of k0rjm ∼ 10−5, the short term 1/(k0rjm)2,
gathered in the force expression (2.2), soars to the ridiculous value of 1010; leading
to a system melt down. The situation gets even worse in the vectorial model,
where there are two additional terms that described the interaction between atoms
at even shorter distances (1/(k0rjm)n with n = 3, 4). Therefore, it is imperative
to add a save mechanism that prevents the system from leaking atoms.

In this section, two strategies are proposed: the Lennard-Jones potential and
the Plummer’s idea. The first one is a formal solution, according to a well-known
intermolecular potential energy between a pair of neutral atoms or molecules. The
second is a more recent method applied to atomic physics, although it is a concept
that is commonly used in gravitational simulations. This latter method achieve a
less realistic but reliable result, with a lower cost in computational time, compared
to the previous orthodox solution.

2.3.1 Repulsive short-range potential

To avoid the complex situation that arises when atoms get too close to each other,
it is necessary to implement a short-range repulsive pair potential4 in the system
dynamics. In a situation where no other forces are present, the atoms in a
cloud have two types of interactions, either they repeal or attract each other. The
repulsion between a pair of atoms is a consequence of the repulsion between two
atoms that occurs when the two clouds of electrons that surround each of the nuclei

4Besides the pair potentials, there are other kind of potentials, labelled as “many-body poten-
tials”, where the system dynamics is calculated for more than a pair of particles. However, since
the approach here used is semi-classical, there is no need to go deeper than the pair interaction.
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2.3. Particle interaction inside an atomic cloud

of the two particles repel each other. However, atoms can simply be seen as two
hard spheres that undergo an elastic collision with each other. The attraction is
due to the momentary dipoles emerging from electronic fluctuations in the cloud,
whenever the atoms undergo electronic excitation or decay.

There are two classical options when it comes to short-range potentials in or-
der to calculate van der Waals forces, these are: the Morse potential [164] and
the Lennard-Jones potential [165]. There exist a third commonly known op-
tion, regarded as Kratzer potential [166], which was introduced to described the
inter-atomic vibration and rotation of diatomic molecules; represents an important
model interaction in quantum physics, because it allows an exact solution of the
Schrödinger equation. However, given that the model developed throughout this
thesis is semi-classical, this third option can be ruled out. Long-range attraction
and short-range repulsion between a pair of atoms is accounted for in the other two
possible candidates, both having a couple of adjustable parameters. The Morse po-
tential was initially conceived to describe the interaction between two particles (or
between a particle and a surface), generally representing the dynamics of a cova-
lent bond5 binding two atoms into a molecule, which does not make this potential
the best choice either. The Lennard-Jones potential is left as the most appropri-
ate candidate for the given system. This option is the simplest and most used
of the trio presented when it comes to representing such interactions. The form
of the Lennard-Jones potential is delineated in Fig. 2.3. If the readers needs to
deepen their knowledge on the matter, a couple of single-authored studies from the
same scientist, comparing Morse and Lennard-Jones potentials, can be found in
Refs. [167, 168].

This simple pair potential can accurately characterize the repulsive-attractive
interactions caused by van der Waals forces betwen neutral atoms, and when it
is applied in the CARL equations, it allows to counteract the singularities that
eventually arise from the proximity of pairs of atoms caused by the bunching effect.
The potential form depicted in Fig 2.3 is analytically defined as

VLJ = 4η

[(σ
r

)12

−
(σ
r

)6
]

= η

[(rm
r

)12

− 2
(rm
r

)6
]
, (2.10)

where the aforementioned adjustable parameters are η, representing the bonding
energy or potential depth, and σ, characterizing the bond length or the finite
distance at which the repulsive potential is zero. The distance between the particles
is symbolized by the variable r and the distance at which the potential reaches
its minimum,6where the repulsive and attractive terms compensate each other, is
symbolized by rm. The first term, related to the repulsive force and dominant at
short-range, decays faster than the second one, linked to the weak van der Waals
attractive force and which governs the interaction over longer ranges.

The positive aspects coming from the application the Lennard-Jones potential
are that it allows to control what is the value of the potential depth η and where
it begins to work as a repulsive mechanism σ. For the boundary value σ, where

5A covalent bond is a chemical bond that involves sharing electron pairs between atoms

6The minimum value of the potential rjm is related to the bond length σ as rm = 21/6σ.
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Figure 2.3: Schematics of the Lennard-Jones potential characterized using the sep-
aration between a couple of particles as the independent variable. There are two
regions of action, dipole-dipole attraction and repulsion, separated by a black dot-
ted line that coincides with the distance rm at which the two action are equivalent
to each. The two tunable parameters are: the minimum potential η, located at
distance rm and separating the two regions, and the effective distance σ, which
represent the potential repulsion VLJ is zero and where the effective repulsion be-
gins.

the effective repulsion begins, the usual parameter to use is the scattering length a,
which is set to be around 100nm for the D2-line transition of 85Rb. The value can
be derived from the formula connecting the cross section σcs and the scattering
length a for bosons σcs = 8πa2 [22], where the cross section for the exploited
element is approximately 10−9cm2 [24]. Nonetheless, the Lennard-Jones does not
account for all long-range interactions, disappearing for an infinite distance and
becoming almost zero for distances not too great, but it is sufficient for the case
under study, since the main scope is to introduce a repulsion mechanism between
particles.

2.3.2 Minimum inter-particle distance definition

Instead of taking into accounting the entire calculation of a short-range potential,
another less orthodox option is proposed in terms of how to describe repulsion
between atomic pairs. The idea is to add a constant minimum distance between
atoms, which is computationally easier to calculate than the repulsive effect for
every couple of atoms at each time-step. The concept comes from astrophysics,
where is used in the numerical resolution of the gravitational force in stellar systems
(e.g., galaxies or star clusters), which are not very different from an atomic cloud
computationally speaking. The method slightly decreases the realism of the model,
but substantially improves its calculation times. There are several self-consistent
models: starting with the first ones considering galaxies (clouds) as spherical, based
on the pioneer Plummer model [169] of the first decade of the 20th century, up to
the contemporaries considering more complex elliptical sets and additional aspects.
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A couple of rich reviews on the matter can be found in Ref. [170, 171]. The idea
of this model is to avoid singularity points in the system, which lately, continuing
with galaxies, have been located in central black holes and/or dark halos.

Nowadays, due to increased computational power and better knowledge of the
physics of many bodies, this model is being exploited more and more frequently.
In this work, Plummer’s idea is simplified using a similar concept to avoid the
singularity-like reaction generated for short-range terms (1/rnjm with n ≥ 2) in
Eqs. (2.2) and (2.5). A limit or cut-off ξ is defined and added to the distance
between particles

rjm →
√
r2
jm + ξ2 (2.11)

to force the existence of a minimum value, thus avoiding the smaller values that
can fragment the system. The term rjm = |rj−rm|, simply represents the distance
between two atoms of the cloud; more information on that variable will be given
in the coming subsection 2.4.1.

The parameter ξ does not affect the behaviour of the particles in the system
when they are separated at great distances and works as if there were a repulsive
effect, generated by van der Waals forces, whenever two particles meet. In the real
picture, the particles undergo an overlapping crossover, which can be explained as
a virtual elastic collision. This term prevents the force value from rising above a
certain threshold, keeping it constant inside the imaginary sphere with radius ξ
until it begins to decrease when the colliding particles move away from each other.
It can be stated that the defined cut-off acts as the numerical scattering length.

2.4 Settings for the numerical solutions

Until a few years ago, computing power was not available to everyone, when it
existed. Modelling large particle systems in geometries larger than one dimension
could be considerably expensive in terms of time or computational power, even
solving a one-dimensional system with many particles was far-fetched. Today, on
the contrary, the subject is quite accessible to the public, being more economical
to acquire a greater computational power to solve numerically systems of many
particles. However, the more powerful the available computers become, the more
is needed to compute N-body systems with greater complexity and/or larger size.
That is why it is important to choose wisely the software or, more precisely, the
algorithm with the best resolution capabilities to achieve a numerical solution.

Numerical algorithms for N-body simulations began as a tool for calculating
the dynamics of particle systems in astrophysics, for example, involving long-range
interactions between particles [172]. However, they have become crucial tools for
understanding the various areas of physics and other sciences, such as plasma
physics, nuclear physics and meteorology, any type of engineering or the entire
discipline of biology. When it comes to studying the evolution of atomic/molecular
systems, they are beginning to be recognized as an important tool, being then
referred to as “molecular dynamics” (MD) codes, due to extended use in biology.
These type of codes or algorithms can solve complex systems of micro-organisms
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describing their complex dynamics and behaviours. Today, in the 2020s, these codes
are widely used and many of them are conceived as “open access” codes (no royalties
or fees are required to use them). Nonetheless, as noted in [160]—attached paper
in Sec. 5.2—, “MD codes have not been used in the study of light interacting with
cold atomic gases”. Sometimes this MD codes are part of an open access algorithm,
and sometimes they can be composed of specific functions of particular (or many)
coding languages, i.e., ODE functions (see segment Optimized differential equation
solving functions in subsection 2.4.2 on page 46).

The first part of this section is reserved for an even more important task, which
is a prerequisite to implementing the algorithm. It is a reordering of the analytical
equations to be solved, which allows a better implementation of the MD algorithm.
The equations of the dynamics of motion suggested in Sec. 2.2 need to be scaled
and redefined in other to simplify their calculation; speeding up each iteration the
time needed to achieve the final solution. At the end of this first subsection, a
short segment is devoted to establishing and defining the parameters involved in
the new scaled equations. In the second part of the section, three possible numerical
tools that have been used in this thesis are announced and explained; along with a
brief definition of what is considered a symplectic algorithm. In addition, this part
also presents a small segment dedicated to exposing the chosen algorithm and the
configuration of the selected simulations.

2.4.1 Scaling equations of motion for both models

The equations of motion for both scalar and vectorial models must be scaled to
avoid increasing the numerical error. This can be achieved by working with di-
mensionless variables with smaller absolute values, when it comes to position, mo-
mentum, and time. Following the change of variables proposed in Ref. [160] (or
Sec. 5.2):

– The position vector of each atom is now scaled with the wavevector of the
incident light, like r′ = k0r. Therefore, when r′ = 1 is mentioned, it will
represent λ/2π.

– The momentum variable is redefined as p′ = pp−1
0 , hence normalizing the

atomic momentum to the momentum of an incident single photon p0 = ~k0.

– The new time variable is t′ = ωrt, where ωr = ~k2
0/2M is the atomic recoil

frequency.

All variables with a “prime” notation will be from now on referred as variables
without prime, i.e, r′ will become r, but still in representation of k0r.

Scalar Model

The new variables are introduced in the scalar model described in Eqs. (2.1)
and (2.2), obtaining a new set of computational equations:
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ṙj = 2pj , (2.12)

ṗj = A
∑
m 6=j

{
(ẑ − r̂jm)

sin[rjm − zjm]

rjm
− r̂jm

cos[rjm − zjm]

r2
jm

}
, (2.13)

with the constant parameter A being the same parameter defined in Eq. (2.3), but
now slightly modified as

A =
Γ

ωr

(
Ω0

2∆0

)2

, (2.14)

due to the changes of variable; thus becoming a dimensionless constant. More-
over, the distance between two atoms rjm has actually been rescaled employing
the singularity-avoiding parameter to rjm → (r2

jm + ξ′2)1/2; the cut-off parameter
being also rescaled as ξ′ = k0ξ and later on simply regarded as ξ.

Vectorial Model

The same transformations are applied to the vectorial model, ending with the
following equations of motion:

ṙj = 2pj , (2.15)

ṗj = A
∑
α,β

(ε̂∗0αε̂0β)
∑
m 6=j

{
(ẑ − r̂jm) (δαβ − r̂αr̂β)

sin[rjm − zjm]

rjm

+ [ẑ (δαβ − 3r̂αr̂β)− 2r̂jm (δαβ − 2r̂αr̂β)]
cos[rjm − zjm]

r2
jm

− (ẑ − 3r̂jm) (δαβ − 3r̂αr̂β)
sin[rjm − zjm]

r3
jm

+3r̂jm (δαβ − 3r̂αr̂β)
cos[rjm − zjm]

r4
jm

}
, (2.16)

where the constant parameterA is same as in the scalar case, presented in Eq. (2.14);
the same goes for the cut-off parameter ξ.

Scaling the Bunching equations

Even with a not so large detuning, it is possible to make an additional approxima-
tion for the wavevectors of the field and the electronic transition, |k| ≈ |k0|. By
adding such approximation to the one applied to the positions of the atoms, it is
possible to scale the bunching in Eq. (2.8) for a 2D system as

M(t) =
1

N

N∑
j=1

e−i[ (sin θ)xj(t) + (1−cos θ)zj(t) ], (2.17)
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and the one expressed in Eq. (2.9) for a tridimensional cold gas as

M(k, t) =
1

N

N∑
j=1

e−i[ (sin θ cosϕ) xj(t) + (sin θ sinϕ) yj(t)− (1−cos θ) zj(t) ]. (2.18)

The last two equations are the same expressions represented in Sec.2.2.3 —Eqs.(2.8)
and (2.9), respectively—, but they are basically represented for future references.

Parameter definition for the scaled equations

One of the scopes of this doctoral thesis is to model and physically represent sys-
tems in interaction, in this case cold atoms, in order to obtain detailed information
on their dynamics. The procedure requires integrating Newtonian equations of mo-
tion over a long period of time, using some specific initial conditions and predefined
parameters. The atomic clouds studied in free space can be thought of as two- or
three-dimensional systems, containing N = 5 · 103 or N = 104, respectively. Real
systems have a much larger number of atoms (typically N = 1010). The numerical
results can be scaled to larger system, for instance increasing N and the cloud’s size,
keeping constant the density or the optical thickness. There are common variables
for both atomic ensembles and for the sake of simplicity, trying to avoid describ-
ing the same parameters present in expressions 2.12, 2.13, 2.14, 2.15, 2.16, 2.17,
and 2.18 —,over and over again, they are listed here:

– From the decay time of the D2-line transition of 85Rb, τ = 26ns, it is possible
to set the atomic decay rate to Γ = 1/τ ≈ 3.8 · 107s−1.

– The recoil frequency that changes the time in a dimensionless variable is
ωr = ~k2

0/2M ≈ 2.3 · 104s−1.

– The constant characterized in Eq. 2.3 is simplified to A = 1, and adding the
parameters defined above, the same equation shows the relationship between
detuning and the pump field as |∆0| ≈ 20Ω0. Consequently the normalized
detuning value is defined as |δ| = 20Ω0/Γ.

A main distinction has been made when setting the value of the cut-off param-
eter ξ in each of the models. The value has been set to ξ = 1 due to the presence
of higher order short-range terms in the vector model, while the scalar model can
employ a smaller limit of ξ = 10−2. This implies that the effective scattering
length of the atoms is different depending on the model employed, approaching
the wavelength for the vectorial model ∼ λ0 and ∼ 10−2λ0 for the scalar one.7 If
the additional short-range are manually suppressed (forcing them to be zero) the
value used for the vectorial case approximates the one employed for the scalar one;
exposing the source of divergence between models. If a lower value is defined for
the singularity-avoiding parameter, the cloud will experience a slow but constant
expansion, caused by a large value of the force equation, due to the small distance
between the atoms.

7The distance r = λ0 is equal to 2π due to the change of variables applied to the position
k0r = (2π/λ0)r.
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2.4.2 Simulation algorithms and ODE functions

Now that the form of the system of equations for the scalar and vector model has
been adapted to facilitate its implementation in MD codes, there is still a need to
define the tools that will be used to solve them, i.e., showing the time evolution
for each system. Personal computers, in the current year 2020, are very powerful
machines with a huge capacity to perform billions of operations per second, but
they are still very simple machines in terms of algebraic capabilities. Since they
work with a simple binary system of “0” and “1”, which basically allows them
to do addition and subtraction operations, they excel at calculating any analytic
equation by doing exactly that, adding and subtracting terms. As a result, the
most robust algorithms are those that are based on these two algebraic operations,
making a differential equation one of the most suitable and prolific mathematical
expressions to be solved using a computer. These types of equations represent
the counterpart of an integration, relating one or more functions or variables to
their derivatives or changing ratios. Conversely, integrations are nothing more than
sums of infinitesimally small differential increments from point a to point b of a
specific mathematical function. Therefore, two integration methods —Verlet veloc-
ity and Leapforg algorithm— are introduced in the current subsection, along with
some predefined functions, which are generally used to solve ordinary differential
equations in modern programming languages.

Verlet velocity

Probably the most famous MD’s model for computer simulation, the Verlet integra-
tion (or Verlet algorithm), was introduced in 1960s by one of the MD computation
pioneers Loup Verlet in [173]. Verlet used the Lennard-Jones potential as the re-
pellent mechanism to study the inter-particle interactions of many-body systems.
It was not actually the first time the algorithm was used, which originally dates
back to 18th and had already been employed in the early 1900s, but it was the first
time the algorithm was applied to computers.

The idea is based on the calculation of the Taylor expansion for the third-
order derivative position, both in the forward and backward direction of time, thus
obtaining the following expression:

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 +

1

6
b(t)∆t3 +O(∆t4), (2.19)

r(t−∆t) = r(t)− v(t)∆t+
1

2
a(t)∆t2 − 1

6
b(t)∆t3 +O(∆t4). (2.20)

The position, velocity, and acceleration of each particle at a certain time are repre-
sented, by r(t), v(t) and a(t), respectively. The time-step increment, or expansion
point is normally set with the range 0 < ∆t < 1. The b(t) represent the jerk or
jolt, the rate at which the acceleration of an object changes with respect to time
or b(t) = ȧ(t). The last term O(∆t4), simply represent the next higher other of
the expansion proportional to ∆t4 (and the derivative of the jolt).
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Afterwards, these two expressions are added, leading into the general form of
the Verlet algorithm:

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4). (2.21)

This analytical expression can be transformed into a discrete iterative equation
that allows the position to be obtained from a set of initial conditions, for example,
random initial position and zero initial acceleration for each particle. From there,
and considering a sequence with a total of “n” sampling points, tn = n∆t, the
position of an atom at time-step n can be extracted from the expression:

rn+1 = 2rn − rn−1 + an∆t2; (2.22)

being the past step represented by n − 1, the present step with n, and the future
resulting step as n+ 1.

In this work, the collective light scattering of a cold 2D or 3D atomic cloud is
studied, but to describe the scattering picture of the entire system, it is necessary
to calculate the positions and velocities of the atoms. The problem with the Verlet
algorithm is that the velocity is not calculated explicitly because it is not needed
to obtain the temporal evolution of the system, which makes this system sub-
optimal for the investigated case. Nevertheless, the velocity of each atom in the
gas can be calculated at any time from its past and future position. Taking the
last expression (2.22), this velocity is calculated considering the previous and next
iteration position

vn =
rn+1 − rn−1

2∆t
. (2.23)

The downside of using this method to calculated the velocity is that the algorithm’s
truncation error (or local error) increases from O(∆t4), for positions, to O(∆t2),
for velocities. The solution to this problem comes with a slight modification of the
algorithm, which is labelled as Verlet velocity and in which the velocity calculation
does not compromise the truncate error of the position ∆t3. Thus, using the same
discrete total time tn = n∆t, the system position and velocity for any atom can
be perfectly represented by:

rn+1 = rn + vn∆t+
1

2
an∆t2, (2.24)

vn+1 = vn +
an + an+1

2
∆t. (2.25)

This improvement is generally chosen over the original form of the integration
method.

There are two main drawbacks that arise from the whole Verlet integration
method: the first one is that the acceleration an only depends on the position
rn, being completely independent from vn; and the second one is that if the cal-
culated velocity is stored, which is not always necessary, the algorithm becomes
slower. Another important flaw of this algorithm is that despite having a better
truncation error with its second version, the global error in both Verlet integration
and Verlet velocity is exactly the same O(∆t2) (see [174] for a good clarification
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on this otherwise confusing, matter). However, this recursive method improves on
the most basic algorithm available, the Euler method8, providing stable numerical
solutions, reversibility and “conservation” of its symplectic (concept reviewed later
on page 45) form in the phase space.

Leapfrog algorithm

The previous algorithm has been used in one of the publications related to this
thesis [160] (attached in Sec. 5.2), where this method is implemented in a molecular
dynamics code coined as PEPC (Pretty Efficient Parallel Coulomb Solver) [175] to
trace the trajectories of atoms in a cold gas. The PEPC solver is a parallel sorting
algorithm that is used to to obtain the best performance from of the Verlet velocity
algorithm, but several settings must be adjusted. Since many of these parameters
do not need to be used in the current system, the simulations presented in this
dissertation have been done with another algorithm, called the Leapfrog algorithm.
It is an algorithm rather easy to implement in any programming language and, as
the Verlet velocity, is a symplectic method faster than the Euler method; being
second-order accurate (O(∆t2)).

It is not clear who introduced the leapfrog algorithm, but some early references
to this method can be found in the first volume of The Feynman Lectures on
Physics [176] from the 1960s. It was popularized in the 1980s by the hands of
Hockney and Eastwood [177]. In the Leapfrog technique, velocity and position are
not calculated in the same time step, there is a half-step lag between them. The
study of the evolution of a system with particles begins by establishing the initial
positions, then the velocity (leaps) over the positions, then making the velocity
leap over the position, and so on until the desired time steps are acquired. See
Fig. 2.4 for a graphical overview.

Figure 2.4: Schematics that describes how the leapfrog algorithm works. Position
and velocity jump one over the other, repeatedly until the predefined simulation
steps are reached. Position, velocity, and time are symbolized by x, v and t,
respectively, where the subscripts represent the time step.

A brief example is now represented using an oversimplification of the expression
used to solve CARL with an scalar optical field, Eqs. (2.12) and (2.13). A single

8The Euler method is a first-order numerical method for solving non-stochastic differential
equations. It has a local error of O(∆t2) and a global error of O(∆t)
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direction of motion is allowed, in a reduced system composed of only two atoms,
generating the following equations of motion:

żj = 2vj , (2.26)

v̇j = − 1

(zj − zm)2
. (2.27)

The changes of variable r′ = k0r and |rjm| = |rj − rm| have been undone. As a
consequence, assuming k0 = 1, A = 1 and choosing the direction along the z axis,
the variables in the equation become: r′j = z′j , r̂jm = ẑ = 1 and r′jm = z′jm, which
in turn defines cos(r′jm − z′jm) = 1. In a further simplification of this example
the m-particle is placed in a fixed position d. In this way, the calculation of the
dynamics is directed to obtain the position zj and the velocity vj of the particle j,
which respectively become z and v, giving the following system of equations:

dz(t)

dt
= 2v(t) , (2.28)

dv(t)

dt
= − 1

[ z(t)− d ]2
, (2.29)

where the derivative expressions have been transformed from Newton’s to Leibniz’s
notation and the implicit time dependence of the variables has been brought to
light.

The system of equations is now transformed from its analytical form to a fully
explicit numerical integration system, which is more suitable for the application of
the Leapfrog algorithm:

zn+1 − zn
∆t

= 2

(
vn+1/2 + vn−1/2

2

)
, (2.30)

vn+1/2 − vn−1/2

∆t
= − 1

[ zn+1+zn
2 − d ]2

, (2.31)

where the current time step of position z is represented by zn and the subsequent
velocity time step is referred as vn+1/2. Finally, the recurring leapfrog expressions
to obtain the position and velocity of the only particle that is capable of moving
are:

zn+1 =
(
vn+1/2 + vn−1/2

)
∆t+ zn, (2.32)

vn+1/2 =
zn+1 − zn

2∆t
− 2∆t

(zn+1 + zn + d)
2 . (2.33)

To avoid inconsistencies, the initial values of the unknown time steps are set to
be zero, e.g., the values of vn+1/2, vn−1/2 and zn+1, are set to zero for the first
iteration n = 0.

The leapfrog algorithm is less expensive, computationally speaking, than other
numerical methods. Allowing particle drift to be calculated with a high level of pre-
cision (although not exact) and with very little compromise on the overall picture
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of energy conservation. This last fact represents a great advantage when calcu-
lating large systems with many particles, such as the cold gas that is studied in
this thesis. In terms of memory usage, this method requires less storage than the
well-known RK4 method of the Runge-Kutta family, whose introduction predates
the computational times (between the 1890s and the early 1900s).

Symplectic algorithms

Both leapfrog and Verlet velocity are similar algorithms, because they are analyti-
cally identical, with few computational differences. The two of them are regarded
as symplectic and time-reversible numerical methods. A numerical method that
conserves the total energy, or more accurately its Hamiltonian, is generally consid-
ered a symplectic algorithm; and a time-reversible numerical integration method
means that when the algorithm takes k steps forward in time followed by k steps
backwards in time, it reaches the same starting point. These two features are desir-
able when choosing an algorithm, because they help to reflect the physical reality
of a particular simulation. In this sort of algorithm, the time-step is fixed and
constant throughout the entire simulation. The application of these characteristics
to the simulated dynamics of a cloud of atoms, allows to control the position and
velocity of every atom in each iteration step of the way. In this way, the long-time
numerical solution achieved for the whole cloud can be expected to be like the
exact solution.

When talking about energy conservation, contrary to the popular believe, sym-
plectic integrators do not exactly conserve energy. However, they are perfect candi-
dates to properly handle a physical trajectory problem. Quoting from [178]: “What
symplectic integrators actually do is solve for a trajectory which rests on a symplec-
tic manifold that is perturbed from the true solution’s manifold by the truncation
error”. It basically means that when a system of particles is solved numerically
using a symplectic algorithm, the trajectory of each element does not deviate “too
much” from the exact analytical solution of that trajectory. The larger the drift,
the more difficult it is to achieve conservation of energy, and symplectic integrators
have a small drift, which grows linearly and is related to the floating-point error.
Therefore, they can represent a closer trajectory than those obtained using other
algorithms with higher drift (for example, Runge-Kutta of the 4th order or RK4).
In summary, the resulting trajectories represented by this type of integrator do
not exactly represent the true solution of the system in phase space, exposing a
periodic energy difference —especially for long-term simulations—, but they are
considered to be those who described a physical system in a more realistic way.

The two properties described above come at a price: lower precision and lower
stability. Therefore, although symplectic methods are recommended when solving
long-time integrations in relatively short simulation times, another algorithm must
be implemented when it is necessary to obtain speeds and positions with very high
precision. For example, solving with greater precision using more sophisticated
and updated RK4 methods to reduce error, but paying the price with significantly
longer simulation time.
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Chapter 2. Collective atomic recoil lasing effect

In conclusion, a symplectic algorithm is perfect for solving the current cold
gas radiated by a laser beam, because the objective pursued here is to see the
organization of all the atoms present in this cold system. Although a small error
will be made in the path that each of them will follow, it is not significant in
the overall result, which is obtained with one of the best algorithms for energy
conservation that can be achieved. Also, there is the advantage of obtaining a
numerical solution, even for large systems, much faster than with other methods.

Optimized differential equation solving functions

Two well-known programming languages have been used throughout the current
chapter, which deals with collective optomechanical effects in atomic clouds. The
preliminary language used was MATLAB®,9a commonly used high-level program-
ming language with many predefined functions, a simple structure, and intuitive
coding. When the time has come to deal with a system that demands more com-
putational power and efficiency, the language has changed to Julia9, which is also
a high-level coding language, but incorporating new processing techniques and
tweaks from older computer languages. The latter language has recently been de-
veloped by the Massachusetts Institute of Technology (MIT) and is experiencing
rapid growth.

On the one hand, MATLAB, developed in 1984, provides a quick tool to ob-
tain a visual representation (graphics and videos) of the temporal evolution of a
certain physical model in moderate computational time. Since it is a world-wide
language, it is quite easy to find sample code that can help anyone avoid any pro-
gramming hurdles they might encounter. Nevertheless, it has its limitations in
terms of calculation speed, even though the issue has improved over the years. The
problem is most evident when it comes to exploiting iterative algorithms (like the
two introduced in the current subsection) to solve differential equations of complex
systems. In that case, this programming language can get quite cumbersome or
thick, making the numerical solving process slow for algorithms like leapfrog or
Verlet velocity, although it does wonders with its built-in functions. For example,
the CARL three-dimensional vector model for a few thousand particles requires a
considerable amount of time to solve; the number of time steps achieved for the
night simulation is too small to see meaningful results.

On the other hand, Julia, thanks to its novelty (it exists since 2012), has been
able to combine an intuitive high-level coding structure with a very strong com-
puting power when dealing with highly iterative codes. Therefore, unlike the first
language, Julia provides a magnificent tool to run MD codes using iterative algo-
rithms [179], such as leapfrog integration. In addition, it is an open access software;
there is no need to pay to use it and the root code is available for modification by
the public. These are some of the reasons why this more contemporary program-
ming language has been used to simulate the CARL effect on large two-dimensional
and three-dimensional particle systems. Julia’s main disadvantage for its novelty
is that there is not as much support available on the internet as in MATLAB,

9In digital version: click language’s name to check the developer’s website
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although the manuals and examples are increasing exponentially, especially in the
last couple of years. A nice benefit of using Julia is that it provides the ability
to work with multiple threads10; the feature has been recently incorporated by
MATLAB but it is not as easy to implement as in Julia. This is not the same
as multithreaded programming, which involves parallel programming and a more
advanced understanding of the coding language, which can be quite cumbersome.
Another interesting advantage in Julia is that both the Verlet velocity and the
leapfrog algorithm can be found in pre-defined functions, which speeds up the cod-
ing part, since it is not necessary to obtain a specific discrete iterative expression
of the equations of motion.

What both coding languages have in common is that they both have several
functions that are specially designed to solve ordinary differential equations (ODE)
and stochastic differential equations (SDE). The way the functions work is transpar-
ent in Julia and not so much in MATLAB, but in addition to that, they were devel-
oped to efficiently solve a specific type of differential equation in both languages —it
is the author’s personal opinion that Julia has outdone MATLAB with the num-
ber of functions available to solve these types of equations; A link can be found
in Ref. [180]—. In summary, the functions tested are ode45 for MATLAB[181],
together with Tsit5 (both are adaptive 5th order Runge-Kutta methods) and
KuttaPRK2p5 for the Julia programs [182]. In particular, KuttaPRK2p5 is a
function that works very fast because it is, quoting from description manual [182]:
“a 5 parallel, 2 processor explicit Runge-Kutta method of 5th order”.

In conclusion, Julia provides access to predefined symplectic algorithm function
packages, including a hybrid algorithm composed of the two methods mentioned
above and additional ones with greater precision [180]. These higher-order methods
are obviously slower than leapfrog and Verlet velocity, but with less error in the
computation of the trajectories. These packages are a great advantage when using
Julia because the coding process can be very fast, since it is not necessary to adapt
the differential equation with a recurring expression (as perform with the leapfrog
example earlier). Additionally, they have proven to be the fastest option when
computing time is considered.

Settings and algorithms employed in the simulations

In a similar way to what has been done when defining the physical variables that
intervene in the equations of the models to be solved numerically (see page 40),
in segment “Parameter definition for the scaled equations”, it is also important to
define the parameters and conditions of the simulation. The dimensionless time-
step has been fixed to δt = 10−3 and the total simulation time has been set at
t = 0.3, which produces a total of 300 steps and represent a total real time of
t = 0.3ω−1

r =≈ 70µs. The time steps used in [160] is roughly 6 times smaller, but
using such time interval simply increases the simulation time with no visual impact

10Programs can decide themselves into two or more task which can execute simultaneously and
they are referred as thread of execution ore threads. It is common for computer to have at least
two threads for core.
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in the results. Although several pre-defined functions and different symplectic algo-
rithms have been announced, all simulation are finally solved using Julia’s hybrid
predefined function “VerletLeapfrog” [180]. However, other predefined functions
and an additional symplectic algorithms have been used to check the consistency
of the results presented.

2.4.3 Outline of the presentation of results

All the necessary tools to produces some numerical results have already been pre-
sented and it is now possible to visualize the numerical solutions obtained from
the two (scalar and vectorial) models. There are several variables that can be ad-
justed to obtain various results by holding the system parameters (such as, pump
frequency, detuning, etc) fixed, for instance: the number of spatial dimensions of
the gas (2D or 3D); the orientation of the cloud with respect to the incident laser
beam, for the vectorial model, the polarization of the pump field; the shape of the
cloud, being elliptical, which includes different degrees of elongation, or circular;
and the density distribution of the atoms in the cloud (e.g., gaussian or uniform).
There are other tunable settings that have already defined like: the number of
atoms present in the cloud, which do not actually alter the results, but increase
the clarity with which the particle rearrangement is presented and modulates the
necessary simulation time; the number of atoms is set to N = 5000 and N = 10000
for the 2D and 3D systems, respectively; the type of interaction exploited when
it comes to accounting for the internal interaction inside the cloud between pairs
of particles, which is set to be the cut-off parameter ξ that has a different value
when applied either to the scalar or the vectorial model, ξ = 10−2 and ξ = 1,
respectively.

To give a certain hierarchy to all the listed variables, the central concept that
will allow characterizing such a complex system is the scalar or vectorial nature of
the radiation field, thus respecting the two models introduced. That is why the
numerical results will be presented in two main sub-sections: one that provides
various simulations of the scalar model and another that exposes the new features
introduced by the vector model. Inside in each of those sub-sections, two main
segments will further subdivide the results between a 2D and a 3D system. Addi-
tionally, there is a third small subsection showing the time evolution of a typical
cigar-shaped 3D atomic cloud parallel to the polarized external optical field.

Moreover, now that the simulation system have been defined, some information
can be added to the data provided in previous segments “Parameter definition for
the scaled equations” and “Settings and algorithms employed in the simulations”:

– A random seed has been introduced when defining the initial positions of
the atoms inside both types of cloud: flat elliptical and volumetric ellipsoidal
clouds. This seed makes the clouds with their major axis oriented along the
external field direction axis (z axis), identical to their respective versions
rotated 90◦. The use of an initial Gaussian distribution for the positions
seems to give similar results to the random case employed.
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– A colormap has also been applied radially to the atomic distributions, both
for the 2D and the 3D cases, to improve depth perception and to better
distinguish pattern formation.

– The atoms have been given some transparency, which makes the groups of
particles appear darker in both 2D and 3D cases.

– The central atoms of the system have been given a darker blackish brown hue,
which gradually lightens until it reaches the orange hue of the outer ones.

– The external optical field, either with or without polarization vector, is always
assumed to be along the z axis and comes from negatives values (“from the
left side of the sheet of paper to the right side”).

2.5 Scattering of scalar light in 2D or 3D cold
atomic clouds

In this subsection, the results for the scalar model (Sec. 2.2.1) are shown, using its
scaled version (Sec. 2.4.1); distinguishing between a two-dimensional space and a
more realistic system with three dimensions. Within each of these two subdivisions
it is possible to find different orientations of the system and variations in the shape
of the cloud. The bunching parameter, which is described in Sec. 2.2.3 and with a
scaled version presented in Sec. 2.4.1, is shown together with each simulation of a
cloud.

2.5.1 Different pump orientations and cloud shapes in a bidi-
mensional system

The study of such 2D systems can be followed in the published review [160] at-
tached in Sec. 5.2. Aside from the fact that the atomic distributions are random
in both studies, the simulations in that study differ from current research in the
algorithm used to solve the dynamics of the system. While [160] used the PEPC
algorithm [175] and the Verlet velocity symplectic method, the next subsection
uses the Leapfrog algorithm and does not use any parallel solver. This could be
the reason why, together with the initial random seed, the results obtained in [160]
may show some differences from those shown in the current thesis. Nonetheless, the
results achieved in the current thesis are qualitatively identical to those displayed
in [160], hence validating both studies as numerical solutions for the investigated
system. Although all the results shown are obtained with the numerical method
leapfrog, which is explained in detail in Sec. 2.4.2, other alternative algorithms
have been applied to perform a double check. These addition methods, considering
higher orders of other symplectic algorithm, can be found in [180]) and some prede-
fined Julia functions optimized to solve ordinary differential equations announced
in Sec. 2.4.2 are available in [182].
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Optical field parallel to the major axis of an elliptical cloud

The first case under scrutiny is also the most typical layout, where an elongated
cloud is presented with its major axis parallel to the direction of the incoming ex-
ternal field (z axis). The atoms are randomly distributed in the cold vapour, which
has a eccentricity of

√
3/2, with a semi-major axis of k0z = 9 and a semi-minor

axis of k0z = 4.5. Defining this cloud allows preserving the geometric parameters
used in [160] and/or Sec. 5.2.

In Fig. 2.5, two time instants are depicted: in the first one, shown in panel
(a), the cold particles are placed in random locations inside the cloud at t =
0; and the second time instant, displayed in panel (b), shows the instant when
the atoms develop the maximum bunching along the z axis, revealing the density
grating announced in the detailed evolution of the CARL phenomenon on page 24.
As detailed in this CARL evolution process, the 1D grating is formed because
the scattered light (predominantly backward) encounters the forward radiation
from the pump, already present in its direction of propagation. The two waves
interference, generating a standing wave, which produce an optical potential that
traps the atoms at its minima, with a spacing period ≈ λ/2, or equivalently ≈ π/k0.

The radiation profile of the bunching formation for the initial distribution and
the maximum manifestation of the CARL effect are shown respectively in panels (c)
and (d) of the same Fig. 2.5. The main scattering lobe, in addition to that caused
by laser radiation at 0◦, results in the opposite direction, due to the geometry
of the atomic cloud. The other smaller lobes, represented in random symmetric
directions, are due to the non-negligible height of the cloud. If the cloud had an
eccentricity closer to one, these small lobes would disappear.

On a sheet of paper, it is not possible to show every time step of the backscat-
tered lobe evolution, without giving an overwhelming number of images which are
totally unnecessary. However, by observing such evolution, it can be identified how
this lobe grows from a small bulge, smaller than the harmonic modes represented
in another angular direction different from 180◦ in Fig. 2.5(d), up to the main lobe
pointing backwards in the same plot. Eventually, in future time frames, the atoms
are pushed away in the direction of the pump [183], disintegrating the pattern into
a chaotic whole and displacing the system’s center of mass out of sight; towards
the positive values of the z axis (or the right side of the sheet of paper). Con-
versely, a compression force is observed in the transverse direction with respect
to the propagation of the laser, which generates a flattening effect on the thermal
cloud of cold atoms. The mechanism originating this electrostrictive effect is not
yet completely understood, although different descriptions of it have been proposed
in refs. [184, 185].

The atomic dynamics of the cloud can be directly characterized with a single
photon interaction image of a scattering event, where the incident photon ~k0ẑ
interferes with the scattered photon ±~k0ẑ (due to k ≈ k0); creating a total mo-
mentum transfer in the scatterer of 0 or 2~k0. Again, when looking at each time
step, these two preferred scattering events can be easily detected, with about half
of the atoms remaining immobile and the other half shifting towards the positive
values of the z axis (right side of the page).
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Figure 2.5: Collective scattering and pattern formation from an elliptical 2D atomic
cloud irradiated with a scalar pump laser propagating parallel to its major axis:
(a) Shows the initial atomic density distribution at t = 0 of N = 5000 atoms
randomly distributed. (b) Depicts the density grating formation due to collective
scattering at t = 0.168w−1

r . The corresponding bunching factors |M(k, t)| for both
time instants are displayed in (c) for t = 0 and in (d) for t = 0.168w−1

r .

Laser beam propagation perpendicular to the major axis of an ellipses

The system is now irradiated transversally, i.e., the laser propagation is set to hit
the elliptical atomic cloud perpendicularly to its main axis. However, since the
employed Julia code is better suited to a cloud rotation than a to laser trans-
lation/rotation, the entire atomic system is rotated 90◦; keeping the laser beam
propagating along the z axis, as in the previous case.

The same two time instants are characterized for this case in Fig. 2.6, being
the initial random atomic distribution portrayed in subfigure (a) and the moment
of maximum density grating illustrated in subfigure (b). Unlike the previous case,
pattern formation for this case is a two-step process. In the first step, a faint grid
is formed along the direction of the pump, z axis; consequence of the width of the
cloud (k0z = 9), which is not negligible because it constitutes a quarter of the total
height of the cloud (k0x = 36). The second step is the strong bunching formation
across the transversal direction, x axis, which is represented in the symmetrical
lobes represented at 90◦ and 270◦ in the same panel. A lingering lobe representing
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the faint initial vertical grating is observed in the small backwards bump depicted
in panel (d) and on the same frame a couple of twin transversal lobes attain an
equivalent size (one appears earlier than the other).

The formation of the grating is no longer restricted to one dimension, because
the scattering light adds the vertical component (x axis) to the horizontal direction
(z axis) of the incident light. As in the parallel cloud alignment, the pump field in-
terferes with the scattered light, but this time they form a dynamically evolving 2D
optical grating potential [151]. This potential is a consequence of two components
optical force —(x, z) plane— generated due to unbalance between the recoil along

Figure 2.6: Collective scattering and pattern formation from an elliptical 2D atomic
cloud irradiated with a scalar pump laser propagating perpendicular to its major
axis: (a) Shows the initial atomic density distribution at t = 0 of N = 5000 atoms
randomly distributed. (b) Depicts the density grating formation due to collective
scattering at t = 0.210w−1

r . The corresponding bunching factors |M(k, t)| for both
time instants are displayed in (c) for t = 0 and in (d) for t = 0.210w−1

r .
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two different directions. This optical force, born from the combination of these
two fields, acts on the atoms of the cloud approximately along the directions ±45◦

from the z axis, generating the bidimensional pattern illustrated in Fig. 2.6(d).
The bidimensional atomic rearrangement can, once more, be described via the

photon picture of a scattering event, involving an incident photon of momentum
~k0ẑ and a resulting scattered photon with momentum ±~k0x̂. The atom mediat-
ing this event experiences a total momentum change of ~k0(ẑ± x̂), i.e., depending
whether the photon is emitted downward (positive sign) or upward (negative sign).

This perpendicular interaction was performed by Inouye et al. [133] for the
case of an elongated elliptical BEC. They observed a similar grating but in the
momentum space. Conversely, in the current system the pattern appears in real
space and not in momentum space. Therefore, as for the BEC in free space,
the current perpendicular cloud example clearly illustrates that the scattering is
strongly driven towards the longest scattering path of the spatial distribution.

Scattering from a circular atomic cloud

The two most extreme possible orientations of the pump that give completely
different results have already been reviewed; there are other angles of rotation,
but they would only show intermediate grid formations with angles that differ
from 45◦. The current segment shows what happen when there is no preferred
scattering direction, i.e., a cloud with no elongation or without longest scattering
path. To verify this situation, the system that is inspected here is one composed
of a circular cloud with the atoms distributed randomly. The circular cloud is
irradiated with the usual scalar external optical field on the z axis, which remains
unchanged.

Observing some density grating with a symmetric cloud shape seems difficult, a
priori ; scattering should probably occur randomly and equally in any direction due
to lack of elongation of the cloud. Nevertheless, a two-dimensional density grating
appears when the system is allowed to evolve for a short time. A visual explanation
of the appearance of a grating in such spherical cold gas can be found in the repo-
sitioning of particles within the cloud observed from Fig. 2.7(a) to Fig. 2.7(b). The
initial perfectly circular cloud is modulated by the external field into an elongated
structure, with a kind of “egg” shape. This egg-shaped vapour, represented in
panel (b), resembles the ellipse illustrated in Fig. 2.5(a-b), but with no symmetry.

When observing the evolution of the cold vapour, the electrostrictive force to-
gether with the radiation force seem to press the circular cloud forward, stretching
it along the z axis. The cloud would probably support a symmetric compaction
effect along the x axis (stretching itself long z axis), if it were not for the force of ra-
diation that strongly counteracts it from the negative values of k0z, thus producing
the elongation of the circular cloud in this characteristic egg-shaped cloud. Con-
sequently, a longest scattering propagation path is defined and the grating begins
to appear. Contrary to what can be observed when studying an elliptical cloud,
the grating emerges simultaneously in both parallel and transverse directions, thus
constituting a 2D grid from its beginning. In this example, this is supported by
observing the evolution of the bunching formation from Fig. 2.7(b) to Fig. 2.7(b),
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Figure 2.7: Collective scattering and pattern formation from a 2D circular atomic
cloud irradiated with a scalar field: (a) Shows the initial atomic density distribu-
tion at t = 0 of N = 5000 atoms randomly distributed. (b) Depicts the density
grating formation due to collective scattering at t = 0.144w−1

r . The corresponding
bunching factors |M(k, t)| for both time instants are displayed in (c) for t = 0 and
in (d) for t = 0.144w−1

r .

whose backscattering lobes appear as the cloud stretches toward the positive val-
ues of the z axis. This is not always the case, but the grating always forms a 2D
pattern right from the start.

Regarding the nature of the bunching formation, the polar plot in Fig. 2.7(d)
shows a couple of facts: firstly, there are two preferred scattering directions, which
are roughly directed at ±150◦ (or backscatter at ±30◦), and secondly, the bunching
formation is rather symmetric, probably derived from the initial symmetric geome-
try. An analytical explanation can be obtained by looking at the resulting shape in
Fig. 2.7(d), which can be described by an imaginary triangle. The cloud deforms
into a triangular shape, like an arrowhead, pointing toward the positive values of
the z axis. It has two almost identical angles located in the negative semi-axis of
the z direction and a third one, more acute, located in the positive semi-axis of
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the same direction. This latter angle is the one that defined the angle between the
two preferred scattering directions, and it is close to 60◦ in the current example.
Once more, by defining the angles between each of the scattered directions and the
z axis as ±ϑ, it is possible to study the scattering event of a photon, as in two
previous cases. On the one hand, there is an incoming photon with a momentum
defined by qin = ~k0ẑ. On the other hand, a scattered photon is produced along
the directions ±ϑ with a momentum q± = ~k0[ẑ cosϑ ± x̂ sinϑ]. Then the final
atomic recoil momentum is

∆p = qin − q± = ~k0[ẑ(1− cosϑ)∓ x̂ sinϑ], (2.34)

with an angle φ with respect to the z axis11 given by

tanφ = ∓ sinϑ

1 + cosϑ
, (2.35)

where the negative sign represent a photon emitted upwards and the positive sign
otherwise.

Observing Fig.2.7(d), the scattering angles can be approximated to ±ϑ ≈ 150◦,
such value can be entered in Eq.(2.35), giving the orientation of the two existing
cross lattices oriented respectively at φ = ∓75◦ with respect to the z axis. The
result is in agreement with the graphic results illustrated in Fig. 2.7(b). The
formula reduces to the two previous cases displayed in Fig.2.5 and 2.6 —depicting
a horizontal and a vertical ellipses—, when ϑ is π and π/2, respectively.

The results obtained for this system are marginally different when compared
to those presented in [160] (Sec. 5.2). Here, the two symmetric backscatter direc-
tions are oriented along ±30◦, while in the cited review the preferred angles are
±45◦. Such orientations generate gratings with different inclination with respect
from the pump axis, the horizontal z axis; being ±67.5◦12 for the cited paper and
±75◦ for the present case. The reason for such difference is reduced to the initial
randomness of the particles’ positions, small variations in the particle distribution
cause the system to drift towards different possible outcomes. Nonetheless, the
result are qualitatively similar, an egg-like shape is formed in the cloud due to its
stretching (with similar but not equal eccentricity) towards the positive values of
the z axis, which allows to define a two preferred backscatter directions. Another
important cause of this difference is that the algorithm being used in this investiga-
tion is different from the one employed in [160] When the random seed is preserved,
modifying the order of the symplectic algorithm instead, the results generated are
quantitatively diverse, but remain qualitatively identical (a 2D grating is formed).

In the present job, a random seed has been established for all stimulation,
but when this restriction is removed, the resulting scatter image (Fig. 2.7(d)) are
slightly different. For this reason, a peculiarity of this system, comparing with the
two previous examples, is that the usual random seed has been modified, to show
more clearly the formation of the two symmetrical backscatter lobes.

11A typo in the formula has been corrected from the original expression in [160]

12The value has been recalculated using the corrected expression, Eq.(2.35)
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2.5.2 Diverse three-dimensional system shapes mixed with
different laser beam orientations

The same external scalar field, which propagates along the z axis from negative to
positive values, is still applied towards cold atomic vapour. However, the former
study of the scattering of this field, varying the orientation and the shape of a cold
cloud, is now inspected for a three-dimensional cloud. Since the current atomic
vapour has a volume, the bunching formation for each tested cloud shape and
orientation is also represented in a volumetric intensity pattern.

This bunching radiation profile follows the expression introduced in Eq. 2.9, and
is also calculated onto each of the cardinal planes that contain the three possible
direction cosines. These two-dimensional calculations facilitate the evaluation of
the grating in each cardinal direction, e.g., the bunching in the external field axis
z axis can be examined by studying the shapes on planes (x, z) and (y, z). It is
worth mentioning that each of these so-called “projections” represents the bunching
calculated according to the configuration defined at the end of Sec. 2.2.3 on page 34.
They only show the bunching contour of the two cardinal components defining the
plane, neglecting the third one, this action makes the plotting a little bit different
than an actual projection of the 3D bunching shape. This trick allows to better
understand the lobes of the bunching formation represented by a three-dimensional
intensity pattern, which is represented using a scatter plot. The scatter plots would
be closer to a uniform shell shape of the 3D bunching with a larger number of
particles, but there exist some computational power limitations to either adding
more particles or constructing a 3D mesh with the given particles.

The fastest algorithm method, the predefined function Verletleapfrog [180] from
the Julia language, is exploited to represent the upcoming simulations. The reason
is simple, the computational resources needed to show the evolution of a 3D system,
which also contains more particles, are much greater than for a two-dimensional
case. Even with a 3D cloud that is less densely populated than its analogous 2D
case, with a density three times higher, the simulation time is increased a tenfold.

External field parallel to the major axis of an ellipsoidal cloud

The first system examined is the solid of revolution of the ellipse introduced in the
previous segment of this subsection on page 50. The seed for the random generation
of the initial positions remains the same, but now the particles are contained in
an ellipsoidal shape. Therefore, the same scalar laser beam propagated along the
major axis of the ellipsoidal shape (z axis), results in a one-dimensional grating
formation composed of three-dimensional clusters of atoms.

The grating formation of this system can be followed in Fig. 2.8, where the
initial atomic arrangement, in panel (a), is modulated to an ordered grid in one
direction, in (b). The pattern, instead of being made up of what looks like the lines
drawn in the cloud for the 2D analogous case, is made up of a collection of small
spheres distributed along the z axis. It is evident from panel (b), that the grating
has a distance between clusters of particles of λ/2 or π/2.
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Figure 2.8: Collective scattering and pattern formation from an ellipsoidal 3D
atomic cloud irradiated with a scalar pump laser propagating parallel to its major
axis: (a) Shows the initial atomic density distribution at t = 0 of N = 10000 atoms
randomly distributed. (b) Depicts the density grating formation due to collective
scattering at t = 0.158w−1

r . The corresponding bunching factors |M(k, t)| for both
time instants are displayed in (c) for t = 0 and in (d) for t = 0.158w−1

r .

When it comes to studying the radiation profile of the bunching formation,
the two lower panels (c) and (d) in Fig. 2.8, show how the system goes from a
single emitting lobe in the z axis, due to the laser beam, to a bunching profile that
contains an additional radiation lobe, which represents the consequent backscatter
emission of the CARL effect. As in the two panels above of the same figure, (a) and
(b), the intensity profile of the atomic bunching also represents a solid revolution
of the one obtained in the analogous 2D case. This latter fact is even more obvious
if the projections onto the (x, z) and (y, x) planes are examined. It is particularly
interesting to highlight the intensity of the backscattered lobe, which appears to
be notably greater than in the flat case, showing the collective nature of the CARL
effect.

Laser beam propagation perpendicular to a cloud shaped as an ellipsoid

In this segment a simple 90◦ rotation along the y axis to the former 3D cloud has
been performed, keeping the incoming scalar optical field incident along the z-axis.
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The system is allowed to evolve for a certain time and the results are shown in
Fig. 2.9. The initial atomic distribution and bunching profile are illustrated in
plots (a) and (c), respectively. When the cloud is observed after a certain time
a grating appears, although this time the grating is a 3D structure composed by
small spherical atomic clusters —see Fig. 2.9(b)—. Corresponding to the same
time frame, Fig. 2.9(d) gathers the intensity profile of the bunching of the main
directions of the scattered modes that allow to a three-dimensional grating.

Figure 2.9: Collective scattering and pattern formation from an ellipsoidal 3D
atomic cloud irradiated with a scalar pump laser propagating perpendicular to its
major axis: (a) Shows the initial atomic density distribution at t = 0 of N = 10000
atoms randomly distributed. (b) Depicts the density grating formation due to
collective scattering at t = 0.211w−1

r . The corresponding bunching factors |M(k, t)|
for both time instants are displayed in (c) for t = 0 and in (d) for t = 0.211w−1

r .

As in the equivalent flat case of the elliptical cloud in the second segment of
the previous subsection 2.5.1 (page 51), the grating is formed through the atomic
recoil that occurs from a combined action between the incoming photons from the
pumping field and the scattering of photons along the longest scattering path of
the cloud. Again, the major axis of the cloud is the one that defines the main
scattering directions, which are found along the x axis. For that reason, a 3D
grating generation can be seen in the cloud following perpendicular directions:
one tilted with a positive slope (45◦) and another with a negative slope (−45◦),
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with respect to the horizontal plane (y, z). The right angle formed between these
two directions is a consequence of the scattering event described in Fig. 2.6 (the
aforementioned matching 2D cloud).

There is a faint trail of tilted planes in Fig. 2.9(c), which become more clearly
visible as the system evolves towards the presented time frame. Since the figure
has a thickness that cannot be neglected, the temporal pattern formed by these
planes is finally replaced by the final three-dimensional arrangement; due to small
out-of-plane scattering along the y axis. The planes with a positive slope (x > 0)
are more visible than those with a negative slope (x < 0), because the first lobe
that appears in the evolution is the positive one, which is a purely random event.
It can be anticipated that such tilted planes will be exposed in later figures, when a
vectorial pump field is used to irradiate the same cloud (see Fig. 2.14 on page 67).

A peculiarity of this system is that the lobe due to the laser beam, illustrated
along the positive values of the z axis in plots 2.9(c) and 2.9(d), it is no longer
symmetric when compared to the previous case (Fig. 2.8). This lobe flattens on
the x axis, due to the lower probability that a photon will scatter along the ±y
directions. If the ellipsoid underwent a rotation along the z axis by an angle ±α,
the flattening of the lobe would also undergo a rotation of the same magnitude ±α.
Such an effect is already observed in Fig. 2.5, in the analogous 2D case, but in the
current 3D case, the compression of the lobe can be better captured thanks to the
projections on the (x, z) and (y, z) planes represented in Fig. 2.9(d).

Scattering from a spherical atomic cloud

As a final case for the current subsection, the circular cloud system in the example
presented in 2.5.1 on page 53 is transformed into its solid revolution to generate a
spherical cloud. As in the other two cases in the subsection, the external optical
field is still considered independently of its polarization effects and continues to
propagate along the z axis, from negative to positive values. The evolution of this
system is illustrated in Fig. 2.10, where the system cloud and bunching pattern
at time t = 0 are represented in plots (a) and (c), respectively. Furthermore, the
figure depicts the time frame in which the scattering is maximum in plots (b) and
(d). The flat, egg-shaped outline appears to be reproduced in a three-dimensional
shape, with a resemblance to a real egg that is displayed in panel (b).

As in the previous case, the emergent grating is three-dimensional with a spher-
ical group of atoms, but now there are no visible inclined planes. This is due to
the symmetry of the initial spherical cloud, there is no preferred initial scattering
direction and the atoms start to scatter randomly. Two dynamics occur simultane-
ously in this type of set: the first moves the internal atoms towards the outer shell
and the external atoms towards the interior of the cloud; the second distributes
the particles in clusters.

On the one hand, the first action is due to the electrostrictive force (outer atoms
moving inwards) and the scattering effect (inner atoms moving outwards, thanks
to a higher optical thickness along the z axis), which combined elongate the edges
of the cloud into an egg-like shape. In addition, their combination forces the atoms
to be forward displaced faster the closer they are to the outer shell, due to the
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definition of a preffered scattering path.

On the other hand, the second dynamic arises due to photon scattering, which
begins to occur through this newly defined longer path over the outer layer of the
cloud. The photon scattering helps to draw concentric circles of atoms on the
outer surface, which is represented in Fig. 2.10(b). In fact, looking closely at the
core of the cloud, it is possible to observe that these concentric circles, apparently
contained in different (x, y) planes, have a different k0z value when approaching
to the z axis. This is because these supposed circles are actually representing the
edges of shallow circular cones, which have their center located to the left of the
z axis with a smaller value than the k0z values of the edges of their circular bases
located on the right.

Analysing the bunching formation, in Fig. 2.10(d), it is possible to see, with a
little imagination and with the help of projection on the plane (x, y) plane, four
small scattering lobes, which are weakly represented in the other two projections
(two in each one). These lobes are the symmetrical way of representing the two

Figure 2.10: Collective scattering and pattern formation from a 3D spherical atomic
cloud irradiated with a scalar field: (a) Shows the initial atomic density distribution
at t = 0 of N = 10000 atoms randomly distributed. (b) Depicts the density grating
formation due to collective scattering at t = 0.185ω−1

r . The corresponding bunching
factors |M(k, t)| for both time instants are displayed in (c) for t = 0 and in (d) for
t = 0.185ω−1

r .
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flat lobes depicted in Fig 2.7(d) with a certain volume. This type of flower or
four-petal clover, drawn in panel (b) of the current figure’s 3D intensity pattern,
are the main scattering modes that interact with the pumping field to form the 3D
pattern design within the egg-shaped cloud.

Summarizing, in order to simplify the explanation, the situation is similar to
the one presented in the flat egg-like shape, represented in Fig. 2.7, but in this case
the dynamics occurs radially from the z axis, thus confirming this case as another
solid revolution of its analogous flat representative.

2.6 Polarized light scattering in 2D and 3D cold
atomic clouds

In this subsection, the simplified external field is left behind and updated with a
more complex and realistic field, which accounts for polarization effects. The field’s
polarization is linear, perpendicular to its propagation axis (z axis) and parallel
to one of the other two transverse cardinal axes (x and y axes). To restrict the
number of available system configurations, only off-axis scattering is investigated
here; elongated 2D/3D clouds with their major axis perpendicular to the direction
of propagation of the external field. The analysis of this orientation makes it
possible to better present the effects derived from having the polarization field
parallel or perpendicular to the major cloud’s axis, both in two-dimensional and
three-dimensional space. Furthermore, the same random seed, used in the previous
simulations of the scalar model, is used in all the following elongated clouds and
the initial shape of these 2D and 3D perpendicular clouds is not represented. If it
is necessary to check the initial random distribution and the clustering profile of
any two-dimensional or three-dimensional cloud, it is sufficient to check panels (a)
and (b) of Figs. 2.6 or 2.9, respectively.

2.6.1 Optical field with different linear polarizations in an
elliptical cold vapour

In the first part of the subsection, as for the scalar case, a flat cloud is investigated.
In-plane polarization is examined when applied along the x axis, while out-of-plane
polarization is examined when the y axis is chosen.

Pump field perpendicular to the major axis of an elliptical cloud with
in-plane polarization

For the figure representing a cloud parallel to the propagation of an external scalar
optical field in Sec. 2.5.1 on page 51, it has been calculated that an atoms expe-
riences a total momentum change of ~k0(ẑ ± x̂), i.e., depending on whether the
photon is emitted downwards (positive sign) or upward (negative sign). When the
fact that light cannot be scattered along the direction of its polarization is added
to this calculated scattering event, the only possible scattering direction for the
current case is the z axis; thus suppressing the x̂ component of the total recoil
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moment. This situation has obvious implications both in the grating generated in
the cloud, due to the action of the external field, and in the bunching profile, which
shows towards which direction the photons are scattering.

Figure 2.11: Collective scattering and pattern formation from an elliptical 2D
atomic cloud irradiated with a pump laser propagating perpendicular to its ma-
jor axis and linearly polarized along the x axis: (a) Shows the atomic density
distribution of N = 5000, with a random initial distribution, at the time instant
t = 0.167ω−1

r . (b) Depicts the atomic density distribution at time t = 0.230ω−1
r .

The corresponding bunching factors |M(k, t)| for both time instants are displayed
in (c) for t = 0.167ω−1

r and in (d) for t = 0.230ω−1
r .

The results of this case are shown in Fig. 2.11, where notable changes are ex-
hibited in the grating pattern, compared to the scalar case, due to the scattering
restriction imposed by the vector polarization. The very definition of a planar
system already suppresses a possible direction of scattering (y axis), and the po-
larization blocks the other transversal direction (x axis); leaving the light with the
only option but to scatter along the propagation axis of the external field (z axis).
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The situation is represented in two instants of time, in graphs (a) and (b) of the
same figure, where the evolution of the atomic distribution generates a pure 1D
grating pattern as a consequence of the forward and backward scattering of light,
and the pump field. In the frame of panel (b), the initially formed strips, shown in
panel (a), have a higher thickness, which represent the effects of having a continuous
incoming radiation field combined with the only two possible scattering directions:
some atoms remain almost motionless, with a net momentum change of 0, while
others endure a double momentum kick, with momentum 2~k0. Contrary to the
analogous scalar case, this example actually exploits the non-negligible thickness
of the cloud, scattering the atoms along this direction, because the polarization
cancels all possible scattering along the cloud’s major axis.

The analysis of the bunching radiation profiles of both time instants, displayed
in plots (c) and (d) of Fig. 2.11, confirms the situation predicted by the theory
and represented by the grating patterns in plots (a) and (b) of the same figure.
The intensity pattern shows more similarities with that represented by the scalar
case with an elliptical cloud parallel to the propagation axis (shown on page 51),
than with the scalar case that presents the same cloud orientation (see page 52):
only the lobes representing the forward and backward direction are generated.
The backscattering lobe is somewhat distorted and not as clear as depicted in
Fig. 2.5(d), although it retains some symmetry with respect to the axis of field
propagation. The main cause of such deformation can come from the dipole-dipole
force, which starts to push the atoms towards the right of the plot. The force
pushes with greater intensity the atoms located near the origin at k0x = 0, where
their numbers is greater and the optical thickness is higher, moving them towards
positive values of z faster than the ones located at the tips of the cloud (with higher
|k0x| value).

In summary, the radiation force transforms the straight stripes of bunches of
atoms into arcs, which are equally spaced with a periodic space between them of
≈ λ/2, or ≈ π/k0. The distances between these clusters are a consequence of the
optical potential generated by the standing wave that arises from the interaction of
the external field and the scattering light, which is modulated by the polarization
of the pump.

Systems’ longest axis perpendicular to an external field with out-of-plane
polarization

A copy of the previous system is simulated in this segment, but this time the
pump field polarization axis is rotated around the non-existing third dimension
—y axis—, also referred as out-of-plane axis. The new system does not experience
any propagation restriction, because the polarization is not contained in the plane
of the cold gas. Therefore, a bidimensional grating similar to the one shown in
Fig. 2.6(b) is observed for this system in Fig. 2.12(b). Nevertheless, the grating
portrayed in panel (b) of the current segment’s picture is not identical to the one
represented in the same panel of the figure from the scalar model. This variation
arises from the differences existing between the equations of motion describing the
scalar case —Eqs. (2.12) and 2.13— nd those that govern over the current vectorial
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case (Eqs. 2.15 and 2.16). The force equation of the current case has additional
short-range terms (1/rnjm with n > 2), and the terms that are typified in both
models (1/rnjm with n ≤ 2), are not identical. In addition, the cut-off parameter
has been adapted to each situation, being ξ = 1 when the incoming field is polarized
and ξ = 10−2 when is scalar. Adjusting this parameter does not affect the validity
of the results, but these alterations certainly introduce a slight modification in
the way the particles interact with each other. Analysing the bunching intensity
pattern in plot (d) of the same figure allows to see that the system eventually

Figure 2.12: Collective scattering and pattern formation from an elliptical 2D
atomic cloud irradiated with a pump laser propagating perpendicular to its major
axis and linearly polarized along the out-of-plane direction (non existing y axis):
(a) Shows the atomic density distribution of N = 5000, with a random initial
distribution, at the time instant t = 0.120ω−1

r . (b) Depicts the atomic density
distribution at time t = 0.239ω−1

r . The corresponding bunching factors |M(k, t)| for
both time instants are displayed in (c) for t = 0.120ω−1

r and in (d) for t = 0.239ω−1
r .
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responds as in the scalar case, providing a 2D pattern similar to that illustrated in
panel (d) of the scalar case on page 52.

Figs. 2.12 (a) and (c) present an earlier stage in the temporal evolution, where
the effects of a non-negligible surface thickness allow to generate a 1D grid. The
final expected two-dimensional grating of the atomic distribution of the cloud does
not appear immediately, but in a second phase shown in panels (b) and (d). There-
fore, once the interference between the backscattering and the pump field has
formed the 1D grating (along the z axis, seen in the previous transverse polarization
example), the main scattering direction is defined through the longest scattering
path (x axis), reshaping the temporal 1D grating into the final 2D grating.

There is something else to comment on regarding the two flat systems presented
so far. In both polarizations examples depicted so far, a sort of “burst” can be
perceived when they are compared with panel (a) of Fig. 2.6, i.e., the atoms of
these clouds seem to be drifting outward from the center of the ellipse. This is a
consequence of the value of the cut-off parameter, because if the value used in the
scalar case (ξ = 10−2) was applied to the vector model, the cloud would suffer a
strong and fast repulsion, making impossible for 2D grating to appear. The collision
avoidance parameter is already set to unity, hence in the order of magnitude of the
external field wavevector, and since bunching is already present, it did not seem
necessary to decrease it further.

2.6.2 Interaction of laser beam with different linear polar-
izations with an ellipsoidal cloud

A similar vectorial study is performed, when the cold atomic ensemble is exchanged
for a three-dimensional shape, everything else stays the same. Adding a dimension
to the system in hand allows to further expose the effects of the light scattering
when a polarized optical field is applied. Furthermore, in three dimensions, the po-
larization vector is always contained in one axis of the cloud, leaving the atoms free
to scatter in either of the other two directions in a more realistic three-dimensional
space.

Pump field with in-plane polarization perpendicular to the major axis
of ellipsoidal system

The first case, as in the 2D system, is simulated with a transversely polarized optical
field along the x axis. As mentioned earlier, polarization along a certain axis does
not allow atoms to scatter in that direction. Consequently, since the other two axes
are non-forbidden directions, the light is expected to form a series of atomic bars
(made up of several hundred atoms each) along the axis of the polarization vector.
The atomic bars are the result of the combination of the incoming photons from
the pump field and those scattered along the y and z axes.

The theorized scheme can be discerned in Fig. 2.13(a), where the so-called
atomic rods are not completely straight, showing a bended shape due to the ef-
fect of the constant dipole-dipole force. Again, the constant force and a greater
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optical thickness in the central (y, z) plane, located at k0x = 0, the central seg-
ment is pushed more firmly than the tips of the cloud; giving the atomic rods their
characteristic shape. The complete suppression of the bunching along the polariza-
tion axis can be inspected in Fig. 2.13(c), where the lobes along the polarization
directions (x axis) are completely missing.

In the plots (b) and (d) of Fig. 2.13 a second later instant of time is shown.
The same rods are still present in the atomic distribution of the cloud — panel (b)
—, although now they show weak cuts along their tubular structure, which can
be explained by the subtle lobe (pointing upwards) that appears in the bunching
formation intensity profile —panel (d)—. The reason for the appearance of such
forbidden lobe are unknown and they need a further study. Perhaps, such situation
takes place due to some sort of screening effect imposed by the particles placed
closer to the incoming optical field.

Figure 2.13: Collective scattering and pattern formation from an ellipsoidal 3D
atomic cloud irradiated with a pump laser propagating perpendicular to its major
axis and linearly polarized along the x axis: (a) Shows the atomic density dis-
tribution of N = 10000, with a random initial distribution, at the time instant
t = 0.173ω−1

r . (b) Depicts the atomic density distribution at time t = 0.260ω−1
r .

The corresponding bunching factors |M(k, t)| for both time instants are displayed
in (c) for t = 0.173ω−1

r and in (d) for t = 0.260ω−1
r .
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Systems’ longest axis perpendicular to an external field having polariza-
tion vector out of plane

The external optical field is considered here with the polarization vector rotated
90◦ with respect to the previous case, and this polarization is still perpendicular
to the propagation axis of the field, but here along the y axis instead of the x
axis. Being the scattering forbidden along the “out-of-plane” direction or y axis
(the direction that would be perpendicular to the sheet of paper if this were to
be considered within the (x,z) plane), the inclined planes mentioned in the second
segment of the third part of the previous subsection 2.6 (figure on page 58) appear
completely defined in panel (b) of Fig. 2.14.

Figure 2.14: Collective scattering and pattern formation from an ellipsoidal 3D
atomic cloud irradiated with a pump laser propagating perpendicular to its major
axis and linearly polarized along the y axis: (a) Shows the atomic density dis-
tribution of N = 10000, with a random initial distribution, at the time instant
t = 0.188ω−1

r . (b) Depicts the atomic density distribution at time t = 0.222ω−1
r .

The corresponding bunching factors |M(k, t)| for both time instants are displayed
in (c) for t = 0.188ω−1

r and in (d) for t = 0.222ω−1
r .

A first chosen time instant of the evolution of the system, plot (a) in Fig. 2.14,
shows a grating composed of the same tilted planes in formation. Those with a
positive slope are more visible because the atomic recoil is directed downward first
(towards the negative value of the x axis), which is confirmed by the lobe of the
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bunching formation in panel (c) pointing up. A second time instant is depicted
in panel (b), where the tilted planes with a negatives slope are activated but are
drawn weakly due to the latter appearance of the downward scattering. This second
scattering direction along the x axis is represented by the lobe in panel (d) growing
downwards.

In addition, the absolute absence of the tiny lobes arising in Fig. 2.9 can be
detected along the cross section of the ellipsoid; consequence of the presence of the
polarization vector (±y directions). Notice that in this case there is no emerging
bunching along the y axis, due to the same fact; only a faint gathering of the atoms
is observed due to the radial symmetry of the cloud.

2.7 Typical elongated 3D cloud considering a po-
larized pump field

This short section is introduced because the main objective of the chapter is to show
the appearance of the CARL effect with different cloud orientations, shapes and
various polarization vectors of an optical pump filed. Therefore, it is of interest to
illustrate the typical shape and orientation of clouds with polarization effects, thus
assisting in an easy comparison with other systems, for example, the characteristic
“cigar-shaped” BEC experiment with ultracold atoms. The same cloud represented
in Fig. 2.8 with a scalar field is developed here using the vector model with a
polarized pumping field: along the x axis in plots (a) and (c) of Fig. 2.15, and
along the y axis in plots (b) and (d) of the same figure. All plots represented in
this figure correspond to the same time frame (t = 0.170ω−1

r ) of the evolution of
the same cloud with the same initial condition.

There is nothing new to say about the plots representing the bunching forma-
tion, Fig. 2.15(c) and (d), both feature a large and noticeable backscatter lobe,
adding to Initial lobe generated by the pump field. However, a couple of peculiar-
ities can be highlighted when talking about the other two panels —(a) and (b)—,
which show the redistribution of the atomic density of the cloud in a 1D grid along
of the z axis. On the one hand, the effects of the polarization vector are visible in
either systems: the left panel shows a flat grating, due to the suppressed scattering
in the vertical direction, whereas the right panel presents a squeezed vertical grat-
ing, consequence of the forbidden scattering along the horizontal direction. On the
other hand, both clouds undergo a compressing effect on the radial traverse direc-
tion with respect to the z axis, marked at the right end of both ensembles. This
electrostriction effect is usually displayed by dielectrics, which are able to change
their shape, whenever they are subject to an electrical field.

The announced electrostriction effect can be equally seen both in the scalar
and the vectorial model, and with a 2D and a 3D cloud, but it seems to be more
obvious with the present configuration and the current model. The force is not yet
well understood and further investigation is needed for a satisfactory explanation,
but it looks that the effects ride along the cloud like a wave. It starts at the right
tip, as displayed in panels (a) and (c) of Fig. 2.15, and it goes backwards along the
z axis. After this sort of backwards-propagating wave has passed a section, this
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2.7. Typical elongated 3D cloud considering a polarized pump field

section is not susceptible to the polarization vector of the field any more, but it
is still reactive to the gradient of the radiation force. There are some studies that
have already observe this effect experimentally, like the one presented in [185].

Figure 2.15: Collective scattering and pattern formation from an ellipsoidal 3D
atomic cloud of N = 10000, whose initial positions are random, irradiated with a
pump laser propagating perpendicular to its major axis and linearly polarized. The
polarization along the x axis is portrayed in (a), whereas the polarization along
the y axis is illustrated in (b). In both systems the density grating formation due
to collective scattering is pictured at t = 0.170ω−1

r . The corresponding bunching
factors |M(k, t)| for both polarizations, are displayed in (c) and (d), respectively
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Chapter three

Trapping and Cooling Atoms with
Optical Binding

A novel collective scattering effect is presented in this chapter. This new phe-
nomenon is based in the optical binding of particles with light, which has been
applied to dielectric particles along the last decades. Only recently has the optical
binding effect been proposed in cold atomic systems. The chapter begins introduc-
ing the optical binding concepts, to later develop the models that allow to study
the phenomenon with cold atoms. It also exposes how the unique feature of atoms,
resonance, has the ability of harnessing the optical binding effect to achieve a cool-
ing mechanism. The cooling process is enhanced when several atoms are included
in the system, overcoming the heating mechanism produced by quantum fluctua-
tions. Nevertheless, this topic is at its dawn and the ideas contained in the current
chapter are mere theoretical proposals.
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Chapter 3. Trapping and Cooling Atoms with Optical Binding

3.1 Introduction to Optical Binding

The unofficial origin of optical binding could be established in 1989 with a physics
letter whose title has given name to the effect [2]. Although there were theoreti-
cal approaches already that involved the subject [186], it was the review written
by Burns, Fournier and Golovchenko, the one that defined the OB phenomenon.
In the review, they discussed the forces induced by intense optical fields between
dielectric objects. They explicitly studied the emergent bound states between two
plastic spheres (diameter ∼1µm) placed in a conductive or dissipative fluid (plain
water), when a strong perpendicular electromagnetic field is applied to them. Solv-
ing the Lorentz generalization of Maxwell’s equations, they determined that these
bounded states are only formed when particles, treated as oscillators, are located at
distances close to integer multiples of the adopted wavelength of light. The greater
the distance between particles, the lower the potential well caused by the long-range
internal forces induced between the two oscillators. They also presented experimen-
tal evidence, where the particles are pushed, using radiation pressure generated by
light, against an installed blocking surface, forcing the system to move exclusively
in a perpendicular direction.

Since its discovery, optical binding has been behind cutting-edge fields of atomic
physics, like laser cooling. This remarkable technique eclipsed the community work-
ing on the light-matter interaction for nearly two decades, and it still does. It was
not after the discovery of the so-called “holy grail” in physics, the BEC, that opti-
cally bonded atoms began to regain some attention. During the first two decades
of the 21th, the trend has been reversed and the topic is becoming increasingly
popular within the scientific community. Indirectly, some recognition came with
the award of the 2018 Nobel Prize in Physics to Ashkin. The award, not strictly
related to OB but rather to manipulation of matter with light, recognized funda-
mental work in the development of the bases of the optical tweezers1, which made
it possible to capture live bacteria using light [187]. What is more, Askin [188, 189]
is also credited with some initial contribution to the binding of neutral particles
with light and investigation that dates from before the dawn of laser cooling.

Unlike optical tweezers, optical binding has generally been linked more to a
spontaneous reorganization of the spatial configuration of the particles [190] —
thanks to the radiation of light—, than to their manipulation through light. Each
element of these structures, by diffracting or re-emitting light, can alter the others,
whose alterations, in turn, will affect each element. Since all particles have the same
probability of scattering photons from the field, their collective emission generates
a superposition of re-emitted fields.

There are two fundamental optical forces that act in optical binding: the radi-
ation pressure force and the dipole-dipole force, which is the interaction that arises
between two or more dipole moments, being these dipoles induced by an external

1The so-called “Optical tweezers” is a technique that allows to manipulate particles, as small
as a single atom, with light. The induced dipole force by the field of a single high-intensity tightly
focused laser beam helps to hold micro-particles in a stable three-dimensional potential.
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field.2 The radiation pressure (or scattering) force (introduced on page 5), pro-
pels particles in the direction of an incident photon, and in the opposite random
direction when the photon is emitted. The dipole-dipole force, is a force between
particles that does not arise exclusively from the external field, but mainly from the
multiple scattering of coherent light by the elements of the system. This second
force can give rise to attraction or repulsion reactions between particles, deter-
mined mainly by the position of all the particles in the system. Once a system
reaches a position of equilibrium, the dipole-dipole force plays an important role
in maintaining a steady state; this fact is fully described in the subsection 3.4.3.

Although the basic mechanism of optical binding is simply the one describe
above, the way in which this phenomenon is observed has led the experimental
settings to two different scenarios: transverse (or lateral) binding and longitudi-
nal binding. In the first experiment, in 1989, the OB effect was examined using
the transverse configuration. In that set-up, used throughout this thesis, the field
is applied orthogonally to the plane where the optically bonded particles extend.
In a different way, the longitudinal configuration sets the pump along the parti-
cle axis [191–193]. Unlike the transverse layout, the longitudinal configuration is
studied mainly in one-dimensional systems. However, it is plausible to investigate
two-dimensional arrangements by directing a laser beam in one of the directions
in the plane of a 2D structure. Regardless of its configuration, any OB system
becomes more difficult to examine and control when the number of scatterers is
increased.

In addition to the two configurations used to scrutinize the optical binding, dif-
ferent materials and configurations have been applied to test the physical responses
of the effect. Some representative studies are listed to show the expansion of OB
over the past two decades.

– The OB effect has been analysed employing several particle sizes from diverse
material compositions and with different polarizations [194]. Although the ef-
fect is not really affected by the size of the particles, the potential energy land-
scape is actively modified by the actual number of particles in the system. To-
gether with the action of the wavevector and polarization of the external field,
the number of particles also dictates the ideal self-organization/arrangement
of the system [195].

– There has been some research on adopting nanoparticles because, after all,
Burns et al. did not experiment with spheres smaller than the wavelength.
An up-to-date review of what has been done for the past 10-15 years regarding
OB with nanoparticles can be found in [196].

– Evanescent fields escaping from optical nanofibers have also been exploited
to trap atoms. The theoretical derivations combined with some numerical
and experimental evidence are discussed in [197].

2The electric dipole moment is the magnitude to measure the polarity of a system. When
atoms experience an excitation/decay of an electron, a dipole moment is created due to the
uneven distribution of charges within the atom.
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Chapter 3. Trapping and Cooling Atoms with Optical Binding

– Different input fields have been used to observe the phenomenon: plane waves,
for building even more complex clusters in two dimensions [198]; Bessel beams
(non-diffractive beams), to obtain stable configurations when binding larger
number of particles [199]; or Gaussian beams to better explore the ulterior
motives and mechanisms that give shape to the OB effect [200, 201].

– Two counter-propagating optical fibers have been manipulated to trap parti-
cles in the standing wave generated by the guided fields [202]. The particles
are trapped in space, simply held back by a generated standing wave, which
grants the possibility of forming one- or two-dimensional structures of par-
ticles. This last technique can make an important contribution to grant the
viability of the experimental set-up for the current theoretical doctoral thesis.

It has been established since the 1860s [203] that, due to heat transfer, the
resonance properties of a material play an important role in determining the ab-
sorbed and emitted envelope wavelength. However, it was not until a couple of
years ago, in 2018, that neutral cold atoms were proposed for optical binding [204].
Atoms, unlike dielectric particles, can be in resonance with incoming light. This
characteristic allows optically bound atoms to have a decoupling between internal
and external degree of freedom: the atom can vibrate with a different frequency
in external motion than in its internal oscillation between and excited ground
states.3 Taking advantage of this atomic resonance and lack of synchronicity, it
will be shown throughout this chapter that OB, in addition to being a capture
tool, can become a cooling (or heating) mechanism for atomic systems through
cooperative scattering effects.

Figure 3.1: Schemes of the landscape of two-dimensional dynamic potential gener-
ated by three atoms under OB, when they are established in a stable configuration;
equilateral triangle with the side close to the wavelength of the external standing
wave.

To conclude the introduction to the evolution of bounding matter with elec-
tromagnetic waves, the author would like to draw the reader’s attention to a less
scientific clarification. The optomechanical effect of optical binding should not
be confused with its almost homonymous term ”optical bonding”. This second

3The oscillation between excited and ground state in a two-level atom, driven by an electro-
magnetic oscillating optical field, is referred as Rabi frequency. Each oscillation cycle is a Rabi
cycle or Rabi flop.
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3.2. External and internal dynamics of cold atoms bound by light

moniker refers to the improvement of the readability of a display, when this is af-
fected by the environment (i.e., fog and reflection of sunlight), by gluing a protective
glass in front of it.

3.2 External and internal dynamics of cold atoms
bound by light

So far it has been announced what the optical binding effect means and how it has
been applied. From now on, the focus will be on promoting the phenomenon a little
more. To do this, this section presents the equations of motion used to describe
the dynamics of the two models that will be presented in the next subsection 3.3.
Using the introduced two-level atom model and an external coherent light source
disregarding polarization effects, it is possible to derive the two main equations
ruling the OB effect: one linked to the atoms’ internal degree of freedom (DOF),
dipole equation, and another one connected to their external DOF, force equation.

First, to avoid repeating the symbolic definitions of various parameters and
variables, used throughout the description of these two equations, they are identi-
fied and briefly described. Some may seem trivial, but full labelling is important
to avoid misunderstandings. The bold characters are not intended to refer to vec-
tor variables, which are indicated here with an upper arrow, but to facilitate the
reader’s possible future need to relocate a variable definition.

– The atomic mass of 85Rb is represented by m and it has a value of ap-
proximately 1.4 · 10−25 Kg.

– The atomic decay rate from excited to ground state, or linewidth for the
D2 line (transition 52S1/2 → 52P3/2) of this element, is characterized with Γ.

– There are two identical counter-propagating laser beams that functions as the
system’s external pumping field, which have a Rabi frequency Ω, with an
amplitude maximum of Ω0. Furthermore, there is a capture mechanism,
constituted by a standing wave, generated by two or four scalar counterprop-
agated monochromatic plane waves, which create a trapping system in the
(x, y) plane or along the z direction, depending on the number of DOF(s) of
the system, one ore two, respectively.

– As in Chapter 2, for the usual detuning adopted, we can safely set lambda ≈
λ0, with λ as the laser wavelength and λ0 as the atomic wavelength.

– Knowing the wavelengths allows to establish the field wave vector ~k and
the 85Rb transition wave vector ~k0, both having moduli determined by
k = 2π/λ.

– The atomic frequency of the same D2 line is expressed with ω0, which is
calculated as ω0 = k0c or ω0 = 2πc/λ0, being c the speed of light in the
vacuum. The laser beam frequency is represented by ω.
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Chapter 3. Trapping and Cooling Atoms with Optical Binding

– The resonance offset is measured with the detuning between the frequencies
of the external pump field and the electronic transition and is described by
∆ = ω − ω0.

– It is also convenient, due to simplification of equations and the representation
of the results, to define the normalized detuning δ, obtained from the ratio
∆/Γ.

– The recoil frequency is symbolized with ωr = ~k2/2m, where ~ is the
reduced Planck constant and m the atomic mass.

Once the symbolism for each variable and parameter has been introduced, it
will retain its meaning along this chapter, unless explicitly stated otherwise. Given
that a low intensity pump field is considered in this chapter, a classical approach is
employed to derive the system’s dynamics; considering the atoms as semi-classical
oscillators [205] and the light as a continuous plane wave. Although more accurate
results can be achieved with a quantum representation [206], they are not necessary
in this work.

3.2.1 Cooperative force: external atomic dynamics

The average of the fundamental force arising from a coherent light source acting on
the center of mass of N two-level atoms is the origin of the equation that describes
the external motion of the elements of the system. Its derivation can be attained by
applying the gradient of the positions to a two-component interaction Hamiltonian
(∇rjH): one component accounts for the laser-atom interaction and the other
one considers the interaction of the vacuum modes. In this subsection a concise
representation is announced, but the full calculation of such a force can be followed
in the work of Bienaimé et al. [207], or its extension by means of a master equation
performed in [208]. In these two cited letters, it is also possible to find the complete
definition of the two components of the interaction Hamiltonian.

Besides the position gradient of the system’s Hamiltonian, one assumption and
two main approximations are needed to achieve the force that describes the dynam-
ics of the center of mass of the optically bound atoms. The two exploited approx-
imations are widely known in the atomic physics community: the rotating-wave
approximation (RWA) and the Markov approximation. The assumption adopted
is necessary to easily extract observable values from the system’s equations and
to reduce the complexity of the problem: weak atomic excitation or linear regime
assumption. These three points are briefly introduced before revealing the first
main equation of the chapter.

The RWA approximation allude to the cancellation of the rapidly oscillating
terms of the Hamiltonian. This is done by ignoring the terms that arise from
the sum of frequencies (ω + ω0), because they have zero average contribution.
Thus, only the slowest oscillating terms, produced by the subtraction of frequencies
(ω − ω0), have a significant contribution. The approximation is valid when the ex-
ternal field applied is near resonance with the current atomic transition (or slightly
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3.2. External and internal dynamics of cold atoms bound by light

detuned) and has a low intensity. This mathematical simplification facilitates the
observation of the evolution of ground and excited states.

The Markov approximation guarantees that the system has no memory and
that its current conditions only depend on the current event. This approximation
is a tool to ignore multiple atom excitation and saturation. This means that the
atomic ensemble only re-scatter photons from the external field and not from the
other atoms. Again, to apply this approximation, it is necessary to work with weak
excitation, i.e., in linear optical regime.

The linear regime assumption can be considered when the system is far from
saturation, which occurs when the value of the saturation parameter is much smaller
than s << 1 [22]. Therefore, a system with a certain detuning ∆ between the
frequencies of the optical field and the atomic resonance, a decay rate Γ, and a Rabi
frequency Ω, is said to be in the linear regime when s = 2Ω2

0/(Γ
2 + 4∆2) << 1 or

s = 2(Ω0/Γ)2/(1 + 4δ2) << 1. For a small detuning, the system can be considered
within the linear regime when the pump frequency is not beyond 25-30 % of the
decay rate s ≈ 2(Ω0/Γ)2 << 1 Although, a difference of one order of magnitude
is assumed to be safe limit, hence (Ω ≤ 0.1Γ) with a small detuning. Being under
this regime allows to simplify the scheme efficiently, adopting both the Markov
approach and the RWA.

Finally, the first main equation of the chapter comes from taking the position
gradient of the two-component interaction Hamiltonian, applying the three simpli-
fications just described, obtaining the following expression for the force:

m
d2rj
dt2

= −~<
[
∇rj

Ω (rj)β
∗
j

]
− ~Γ

∑
m 6=j

=
[
∇rj

Gjmβ
∗
j βm

]
, (3.1)

where almost all variables have been described, except for the dipole moment of
each atom βj , which will be analysed in the following Sec. 3.2.2. The Green function
Gjm operating as a kernel of the light-mediated dipole-dipole interaction is defined
as

Gjm =
exp ik |rj − rm|
ik|rj − rm|

=
sin (k0rjm)

k0rjm
− icos (k0rjm)

k0rjm
, (3.2)

with the position of the center of mass for atoms j and m being represented re-
spectively by rj and rm, and the modulus distance between these two particle by
rjm = |rj − rm|. The definition of Eq. 3.2 comes naturally when deriving the
coupled dipole equations, related to βj , which can be found in appendix A; being
defined precisely on page 155.

Two familiar collective effects are described with the final real sine and imag-
inary cosine terms in Eq.(3.2): the cooperative decay [114] and the cooperative
phase shift [122]. Besides, the kernel Gjm can be thought of as the representation of
scalar dipoles (scalar light approximation), or a vectorial system of dipoles oriented
at a magic angle that cancels out the near-field terms. In linear optical regime,
the dynamics of this interactions can be obtained either from a quantum [206] or a
classical description of the oscillators [205, 209]. When numerically solving a sys-
tem with N atoms, this interaction term is embodied by a NxN symmetric matrix
for each of the dimensions of the existing external DOF. Each atomic interacting
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pair is represented by an element of this matrix, forcing the self-interaction to be
null by fixing the diagonal terms to zero. For each spatial coordinate, the sum of
each row gives the interaction force contribution of all atoms acting on the element
in the diagonal.

The first term on the right hand side (RHS) in Eq.(3.1) gives a description for
the scattering and dipole forces acting on a single atom. The second RHS term
yields the cooperative forces acting on the atomic arrangement, in particular the
cooperative force between a pair of atoms (j,m) due to scattered fields. Neverthe-
less, due to the geometry of the here exploited OB transverse configuration, the
final force or equation of motion that describes the system is reduced to

mr̈j = −~Γ
∑
m 6=j

=
[
∇rjGjmβ

∗
j βm

]
, (3.3)

consequence of the first term being zero. The term cancels out because Ω is uniform
in the transverse direction —(x, y) plane—, hence making the gradient ∇rjΩ (rj)
to be null because Ω is a constant. The differential term, on the left-hand side
(LHS) of the equation, has simply been transformed from Leibniz’s notation to
Newton’s notation for a more compact representation.

It is convenient to re-express Eq. (3.3) using two changes of variables: the first
rescales the position with the wavevector of the atoms into a dimensionless variable
rj = krj , and the second represents the time as a dimensionless variable as well,
by using the transition decay rate t = Γt. Therefore, rearranging the equation’s
terms, the acceleration of the center of mass of each atom is finally symbolized as

r̈j = −2ωr
Γ

∑
m 6=j

=
[
∇rjGjmβ

∗
j βm

]
, (3.4)

where now the time derivative represents a dipole time scale Γt and the position
krj ; the recoil frequency ωr follows the above definition.

3.2.2 Coupled dipole equations: internal atomic dynamics

Whenever there is a force, which depends on some gradient of the systems’ internal
dynamics Hamiltonian, acting on an atom, it will induce a dipole in the atom. This
force will cause an electron in the atom to oscillate between the ground and the
exited state, due to absorption and spontaneous emission, and this oscillation will
be shared collectively throughout an ensemble of atoms. Eventually, the internal
oscillation of the atoms couples to the external motion of the atoms.

The internal dynamics, or dipole moment, of each of the atoms located within
a set that is irradiated by a plane wave, can be classically described by the coupled
dipole equations, or CDE (see derivation in appendix A):

dβj
dt

=

(
i∆− Γ

2

)
βj − i

Ω0

2
ei
~k0~rj − Γ

2

∑
m6=j

exp (ik |~rj − ~rm|)
ik |~rj − ~rm|

βm. (3.5)

The first term on the RHS of the above expression is related to the light’s detuning
and atom’s linewidth; the second one is associated with the incident plane wave
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3.2. External and internal dynamics of cold atoms bound by light

and its Rabi frequency; and the last term on the right corresponds to cooperative
re-emitted radiation from other scatterers into vacuum modes. The last term is
responsible for the cooperative frequency shift and has been obtained by adding
the hitherto neglected RWA contribution linked to the exchange of virtual photons
among atoms [205, 207]. Moreover, the positions of every particle of the system
is represented using rj , with j = 1..N . Due to the transversal OB configuration
used, k0 · rj = 0 in Eq. (3.5).

When inspecting Eq.(3.5), it is fairly obvious that the dipole moment of an
atoms is not described with a single equation, but rather with a set of them; there
are as many equations as there are atoms in the system. These equations are
designated as coupled dipole equations because each atomic dipole depends on
the other dipole atoms. The CDEs describe the dynamics of the main peculiarity
of using cold atoms, instead of dielectric particles: the resonance between the
external field and the electronic transition frequencies. The full derivation of these
equations from the interaction Hamiltonian using similar approaches, exploiting the
same approximations and assumption adopted in subsection 3.2.1, can be retrieved
from several reports [118, 119, 205, 207, 208]. Nevertheless, an extract of the 4th

chapter [210] of the 2nd volume from the annual review of cold atoms and molecules
from 2014 [211] has been added in appendix A.

Since along each possible direction of translation the system being under scrutiny
interacts with a standing wave generated by two identical laser, the second term
of the RHS in Eq.(3.5) must be adapted. Conversely, the rightmost term, which
explicitly shows the dependence of any atomic dipole on the position of all other
particles, can be reduced to a more compact representation. Therefore, Eq.(3.5)
can be re-expressed as

β̇j =

(
i∆− Γ

2

)
βj − iΩ(rj)−

Γ

2

∑
m 6=j

Gjmβm, (3.6)

where the comparative emission term described by Gjm. The latter expression can
also be rewritten applying the two changes of variables adopted in Eq. (3.3), which
are rj = krj and t = Γt, given the following expression

β̇j =

(
iδ − 1

2

)
βj − i

Ω

Γ
− 1

2

∑
m 6=j

Gjmβm. (3.7)

The position transformation keeps values close to unity, reducing the chances of
floating-point numerical errors; the time transformation allows to simulate longer
times with fewer steps, tracking the oscillations of the dipoles at the same time.

When working in the optical linear regime (Ω� Γ), the atomic dipole is linearly
proportional to the external optical field β ∝ E, which allows to compute experi-
mental observables. For instance, the dipole moment of an atom β can be used to
estimate the probability of the atom to be in the excited state |β2|. In addition, a
broad knowledge of the system can be retrieved calculating the eigenvalues of the
scattering matrix Gjm if motionless atoms are considered.
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3.3 Models for optically bound cold atoms

The two sets of coupled equations, (3.3) and (3.5) -or their normalized re-scaled
versions (3.4) and (3.7)-, that describe the external and internal dynamics of an
atomic ensemble in a transverse optical binding system have already been exposed.
Now is the time to define the structure of the cold atomic systems that will provide
a means of testing these equations. Consequently, in this section the two schemes
used to reveal the OB effects are announced.

Regarded in the first part 3.3.1, a simple pair of atoms helps to present how, in
addition to trapping atoms in crystalline structures, OB’s multiple scattering can
be used to cool down the system. Multiple scattering is linked to optical thickness
b(∆) = b0/

[
1 + (4∆/Γ)2

]
, where b0 is the optical thickness at resonance, defined

in Sec. 1.4.1 (page 17). In addition, multiple scattering and absorption could be
neglected for a dilute gas with weak field and in the far-detuned limit, as seen in
previous Chapter 2; hence the system considered throughout the current chapter
differs from the previous one. Developed in the second segment of the section,
a one-dimensional chain of atoms of varying size assists on understanding a new
cooperative cooling mechanism. Both system have some stability issues because of
the atomic resonance, which are handled latter in Sec. 3.4.3.

3.3.1 Two atoms optically bound

The first system is composed of a pair of cold atoms and a scalar external field con-
tinuously radiating both particles. There are two laser fields in counter-propagation
along the z axis and the atoms are suspended within a (x, y) plane; thanks to the
external standing wave generated by the opposing laser beams. In Fig. 3.2, the
schematics of such a model is represented and shows the allowed displacement di-
rections of both particles, which is free within the plane. The only restriction of
movement comes from the confinement provided by the standing wave, which is
not shown in the figure (only the laser beams from the pump are shown).

Since the system is only composed of two atoms, the sum present in Eq. (3.7),
containing the Green function reported in Eq.(3.2), can be simplified to a simple
variable depending on the position G = exp (iq) /iq = sin (q) /q − i cos (q) /q. This
position has been redefined as a dimensionless variable, substituting the distance
from the center of mass of each particle r1,2 by q = k0(r1 − r2) = q(cos θ, sin θ),
with q = kr. The dumb indices become j = 1 and m = 2, although there is not
much need for them, because the sum of the Green function becomes unique and
identical for the two possible sums G12 = G21 = G.

Considering the definition of G, the new position variable q, and two new
changes of variables B = (β1 + β2)/2 and b = (β1 − β2)/2 (proposed in [204]),
each of the two equations that describes the external and internal DOF is sub-
divided into two expressions. Therefore, the equation of motion for both atoms
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Figure 3.2: Scheme of the system that allows the effects derived from the OB
applied to a pair of atoms. The atoms are confined in an optical plane and trapped
due to reciprocal scattering forces. The pair of plane wave are represented by red
arrows, the atoms, with their external DOF characterized with back arrows, are
drawn in yellow-green, and the invisible capture plane is depicted in soft blue-grey.

Eq. (3.4) is expanded accounting for the angular momentum.

q̈ =
4ωr
Γ

[
4Ω2

Γ2

`2

q3
−
(

sin q

q
+

cos q

q2

)(
|B|2 − |b|2

)]
, (3.8a)

˙̀ = 0. (3.8b)

The dipole moment (3.7) is re-expressed as the average dipole moment (β) and
the differential dipole moment (b),

Ḃ = −
[
1 +

sin q

q
− i
(

2δ +
cos q

q

)]
B

2
− iΩ

Γ
, (3.9a)

ḃ = −
[
1− sin q

q
− i
(

2δ − cos q

q

)]
b

2
. (3.9b)

The four new equations describing the dynamics of the entire system, are now
set in a different relative coordinate frame. However, the system still evolves with
the renormalized atomic dipole lifetime 1/Γ and the new equations contain all
the known parameters, already introduced in Sec.3.2. The new short expression,
Eq.(3.8b), includes the conservation of the angular momentum of the system L =
(m/2)r2θ̇, by means of a new variable

` =
√
ωrΓ(L/~Ω). (3.10)

In the above expression the radial velocity of the angular momentum is symbolized
as θ̇, instead of ω, to avoid any confusion with the already characterized atomic
frequency.
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A particularity given in the atomic pair scheme is that the dipoles of both
atoms are inevitably synchronized after a short transient time Γ time, which will
be reviewed in section 3.4.1. Therefore, the two dipole variables can be reduced
to β1 = β2 = β, which transforms the employed changes of variables to: B = β
and b = 0. Consequently, once again it is possible to reduce the two sets of
equations (3.8) and (3.9), into two coupled expressions that describe the internal
and the external dynamics of both atoms:

β̇ =

[
1 +

sin q

q
− i
(

2δ +
cos q

q

)]
β

2
− iΩ

Γ
, (3.11)

q̈ = ε2

[
`2

q3
−
(

sin q

q
+

cos q

q2

)
|β|2

]
. (3.12)

It is useful to define a new parameter ε = 4Ω/Γ
√
ωr/Γ in the second expres-

sion 3.12. It comes from the analytical study of the dynamics of the atomic pair
under OB, it will be later referred in Eq. (3.20) on page 85. This parameter al-
lows to accelerate the evolution of the system, allowing to see the dynamics of the
molecule in Γt > 1 without having to use a long simulation time; i.e., allowing
to control the time scales of the cooling and heating mechanism. The trick is to
increase the recoil frequency, which in turn induces the same dynamics that the
system would have for the real value, but in a shorter time. The two equations that
describe the dynamics of the system represent a single synchronized dipole moment
β for both atoms together with the variation of the distance between them q. Un-
less explicitly declared, the angular momentum of the system will be considered
null, so the first RHS term containing ` in Eq. (3.12) is dropped. In this way,
the motion of the atomic pair can be better compared with the second system,
characterized in the next section.

3.3.2 Optical binding in a unidimensional chain of atoms

The second system employed to study the OB effects in cold atoms is an ensemble
of particles distributed along a one-dimensional system. In this case, the atoms
are trapped with two pairs of counter-propagating lasers with the same character-
istics than the pair applied in the first two-atom system. Due to this set-up, an
extra DOF is completely suppressed, leaving the atoms with the only option to
oscillate back and forth in 1D motion, with no possible angular momentum. The
internal dynamics of the atoms are intact, which will provide a unexpected seed
for discovering a new collective phenomenon.

In a real experiment, the 1D chain can be effectively trapped in a two-dimensional
optical lattice and, with a little extra adjustment, can be reduced into a one-
dimensional assembly of could atoms (chain). The possibility of a 1D structure
of ultracold atoms has been explored since the beginning of the 21th in several
experiments [212–214], but recent advances have also been made in cold atom sys-
tems [215]. The schematics of this second model is depicted in Fig. 3.3, where the
coordinates have been rearrange, causing the chain to stretch along the z direction
and setting the external fields on the perpendicular axes x and y.
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Figure 3.3: Scheme of a cold atomic constrained to one-dimensional displacement
using four identical laser beams. The minima of the self-generated potential land-
scape (illustrated by an oscillating curve) are determined by the distance between
atoms; its lowest energy points are found when this spacing is close to the optical
wavelength λ. The cold atoms are embodied by yellowish-green spheres, the laser
sources with red arrows and the transparent tube is a mere representation of the
invisible optical confinement in one dimension.

In the award-winning optical tweezers technique, a dielectric particle is trapped
in a single potential well generated from a single beam gradient force, but when it
comes to cold atoms in a one-dimensional optical binding structure, the particles
are trapped by dynamic potential wells emerging from the atomic mutual forces.
The potential minima are generated individually for each atom due to the multiple
scattering of all particle involved in the system, which self-organize the system into
a central symmetric chain, with a distance between each link close to the external
field wavelength.

As in the previous case, the force induced in any atom along the allowed external
DOF is only caused by the scattering photons from the other atoms, because the
external fields do not produce any contribution onto the chain’s axis. The equations
representing this system are the general ones, revealed in Eqs. (3.3) and (3.6),
respectively describing the interal atomic force and the dipole dynamics for each
atom. For practical reasons, that will be exploited in the second segment the next
subsection, the external motion can be represented slightly different for this case:

m
d2rj
dt2

= −~Γ
∑
l 6=j

=
(
β∗j βl∇rj

Gjm
)

= −~
(
β∗j∇rjΩj(rj) + c.c.

)
, (3.13)

where the position of atom j is symbolized by rj and the field is now represented
by the effective Rabi frequency labelled Ωj(rj) = Ω0 − i(Γ/2)

∑
l 6=j Gjmβm,. The
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effective Rabi flop includes the external field amplitude Ω0, and the collective field
due to dipole scattering, contained in the second term including Gjm.

This 1D chain system does not allow any extra change of variables due to
lack of synchronization of the dipoles, unless the case taken in consideration is
again an atomic pair. Consequently, the equations to solve this system are the
altered expression that describe the atoms displacement, Eq. (3.4), and the dipoles’
moments, Eq. (3.7), presented in Sec. 3.2. Recalling the expressions where a couple
of changes of variables were applied to the two equations representing the internal
and external motion of every atom in a system under the OB effect, the dynamics
of a chain of atoms is described by

β̇j =

(
iδ − 1

2

)
βj − i

Ω

Γ
− 1

2

∑
m 6=j

Gjmβm, (3.14)

r̈j = −ε2
c

∑
m 6=j

=
[
∇rjGjmβ

∗
j βm

]
. (3.15)

Due to the change of variables applied to make time and position dimensionless
variables, both expressions (3.14) and (3.15) use the time scale Γt and the redefined
position for each atom rj = krj . In addition, the small parameter announced in
the previous model is defined here using the initial scaling parameters of Eq (3.15)
instead, εc =

√
2ωr/Γ. As in the atomic molecule with ε, the parameter εc allows

to shorten the simulation times for the atomic string. In addition, it provides a
more compact expression, which is like the one employed in the case of the atomic
pair. When dealing with the exact equation describing the atomic chain the value
of this parameter will be εc = 0.3.

After having described the two systems that are utilized to probe the OB effect,
an important remark needs to be made. In the force applied to both systems
compiled in Eq.(3.3), the stochastic effects linked to spontaneous emission have
been ruled out. However, the role these effects play when added to introduced
systems is discussed in Sec. 3.6.

3.3.3 Adiabatic approximation approach

Although in this thesis there are only two real systems exploited to observe the
OB effects in cold atoms, the author has decided to separate into an individual
subsection what is here called the adiabatic approximation. This new approach is
a mere assumption about Secs. 3.3.1 and 3.3.2, where the synchronicity between
the atomic dipole and the external field is speculated by eliminating the internal
dynamics of the atoms. This assumption allows investigating what are the con-
sequences of the distinctive feature that atoms have and that dielectric particles
lack, resonance.

When carrying out the adiabatic approximation, it is considered that the time
it takes an atom to execute an internal oscillation is negligible, compared to the
time it takes to carry out an external oscillation, caused by the binding potential,
i.e., the relaxation time of a dipole is assumed to be negligible (τ = 1/Γ ≈ 0).
This makes the internal decay to be instantaneous, the only thing that needs to be
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done to derived such dynamics, hence βj is synchronized in time with the position

rj(t). Therefore, β̇j can be meglected in (3.14) and βj(t) can be obtained solving the
system of the now algebric equations (3.14) for given positions rj(t) The calculation
is fulfilled for the two systems introduced, making the internal and external coupled
equations of both systems to become a unique equation describing the motion of
the atoms.

Two-atom system

Equating the LHS term of Eqs. (3.11) to zero and rearranging terms, allows to
derive the square dipole modulus for a pair of atoms as

|β|2 = − 4Ω2/Γ2

[2δ + cos(q)/q]
2

+ [1 + sin(q)/q]
2 . (3.16)

The only thing left to do, to obtain the adiabatic equation of motion for two
atoms, is the equation (3.16) into expression (3.12), which gives

q̈ =
4ωr
Γ

4Ω2

Γ2

{
`2

q3
+

sin(q)/q + cos(q)/q2

[2δ + cos(q)/q]
2

+ [1 + sin(q)/q]
2

}
. (3.17)

The expression describes the evolution of the system on a time scale Γ and can be
further simplified in a more compact form

q̈ = ε2

{
`2

q3
− w(q)

}
, (3.18)

where the two new elements denote the function

w(q) =
sin(q)/q + cos(q)/q2

[2δ + cos(q)/q]
2

+ [1 + sin(q)/q]
2 , (3.19)

depending on the variable distance between particles and the fixed normalized
detuning; and the already introduced constant coined as “small” parameter

ε =
4Ω

Γ

√
ωr
Γ
, (3.20)

which is determined using three known frequencies: the rabi flop, the decay rate,
and the recoil frequency.

As introduced in section 3.3.1, the ε parameter helps to speed up the dynamics
of the systems, allowing to see long-term effects, such as the new cooling mechanism
(Sec. 3.4.3), with shorter simulation times. Its derivation comes from a multiscale
analysis detailed in part III of Sec. 5.1, which is possible due to two times scales
present in the system. Throughout the chapter, and when dealing with the analyt-
ically derived expression, it will be assumed to have a constant value of ε ∼ 0.085,
unless it is explicitly stated otherwise. Knowing that the system operates in the
linear regime, here adopted with Ω = 0.1Γ, using such a ε value is like rescaling
the recoil frequency to approximately 70 times higher.
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One-dimensional chain system

Similarly, the procedure is applied to the unidimensional arrangement of cold
atoms, but in this case the adiabatic elimination of the internal dynamics (β̇ = 0)
is applied to Eq.(3.14). By using the already characterized effective Rabi frequency
Ωj(rj) = Ω0 − i(Γ/2)

∑
l 6=j Gjmβm, it can be defined the dipole moment of each

atom as
βj = αΩj(rj), (3.21)

which is proportional to this effective frequency through a constant defined as the
normalized atom polarization, α = 1/(∆ + iΓ/2). This is possible because, unlike
with the pair of atoms, no additional change of variables is applied when calculating
the dipole moments.

Adding the value of the dipole moment βj into the external dynamics, Eq. (3.13)
can be rewrite into a two component force

mr̈j = −~
(
β∗j∇rj

Ωj(rj) + c.c.
)

=
~

∆2 + Γ2/4

(
Γ|Ωj |2∇rj

ϕj −∆∇rj
|Ωj |2

)
, (3.22)

with a generic external field represented by Ωj = |Ωj |eiϕj . The radiation pressure
force is represented by the first RHS term of the equation, whereas the second
terms describes the dipolar force.

3.4 Inspecting the genuine atomic feature of res-
onance

All the necessary tools to study an atomic system under the optical binding ef-
fect have already been provided, so everything is prepared to show some results.
The current section presents the results acquired taking advantage of the attribute
that makes the atoms unique compared to dielectric particles, the atoms’ internal
dynamics. This feature may be regarded as the most fundamental aspect of the
chapter because it is due to the delay between the dipole and external field oscil-
lations, that a novel cooling mechanism emerges. Besides this phenomenon, the
lack of synchronization among the dipoles, together with the field-dipole delay, can
also trigger the opposite outcome: instabilities in the system long-term evolution
or heating mechanism.

In the first part of the subsection, the focus falls on the synchronization among
the atomic dipoles of the system, then the attention is directed to extract the
consequences of having resonance with the external field. Using the specific case of
adiabatic systems presented in Sec. 3.3.3, the behaviour of the system when atoms
behave as dielectric particles is exposed. The approximation allows to calculate
certain parameters of the system such as the potential of the potential landscape
generated by the OB effect. In addition, the key role that the internal dynamics
has on the instability of the system is investigated, hence allowing to study how the
lack of synchronism between the internal motion and the external motion triggers
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an instability in the system, that cannot be explained with the adiabatic model and
generates a new cooling mechanism. Most of the resolution is done numerically, due
to the complexity required to determine the analytical expression of the systems,
although some analytical derivations are made for the case of two atoms. The
writer advises to check on the published paper fruit of this investigated added in
Sec. 5.1, where the whole analytical derivation for a couple of atoms. The last part
gives a short characterization of the key factors aiding to the systems instability.

3.4.1 Dipoles synchronization

It has been mentioned above how the dipole moments of an atomic pair inevitably
oscillate in synchrony, regardless of their initial amplitudes, as long as the atoms
are separated from each other by a distance that corresponds approximately to a
multiple of the optical wavelength λ. Unlike the atomic pair, the opposite holds
true for a system with more atoms (N ≥ 3), no synchronization is achieved even if
the outer DOF of the system is reduced to one dimension, as in an atomic string
model (Sec.3.3.2).

Figure 3.4: The dipole dynamics of atoms in a string system, stretching towards
positive values of the z axis —starting from the j-atom ”1”—, is examined for a
some oscillations (initially βj = 0). In (a), the atoms with odd labels (first row
of the legend) are displaced 0.03λ from their initial positions, performing a sort of
unsymmetrical shift of the chain, which has a distance between particles of kr = 2π
or λ. In (b), the atoms are set at the distance close to equilibrium λ and the system
is allowed to relax. The symmetry in this second case gives way to three different
oscillation graphs resulting from mirrored-pairs of atoms: 1-6, 2-4 and 3-4. All
particles in both plots have zero initial velocity, the pump is set at Ω = 0.1Γ, and
the normalized detuning at δ = −0.3.

In Fig. 3.4, for the purpose of demonstrating such asynchronous situation, the
contrast between two distinct spaced distributions of atoms in a chain are presented.
Different initial positions of the particles in each case lead into different dipole
oscillating pictures of the same system, none of which reaches synchronization.
However, it is interesting to note that a certain synchronization arises between
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atoms equidistant from the center of the chain, here defined as “mirrored pairs”.
One may thing that, in Fig. 3.4(b), these mirrored pairs are executing a perfectly
harmonized vibration with some displacement between them, but when the data
is studied closely, the phase difference becomes evident. It can be seen that when
the central value of all represented oscillations is set on the same horizontal line,
the delay between pairs is evident. The oscillating curves have a lag between them,
with the lower 1-6 green pair being the one that comes first, followed by the 2-5
blue couple and ending with the 3-4 red duo. The pairing oscillations between
mirrored-pairs represented in panel (b)can only occur when a symmetric agitation
is imposed on the system. This pairwise synchronism takes a little longer as the
initial amplitudes of the atomic dipoles are forced to be randomly different, but it
eventually appears; first joining the pairs into an intertwined oscillation and later
harmonizing all mirrored pairs vibrations.

There is not much need to show what the dipole oscillation plot would look
like for a two atom system, it is enough to observe the perfect synchronization
experienced by any of the three atomic mirrored-pairs on Fig. 3.4(b). As shown in
Eq. (3.11), the dipole moment is unique for both atoms after the system has evolved
for a very short transient time, almost instantaneously —see the same panel(b)—.
The same goes for dual dipole arrays that have random initial amplitudes βj 6= 0,
after a short transient type, the dipoles will synchronize perfectly; much faster
than the 1D chain of many atoms would. In addition, a hypothetical situation is
presented in appendix D, where the atoms of the chain are force to behave as if
they were as synchronized like in an atomic pair. Allowing, to show what are the
direct consequences in the later described cooling effect.

3.4.2 Adiabatic approximation: atoms operating as dielectrics

When atoms are considered as dielectric particles, losing their internal oscillation,
they can be trapped in equilibrium points, oscillating with an everlasting constant
maximum amplitude. Thus, in such an adiabatic case, the effects of optical binding
are reduced to the trapping phenomenon into stable crystalline-like structures,
allowing the system to be rearranged at will. Although this is not the natural
behaviour of resonant atoms, this approach allows certain properties of the system
to be derived. For example, the resulting conservative central force allows the
dynamics of the system to be obtained from the trapping potential,4

V (q) = ε2

∫ +∞

q

(
`2

q3
− w(q)

)
dq. (3.23)

It depends on the distance between the two atoms q and other variables `, w and
ε, which have already been defined, in the same order, in Eqs. (3.10), (3.19) and
(3.20).

It is possible to obtain the equilibrium points of the potential by setting the force
acting on the atoms to be zero, i.e., equating Eq. (3.18) to zero or by setting the

4Conservative central forces can be described by means of the negative gradient of a potential
as F (x) = −∇V (x).
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Figure 3.5: Potential landscape V (q), following Eq. 3.25, for different angular mo-
menta, 0 ≤ ` ≤ 2 (with step of 0.2), and a fixed detuning, δ = −2.

expression inside the parenthesis in Eq (3.23) to zero, which yields the equilibrium
points q3

nw(qn) = `2. The subscript n represents the order of the minimum being
considered, for example, n = 1 refers to the first minimum located at ∼ λ or ∼ 2π
(see the the curve with darker blue or ` = 0 in Fig. 3.5). The maxima and minima
of the potential alternate between each other periodically, so the unstable values are
found at qs ≈ π(2n+1) and the stable values at qs ≈ 2πn, respectively; considering
the angular momentum ` is small.

Under this conditions of angular momentum and considering the periodicity
of the solutions —odd multiples of π for maxima [π, 3π, ...) and close to even
multiples of π for maxima [∼ 2π, ∼ 4π, ...)—, an approximation of the potential
energy V (q) can be derived around these points. First, Eq. (3.19) can be reduced
to:

w(q) ≈ 1

1 + 4δ2

[
sin(q)/q + cos(q)/q2

]
, (3.24)

where the denominator becomes the first initial factor 1/(1 + 4δ2), as a result of
the π-periodicity of the solution points: sin(q)/q is almost null and cos(q)/q tends
rapidly to zero due to the power of two; the denominator stays the same, due to
the lack of this power of two in the sine and cosine terms. Second, Eq. (3.24) is
inserted into Eq. (3.23) and the integral is calculated, giving the final approximate
expression of the potential energy

V (q) ≈ ε2

[
`2

2q2
− 1

1 + 4δ2

cos q

q

]
. (3.25)

From the last formula, it can be deducted that the greater the angular mo-
mentum, the greater the value of the centrifugal forces. Consequently, increasing
the angular momentum produces a molecule that is less stable, making it easy to
overcome the effect of optical binding. The situation can be analysed effortlessly in
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Fig. 3.5, where it can also be detected that the potential wells become shallower for
higher multiple of λ, following the curve −(cos q)/q (Eq. 3.25), announced in [2].

Comparing the adiabatic and the exact solution

The time evolutions of the two mapped atomic systems, described in Secs. 3.3.1
and 3.3.2, are compared to their analogous adiabatic adaptations, proposed in
Sec. 3.3.3. The comparison between this two solutions for both systems are illus-
trated in Fig. 3.6. It can be easily observed how whenever the atoms are considered
adiabatically, both systems evolve with a conservative motion of constant ampli-
tude, which is represented through the normalized osculations of the kinetic energy
of the entire ensemble; represented using the lighter grey plots in both panels (a)
and (b). On the contrary, when the exact dynamics is analysed for the atomic
pair —Eqs. (3.11) and (3.12), with ` = 0— and for the 1D chain —Eqs. (3.14)
and (3.15)—, the amplitude of the normalized kinetic energy decreases in time;
displayed with the darker curves in the same panels. The reduction in energy rep-
resents a progressive contraction of the amplitude in the oscillating movement of
the atoms, which can be translated into a cooling mechanism. This new cooling
mechanism is described in detail in the following Sec. 3.4.3.

Figure 3.6: Time evolution of the normalized kinetic energy of the two current
OB systems, comparing the exact and the adiabatic solution for both. In (a), the
N = 2 system is depicted using a detuning ∆ = −0.4Γ, while this is set to be
∆ ≈ −0.15Γ for a chain constituted of N = 10 atoms, represented in (b). Both
systems have the same pump Ω = 0.1Γ and the same initial conditions for position,
with an inter-particle distance of λ, and velocity, which is zero for each particle.

Note that in Fig. 3.6, the evolution in the total time of panel (b) represents
only 10% of the total time of panel (a). The reduction of the normalized kinetic
energy in the first ∼ 0.3ms (103Γt) in the 1D string of atoms is more than 90%,
but in the atomic pair it is approximately 2− 3%. Although there are just 5 times
more atoms involved, from N = 2 to N = 10, the reduction of the energy is 30
times higher with an atomic chain. This is the result of the action of the collective
effects, which suggests a new cooperative cooling because of the effect of optical
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binding. It will be explained in detail in Sec. 3.5, along with the reason why the
two systems are evolved using two different detuning.

There are some other facts and comments, related to plots represented in
Fig. 3.6, that are worth noting and mentioning:

– The normalized energy is defined for both OB systems (1D-chain and atomic
pair) as the maximum kinetic energy achieved by the system, either in its
adiabatic form or using the exact equations.

– The envelope of each curve represented in red for all curves, drawn with solid
lines for the exact solutions and dashed lines for the adiabatic approximations,
is calculated by averaging the peaks of the kinetic energy oscillations.

– The two cooling processes are exponential, but the one in (a) has a much
lower cooling rate, so it appears as if it were linear cooling.

– The evolution of each curve is obtained by numerically solving the equations
introduced by means of an ordinary differential equation solver (ODE). The
same results can be obtained with other symplectic integrating methods, such
as the leapfrog algorithm or velocity Verlet (the subject has been explained
in detail in Chapter 2).

3.4.3 Dynamics of an optically bound atomic molecule:
new cooling mechanism

The external motion of the atoms in an optically bound system is coupled to their
internal vibration. Therefore, the internal oscillations are going to affect, sooner
or later, the external trajectories described by the particles. The amplitude of the
external motion oscillations of an optically formed molecule determines its stability,
the formation of which is highly dependent on the detuning of the atomic decay
and the optical field. That is why the coupled internal dynamics of the system is a
distinct stability feature, which can either glue an atomic pair together or break it
down. It has been shown how by solving the exact equations of the two-atom system
without considering the decay rate Γ as instantaneous, it experiences the reduction
of its kinetic energy or the amplitude of oscillation; the system may also yield to
dissociation. Such instability, was observed in [204] solving Eqs. (3.11) and (3.12)
numerically, when cold neutral atoms were used in an OB system for the first time.
Subsequently, this instability was derived analytically and numerically simulated
to discover the conditions necessary to exploit it as a new cooling mechanism [216]
(or Sec.5.1).

The whole stability research is possible thanks to the trapping dynamic po-
tential, determined in the previous section, which is generated by the interaction
between the local filed and the scattered photons by both atoms. This mutually
induced potential landscape is depicted in Fig. 3.7 for a zero angular momentum
(` = 0), where the maxima an minima are displayed in the depicted plane. To dis-
tinguish a maximum from a minimum, simply look at the one-dimensional graph,
located on the left side, which represents V (q) as a function of q/2π from Eq. (3.23).
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Figure 3.7: Optical potential landscape generated by the interference between con-
fining laser beams (red arrows) and radiation from atoms. The pair of atoms (black
dots) is trapped at the first potential minimum, with |r1− r2| ≈ λ. The upper box
describes the profile of the self-generated potential V (q) where q = k|r1 − r2|, in
the absence of angular momentum.

This graphic legend also describes what happens if an atom follows a cooling trend
(red spiral), associated to a red detuning, or a heating trend (blue spiral), linked to
blue detuning. However, the spontaneous emission of a photon is not considered,
neglecting the possible stochastic heating (see Sec. 3.4.3).

In short, the desired result is to activate and take advantage of the cooling
mechanism caused by the optical binding effect. A concise analytical derivation is
now presented with the main results, but a more extensive analytical derivation
can be reviewed in the attached letter in Sec. 5.1.

Dipole moment beyond the adiabatic case

The cooling phenomenon is triggered due to the effects of a dissipative force gen-
erated from the time delay that emerges from the reaction time of the dipole when
it tries to couple to the oscillation of the external field. To represent this delay, it
is necessary to abandon the adiabatic approximation, so the response time of the
dipole is not considered to be zero, with a finite decay rate. In fact, instead of
completely forgetting the adiabatic case, the finite time can be perceived as a cor-
rection of the adiabatic approximation, resulting from an existing dual time scale
present in the system. For reasons that will be clarified later, the only system that
is characterized after this correction of the adiabatic case, are the equations for a
pair of atoms.

The dipole moment that was derived from setting the LHS term of Eq. (3.11)
equal to zero, with its modulus square expressed in Eqs. (3.16), can be extended
with a correction term, ending up reading as follows (refer to appendix C for its
derivation):

β(t) ≈ − 2iΩ/Γ

[1− 2iδ + g(t)]
− 4iΩ

Γ

ġ(t)

[1− 2iδ + g(t)]2
. (3.26)
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All variables are known except for g(t), which refers exactly to the complex term
in the kernel of Eq. (3.2) expressed in its exponential form g(t) = exp(iq(t))/iq(t),
with the dimensionless change of variable already used for the position q = k |rj − rm|.
Although now there is a crucial difference in this kernel, because it is assumed to
be time dependent; thus allowing to adopt a first order deviation term, represented
by ġ(t), when deriving the dipole moment from Eq. (3.11). Also note that the LHS
of Eq. (3.11) is no longer equated to zero to obtain β, but rather that the integral
of said equation is calculated to obtain β beyond the adiabatic approximation. The
complete derivation of this new dipole moment can be followed from the appendix
of an attached article in Sec. 5.1.

Consequently, the dipole moment in Eq. (3.26) now includes two components:
the first, proportional to q(t), corresponds exactly to the instantaneous response
of the dipole to the atomic motion or adiabatic approximation; and the second,
proportional to q̇(t), which describes the first-order delay of this response.

Equation of Motion beyond the adiabatic approximation

The internal dynamics of the molecule are now described by the time-dependent
dipole moment shown in Eq. (3.26). Matching the actions taken when calculating
the motion equation of the adiabatic “model” in Sec.3.3.3, the squared modulus of
expression (3.26) needs to be introduced into the motion equation, Eq. (3.18), to
obtain these new equations of motion. Therefore, by keeping only the linear term
of q̇(t), these calculations culminate in a non-conservative equation of motion that
reads

q̈ = −dV
dq
− ε2λ(q)q̇. (3.27)

This new dissipative term that changes between positive and negative value as q
oscillates, determines if the system reduces its kinetic energy or increases it, if it is
cooled or heated, respectively. The term is defined on this line:

λ(q) =
4w(q)

A(q)
2

+B(q)
2

{
cos(q)

q
− sin(q)

q2
− 2w(q)A(q)B(q)

}
, (3.28)

defining the coefficients A and B, depending on the distance between atoms q, as

A(q) = 1 +
sin(q)

q
, (3.29a)

B(q) = 2δ +
cos(q)

q
. (3.29b)

Comparing the exact dynamics of the two system with this new approach

For the sake of comparison, the equivalent equation of motion for atoms arranged
in a line, the derivation of which can be found in the appendix C, is calculated:

q̈j = −ε2 (1 + λN )
∑
m 6=j

w(qjm)ûjm, (3.30)
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where w(qjm), ε and λN are in that order the mirror images of Eqs. (3.20), (3.19)
and (3.28), for the one-dimensional system; and the unit vector ûjm = ujm/ujm

is the projection of the motion, being in this case along the z axis.
A parallel comparison like the one performed in Fig. 3.6 is now carried out in

Fig. 3.8, but this time, instead of showing the adiabatic case, it is represented the
exact solution together with the dynamics obtained with the label as “beyond the
adiabatic solution”. In the left panel (a) of the figure and using Eq. (3.27), the
time evolution of the system for two atoms is illustrated, while the characterization
of the chain of atoms is represented in the right panel ( b) using Eq. (3.30).

On the one hand, when observing the system with a pair of atoms in panel (a),
it is possible to see that the approximate solution beyond the adiabatic case, can
represent the instability depicted by the exact equations. This new solution intro-
duces the necessary disturbance that leads to the end of the perpetual oscillations
of the adiabatic case. It is true that it is not a precise coincidence, but it allows
a detect of the origin of the instability, which is intrinsically linked to the delay
experienced by the dipole when synchronizing with the external movement of the
molecule. Therefore, the resulting graphs in (a) certify that the lack of synchronism
between the internal and external DOF triggers the instability of the system in a
new cooling mechanism. Unfortunately, it can also be the spark that unbalances
the system towards a not so desired heating phenomenon.

On the other hand, when the right panel (b) of such figure is analysed, it can
be quickly detected that not only the same approximate solution flatly fails to
describe the cooling effect, but also how inadequate it is to declare that there is
a cooling. The reason for the observed evolution of the system is exactly linked
to the same origin as in the left panel, but in this case the heating mechanisms
are a consequence of the lack of synchronization among the atomic dipoles. In
fact, as explained in Sec. 3.4.1, it is not possible to have dipole synchronization in
systems with more than two atoms. The how and why of this unexpected result
are carefully examined in the next Sec. 3.5.

In addition, it can be seen that in Fig. 3.8 the normalized kinetic energy has been
redefined as the maximum initial energy acquired by solving the exact equations of
motion. Again, as in the comparison with the adiabatic case (Fig. 3.8), the darker
grey curves represent the exact solutions for both systems, but now the lighter ones
correspond to the labelled “beyond the adiabatic solution” and the small parameter
is considered to be ε ∼ 0.085 instead.

Particle self-organization is more likely to occur with a distance between par-
ticles close to λ. For instance, an optically bound molecule is more likely to form
when the distance between particles matches the distance required to find the deep-
est potential well, the first minimum (check small plot on the left in Fig. 3.7). Like
any cooling mechanism, a capture rate can be estimated by equating the kinetic
energy required to overcome the shallower maxima of the potential well, located at
higher separation distance. Focusing on the simplest studied system, the kinetic
energy linked to the radial velocity difference δv between two atoms is related to
the dimensionless potential barrier U . The potential barrier is calculated by tak-
ing the difference in potential energies between the first minimum and the second
maximum —the derivation of this barrier can be traced at the end of the third
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Figure 3.8: The time evolution obtained solving the exact equations is compared
with the new approximate solution (beyond the adiabatic case) for the two current
OB systems, using the normalized kinetic energy. In (a), the system with N = 2
is represented using a detuning ∆ = −0.4Γ, while it is set to be ∆ ≈ −0.15Γ for
a string constituted of N = 10 atoms in (b). Both systems have the same pump
Ω = 0.1Γ and the same initial conditions for position, with a distance between
particles of λ, and velocity, set to zero for each particle.

subsection of the attached document in Sec. 5.1—. Thus, two atoms can form an
optical bound when

1

2
m(δv)2 <

(
~Γ2

2ωr

)
U, (3.31)

where the parameters inside the parenthesis in the RHS of the equation only rep-
resents the change of variables applied when calculating the equation of motion
mΓ2/k2 = ~Γ2/4ωr. This factor allows to transform the general form of the ki-
netic energy, expressed in the LHS of the equation, into the actual coordinate
framework employed in the current system of equations.

Although no consideration is giving to the heating mechanism caused by the
spontaneous emission of photons, the possibility of the system to evolve towards
its annihilation in a heating process is very much alive. No time evolution repre-
sentation of this heating process is given to represent any of the revised solutions:
exact, adiabatic and beyond adiabatic. It is trivial to understand how the envelope
curves illustrated so far, in each plot of both Figs. 3.6 and 3.8 (in red), would look
like; however, some representation can be found in Fig 3.18 of Sec. 3.5.3.

3.4.4 Parameters affecting the cooling mechanism

There are three parameters that affect whether the two announced systems follow
a desired cooling trend or fall into a heating spiral that breaks them apart.

Detuning

The first parameter that defines whether there is cooling or heating in an OB sys-
tem is the detuning. The detuning value has been a fundamental concept since laser
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cooling was born in the mid-1970s [14, 15]. As introduced in Chapter 1, Doppler
shift is the phenomenon responsible for allowing or preventing an atom from inter-
acting with an incoming photon, when its wavelength detuned with respect to the
electronic transition of the atom. Therefore, the cooling mechanism described by
optical binding is also strongly subject to this parameter. However, in the current
case, the detuning value that establishes the barrier between cooling and heating
of a pair of atoms is close to resonance than in the well-known Doppler cooling.
For the case of a string of atoms, as it will be represented in the next section in
Fig. 3.15 on page 104, the current cooling mechanism can also be detected for small
positive detuning, thanks to a cooperative effect.

Angular momentum

Figure 3.9: Plot representing the dependence of the heating mechanism (thin red
lines) and cooling process (thick blue lines) on the angular momentum. Using the
detuning δ as the scaling canvas, the heating escaping time and the cooling half-
energy time are plotted for three different values of the angular momentum `. All
curves are obtained for a fixed value of the small parameter ε = 0.1 and a constant
initial energy value.7 Beyond the vertical line of black dots near δ = ±2 there is
no stability, due to shallower potential depth.7 All three curves have a divergence
at a critical detuning, close to resonance, that marks a regime change.

The second parameter, the angular momentum (Eq. 3.10), has already been
indirectly analysed with Fig. 3.7 of Sec. 3.4.2. This parameter/variable affects the
potential picture, making an atomic molecule less stable for higher values of rotation
velocity. Obviously, this falls into common sense, but what is really surprising is
that higher cooling rates and higher system stability can be achieved with a small
non-zero angular momentum. It has to do with the fact that the friction coefficient,
describe in Eq. 3.28, is forced to spend more time in the potential region where
it takes on a negative value than the one where is positive, hence producing the
downward sloping kinetic energy cooling curve. It has been stated that the detuning
value setting the barrier between cooling and heating for a pair of atoms is close to

7See [216] or Sec. 5.1 for more details.
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resonance, but angular momentum has the ability to slightly modify said threshold,
if an atomic pairs is considered.

Taking the detuning as an independent variable, the cooling time, considered as
the moment when the initial energy is halved τ (1/2), and heating time, referring to
the moment when the molecule is dissociated τ (esc), are plotted for three different
angular momenta in Fig.3.9. For each of the three curves, the heating time reach
a maximum rate for very close to resonance at blue detuning (δ ≈ 0.15Γ), because
the dipolar force (responsible for the OB) is overcome by the radiation pressure
force. In contrast, the cooling mechanism reaches its peak efficiency for light with
slightly negative (red) detuning. Both heating and cooling regimes have in common
that their rates decrease as the detuning moves away from resonance, because of a
greater inefficiency in coupling between light and atoms. The cooling phenomenon
is more sensitive to changes in the angular momentum of the molecule than the
heating process. For instance, looking at Fig.3.9, here is an order of magnitude gain
in the cooling rate from ` = 0 to ` = 0.15; with a slight increase of the detuning.

Parameter ε

In the system where a pair of atoms are optically bound, there are two separate
time scales: one associated with the vibration of the bound state and the other
one connected to the dipole oscillation. For instance, in the case under study
with two-level atoms and within the linear optics regime (Ω � Γ, since δ ≈ 0), a
single oscillation of the molecule extends over hundreds of dipole oscillations [204].
Generally, if ε � 1 and ` � 1, the dipole relaxation time Γ will be much shorter
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Figure 3.10: The heating escaping time and the cooling half-energy time are il-
lustrated in a plot showing the detuning δ versus the parameter ε and with fixed
angular momentum ` = 0.1. The black vertical line marks the separation be-
tween the two regimes, cooling for δ . −0.21 and heating for δ & −0.21; and the
white/blank area represents the unbound states where the trapping potential is
smaller than the initial kinetic energy. The simulation has been carried out for a
constant initial kinetic energy, considering the first and deepest well of the decreas-
ing series of the potential minima ∼ − cos q/q (being q the separation between the
two atoms).
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than the vibrational mode period. This small parameter plays an important role
on how fast a bound molecule will heat or cool down. Although in the current
segment the only parameter studied is the one related to the case with a pair of
atoms (ε), the same qualitative behaviour applies for the unidimensional chain
of atoms, when the exact equations are employed to follow the system dynamics;
defining the parameter εc.

The aforementioned heating and cooling times are represented using colour
bars in a stability diagram in Fig.3.10, where the ε parameter is plotted against
the detuning; keeping the angular momentum with a constant value ` = 0.1. The
cooling mechanism is more efficient at red detuning close to resonance, coinciding
with the results obtained with the angular momentum variation, and when the
values of ε are higher (0.15 < ε < 0.2 in the figure). The same situation occurs
for the heating phenomenon, but with blue detuning close to resonance. Both
processes have a smaller rate close to the barrier between the bound (coloured)
and the unbound (white or blank) regions for increasing values of ε and moving
away from resonance.

3.5 Cooperative cooling in optical binding

Through the inspection of how the internal oscillation differences of various dipoles
trying to synchronize with the external field affects the stability of the system an
unforeseen cooperative cooling effect was revealed. The cooling phenomenon is
caused by the synchronization delay between the movement of atoms and their
dipoles, but its enhancement, the collective effect, occurs as a result of the multiple
scattering interaction between several atomic dipoles. The system with a pair
of atoms is set aside and the 1D atomic chain, made up of a variable number
of atoms (N ≥ 3), is evaluated throughout this section; thus presenting a new
collective cooling mechanism derived from optical binding. This new cooperative
phenomenon is also analysed in [217], which is attached in Chapter 5, Sec. 5.3.

This self-cooling effect observed in a chain of atoms shows some similarities with
the collective cooling in optical cavities [71]. Furthermore, cavity-mediated self-
organization effects have already been studied theoretically by a couple of groups
in the 2000s [88, 218] and experimentally by another two, Black et al. [219] and by
Brennecke et al. [220]. The main difference here, where no cavity is used, is that
there is no single preselected mode, but rather multimode scattering into countless
vacuum modes.

It has already been represented in Figs. 3.6 and 3.8, how the cooling rate for a
string of a chain of ten atoms is faster than that observed for an atomic molecule.
However, this could be a characteristic resulting from the lack of dipole synchro-
nism, illustrated in Fig. 3.4, which is not better for increasing number of atoms.
For that reason, Fig. 3.11 represents the time evolution of three atomic chains with
different number of atoms and identical initial conditions. These simulations result
from the numerical resolution of the coupled general expressions that describe the
external and internal evolution of each atom, Eqs.(3.4) and (3.7), respectively. It
is obvious that the kinetic energy vibration of a chain is reduced more rapidly for
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larger assemblies. Every one of the three chains (N = 5, 10 and 15) has unsynchro-
nized dipoles, as in the example depicted in Fig. 3.4(b). It is important to mention
that the small parameter ε is constant for all curves; otherwise, the result would
be a bias due to the acceleration of the system time evolution introduced by ε.

Figure 3.11: The cooling evolution for three chains of atoms is shown. All three
cases have zero initial velocity and a particle distance λ. The kinetic energy oscil-
lations are represented by the grey areas, where the shortest chain is represented in
darker hue and the longer one in light grey. The envelopes are represented in red
following the same pattern, the solid line being attached to the smallest chain and
the lighter dotted line to the largest. The normalized Ekin represents the maximum
kinetic energy achieve for each calculated envelope, making it easy to establish a
common starting point for comparison.

Throughout the first part of the section, it will be shown how the potential
landscape of the steady state solution achieves deeper wells with an increasing
number of elements in the chain. This segment is followed by an investigation of
the trend some key parameters of the system follow, when studied for chains with
growing number of particles. As a first parameter, it is stated that the deepening of
the potential wells obeys a logarithmic progression. Subsequently, how the detun-
ing, which is one of the control parameters of the cooling/heating mechanism, has
a different optimal cooling value for each chain and also changes logarithmically
with the number of atoms in the string. Then, the same cooling mechanism is
analysed by measuring the variation of the cooling rate with different chain sizes,
which again follows a logarithmic growth. Finally, in the last part of the section,
another stable state achieved by solving the exact equations of motion numerically
is shown; it is defined as ”vibratory mode” of the system. The least desirable
result, the heating mechanism, is also presented alongside this final part.

3.5.1 Local potential for each particle in a 1D chain

Following the same trail than in the case of two atoms, an attempt has been made to
obtain a central force that makes it possible to determine a potential from which the
dynamics of this system can be better understood. However, as shown in Fig. 3.8,
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the dynamics described with the analytical approach beyond the adiabatic case
does not match the exact solution in the 1D chain system. Therefore, the dipole
cooling contribution cannot be identified as the expansion of the adiabatic case with
a disturbance term that depends on the position derivative q̇; therefore, unlike with
the atomic pair, no potential can be derived.

A useful method to have some prediction about the evolution of the system is
to study the local potential of each atom in its stable or minimum position, points
that are the solution of a self-consistent problem. These points represent the most
stable position in the system, where the kinetic energy is at its lowest level, and
define the local potential of each atom organized in a one-dimensional ensemble.
It is possible to obtain such an instantaneous potential from the same definition of
central force Fj = −∇Uj , which applied into Eq. (3.3) translates into:

Uj = ~Γ
∑
m 6=j

=
[
Gjmβ

∗
j βm

]
. (3.32)

This expression shows that the local potential of each atom depends on all the
other particles present in the structure. Therefore, the slightest modification in
the position of a particle affects the magnitude of the rest, as well as its own
(indirectly). Due to the oscillating nature of the potential, illustrated in Fig. 3.12,
the depth of minima are more or less opposite to the barrier heights of maxima
and the potential is defined as zero over long distances. An atom that wants to
escape the trap has to overcome a barrier twice as large as the minimum potential,
∆U = 2|Umin|; being Umin defined in the first part of the next segment —see
expression (3.34)—.

The local potential depths for each of the atoms belonging to three chains of
different sizes are shown in Fig. 3.12. It is clear that all wells deepen, from shallow
to deeper, when the number of scatterers increases and from the edge of the chain
to the center. If the kinetic energy of the outer atoms exceeds the boundaries of
the edges, the shallowest potentials of each chain, the system breaks into pieces or
clusters of particles.

The systems must be induced to the lowest energy state to achieve such a
potential, and this is achieved by forcing the atoms to their resting positions with
a stronger cooling mechanism. The extra dissipation is accomplished adding an
additional term ξ proportional to the velocity q̇, which introduces an artificial
friction force in the total force expression introduced in Eq.(3.3). The atomic dipole
remains as in Eq. (3.14), but the force describing the atomic external motion reads:

mr̈j = −~Γ
∑
m6=j

=
[
∇rjGjmβ

∗
j βm

]
− ξq̇j . (3.33)

Several rounds of simulation have been done with the code to find the optimal
value for the artificial friction coefficient ξ and to determine the time it takes for the
system to evolve. Then, the system has been allowed to cool for a long time using
the exact equations and no additional dissipation mechanism, storing the values
of the position of the atoms and their dipoles obtained. Always considering an
efficient simulation time, the most accurate result that matches this exact result,
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Figure 3.12: (a) Potential energy landscape for chains of N = 3, 9 and 15 atoms in
equilibrium, with a normalized detuning ∆/Γ = 0.0, −0.13 and −0.2, respectively.
The potential is computed using Eq.(3.32), considering all the atoms except for the
one for which the potential is being calculated, since it generates a local singularity.

when simulated without the additional friction term, have been with t = 105Γ and
ξ = 0.02mΓ; its units are mΓ to keep consistency with the systems equation.

3.5.2 System parameters scaling as ln N

The two images depicted so far in this section, Figs. 3.11 and 3.12, show how there
is an enhancement of the cooling rate and the trapping potential, which means that
there is an increase in the response of the system when it is extended. How this
cooperative effect scales becomes evident when three system variables are studied
for a few chains with a different number of elements. These variables are: the
instantaneous local potential, the optimal detuning and the same cooling rate.
Reviewing these parameters allows to understand how the cooling mechanism is
enhanced into a collective effect, adding increasing interactions between particles
to give an additional cooling boost.

Trapping local potential

The trapping potential is calculated for each atom at the edge of several 1D chains
—using Eq. (3.32)—, giving a trend of the local potential that increases with
increasing N . This tendency is represented in Fig.3.13, where the local potential
for the shallower atoms (first or last one of each chain) have been depicted.

The logarithmic growth of the optical potential seen in Fig. 3.13, for chains
ranging from N = 3 to N = 30 atoms, can be numerically fit to a logarithmic
curve. The extracted progression curve, for the atoms at the ends of the chain,
follows the following approximate expression:

Umin ≈ −0.8~Γ

(
Ω0

Γ

)2

lnN. (3.34)
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Figure 3.13: The system is cooled down by following Eq. (3.33) during a time 10−5Γ
and setting the artificial cooling parameter at ξ = 0.02mΓ, allowing to calculate
the steady local potential for the atoms at the edge of each chain. The absolute
value of this optical potential for these atoms is plotted against the number of
particles N contained in the chain; using the detuning value that optimizes the
cooling mechanism (see page 106). The logarithmic fit of the tendency described
by the potential values (small black circles) is traced with a dotted green line.

If the middle atom, or the deepest potential, of each chain were represented, the
first numerical value of the RHS of the equation would be −1.6. This potential
variation within the chain comes from the contribution that each atom adds to a
local potential Uj . Atoms that are further apart from each other have a smaller
mutual contribution due to the distance between them (check potential shapes of
Figs. 3.5 or Figs. 3.7, where the potential decreasing depth for greater multiples
of λ). The same screening effect, due to the greater finite optical thickness, is the
reason for the slight decrease in perceived potential depth for larger systems.

The deepening effect of the optical potential for increasing N can be explained
from the 1/r decay of the electric field. To understand how this potential scales, it
is assumed that each atomic dipole is only driven by the laser field, βj = Ω0/(∆ +
iΓ/2), considering the coupling contribution of the other dipoles to be insignificant.
When this last definition of βj is introduced in Eq. (3.32), the potential expression
becomes

Uj = ~Γ
Ω2

0

∆2 + Γ2/4

∑
m 6=j

=(Gjm). (3.35)

Moreover, it can be assumed that consecutive atoms are spaced λ from each other,
letting the position variable become rj = jλẑ. The separation between particles
is not exactly identical to the wavelength of the field, but it is quite close. This
constant spacing gives the possibility of further simplifying the potential as

Uj = U0

∑
m6=j

1

|m− j| = CjU0, (3.36)

with U0 = −~(Γ/2π)Ω2
0/(∆

2 +Γ2/4) as the minimum potential for a pair of atoms,
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and with Cj =
∑
m 6=j 1/|m − j| as the cooperative parameter for the j atom.

The trend of the minimum local potential when the atoms increase in an optically
bonded chain seems to be closely related to this cooperativity parameter, whose
discrete sum has a logarithmic growth when studied as a continuous variable. Ad-
ditional information, like the approximate potential value for the atoms located in
the center or in the edges of a chain, are derived in part II.C of Sec. 5.3 (attached
paper).

Figure 3.14: Shows the optical potential (in absolute value) for the edge atoms
of a 1D OB system as a function of the length N of such a system, and for the
detuning that optimizes this value (page 3.5.2). The purple line corresponds to
potential logarithmic fit announced in Eq. (3.36), whereas the green line represents
the exact value calculated employing Eq. (3.32)

The result of the analytical approach, from Eq. (3.36), is compared with the
exact numerical solution, from Eq. (3.32), in Fig. 3.14. The main reason of the
larger and larger difference between the two curves at large N is because the con-
tribution of the other dipoles to the local potential of atom j has been ignored. The
exchange of photons between two distant atoms is filtered by the atoms located
between them, modifying the phase and amplitude of the wave, so resulting in
the invalidation of the coherent sum in Eq. (3.36). The stronger screening effects
endured by longer chains constitute a limit to the achievable length of optically
bound chains.

It has been shown that the potential grows linearly with the logarithm of the
number of atoms N and, at first glance, the other two quantities (cooling rate
and detuning) should not have to evolve with the same trend, but they do. In
addition, an important aspect to note again is that for each string the detuning
has been modified, adopting the detuning for which the chain achieves the best
cooling performance; it is explained on page 106.

Maximizing the cooling mechanism

The long-range nature of the interaction among resonant scatterers under OB re-
veals its presence not only in the depth of the potential wells generated from the
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energy distribution, but also in the magnification of the cooling phenomenon. This
feature is analysed in Fig. 3.15, where the cooling rate has been calculated for
various systems, with different lengths, within a range of detuning values. The
cooling mechanism has been studied by monitoring the total kinetic energy of the
system, considering that the center of mass of the system is at rest. The system
is allowed to evolve, relaxing to its lowest energy configuration from an initial dis-
tance between closest neighbors that matches the wavelength of the local field. The
LHS plot of the figure represents the cooling rate due to optical binding for short
one-dimensional atomic ensembles and the RHS plot depicts the same parameter
for chains containing a few dozens of atoms.

Figure 3.15: Cooling rate γc/Γ as a function of the normalized detuning δ = ∆/Γ
for several one-dimensional sets of cold atoms with different lengths. The optical
binding cooling rate for short 1D chains ranging from N = 2 to N = 8 is represented
in (a), whereas the same parameter for strings varying from N = 15 to N = 60 is
depicted in (b). The cooling rate γc is obtained by calculating the inverse of the
time that takes the system to reach the 90% of its initial energy. The particle are
initially at rest with an inter-particle separation of λ.

Since there are several peculiarities that attract attention in Fig. 3.15, they are
briefly announced and explained in the description below:

– The first curiosity is the way in which the case of an atomic molecule (N = 2)
is dissociated from the main trend. This system has its cooling mechanism
starting slightly away from resonance than the rest, due to the intrinsic differ-
ence that exists with respect to dipole synchronization (shown in Sec. 3.4.1).
Moreover, the cooling efficiency is visibly lower than the larger systems, this
variation is the question that is being tested in this segment.

– The second aspect that can be noticed in Fig. 3.15 is that the cooling rate
varies considerably over the tested detuning range, which is about ten times
higher for any chain from the tails of the curve to its peak, but for the case
of two atoms. This behaviour was somewhat expected, since it also occurs in
another cooling mechanism for neutral atoms, e.g., Doppler cooling, where
cooling is attained for negative detuning, reaching its maximum at ∆ ≈ −Γ/2.
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– The third striking attribute is that there is a shifting pinnacle detuning value
for which the cooling rate of each string is maximized. The detuning value for
this cooling rate zenith is denoted as “optimal detuning” and can be verified
to be unique for each string. The optimal detuning value is far from resonance
for larger systems; always keeping in mind that the case of the two atoms is a
small exception due to the inevitable dipole synchronism. This parameter is
further developed on page 106, in the last segment of the current subsection,
although the concept is already exploited in the current segment.

– The last observation, which is more of an interrogation derived from the third
point, is to ask how the optimal detuning varies with the number of links that
make up the chain.

Extending the concept from the last point, if the cooling rate at its maximum
γc is considered for each chain (nothing more than calculating the cooling rate for
each chain, considering its optimal detuning), the cooling rate can be adjusted into
a logarithmic fit,

γc ≈ ωr

(
Ω0

Γ

)2

[0.4 lnN − 0.3] . (3.37)

The expression is obtained following the procedure described in the caption of
Fig. 3.15, for strings ranging from N = 3 to N = 30, where the cooling rate
is calculated letting the system evolves until it reaches 90% of the initial kinetic
energy.

Figure 3.16: Characterisation of the maximum cooling rate γc as a function of
the particles number N existing in several atomic strings. The small black circles
are the result of solving the equations Eqs. (3.14) and (3.15) numerically, with a
detuning that corresponds with the peaks depicted in Fig. 3.17. TThe green line
is the continuous representation extracted from the trend described by the small
black circles (reported in Eq.(3.37)). All particles are initially at rest and with the
usual λ spacing.

The data that make it possible to derive expression (3.37) is represented in
Fig. 3.16. In such representation, the maximum cooling rate for each chain γc
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is acquired using its optimal detuning. This way a fair comparison between the
different systems is achieved, because the image of the shifting cooling rate shown
in Fig. 3.15 makes it difficult to show an unbiased γc when a fixed detuning is taken
into account.

The envelope, which helps to calculate the cooling rate, is an illustrative trend
and becomes less accurate for larger systems due to emerging harmonic frequencies
(see Fig. 3.11). However, identical cooling rates can be obtained for each chain
using various percentages of final kinetic energy, which makes the algorithm used
quite robust.

In addition, checking appendix D, the reader can find out how the 1D chain
system behaves if the dipoles of a string are forced to oscillate with synchronization.
The situation is not the same as the adiabatic approximation, where the dipoles
are set to vary instantaneously with the local field, it is more like an artificial
synchronization, where the dipoles are averaged at each simulation step.

Optimal detuning trend

Unlike any other cooling mechanism, the cooling for a 1D chain finds its highest
efficiency close to the atomic resonance, specially if the string is not too long and
apart from the one composed of two particles. Nonetheless, it has already been
shown that the cooling process is not constant over a range of detuning values. For
that reason, in addition to seeking a fair comparison between the cooling possibil-
ities of each system, it is useful, as well as necessary, to extract a trend that can
be linked to the here called optimal detuning value.

Figure 3.17: The plot shows the detuning ∆c at maximum cooling rate, as a
function of the number of atoms present in different 1D chain N . As usual, all
particles are initially at rest and with a λ distance between them. The obtained
results (small black circles) can be fit into a logarithmic trend traced in green and
calculated in Eq. (3.38).

In Fig. 3.17, the optimal detuning is plotted against the length of the string it
represents and the trend can be easily detected, even without the logarithmic fit
drawn through a green dotted line. The optimal detuning for any string can be
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extracted using the trend represented in the figure. Therefore, given an expression
similar to those obtained for the local potential (3.34) and the cooling rate (3.37),
given by

∆c

Γ
≈ 0.14− 0.12 lnN. (3.38)

The optimal detuning ∆c could be redefined as the normalized optimal detuning
δc = ∆c/Γ, but this form is not employed to facilitate comparison with other
cooling methods.

In summary, with the trend of this last parameter, it can be clearly stated
that in the system described here varies logarithmically with the number of atoms
contained in a 1D chain. Therefore, making the system’s outcome intrinsically
dependent on the number of elements that their contain, which undoubtedly lead
to describe the cooling mechanism enhancement as a collective effect, in contrast
with the other single-atom cooling mechanism. However, the weak dependence
as lnN makes OB induced collective cooling mechanism not very efficient for a
possible experimental implementation.

3.5.3 Other system evolutions besides cooling

There are two other feasible outcomes for the unidimensional array of atoms when
allowed to evolve in time. Both results, together with the third possibility, the
cooling phenomenon, depend on the initial conditions of the particles and the con-
figuration of the local field. For example, the initial particle velocity around the
equilibrium points or relative position among them and the detuning parameter of
the external scalar field. Obviously, throughout this work no polarization compo-
nents have been considered for optical field, but if they were to be considered it
would probably affect the resulting system dynamics.

Heating

The system can lean towards the result directly opposite to the cooling mechanism,
experiencing a heating phenomenon that increases its kinetic energy until the chain
reaches a breaking point. The situation is the one with higher probability of re-
vealing itself if the parameters are not accurately adjusted and, especially, if the
spontaneous emission is also considered (see next Sec. 3.6). However, some stabi-
lization can be achieved effortlessly for systems with increasing number of atoms
(view also next Sec. 3.6). In Fig. 3.18 two cases are reproduced, in both cases the
total normalized kinetic energy increases, showing signs of system heating. The
LHS panel (a) represents the heating of two short arrays of atoms, which depict an
enhancement of the heating mechanism. However, in graph (b), the two short chain
envelopes are compared to a third larger chain, showing how the larger systems are
actually less sensitive to heat under the same initial conditions.

Vibrational mode

The fluctuation of the system can lead to an eternal oscillation resulting in a third
stable state here coined “vibrational mode”. The result of this system has nothing
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Figure 3.18: Time evolution of three strings of atoms with N = 3, N = 6 and
N = 18 atoms. The particles are distributed with an initial inter-particle distance
of λ and are perfectly still. However, a small disturbance is introduced, shifting
0.01λ the second atom from the right (j = 2, j = 5 and j = 17, respectively). (a)
portrayed the kinetic energy oscillations for two small chains (grey coloured areas:
dark for N = 6 and lighter for N = 3) and their envelopes (red lines: continuous
and dotted, respectively). (b) Keeps the envelops of the short ensembles, adding the
oscillation and the envelope (lightest grey and red discontinuous line, respectively)
of a sequence of N = 18 atoms. The normalized kinetic energy is here normalized
to the first value of the osculation for each system, for a better exposure of the
heating mechanism.

to do with the perpetual oscillation that is obtained with the adiabatic solution of
the case for a pair of atoms, because the exact equations are the ones involved here.
Furthermore, the adiabatic case gives a completely incorrect evolution for the one-
dimensional organization of atoms, which has already been shown in Fig. 3.8(b).

A representative case is provided in Fig. 3.19, where the usual initial conditions
(zero velocity and space between particles coinciding with the wavelength of the
local field) are minimally altered, culminating in a result completely different from
cooling and heating. mechanism. he particles undergo a cooling process from their
initial energy (check the first 0.5 · 105Γt for all curves in both panels), then there
is a metastable state, which is eventually broken, reaching a perpetual vibrating
mode (approximately after 6 · 105Γt in the figure).

Some work has been developed with this third new state, although the results
had not been as rewarding as expected. In addition, the time required to deepen
into the matter do not harmonize with the main scope of the thesis. Nevertheless,
some interesting fact have been extracted by solving the exact equations for several
short chain (N = 3 to N = 6):

– The oscillation frequencies of the vibration mode can be extracted easily,
performing a Fourier transformation of the vibrational mode. In the presented
case, it can be computed by considering the final 20% of the simulation time
(from 8 · 105Γt until the end).
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Figure 3.19: Time evolution of a 1D-chain with 3 atoms, where (a) represents the
total normalized kinetic energy and (b) the three atomic positions in q = kr units.
The vibrational mode can be detected in both plots, observing that the system is in
equilibrium, reaching a constant oscillation amplitude —in energy and positions—,
but without remaining perfectly still. The detuning is fixed at ∆ = −0.1Γ and the
atoms rightmost atom is slightly shifted to the right with an increment 0.01λ. The
other parameters are as usual v = 0, Ω = 0.1Γ. The kinetic energy is normalized
to the constant maximum amplitude value that it reaches during the “vibrational
mode”.

– The perturbation shift 0.01λ could be applied to any other atom in the chain.
When that is studied for the N = 3 example, it translates into a binary
combination for each particle, resulting in 8 possibilities (2N ). In a binary
transformation of the shift, “0” is assigned when the inter-particle distance
matches a wavelength’s multiple and “1” when it is shifted from that position,
e.g., it would be ‘001’ for the example in Fig.3.19. Some combinations leading
to a cooling mechanism and others to this peculiar mode. The percentage
of combinations leading to a cooling mechanism increases with N : 25% for
N = 3, 50% for N = 4, 75% for N = 5 and 87.5% for N = 6.

– The derived oscillation frequencies can have a second and even a third har-
monic, which results in a small ripple at the maximum amplitude of the
constant vibratory mode; not evident in the example given.

– The vibration mode seems to have no continuity beyond the strings composed
of a certain number of particles. For the present perturbation, it is impossible
to find a final steady state that oscillates with chains N ≥ 7; from that size,
there are two possible outcomes: heating and cooling.

– A meticulous study of the origin of the vibrational mode reveals that the
tiny amplitude difference between the dipoles’ vibrations (check Fig. 3.4),
eventually become comparable to the oscillation amplitudes of the dipoles;
hence triggering the change in the system’s evolution. In the present case,
there is one mirrored pair composed by atoms j = 1, 3, with the central atom
j = 2 oscillating with its own frequency. The dipole of the middle atom,
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which is somehow “independent”, at some point close to 2 · 105Γt, stops to
oscillate. The dipole curve βj starts to be more resemblance to a noise input,
hence becoming the source of instability that breaks the cooling process.

This state is a very specific case, derived from the applied initial condition.
By applying stronger disturbances and more chaotic noise to the system, such a
mode could be prevented. This leads to the next section 3.6, cited several times
throughout the chapter, where the effects of the spontaneous emission generated
by the random emission of photons by the atoms, are included in the dynamics of
the system.

3.6 Effects of stochastic emission in the stability
of the 1D system

The model and systems introduced so far do not consider the fluctuations in the
moment of the atoms caused by spontaneous stochastic emissions of photons. Each
atom every now and then receive a random momentum kick δp = ~k, whenever
a photon is spontaneously emitted. The photon can be emitted in any direction
within a three-dimensional sphere which affects the particle’s momentum radially
along angular directions as δp = −~k(sin θ cosϕ, sin θ sinϕ, cosϕ), for a typical
spherical coordinates diagram. The kinetic energy associated with the particles
is also altered, because each scattering event contributes to heating the system,
increasing it by an average

δEr =
~ωr
3

(3.39)

for each allowed translation direction, where the 1/3 comes because of projecting
the total recoil energy on each axis. It is better to present the energy of each
cardinal axis, because the systems being investigated in this thesis are set into one
and two dimensions.

The spontaneous scattering process is mainly by the laser field, so it is necessary
to calculate the total scattering rate of light from this source. This rate can be
extracted from [22] or [23], which has already been derived as

Rsp =
Γ

2

s0

1 + s0 + 4∆2/Γ2
, (3.40)

where all parameter are already known, except for the defined on-resonance satu-
ration parameter s0 = 2|Ω0|2/Γ2 = I/Is, as described in [22]. Since all the study
in this chapter is carried out working in the linear regime, the intensity of the laser
is far from being able to saturate the system; therefore the saturation parameter
can be eliminated in the denominator. Considering that s0 � 1, the scattering
rate can be repressed as

Rsp ≈
ΓΩ2

0

Γ2 + 4∆2
. (3.41)
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This expression can be multiplied to the defined energy kick endured for every
atom to obtain the rate of kinetic energy induced by spontaneous emission(

δE

δt

)
SE

=
~ωr
3

ΓΩ2
0

Γ2 + 4∆2
. (3.42)

This energy rate that can be defined as the heating perturbation introduced by the
stochastic process of the spontaneous emission of a photon.

To get a complete picture of the total energy of the system, the heating contribu-
tion of the thermal fluctuations must be added to the variation of energy generated
by the optical binding cooling mechanism. Since the OB cooling phenomenon has
been shown to evolve exponentially (check appendix E), it can be expressed as a
linear coefficient of the energy in a differential equation. Consequently, the evo-
lution of the total kinetic energy of each atom in the system can be defined as a
process leading to the following Langevin equation,

dE

dt
= −γcE +

(
δE

δt

)
SE

, (3.43)

where the coefficient γc is given by the expression extracted from the logarithmic
fit introduced in Eq. (3.37) of the second segment of Sec. 3.5. It is now trivial to
calculate the steady-state energy from expression (3.43) by equating its LHS to
zero, thus obtaining the approximate value of

Es =
1

γc

(
δE

δt

)
SE

≈ 0.83

lnN − 0.8

~Γ

1 + 4δ2
c

, (3.44)

where the normalized optimal detuning definition δc = ∆c/Γ ≈ 0.14 − 0.12 lnN,,
introduced in Eq. (3.38), has been employed to further simplify the expression.

After calculating the steady state kinetic energy, the only thing left to examine
is the total energy of the system. For this purpose, it is convenient to retrieve
the minimum potential wall ∆U established in the expression (3.34). However,
to make the text easier to read, the extracted expression (3.34) is combined here
with the potential barrier definition ∆U = 2|Umin|, announced on page 100, which
generates the potential energy of the system.

∆U ≈ 1.6~Γ

(
Ω0

Γ

)2

lnN. (3.45)

Once both components of the total energy have been obtained, it is now possible
to define when the optical binding cooling mechanism is capable of overcoming the
stochastic heating phenomenon, thus becoming a stable mechanism for cooling the
atoms. Such situation is achieved when the kinetic energy is smaller than the
minimum potential barrier Es < ∆U . By equating expression (3.44) and (3.45),
both normalized to the ~Γ, it can calculated how long the chains must be for the
cooperative cooling to overcome the spontaneous heating.

The situation is illustrated in Fig. 3.20, where the steady-state energy Es (using
a straight line in dark blue from the upper left corner to the right bottom corner) is
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graphically compared to various potential barriers (other curves), built by applying
different pumping fields. For instance, for Ω0/Γ = 0.2 stability should be reached
for N & 40. Since the case with the shortest chain, containing two atoms, is a
special case due to the perfect dipole synchronization, the chains are only plot
from N = 3. A thorough investigation regarding the stability for the specific case
of an atomic pair can be followed in Sec. 5.2 or [216].

Figure 3.20: Several potential barriers are calculated by plotting Eq. (3.45), using
different pump fields within the range 0.1Γ ≤ Ω0 ≤ 0.25Γ with a step of 0.05Γ.
They are represented with nearly parallel curves in different colours and styles,
and compared with a plot of the steady-state energy Es, which is obtained with
Eq. (3.44) and represented by a dark blue straight line. Both energies are dis-
played using the number of particles as a independent variable. The cases are only
displayed for N ≥ 3, marking that limit with a black dashed line.

Once the potential barrier of the system has been calculated, a capture rate
can also be defined as it is always done in another cooling mechanism. The only
operation to carry out is to consider the kinetic energy of the atom smaller than
the potential barrier delimited by the Eq. (3.45) ((m/2)(∆v)2 < 2|Umin|), in order
to described an atom as trapped. Thus being able to obtain the velocity from the
following expression

k∆v . 2.5Ω0

√
(ωr/Γ) lnN. (3.46)

Taking into account that the atoms used in this essay are 85Rb in the D2 line
transition(52S1/2 → 52P3/2), it is possible to defined that ωr/Γ ∼ 6 × 10−4 [24],

which returns k∆v/Γ ∼ 0.06
√

lnN(Ω0/Γ). This expression can be compared with
the Doppler cooling values in optical molasses, k∆v/Γ ∼ 1, and the value obtained
for Sisyphus cooling, k∆v/Γ ∼

√
ωr/∆0(Ω0/Γ) [54]. herefore, the cooperative

cooling mechanisms announced here share a scale closer to Sisyphus cooling, with
the difference that it is more efficient closer to atomic resonance. However, the
calculated potential is self-generated by the positions of the atoms, which makes
the calculated value a mere estimate of the order of magnitude of the capture rate.
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Chapter four

Conclusions

In this chapter, the conclusions and summary of the investigations carried out
on the optical binding (OB) effect, due to multiple scattering in cold atoms, and
the collective atomic recoil lasing (CARL) effect, thanks to single scattering in
free space, are here presented. Since they share different features of are different
cooperative effects, they are discussed in different subsections throughout the first
section. The same separation occurs in a second section where different perspectives
are presented both for CARL and OB.
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4.1 Summary

This section resumes all the conclusions derived from the investigations carried out
throughout this doctoral thesis for a better understanding of two optomechanical
effects: the collective atomic recoil lasing and the optical binding effects. Both
the probed mechanisms are a consequence of the collective scattering of light by
cold atoms of an optical field, whose vectorial nature is taken into account for the
atomic recoil laser, where polarization effects are relevant. On the contrary, a scalar
description of the optical field is adopted in optical binding, where polarization
effects seem to be less important.

4.1.1 Collective atomic recoil lasing

Systems of cold atomic clouds radiated by an optical field are generally confined in
an optical cavity, which forces the scattering of light to occur in the mode set by the
resonator. On the contrary, the novelty of CARL throughout this thesis is the fact
that the system is considered in free space, which leads to a multimode scattering
in vacuum. Therefore, it is exposed how the optical cavity model is not necessary to
achieve a coherent collective emission by an atomic ensemble; a preferred scattered
path occurs along the main axis of the cloud. The derivation of the equations used
to represent the results obtained in the CARL effect, using two models referred to
as the scalar and the vector, are also presented in the dissertation. Additionally,
molecular dynamics algorithms, generally employed in other scientific fields, are
used to numerically solve the derived multiple-particle equations to describe the
motion of each atom in a cloud in two or three dimensions.

The simulations show that both the atomic density distribution and the collec-
tive scattering pattern of that atomic distribution are sensitive to the orientation
and shape of the cloud. Numerical solutions are presented by studying the evolu-
tion in time of three main systems, either in two or three dimensions. The three
systems studied consist of clouds: elongated along the axis parallel to the direction
of propagation of the external field, stretched along this direction and with a round
symmetrical shape.

All simulations related to the cases in which the cloud is oriented parallel to
the direction of the pump field reveal a one-dimensional grating formation in the
atomic distribution along that direction. While in the planar structure the pattern
is purely one-dimensional (equidistant lines), in the volumetric arrangement the
clusters of atoms present a an array of periodically spaced small spheres. The
study of the intensity radiation profile in the atomic bunching formation shows
how the backscattered light is amplified, producing the so-called collective atomic
recoil laser effect. The CARL phenomenon is similar to the effect observed by its
electronic counterpart, the free electron laser (FEL), but it occurs with neutral
atoms rather than electrons.

Whenever the cloud on the major axis is rotated at right angles, such that it
is perpendicular to the pump field, the grating emerging in the cloud gains one
dimension, both for 2D and 3D analysis. The change in momentum induced in the
atoms by the backscattered photons, combined with that generated by the photons
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scattered in other directions, defines the trajectories that the atoms follow from said
2D and 3D grating. By analysing the lobes of the bunching formation, it is possible
to see how the main direction of the atomic scattering is also rotated with a right
angle. These observations confirm that radiation resulting from collective scattering
occurs predominantly along the longest axis of the cloud. The pattern that appears
is similar to that shown in the superradiant Rayleigh scattering experiment of
Inouye et al. [133], but instead of tracing a pattern in momentum space, it emerges
in real space.

When the cold atomic cloud is configured in a circular or spherical distribution,
the simulations clearly show the electrostrictive nature of the force generated by
the collective scattering process. At first, there are several scattering paths, due
to the symmetry of the system, but soon two main directions are determined with
an angle smaller than a right angle. Both two-dimensional and three-dimensional
clouds undergo elongation along the axis of propagation of the pump field, thus
establishing the longest scattering path. This path is drawn along the edge and
outer layer of the 2D and 3D systems, respectively. The scattering produced in
this direction gives way to patterns like those observed with the rotated elongated
cloud, but with a more acute angle between the scattering directions. The situation
is easily detected by studying the lobes that emerge in the bunching formation
intensity profile that accompanies these circular examples. The precise mechanism
of this collective electrostrictive force, emerged only recently from the simulations,
is not yet completely understood and needs further study, beyond the aim of this
thesis.

The variation in the orientation and shape of the cloud is complemented by a
study of the effect when considering a polarized external optical field. The scatter-
ing picture of the cloud grating formation and the bunching intensity profile using
this field have only been tested on the perpendicular elongated cloud. The results
obtained are like those observed in scalar cases, but now, the scattering direction
that coincides with the polarization vector of the pumping field is completely sup-
pressed. This image is exposed when the grating formation is shown, where one
of the dimensions of the atomic distribution grating disappears. This suppression
is not detected if the polarization does not fall in one of the dimensions of the
cloud, for example, a two-dimensional cloud within a plane is not affected by a
polarization along the axis coinciding with the plane’s normal vector. Minor differ-
ences are seen between the scalar and the vectorial model, due to the presence of
different short-range terms in the equations of the models and the different cut-off
parameter chosen.

Furthermore, both scalar and vectorial models depend only on the position
of the particles; facilitating its implementation in molecular dynamics (MD) al-
gorithms, typically used in other scientific fields, like biology. Two well-known
symplectic algorithm are explained in detail, these are the Verlet algorithm and
the leapfrog method. The new open access programming language Julia has proven
to be a great tool for implementing these MD codes, due to its large number of
packages, including several useful symplectic algorithms; they allow to follow the
trajectory of each particle with sufficient precision and respecting the energy con-
servation of the system. The Julia algorithms included in some of these packages,
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in addition to offering decent performance when simulation time is considered,
also prove to be ideal tools for representing the dynamics of systems with many
particles.

4.1.2 Optical binding

To date, optical binding has been studied with dielectric particles of different sizes,
down to the nano scale, both theoretically and experimentally. Dielectric particles
do not have any internal dynamics that are affected by the external optical field
when they scatter light. In contrast, the cold atoms used here reduce the size of
the system to Angstrom units and possess a resonance characteristic. This unique
feature allows a completely different range of responses to be displayed from the
same optical binding systems.

When optical binding is applied to dielectric scatterers, they reorganize into
crystalline structures with periodic arrangements; the distance between each par-
ticle in the array is approximately the wavelength of the external optical field.
Whereas, when the same implementation is performed with cold atoms, the effect
not only triggers similar reorganization patterns, but the entire system is affected
by a non-conservative force. The force comes from the non-adiabatic reaction of the
internal degree of freedom of the atoms (atomic dipoles), when they try to follow
the external movement of the atoms. Hence, the synchronization delay between
these two oscillations, when averaged over a period of oscillation of a system, made
up of an optically bound molecule, results in a friction-like mechanism capable of
slowly cooling or heating the system.

Throughout the current thesis, the cooling effects of this dissipative force have
been investigated using two different systems, one with a pair of atoms, which can
move within a 2D plane, and another that is composed of a different number of
atoms (N ≥ 3), which are forced to move along a 1D chain. The first system is
used to study such cooling phenomenon and to explore the parameters that allow
these mechanisms to be controlled. There are three key parameters: the main one
is the detuning between the optical field and the atomic transition; the other two,
which have been studied in combination with detuning, are the angular momentum
of the molecule and a small parameter defined as ε proportional to the pump field.

The study of the atomic molecule has made it possible to define the key values of
these parameters to achieve the desired cooling effect. To detect a cooling trend, the
detuning must be negative with values very close to resonance, because at positive
values the atoms experience a heating effect. Surprisingly, from the study of angular
momentum (complemented in [216]), it is extracted that a low value of angular
momentum helps to achieve higher rates in the cooling phenomenon. Meanwhile,
the defined ε parameter helps to identify the time scale difference between the
oscillations of the bound and the cooling mechanism, which is analytically identified
here as a deviation from adiabatic dynamics.

The main problem with this cooling phenomenon is that when the stochastic
heating process characterized by the recoil experienced by an atom when it sponta-
neously emits a photon is considered, the cooling potential mechanism of the effect
is overthrown. For that purpose, the OB molecule is then enlarged by adding more
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atoms to generate the second system under investigation: a one-dimensional chain
of atoms that is no longer allowed to rotate. It seems that from the two main differ-
ence between these two systems, more than two atoms and dipole synchronization
(or the lack of it in this case), this second system is capable of experiencing an en-
hanced collective cooling effect. In this context, the dipole-dipole interaction of the
chain seems to be able to counteract the spontaneous heating phenomenon. This
one-dimensional 1D system could be eventually be employed to cooled a few dozen
atoms, without any additional stabilizing mechanism such as the optical molasses.

In addition, the collective cooling dissipative force of the optical binding effect
is demonstrated to scale with the logarithm of the number of atoms N present
in the 1D system. A parallel study of the steady-state local potential of each
atom contained in the chain shows how these potential wells deepen with the same
logarithmic scale; making it more and more difficult to dissociate the chain as the
number of atoms in it increases. What is more, he cooling mechanism exhibits its
maximum efficiency at a certain detuning value, which depends on the size of the
atomic string. This so-called optimal detuning follows the same logarithmic trend.
The more atoms present in the chain, the closer the optimal detuning is to that
defined by the Doppler limit (∆ ≈ −Γ/2), and the more intense the cooling effect
becomes. In contrast, for smaller chains, the optimal cooling efficiency is close to
resonance, being at a slightly positive detuning for three atoms.

4.2 Future outlook

The field of cold atoms is rapidly expanding and diversifying and will undoubtedly
contribute to broadening humanity’s knowledge of collective or cooperative effects,
as it has done so far. There is a revolution under construction and, this time,
it is not related to a device, such as a chip, but to the matter itself. Regarding
the future prospect related to the line of work presented in this dissertation it can
be anticipated that there is another study, linked to the CARL vectorial model,
in publishing process and two additional reviews, related to OB in 2D structures
and/or including simulations with the spontaneous emission heating mechanism,
are also under consideration.

4.2.1 Collective recoil laser

Nowadays the attention of the AMO physics community is focus on other applica-
tion, different from CARL, for the cold and ultracold matter like: Rydberg atoms
(quantum memories), atom chip, atomic clocks, optical lattices, accelerometers,
quantum dots, etc. The CARL experiments are no longer active, but it would be
interesting if the subject were taken up again in the future for the study of new
feasible applications; also making it possible to test the numerical solution obtained
throughout the current thesis. For example, the easiest thing to do would be to
test a 3D system in the absence of a resonator and see if it develops a grating
pattern, which depends on the polarization vector of the incident beam. The latest
CARL experiments were conducted in the early 2000s in Zimmermann’s group in
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Tübingen (Germany), where they actually used ultracold atoms in a BEC and a
cavity; and in the early 2010s in Robin Kaiser’s group in Nice (France), where
the cavity was eventually omitted and a cooperative scattering was observed [119],
although it was not CARL.

Other possible theoretical investigations would be to check the effects of a cir-
cular polarized light or to probe what happens when light is applied to the cloud
using pulses. Studying the effect with more complex models, for example including
three-level atoms in the model, would be the alternative route to make the sys-
tem a bit more complex and realistic. However, the main goal would be to find
an application for CARL as has been done for the FEL, which is being used by
physicists, chemists, biologists and materials scientists and is also making its way
into medical and military applications.

4.2.2 Crystalline structures of cold atoms bound with light

The optical binding effect using cold atoms has been theoretically introduced
in [204, 216, 217], but there have been no experimental results so far. Among
the systems that have been presented, the one that could really be implemented in
an experimental configuration would be the atomic arrangement in a line, which
could be tested using techniques inspired by Bragg scattering [221]. To demon-
strate some preliminary theoretical numerical simulations, including spontaneous
emission stochastic noise, where the stability of the system has been successfully
tested. Nevertheless, these initial results need to be further examined to make a
true statement.

Optically bound systems, as in the recoil laser, are studied in free space, which
translates into completely different responses from the system, when compared
to that detected by applying an optical resonator. However, recent theoretical
studies have suggested that only one mode can arise naturally from the cooperative
scattering of cold atoms in free space [222]. Such a system suffers from similar
synchronization problems presented throughout Chapter 3, although the analogy
with a single-mode approach remains to be demonstrated.

Another direction that could be considered would be to increase the dimension
of the system, to a two-dimensional structure with a greater number of atoms;
some preliminary work has already been done. Such crystalline shapes, formed
due to the optical potential generated in each atom by the action of its neighbours,
emerge when a kind of triangular unit cell (like the one shown in Fig 3.1) is repeated
in a two-dimensional plane. This unit cell has been expanded to form hexagonal
structures, starting from one atom, and surrounding it with six atoms at a distance
∼ λ from and between them. This type of crystallization has been studied for
dielectric particles in [198], where these are reorganized falling to the minimum of
the potential landscape generated. These 2D atomic crystals may be even more
promising as a cooperative cooling mechanism. This is because the 1/r term of the
dipole-dipole interaction scales as lnN for one-dimensional strings, but it scales
as
√
N when using two-dimensional systems; thus making it easier for heating

fluctuations to be overcome by the dissipative force generated by optical binding
(see Eqs (3.44) and (3.45) for a better understanding).
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The main challenge of these latest 2D structures lies in controlling the dipole
moments of the atoms, since it has been shown that they are not synchronized,
which becomes the factor of instability that breaks this type of atomic lattices.
Once again, some simulations have been done with crystalline structures, but the
main problem seems to be the lack of synchronism of the dipoles. A hidden control
mechanism for these dipole vibrations could lurk in the polarization of the optical
field, which remains untested for OB with cold atoms.

Finally, an additional measure could be to work with a more complex internal
structure of the atoms (three-atom level) and non-linearities, as in an electromag-
netically induced transparency (EIT) configuration [223, 224], which would allow
to improve the cooling transition and suppress the heating frequency.
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Chapter five

Papers published throughout the
present PhD

Throughout the three years that this PhD project has lasted, it has been possible
to produce some contribution to the physical community of AMO through the
publication of three scientific articles that are listed below in chronological order.

i) Physical Review A 99, 013619 (2019)
”Stochastic heating and self-induced cooling in optically bound pairs of atoms”
A. T. Gisbert, N. Piovella, and R. Bachelard.

ii) Physical Review A 100, 023630 (2019)
”Multimode collective scattering of light in free space by a cold atomic gas”
R. Ayllon, J. T. Mendonça, A. T. Gisbert, N. Piovella, and G. R. M. Robb.

iii) Physical Review A 102, 013312 (2020)
”Cooperative Cooling in a 1D Chain of Optically Bound Cold Atoms”
A. T. Gisbert, N. Piovella, and R. Bachelard.

The original studies, as they where published, are included in the same order in
the pages of this chapter. A fourth article, related to the results obtained for the
CARL vectorial model, will probably be published in the days around the defense
of this thesis.
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The light scattered by cold atoms induces mutual optical forces between them, which can lead to bound states.
In addition to the trapping potential, this light-induced interaction generates a velocity-dependent force which
damps or amplifies the stretching vibrational mode of the two-atom “molecule.” This velocity-dependent force
acts on time scales much longer than the mode period or the dipole dynamics, determining the true stability of
the bound state. We show that, for two atoms, the stochastic heating due to spontaneous emission always exceeds
the bounding effect, so pairs of cold atoms cannot be truly stable without an extra cooling mechanism.
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I. INTRODUCTION

The advent of the laser and the subsequent cooling tech-
niques applied to atomic samples have been a fundamental
tool to lower their temperature by many orders of magni-
tude [1]. Eventually, temperatures can be reached where the
Doppler effect has a negligible role, and coherences between
the atoms can be preserved over the size of the sample. The
Bose-Einstein condensation was a major step in this direction
[2], which gave access to several new phases of matter, both
for disordered systems and ordered systems (such as the Mott
insulating phase when ultracold atoms are trapped into optical
lattices [3]). Apart from sympathetic cooling [4], cooling
techniques do not involve interactions between the atoms, but
rather between the laser photons and independent atoms. The
atoms are thus cooled independently, and the atomic sample
is spatially confined by a quasiharmonic potential.

Yet light-induced interactions between the atoms can be a
powerful tool to create ordered systems [5]. A paradigmatic
example of cooperation in cold atoms is the collective atomic
recoil lasing [6,7] observed when a cold or ultracold atomic
gas in an optical ring cavity is illuminated by an intense
far-off-resonance laser beam, causing a self-induced density
grating in the atomic sample. More generally, the optical
dipole force on the atoms in a high-finesse optical cavity,
together with the back action of atomic motion onto the
light field, gives rise to nonliner collective dynamics and
self-organization [8]. All these schemes with atoms in optical
resonators rely on the creation of optical lattices generated by
the atoms.

In a similar fashion, it has recently been proposed to
optically bind pairs of atoms confined in two dimensions by
a stationary wave, where each atom remains at a multiple of
the optical wavelength from the other [9]. This effect stems
from the generation of a nontrivial potential landscape due
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to the interference between the trapping beams and the wave
radiated by each atom (see Fig. 1). As for atoms trapped in
a one-dimensional optical lattice, the distance between the
atoms is a multiple of the optical wavelength, as is well known
from optical binding with dielectrics [10,11].

Nevertheless, different from the optical binding of di-
electrics, which are immersed in a fluid to confine them
[12–17], cold atoms are manipulated at ultralow pressure, so
the surrounding medium can be considered to be vacuum.
An important consequence pointed out in Ref. [9] is that,
since each atom exerts a central force on the other, the
angular momentum is preserved, instead of being damped by
viscous forces as for dielectrics in fluids [18]. Yet, despite the
apparent simplicity of the problem—a two-dimensional two-
body dynamics where both total momentum and total angular
momentum are conserved—an additional effect of cooling or
heating was reported, on time scales much longer than that
needed for the two atoms to oscillate. These results were
obtained by numerically integrating the coupled differential
equations for the internal and external degrees of freedom.

In this work, we further investigate the coupling between
the dipole dynamics and the center-of-mass dynamics to elu-
cidate the slow change in temperature of the system, and we
study the impact of the stochastic heating due to spontaneous
emission (SE). In particular, we show how friction (or an-
tifriction) terms appear beyond the adiabatic approximation,
which explains the cooling and heating regimes. The dipoles
evolve on a time scale typically much shorter than the period
of oscillation of the atoms center of mass in the optical po-
tential, which allows for a multiple scale analysis. This purely
deterministic analysis confirms that light detuned positively
from the atomic transition mainly results in only metastable
(heating) bound states, whereas a negative detuning rather
results in stable (cooling) bound states. Yet, accounting for
the stochastic heating due to spontaneous emission, one finds
that the trapping potential is unable to maintain the binding
forever. Just as a single particle cannot be trapped in the
stationary wave created by the same beams that cool it, optical
binding fails as spontaneous emission is dominated by the
scattering from the light coming directly from the laser, while
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the optical potential results from the scattering of that laser
light by one atom onto the other, so it is necessarily weaker.
As a consequence, while the presence of angular momentum
in such an atom pair is associated to a more efficient cooling,
the lesser depth of the trapping potential makes these rotating
states unstable as well.

II. TWO-ATOM ADIABATIC DYNAMICS

Let us consider N two-level atoms (polarization effects
are neglected) with an atomic transition of linewidth � and
frequency ωa , with positions rj , j = 1 . . . N . The atoms are
pumped with a monochromatic plane wave of wave vector
k = kẑ, detuned from the atomic transition by � = ω − ωa ,
and with Rabi frequency �(rj ) � �. Using the Markov ap-
proximation, the resonant dynamics of the atomic dipoles βj

is given by a set of N coupled equations [19,20]:

β̇j =
(

i� − �

2

)
βj − i�(rj ) − �

2

∑
m�=j

Gjmβm, (1)

where Gjm = exp(ik|rj − rm|)/(ik|rj − rm|) describes the
light-mediated interaction between the dipoles. The set of
equations (1) is linear in the dipoles βj , so for motionless
atoms most of the information on the system can be obtained
from the eigenvalues and eigenvectors of the scattering matrix
Gjm [21–25]. Neglecting the modification of the lifetime due
to the atoms’ cooperation, the dipoles relax to equilibrium
on a time scale 1/�. However, accounting for the optical
forces resulting from the multiple light scattering leads to an
intrinsically nonlinear problem, as the dynamics of the atoms
center of mass couples to that of the dipoles:

mr̈j = −h̄�
∑
m�=j

Im(∇rj
Gjmβ∗

j βm). (2)

This equation describes the average optical force between
the two atoms, without accounting for the fluctuations which
originate in the scattering of both laser light (spontaneous
emission) and multiply scattered light (fluctuations in the
dipolar force; see Sec. V). From now on we focus on atoms
confined in a plane by counterpropagating beams, as shown
in Fig. 1. Assuming a plane-wave profile for these beams,
the atoms are submitted to a uniform field �, plus the light
scattered by the other atom. Furthermore, we restrict our
analysis to pairs of atoms (N = 2), for which the set of
Eqs. (1) and (2) can be cast in the relative coordinate frame
with b = (β1 − β2)/2, β = (β1 + β2)/2, and q = k(r1 − r2).
In polar coordinates q = q(cos θ, sin θ ) (where q = kr), one
obtains [9]

ḃ = −
[

1 − sin q

q
− i

(
2δ − cos q

q

)]
b

2
, (3a)

β̇ = −
[

1 + sin q

q
− i

(
2δ + cos q

q

)]
β

2
− i

�

�
, (3b)

q̈ = 4ωr

�

[
4�2

�2

�2

q3
−

(
sin q

q
+ cos q

q2

)
(|β|2 − |b|2)

]
, (3c)

�̇ = 0, (3d)

FIG. 1. Optical potential landscape generated by the interference
between the confining laser beams [perpendicular to the plane (x, y ),
not shown in this figure] and the radiation of the atoms. The pair of
atoms is trapped in the first minimum of potential, with |r1 − r2| ≈
λ. The upper inset describes the profile of the self-generated potential
V (q ), where q = k|r1 − r2|, in absence of angular momentum.

where time has been renormalized by the atomic dipole
lifetime 1/�. Here � = √

ωr�(L/h̄�), where L = (m/2)r2θ̇

is the total angular momentum, ωr = h̄k2/2m is the recoil
frequency, and δ = �/� the normalized detuning. Equation
(3d) describes the conservation of the angular momentum:
including stochastic effects such as random momentum kicks
due to spontaneous emission would break this conservation
law.

Equation (3a) shows that b decays to zero on the dipole
time scale, so the two atomic dipoles become synchronized:
β1 = β2 = β. After this short transient, the equations of mo-
tion reduce to

β̇ = −
[

1 + sin q

q
− i

(
2δ + cos q

q

)]
β

2
− i

�

�
, (4a)

q̈ = 4ωr

�

[
4�2

�2

�2

q3
−

(
sin q

q
+ cos q

q2

)
|β|2

]
. (4b)

In order to capture the features of the short-time dynamics, we
first perform the adiabatic elimination of the dipole dynamics
assuming that it is synchronized with the local field. The value
of β is obtained from Eq. (4a) assuming that β̇ = 0 at any
time; then, inserting this value in Eq. (4b) leads to

q̈ = ε2

[
�2

q3
− w(q )

]
, (5)

where we have introduced the “small” parameter

ε = 4�

�

√
ωr

�
(6)

and the function

w(q ) = sin q/q + cos q/q2

(1 + sin q/q )2 + (2δ + cos q/q )2
.
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FIG. 2. Potential landscape V (q ) for different angular momenta
�, for δ = −2.

Thus, in the adiabatic approximation, the dynamics of q can
be derived from a potential V (q ) given by

V (q ) = ε2
∫ +∞

q

(
�2

q3
− w(q )

)
dq. (7)

The potential landscape as a function of the angular momen-
tum is presented in Fig. 2, where a succession of minima can
be observed. For large distances q between the two atoms, the
potential wells become increasingly shallow as the potential
decreases as −(cos q )/q [10]. Furthermore, the centrifugal
force opposes to the presence of low-q potential minima, as
can be observed for large values of the angular momentum �.
The extrema qn of this potential are given by the equation

q3
nw(qn) = �2. (8)

So for small angular momentum �, the stable and unstable
points are found at, respectively,

qs
n ≈ 2πn − 1

2πn
+ �2(1 + 4δ2)

(2πn)2
, (9a)

qu
n ≈ π (2n + 1) − 1

π (2n + 1)
+ �2(1 + 4δ2)

π2(2n + 1)2
. (9b)

The potential V around these points can be approximated by

V (q ) ≈ ε2

[
�2

2q2
− 1

1 + 4δ2

cos q

q

]
. (10)

In particular, the potential barrier that a pair of atoms close to
the point qs

n has to overcome is

Un = V
(
qu

n

) − V
(
qs

n

)
≈ ε2

2π

4n + 1

n(2n + 1)

[
1

1 + 4δ2
− �2

4n(2n + 1)

]
, (11)

which defines an admissible kinetic energy for the two par-
ticles, along the radial direction, to remain bound together.
Hence, if the pair of atoms has initially a difference of radial
velocities δv, it will form a bound state provided m(δv/2)2 <

(h̄�2/4ωr )Un, or a free particle state otherwise. The system

is insensitive to a velocity of the system’s center of mass,
and difference of normal velocities corresponds to the angular
momentum �. Due to the integrable nature of Eq. (5), the
bound state undergoes everlasting oscillations, with an am-
plitude which does not vary over time.

This long-term stability is in contrast to the results reported
in Ref. [9], where either a slow cooling or heating of the bound
system was observed by numerical integration of Eqs. (4). To
explain these results, we show in the next section that the finite
time needed for the dipole to equilibrate with the local field is
responsible for introducing a dissipative force in Eq. (5).

III. MULTISCALE ANALYSIS

In general, there is a clear separation of the time scales of
dipole and of the bound-state vibrational mode. For example,
for the rubidium atoms probed with a low pump (� � �) an
oscillation of the bound state spans over hundreds of dipole
lifetimes [9]. More generally, one can observe from Eq. (10)
that if ε � 1 and ε� � 1, the vibrational mode will have a
period much longer than the dipole relaxation time 1/�.

This difference in time scales allows us to treat the finite
time for the dipole equilibration as a correction to the adia-
batic equation (5). Let us introduce g(t ) = exp[iq(t )]/[iq(t )],
the kernel which appears in the dipole dynamics Eq. (4a), and
which varies slowly as compared to the dipole lifetime. As
derived in the Appendix, the first correction to the adiabatic
approximation reads

β(t ) ≈ − 2i�/�

[1 − 2iδ + g(t )]
− 4i�

�

ġ(t )

[1 − 2iδ + g(t )]3
, (12)

where the first right-hand term corresponds to the adiabatic
contribution, for which β(t ) follows instantaneously the evo-
lution of q(t ). The second one describes, at first order, the
delay in the dipole response to the atomic motion, and is
proportional to q̇. Inserting the above equation into (4b) and
keeping only the linear term in q̇ leads to a nonconservative
equation for the atom’s motion:

q̈ = −dV

dq
− ε2λ(q )q̇, (13)

where λ(q ) is a “friction” coefficient which takes positive and
negative value as q oscillates:

λ(q ) = 4w(q )(
1 + sin q

q

)2 + (
2δ + cos q

q

)2

[
cos q

q
− sin q

q2

− 2w(q )

(
1 + sin q

q

)(
2δ + cos q

q

)]
. (14)

From Eqs. (7) and (13) it becomes clear that q̇ scales as ε, so
the deviation from the adiabatic dynamics of Eq. (5) occurs on
a time scale 1/ε longer than the oscillations of the bound state.
The long-term consequences of the nonconservative term λ(q )
will depend on its average value over an oscillation, as we now
show through a multiscale analysis.

The separation of the two time scales is realized introduc-
ing the time variables u = εt , associated to the oscillation
of the bound state, and v = ε2t , over which the dynamics
drifts from its adiabatic approximation. The distance q(u, v)
is now considered to be a function of those two, taken to be
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independent variables, with the chain rule

d

dt
= ε

∂

∂u
+ ε2 ∂

∂v
. (15)

Applying the above rule to Eq. (13) leads to the multiscale
equation:

∂2q

∂u2
− �2

q3
+ w(q ) = −2ε

∂2q

∂u∂v
− ελ(q )

∂q

∂u

− ε2 ∂2q

∂v2
− ε2λ(q )

∂q

∂v
. (16)

The separation of time scales is operated by considering the
perturbation expansion q = ∑∞

n=0 εnq(n), which results, at the
zero order in ε, in

∂2q(0)

∂u2
= �2

q3
(0)

− w(q(0) ). (17)

It describes the adiabatic dynamics of q(0), i.e., it is formally
equivalent to Eq. (5). It can be associated to the potential
energy V1 = V (q(0) )/ε2 from Eq. (7), so that it admits the
following energy as an integral of motion:

E(v) = 1

2

(
∂q(0)

∂u

)2

+ V1(q(0) ). (18)

This energy of the bound state varies only over the slow time
scale v, and this drift is captured by the next order equation
resulting from Eq. (16), which contains the nonconservative
contribution:

∂2q(1)

∂u2
+

[
3�2

q4
(0)

+ w′(q(0) )

]
q(1) = −2

∂2q(0)

∂u∂v
− λ(q(0) )

∂q(0)

∂u
.

In order to prevent the secular growth in q(1), its right-hand
term must vanish, a condition which reads[

2
∂

∂v
+ λ(q(0) )

]
∂q(0)

∂u
= 0. (19)

For a bound state, the energy definition (18) provides the
expression

∂q(0)

∂u
= ±√

2[E(v) − V1(q(0) )], (20)

which in turn leads to the equation for the evolution of the
energy E(v):

dE

dv
= −λ(q(0) )[E(v) − V1(q(0) )] + dV1

dq(0)

∂q(0)

∂v
. (21)

The slow evolution of the bound-state energy is captured by
integrating Eq. (21) over a period T of its oscillation:

T = 2
∫ q+

q−

dq√
2[E(v) − V1(q )]

, (22)

where q± correspond to the extrema of the position, at which
∂q(0)/∂u = 0. These extrema slowly change over time, so
they are actually functions of v. The averaging of Eq. (21) is
realized dropping its last term as it cancels over an oscillation
cycle, so one obtains〈

dE

dv

〉
T

= − 1

T

∫ q+

q−
λ(q )

√
2[E(v) − V1(q )]dq. (23)

This equation describes the long-term evolution of the bound-
state energy, and predicts whether it is truly stable or only
metastable.

The exact evolution of 〈E(v)〉T requires a numerical inte-
gration; nonetheless its behavior close to the equilibrium point
qs

n, given by Eq. (9), can be captured by approximating the
system as a harmonic oscillator. Introducing q̃n = q − qs

n the
relative oscillation, ωn = √

V ′′(qs
n) its angular frequency, and

Ẽn = 〈E〉T − V1(qs
n) the energy relative to the equilibrium

point, one can write

〈E(v)〉T ≈ V1(q ) + Ẽn(v) − ω2
n

q̃2
n

2
, (24a)

λ(q ) ≈ λ(qs
n) + λ′(qn)q̃n + λ′′(qs

n

) q̃2
n

2
, (24b)

q± = qs
n ±

√
2Ẽn(v)

ωn

, (24c)

and T = 2π/ωn. Inserting these equations into Eq. (23), one
finds that the linear contribution λ′(qs

n) of the friction term
does not contribute due to the symmetry of the integral, and
the remaining terms integrate as

dẼn

dv
= −αnẼn − βnẼ

2
n, (25a)

αn = λ
(
qs

n

)
2

, (25b)

βn = λ′′(qs
n

)
8ω2

n

. (25c)

The energy Ẽn is associated to the oscillations of the pair of
atoms in the potential well. Due to the conservation of the an-
gular momentum, it is naturally associated to a variation of the
angular velocity as well, but it can essentially be understood
as energy in the vibrational mode of the cold molecule, which
can either increase (heating) or decrease (cooling) in time.
Equation (25a) describes this slow drift, over a time scale 1/ε

longer than the oscillations of the bound state, and the next
section is dedicated to the different relaxation regimes.

IV. STABILITY OF THE BOUND STATES

A. Stability regions

Let us first discuss the case of a bound state without
angular momentum (� = 0), where the two atoms oscillate
along a given direction. The equilibrium condition (8) shows
that w(qs

n) = 0, so the friction term (14) has no zero-order
contribution [λ(qs

n) = 0] and only the quadratic term in the
relaxation equation (25a) is present. Calling Ei = Ẽn(0) > 0
the initial energy relative to the equilibrium point qs

n, and
assuming that Ei < Un given by Eq. (11), the bound-state
energy will drift as

Ẽn(v) = Ei

1 + βnEiv
. (26)

Thus for βn > 0 the bound state will approach the equilibrium
point at an algebraic speed, and the system is in a cooling
regime. The time for the energy to decrease to one-half of its
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FIG. 3. Dynamics of the interparticle distance q for a pair of atoms (a) without angular momentum (� = 0) and in the cooling regime
(δ = −0.56), (b) without angular momentum (� = 0) and in the heating regime (δ = 0), and (c) with angular momentum (� = 0.5) and in the
cooling regime (δ = −0.5). The other parameters are Ei = 0.02 and ε = 0.1. The black curves correspond to the theoretical predictions of
Eqs. (24c), (26), and (29), where ω1, α1, and β1 are given by Eqs. (32a), (32b), and (32c).

initial value is

τ (1/2)
n = 1

ε2βnEi

(� = 0). (27)

This behavior is illustrated in Fig. 3(a), where the distance
between a pair of atoms in the cooling regime is shown to
slowly decrease over time.

On the contrary, for βn < 0 the atomic system is heating,
and the bounded pair of atoms breaks up as its energy reaches
the potential barrier Un, provided by Eq. (11). The time for
the pair of atoms to reach the escape energy is given by

τ (esc)
n = 1

ε2|βn|
(

1

Ei

− 1

Un

)
. (28)

As depicted in Fig. 3(b), the atoms present larger and larger
oscillations, until they separate and have quasiballistic tra-
jectories. Finally, for βn = 0, the analysis of higher-order
contributions in the friction term is necessary to determine the
stability of the bound state.

In the presence of angular momentum (� > 0) the fric-
tion term has in general a constant contribution around the
equilibrium (λ(qs

n) �= 0), in which case the evolution of the
bound-state energy reads

Ẽ(v) = αnEie
−αnv

αn + βnEi (1 − e−αnv )
. (29)

Thus if αn > 0 and αn + βnEi > 0, after a transient the energy
Ẽ(v) decays exponentially fast to zero, at rate αn. The final
bound state thus has angular momentum, but no motion in the
vibrational mode; see Fig. 3(c). More generally, the half-life
decay time of the energy is

τ (1/2)
n = 1

ε2αn

ln

[
2αn + βnEi

αn + βnEi

]
. (30)

Whereas if αn < 0 and βn > 0, the system decreases expo-
nentially fast, at rate |αn| toward a bound state that possesses
both angular momentum and energy in the vibrational mode:
Ẽ(∞) = |αn|/βn. This regime sustains everlasting oscilla-
tions.

The other case, with αn > 0 and βn < 0 such that αn <

|βn|Ei , corresponds to a bound state which is only metastable,

the lifetime of which is given by

τ (esc)
n = 1

ε2αn

ln

[ |βn| − αn/Un

|βn| − αn/Ei

]
. (31)

Let us now provide an approximated expression of these
stability parameters, by doing an expansion around the equi-
librium points (9a):

ω2
n ≈ 1

2πn(1 + 4δ2)
, (32a)

αn ≈ �2

8(πn)4(1 + 4δ2)

[
1 − 2�2(δ + 1/4πn)

(πn)2

]
, (32b)

βn ≈ − 2

πn(1 + 4δ2)2

[
δ + 1 + δ2

πn

]
. (32c)

Let us first discuss the case without angular momentum,
where only the βn coefficient is relevant [see Eq. (26)]. In this
case, under the condition

−
√(nπ

2

)2
− 1 − nπ

2
� δ �

√(nπ

2

)2
− 1 − nπ

2
, (33)

the βn coefficient is positive and the bound states are truly
stable. Otherwise, βn is negative and the bound states are only
metastable. The behavior of βn as a function of the detuning is

-2 -1 0 1 2
δ

-0.2

-0.1

0

0.1

104 α1 (exact)

104 α1 (approx)
β1 (exact)

β1 (approx)

FIG. 4. Stability coefficients αn and βn, as calculated from
Eqs. (25b) and (25c) (“exact”) and from Eqs. (32b) and (32c)
(“approx”). Simulations realized for ε = 0.1 and � = 0.1.
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FIG. 5. Cooling (thick blue lines) and heating (thin red lines)
time as a function of the detuning δ, for different values of the angular
momentum �, for ε = 0.1 and Ei = 2 × 10−4. Both times present a
divergence at the critical detuning, where the long-term stability of
the bound state changes. The vertical black dotted lines correspond
to the stability threshold defined by Ei = Un.

illustrated in Fig. 4, where a range of negative detuning allows
for stable bound states.

In the presence of a small angular momentum (that is, such
that αn is positive), the system is stable over a larger range of
detuning, since βn > −αn/Ei is now a sufficient condition to
reach a cooling regime.

Note that, while Eq. (32b) suggests that αn becomes nega-
tive for large values of angular momentum, the approximated
expressions (32) lose their validity, and the increase of �

actually suppresses successively the potential minima that
are responsible for the bound states (see Fig. 2). A more
detailed study of the high-� regime will require different
approximations than the ones performed here.

B. Cooling and heating time

Let us first comment that the energy in the vibrational mode
Ẽ is a function of v, i.e., it scales with 1/ε2 ∼ �3/(�2ωr ). So
ε is the fundamental parameter to control the time scales over
which cooling and heating act. Then, a numerical study of the
heating and cooling times reveals that it strongly depends on
the detuning; see Fig. 5 for examples of this dependence for
different values of the angular momentum. First, the heating
time presents a minimum (which means the heating rate is
maximum) very close to resonance (δ ≈ 0.15�); this is some-
how expected from scattering of light very close to the atomic
resonance, where the radiation pressure force dominates over
the dipolar force. Instead, the cooling is most efficient for light
slightly detuned to the red, with a maximum that depends
significantly on the angular momentum. In both heating and
cooling regimes, the rates decrease going farther away from
resonance, where light-atom coupling is less efficient. For a
given ε and initial energy Ei , the barrier potential Un of the
bound state decreases with the detuning [see Eq. (11)], so
there is no more bound state at large detuning (see vertical
dotted lines in Fig. 5).

Interestingly, the heating rate is not very sensitive to the
angular momentum, but the cooling rate is. From � = 0 to
� = 0.15, a factor ∼10 is gained on the cooling rate of the
bound state. This highlights that the angular momentum of
the system increases the stability of the system, possibly
countering other heating effects.

FIG. 6. Heating and cooling times as a function of the detuning
δ and the parameter ε, for � = 0.1. The negative detuning part
(δ � −0.21) corresponds to the cooling regime (blue color map),
whereas the positive detuning part (δ � −0.21) stands for the heating
regime. The black vertical line marks the separation between the
two regimes and the white area corresponds to unbound states
(Ei > Un). Simulations realized for Ei = 2 × 10−4 and n = 1, using
Eqs. (30)–(32).

A stability diagram is presented in Fig. 6 for � = 0.1,
showing the heating and cooling times as a function of the
detuning and of the parameter ε. A larger pump strength
enhances in atom-light coupling, and thus results in a higher
rate of change in the energy of the bound state, just like
working close to resonance.

V. IMPACT OF THE FLUCTUATIONS

The analysis up to now was purely deterministic, neglect-
ing the effect of the fluctuations due to spontaneous emission
as the atoms interact with the incident lasers, and with their
mutual radiation. The atoms receive a random momentum
kick δp = h̄k, which introduces a stochastic contribution both
in the radial and in the angular directions. Each scattering
event results in an average increase of the associated energy of
δErecoil = h̄ωr/2. Focusing at first on spontaneous emission
from the driving of the confining lasers, the heating energy
rate is proportional to the scattering rate:(

δE

δt

)
SE

= 2h̄ωr

�

�2

1 + 4δ2
. (34)

Adding this term to the equation for the scaled average energy
Ẽn for the radial energy in Eq. (25a), using the relations Ẽ =
(4ωr/�ε2)(E/h̄�) and v = ε2�t , one obtains

dẼn

dt
= −ε2�

(
αnẼn + βnẼ

2
n

) + ω2
r

2(1 + 4δ2)
. (35)

The steady-state solution is thus given by

Ẽ∞
n = 1

2βn

(√
α2

n + 4βnC − αn

)
, (36)

where C = (ωr/2�ε2)/(1 + 4δ2). Since 4βnC  α2
n, Ẽ∞

n ≈√
C/βn, which, in physical units, reads

E∞
n ≈ fn(δ)h̄�, (37)

with

fn(δ) = 1√
2βn(1 + 4δ2)

. (38)
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FIG. 7. Amplitude of the equilibrum energy f (δ), in units of h̄�,
for different detuning δ, as predicted by the stochastic contribution
and in the range where βn is positive (cooling regime).

The function fn(δ) is plotted in Fig. 7 for the values where βn

is positive (cooling regime for the deterministic dynamics), as
a function of the detuning δ and for n = 1, 2, 3. It reaches a
minimum around δ = −3/4, close to the value at which the
cooling term βn is maximum, and the achieved steady-state
energy is E∞

n ≈ 2h̄�.
The fact that the limit temperature is proportional to h̄� is

rather surprising, as compared to the “standard” limit of laser
cooling of ∼h̄� [26]. However, a similar temperature can be
identified for a single two-level atom confined in a standing
wave. Let us shortly review this situation: a standing wave
along z with �(z) = �0 cos(kz) produces a force along the z

axis

Fz = h̄k
�2

0

�

2δ

1 + 4δ2

[
sin(kz) cos(kz) + sin2(kz)

1 + 4δ2

kvz

�

]
.

(39)

When averaged over a spatial period λ/2 this force re-
duces to the usual viscous force Fz = −αvz, with α =
4h̄k2(�0/�)2[−2δ/(1 + 4δ2)2]. If instead the atom is near the
potential minimum at z = 0, with a kinetic energy smaller
than the trapping energy h̄�(�0/�)2[−δ/(1 + 4δ2)], the force
can be locally expanded as

Fz ≈ h̄k2 �2
0

�

2δ

1 + 4δ2

(
z + (kz)2

1 + 4δ2

vz

�

)
. (40)

For δ < 0 the atom is trapped by the dipole force and cooled
by a force which is linear in the velocity and quadratic in
the position. When averaged over the oscillating motion, a
multiscale analysis similar to that performed in Sec. III leads
to the following equation for the energy:

dEz

dt
= − 2ωr

1 + 4δ2

E2
z

h̄�
+ 4

3

h̄ωr

�

�2
0

1 + 4δ2
, (41)

from which an equilibrium energy E∞
z = √

3/2h̄�0 can be
deduced. Hence single atom cooling in a standing wave also
presents a limit temperature ∝h̄�0 for low-energy initial
states, in addition to the usual Doppler limit h̄�.

The trick is that the linear regime assumption [s =
2�2

0/(�2 + 4�2) � 1] underlying the classical treatment of
the atom dynamics is incompatible with the requirement of a
trapping potential deeper that the equilibrium energy. Indeed
the ratio between the trapping potential depth and the equilib-
rium energy is

√
s(−δ/

√
1 + 4δ2), where the latter function

of δ tops at 1/2, so the confinement cannot be achieved at
equilibrium.

In the case of an optically bound pair of atoms, the ratio
is even worse as SE relies on the incident laser, while the
trapping potential requires an additional scattering event from
the atoms. More specifically, the ratio between the trapping
potential depth and the equilibrium energy is ∼

√
s/(1 + 4δ2).

Thus radial confinement of the pair cannot be achieved with-
out any additional cooling mechanism.

As for the rotational degree of freedom, the stochastic
contribution leads to a pure diffusive behavior of the angular
momentum L, as the deterministic dynamics preserves it. The
diffusion makes the transverse energy grow as 〈L2/mr2〉 ∼
h̄ωrs�t . Furthermore, the rotational motion of the molecule
decreases its radial potential barrier [see Eq. (11)], i.e., it
makes the system even less stable. Hence a cooling mecha-
nism active on the angular motion of the molecules will be
necessary to achieve optical binding with cold atoms.

Let us comment that another heating mechanism has been
identified in Ref. [27], which corresponds to momentum
diffusion from radiative interaction, i.e., fluctuations in the
dipolar force (which is here responsible for the OB). In the
case of the pair of atoms, the heating rate reads(

δE

δt

)
rad

∼ h̄ωr

�

�2

1 + 4δ2
∇2

q

(
sin q

q

)
, (42)

where the bar refers to an average over the oscillation
period. Nevertheless, close to the equilibrium position qs

n,
∇2

q (sin q/q ) ≈ 0.03, so it only represents a correction of a
few percent to the contribution of the SE from the driving
laser (34).

VI. DISCUSSION AND CONCLUSIONS

To summarize, we have first shown that the optical binding
of two atoms in the vacuum and confined in a plane is affected
by a deterministic nonconservative force able to cool or heat
the system. This force arises from the nonadiabatic reaction
of the atomic dipole to the change of field as the distance
between the atoms change. This force is strongly position
dependent but, when averaged over an oscillation of the pair
of atoms, it effectively results in a slow heating or cooling
of the system. It may thus either lead the atoms to escape
the influence of each other, typically for positive detuning,
or rather drive them toward the local potential minimum, in
general for negative detuning.

In particular, the specificity of the cooling associated to
the angular momentum can be better understood by analyzing
further Eq. (25a): the βn coefficient, which does not involve
angular momentum at first order, is associated to a quadratic
dependence in Ẽ, so it is efficient only when the system is
significantly afar from the stable point. On the contrary, the
αn term, which scales directly with �2, appears in a term linear
with Ẽ. Hence it acts as a “friction” term and is most efficient
at keeping the system very close to the equilibrium point.

Nevertheless, the effect of the stochastic heating due to
spontaneous emission appears to be stronger than the con-
fining potential that gives rise to the optical binding. Both
the stretching vibrational mode and the rotational degree of
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freedom turn out to be ultimately dominated by diffusion
effects, so the bound states are not truly bound.

The lack of stability of the OB configurations for pairs of
atoms calls for alternative ways to achieve the binding. In this
respect, collective effects in larger atomic systems may be
a promising candidate, as the cooperative emission (such as
superradiance) is an efficient mechanism for self-organization
in one dimension [6,7]. As for two-dimensional systems,
crystallization is expected to occur, thanks to the optical
potential generated on each atom by its neighbors [18]. In
this case many-atom effects may significantly alter the cooling
properties of the system, as collective oscillation modes arise.
In this context, the angular momentum may provide an extra

degree of freedom to tune the stability properties of the
system, but also to modify the spatial period of the crystal,
and possibly its lattice structure.
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APPENDIX: ANALYSIS OF THE ADIABATIC APPROXIMATION

In order to discuss the adiabatic approximation, let’s integrate Eq. (4a) from zero to t with β(0) = 0:

β(t ) = −i
�

�

∫ t

0
dt ′ exp

{
−1

2
(1 − 2iδ)t ′ − 1

2

∫ t ′

0
g(t − t ′ + t ′′)dt ′′

}
, (A1)

where

g(t ) = exp[iq(t )]

iq(t )
. (A2)

Let assume that g(t ) varies slowly with respect to the term (1 − 2iδ)t ′. However, we consider the first-order deviation of g(t ),
in order to go beyond the usual adiabatic approximation, expanding g(t − t ′ + t ′′) in the integral of Eq. (A1) up to the first order
in its Taylor series: ∫ t ′

0
g(t − t ′ + t ′′)dt ′′ ≈ g(t )t ′ − ġ(t )

∫ t ′

0
(t ′ − t ′′)dt ′′ = g(t )t ′ − 1

2
ġ(t ) t ′2. (A3)

The first term of Eq. (A3) corresponds to the usual adiabatic approximation, whereas the second term takes into account the slow
variation of g due to the atomic motion in the confining potential. Since g depends on the relative atomic position q(t ), then ġ is
proportional to the relative atomic velocity.

Once Eq. (A3) is inserted in Eq. (A1), it gives

β(t ) ≈ −i
�

�

∫ ∞

0
dt ′ exp

{
−1

2
[1 − 2iδ + g(t )]t ′ + 1

4
ġ(t ) t ′2

}
, (A4)

where we have extended the integration upper limit to infinity, neglecting in this way the short initial transient. By expanding the
small term proportional to ġ(t ) at the first order,

β(t ) = −i
�

�

∫ ∞

0
dt ′ exp

{
−1

2
[1 − 2iδ + g(t )]t ′

}[
1 + 1

4
ġ(t ) t ′2 + · · ·

]

≈ −i
2�

�

1

1 − 2iδ + g(t )

{
1 + 2ġ(t )

[1 − 2iδ + g(t )]2

}
. (A5)

The first term of Eq. (A5) is the usual adiabatic approximation, whereas the second term corresponds to the correction due to
the atomic displacement. It is similar to the Doppler effect in the optical molasses, with the difference that here the atomic
displacement is not due to the thermal motion, but to the oscillation in the optical binding potential. Also we can say that in
general this velocity-dependent force is due to the cooperative decay and light shift, depending on the distance between the
atoms and induced by the laser. From Eq. (A5), we obtain

|β(t )|2 = 4�2

�2

1

D(q )
+ 16�2

�2

1

D3(q )
[Reġ(t )D(q ) − 2 Imġ(t )(1 + sin q/q )(2δ + cos q/q )], (A6)

where

Reġ(t ) = d

dq

(
sin q

q

)
q̇ =

(
cos q

q
− sin q

q2

)
q̇, (A7)

Imġ(t ) = − d

dq

(
cos q

q

)
q̇ =

(
sin q

q
+ cos q

q2

)
q̇, (A8)
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and D(q ) = (1 + sin q/q )2 + (2δ + cos q/q )2. Inserting Eqs. (A6)–(A8) in the force equation (4b), we obtain

q̈ = 16ωr�
2

�3

[
�2

q3
− w(q ) − λ(q )q̇

]
, (A9)

where

w(q ) = 1

D(q )

(
sin q

q
+ cos q

q2

)
, (A10)

λ(q ) = −4w(q )

D(q )

[
cos q

q
− sin q

q2
− 2w(q )

(
1 + sin q

q

)(
2δ + cos q

q

)]
. (A11)
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We have studied collective recoil lasing by a cold atomic gas, scattering photons from an incident laser into
many radiation modes in free space. The model consists of a system of classical equations for the atomic motion
of N atoms where the radiation field has been adiabatically eliminated. We performed numerical simulations
using a molecular dynamics code PEPC (Pretty Efficient Parallel Coulomb Solver) to track the trajectories of
the atoms. These simulations show the formation of an atomic density grating and collective enhancement of
scattered light, both of which are sensitive to the shape and orientation of the atomic cloud. In the case of an
initially circular cloud, the dynamical evolution of the cloud shape plays an important role in the development
of the density grating and collective scattering. The ability to use efficient molecular dynamics codes will be a
useful tool for the study of the multimode interaction between light and cold gases.

DOI: 10.1103/PhysRevA.100.023630

I. INTRODUCTION: SCATTERING OF LIGHT BY ATOMS

One of the most basic light-atom interactions is Rayleigh
scattering. When an ensemble of N randomly distributed sta-
tionary atoms is weakly illuminated by a laser, the atoms scat-
ter independently, and the resultant scattered field intensity
varies as ∼N . For an ensemble of cold atoms which are free
to move, the picture can change drastically due to collective
behavior arising from the optical forces produced during scat-
tering. Each atom is affected by the optical field scattered by
the other atoms. Most studies of collective behaviors involving
cold and ultracold atoms coupled to light have involved optical
cavities [1], but similar phenomena have also been observed
or predicted involving single feedback mirrors, optical fibers,
and simply scattering into vacuum. These collective behaviors
are at the origin of various self-organization phenomena,
e.g., collective cooling [2–4], symmetry breaking, and pattern
formation [5–13].

Superradiant light scattering was first demonstrated using
a cigar-shaped Bose-Einstein condensate (BEC) [14] and later
using a cold thermal gas [15]. In Ref. [14], superradiantly
scattered light was observed to propagate along the major axis
of the atomic cloud, simultaneous with the development of a
matter-wave–density grating in the cloud. Some features of
this phenomenon have been described by single-mode–mean-
field models similar to that of the collective atomic recoil
laser (CARL) [16–27]. These mean-field models are appro-
priate in certain specific cases where there is a well-defined
propagation axis and, consequently, to a good approximation,
a single spatial mode, e.g., in a single-mode cavity or in a
highly elongated sample where the major axis of the sample
defines an “end-fire mode” which dominates the direction of

emission. In general, however, for arbitrary shapes of atomic
ensembles, many spatial modes are involved simultaneously
in the collective scattering process.

The computational effort required to model large systems
of atoms in two-dimensional (2D) and three-dimensional (3D)
geometries is significant. Large efficient publicly accessible
“molecular dynamics” (MD) codes, which solve dynamical
equations of motion for large collections of particles under
the action of various forces (gravitational, electrostatic, and
van der Waals), have become an essential tool in many areas of
science, e.g., plasma physics, astrophysics, and computational
chemistry. Despite the latter fact, to date, MD codes have not
been used in the study of light interacting with cold atomic
gases.

In this paper, we have simulated collective light scattering
from a gas of cold atoms in 2D and 3D using a model which
describes the positions and velocities of the atoms. The model
has been derived from a multimode theory where the vacuum
radiation modes are adiabatically eliminated. The result is
a set of coupled N atoms where each atom is subjected to
the radiation force exerted by all the other atoms present
in the cloud. The form of the equations in this model makes
them suitable for implementation in MD codes, which offers
the possibility of efficient simulation of multimode scattering
involving very large numbers of atoms by exploiting methods
developed for simulating N-body systems involving long-
range interactions, e.g., Barnes-Hut methods [28]. We use
a public MD code, PEPC (Pretty Efficient Parallel Coulomb
Solver) [29] to demonstrate that the collective scattering
process described by our model has similar characteristics
to those observed in Ref. [14], i.e., observation of a density
grating, which is responsible for collective enhancement of
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scattered light intensity. Whereas, for ultracold atoms, the
grating is observed in momentum space [14] with spacing
h̄q = h̄(k0 − k)—where h̄k0 and h̄k are the momenta of the
incident and scattered photon—here, in contrast, the grating
is observed in real space with atoms grouping periodically at
distances which are multiples of 2π/q. The model employed
to depict the evolution of the cloud is presented in Sec. II
along with its implementation in the MD algorithm. It is
possible to see that, by using particular atomic cloud shapes
and orientations, different density grating shapes and scattered
light directions are achieved. These results, for a 2D cloud and
for a specific 3D geometry, are presented in Secs. III A and
III B, respectively.

II. MODEL OF COLLECTIVE SCATTERING

We consider a collection of N two-level atoms driven by
a laser field with frequency ω0 = ck0, propagating along the
z axis with wave-number k0 = k0ẑ and Rabi frequency �0 =
dE0/h̄, where E0 is the electric field and d is the atomic dipole.
The laser field is far detuned from the atomic frequency ωa

with �0 = ω0 − ωa � � and � = d2k3
0/2πε0h̄ as the atomic

linewidth. In the far-detuned limit and for a dilute gas, absorp-
tion and multiple scattering can be neglected. In this limit,
the incident light in mode k0 is scattered into the vacuum
mode k. The scattered optical field in mode k interferes
with incident mode k0 to create a dipole force proportional
to the photon momentum transfer h̄(k0 − k). When summed
over the different vacuum modes, the resulting equations for
atomic positions r j and momenta p j are (see the Appendix)
as follows:

ṙ j = p j

M
, (1)

ṗ j = �h̄k0

(
�0

2�0

)2 ∑
m �= j

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm)]

k0r jm

− r̂ jm
cos[k0(r jm − z jm)]

(k0r jm)2

}
, (2)

where M is the atomic mass, r jm = r j − rm, and r̂ jm =
r jm/r jm. Each atom, labeled j, is coupled to all the other m
atoms (where m �= j) by an oscillating force with components
along direction ẑ of the incident field and direction r̂ jm toward
the other atoms. Furthermore, the force has a finite range,
consisting of terms which decrease with distance between the
atoms as 1/r jm or 1/r2

jm.
The intensity of scattered light in direction k is

Is(k) = I1N2|M(k, t )|2, (3)

where I1 = (h̄ω0�/8πr2)(�0/2�0)2 is the single-atom
Rayleigh scattering intensity and

M(k, t ) = 1

N

N∑
j=1

ei(k0−k)·r j (t ) (4)

is the “optical magnetization,” or “bunching factor.” It de-
scribes the strength of the density grating formed by the mov-
ing atoms, ranging from zero when the atomic positions are
uniformly distributed to unity when the atoms are periodically
packed into a length less than 2π/|k0 − k|. These equations

generalize the CARL model, obtained for atoms interacting
with a single mode in an optical ring cavity [17] to many
modes in vacuum. Here, the incident photons are scattered in
the 3D vacuum, and superradiant scattering occurs along cer-
tain directions determined by the atomic spatial distribution.
In particular, for an elongated atomic distribution along the z
axis of the incident field, collective scattering occurs along the
backward direction k = −k0.

The present model assumes a scalar radiation field, dis-
regarding polarization effects. This approximation can result
in an inaccurate description of the scattered light and/or the
radiation force among the atoms, particularly, in the case of
a 3D atomic distribution. However, a full derivation of the
vectorial light model (not presented here) shows that the scalar
light model describes correctly the long-range contribution—
i.e., the first term of the force on the right-hand side term
of Eq. (2)—for a pump linearly polarized in a direction
perpendicular to the scattering plane. Differences between the
vectorial and the scalar light models arise only in the short-
range terms of the radiation force, which are less important in
the collective recoil regime considered here. A detailed study
of collective scattering using the vectorial light model will be
the subject of a future publication.

Simulation algorithm

Due to the form of Eqs. (1) and (2), it is possible to simulate
collective light scattering using a MD code. We used the PEPC

[8], which is commonly used for simulating N-body systems
where the forces involved are described by an inverse-square
law, e.g., Coulomb forces in plasmas and gravitational forces.
In order to model collective scattering of light by atoms, we
implemented Eq. (2) as the force acting on each atom and
observed the trajectories of the particles. Since the equations
only depend on the positions of the particles, the force for each
iteration was calculated using the position Verlet algorithm,
which updates the position of each atom according to

rn+1 = 2rn − rn−1 + an�t2, (5)

where an is the acceleration at time-step n. The Verlet in-
tegrator provides good numerical stability as well as other
properties that are important in physical systems, such as time
reversibility and preservation of the symplectic form in phase
space. The form of the model equations shows a singularity
when the particles are close to each other. This becomes an
important issue during the simulation since it results in strong
forces appearing abruptly, causing the particles to be ejected
from the cloud, i.e., two atoms repel one another violently
when they get too close to each other. We solved this problem
using the idea of Plummer [30], which is used in gravitational
force simulations, and involves making the replacement,

r jm →
√

r2
jm + ε2, (6)

where ε is a small parameter introduced in order to avoid
singularities in the equations. This parameter does not change
the general behavior of the system when the particles are well
separated. It just allows the particles to pass each other as if
they were experiencing an elastic collision characterized by
the parameter (ε), which, in some sense, acts as a numerical
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scattering length. This collision could be interpreted as a
repulsion generated due to van der Waals forces between a
pair of atoms.

The equations have been scaled in order to work with
dimensionless variables. Positions have been scaled, such as
r′ = k0r; the momentum variable as p′ = pp−1

0 , where p0 =
h̄k0 is the momentum of a single photon; and the time variable,
such as t ′ = ωrt , where ωr = h̄k2

0/2M is the recoil frequency.
Introducing these variables into the equations of motion (1)
and (2), we obtain equations,

ṙ′
j = 2p′

j, (7)

ṗ′
j = A

∑
m �= j

{
(ẑ − r̂ jm)

sin[r′
jm − z′

jm]

r′
jm

− r̂ jm

cos[r′
jm − z′

jm]

(r′
jm)2

}
,

(8)

with

A = �

ωr

(
�0

2�0

)2

, (9)

and r′
jm →

√
r′

jm + ε′2 where the singularity-avoiding param-
eter becomes ε′ = k0ε.

The value of the singularity-avoiding parameter used in our
simulations was ε′ = 10−2. This implies that the atoms in our
simulation have an effective scattering length of ∼10−2λ0,
where λ0 = 2π/k0 is the laser wavelength. Regarding other
important variables, we have used ωr ≈ 104 s−1 as the recoil
frequency, � ≈ 107 s−1 for the atomic decay rate, and we have
selected A = 1.0 for simplicity. By choosing these values,
we roughly achieve that �0 ≈ 15�0, hence, fulfilling the
necessary conditions of the model. For both simulations in
2D, we have adopted a time-step δt ′ = 0.15×10−3 with 2000
steps, which makes a total simulation time of t = 0.3ω−1

r .
Instead, for the simulations in 3D, the selected step is δt ′ =
0.25×10−3 with 7000 steps, which, in turn, corresponds to a
total time of t = 1.75ω−1

r .

III. RESULTS

A. Simulations of the scattering from a 2D atomic cloud

In this section, we restrict ourselves to a simplified con-
figuration where the atomic distribution is two dimensional,
consisting of two geometries: an ellipse (Secs. III A 1 and
III A 2) and a circle (Sec. III A 3) with both distributions
being contained on the (x, z) plane. It is well known from
experimental studies of superradiance and superfluorescence,
both in excited atomic systems of effectively stationary atoms
[31] and in BECs [14,15,32], that the geometry of the atomic
cloud or sample can have a significant effect on the spatial
distribution of the emitted field. We will demonstrate that
the spatial distribution of both the scattered radiation and
the associated atomic density distribution, which is produced
during collective scattering of light, are also strongly affected
by the geometry of the atomic cloud.

FIG. 1. Schema of the three different configurations used in our
simulations. (a) Elliptical- (cigar-) shaped gas of atoms with a major
axis directed parallel to the propagation direction of the laser. (b)
Elliptical gas with the major axis orientated perpendicular to the
propagation direction of the laser. (c) Circular-shaped atomic gas.

1. Pump propagation parallel to the major axis of an elliptical
cloud: Backscattering and one-dimensional grating formation

The first case we examine is that of an elliptical atomic
cloud illuminated by an optical pump field whose propagation
direction is parallel to the major axis of the cloud as shown
schematically in Fig. 1(a). Figure 2(a) shows the initial ran-
dom distribution of atoms in the atomic cloud. As a conse-
quence of the optical forces arising from Rayleigh scattering,

FIG. 2. Simulation of collective scattering of a pump laser prop-
agating parallel to the major axis of an elliptical 2D atomic cloud:
(a) Initial atomic density distribution showing N ≈ 5000 particles
distributed randomly. (b) Density grating formation due to collective
scattering at t = 0.135ω−1

r . The corresponding bunching factors
|M(k, t )| are shown in (c) at t = 0 and in (d) at t = 0.135ω−1

r .

023630-3

135



R. AYLLON et al. PHYSICAL REVIEW A 100, 023630 (2019)

this initially random spatial distribution of atoms develops
a strong periodic modulation along the z direction with a
spatial period ≈λ/2 as shown in Fig. 2(b). Consequently,
the atomic cloud undergoes the spontaneous formation of a
one-dimensional (1D) density grating, analogous to the ones
occurring in CARL or a free-electron laser (FEL). Observing
Fig. 2(d), we conclude that the 1D grating forms because light
is predominantly backscattered due to the geometry of the
atomic cloud, which leads to scattering along the cloud’s ma-
jor axis in both ±z directions. Light which is forward scattered
in the +z direction will not produce an optical force on an
atom as there is no change in the photon momentum during
scattering. We remember that we have neglected the effect of
the scattering force in the limit of large detuning �0 � �

(see Appendix), which eventually pushes the atoms in the
direction of the pump [33]. Conversely, light backscattered
along the −z direction produces an optical force on an atom as
the optical field propagation direction and, consequently, mo-
mentum changes during the scattering process. This change in
momentum of the optical field is taken up by an atom, moving
it and modifying the atomic density. The backscattered light
interferes with the pump field to form a 1D optical potential
with a spatial period of ≈π/k0, that has an amplitude and a
position which evolve dynamically and consistently with the
developing atomic density modulation.

The forward lobe of the scattered intensity in Fig. 2(c)
is the result of the diffraction by the atoms in the initial
distribution. For a uniform ellipse with semiaxes Rx and Rz,
the bunching factor |M(θ, φ)| is

|M(θ, φ)| =
2J1

[
k0

√
R2

x sin2 θ cos2 φ + R2
z (1 − cos θ )2

]
k0

√
R2

x sin2 θ cos2 φ + R2
z (1 − cos θ )2

,

(10)

where we assumed k = k0(sin θ cos φ, sin θ sin φ, cos θ ),
k0 = k0ẑ, and J1(x) is the first-order Bessel function. The
majority of the emission is within the diffraction angle
�θ ∼ 1/(k0Rx ).

2. Pump propagation perpendicular to the major axis
of an elliptical cloud: off-axis scattering

We now consider the case where the optical pump field
propagates perpendicular to the major axis of the elliptical
atomic cloud as shown schematically in Fig. 1(b). The initial
random distribution of atoms in the atomic cloud is shown
in Fig. 3(a). In this case, the initially random distribution
of atoms again develops a strong periodic modulation and
forms a density grating, but in contrast to the previous
case of Sec. III A 1, this grating is now no longer restricted
to the z axis but is a 2D structure on the (x, z) plane.
Figures 3(c) and 3(d) show that the 2D grating forms because
the geometry of the atomic cloud, which leads to significant
scattering perpendicular to the pump propagation direction
along the major axis of the atomic cloud in both ±x directions.
Scattering of light along the ±x directions will produce an
optical force on an atom directed at approximately ∓45◦
to the z axis. This can be understood using a photon pic-
ture of a scattering event which involves an incident photon

FIG. 3. Simulation of collective scattering of a pump laser prop-
agating perpendicular to the major axis of a 2D elliptical atomic
cloud: (a) Initial atomic density distribution showing N ≈ 5000
particles distributed randomly. (b) Density grating formation due to
collective scattering at t = 0.159ω−1

r . The corresponding bunching
factors |M(k, t )| are shown in (c) at t = 0 and in (d) at t = 0.159ω−1

r .

with momentum (h̄k0)ẑ and results in a scattered photon of
momentum ±(h̄k0)x̂. This results in a net momentum change
of the atom of h̄k0(ẑ ∓ x̂), i.e., directed at approximately ∓45◦
to the z axis, depending whether the photon is emitted upward
or downward, respectively. This scattered light interferes with
the pump field to form a dynamically evolving 2D optical
lattice potential [19]. An atomic density distribution similar to
that shown in Fig. 3(b) was observed by Inouye et al. [14] for
the case of an elongated elliptical BEC, illuminated by a pump
beam propagating perpendicular to its major axis. Whereas,
in the experiment of Ref. [14], the grating is observed in
momentum space after the interaction with the pump laser;
here, the grating is observed in real space.

3. Scattering from a circular atomic distribution

We now consider the light scattering from the circular 2D
distribution shown in Fig. 1(c). Since now there is not any
preferred scattering direction, we would expect to observe
no density grating in this case. Instead, we can still see the
formation of a 2D grating due to a periodic modulation. Ob-
serving the polar plot that represents the bunching parameter
for this configuration, Figs. 4(c) and 4(d), we can see that,
at a certain time, the cloud scatters light in two directions at
approximately ±45◦ from the backward direction. This can
be interpreted taking into consideration the deformation of the
initially round distribution. It can be observed in Fig. 4(b) that
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FIG. 4. Simulation of collective light scattering from a 2D
circular atomic cloud: (a) Initial atomic distribution showing
N ≈ 5000 particles distributed randomly. (b) Atomic distribution at
t = 0.22ω−1

r . The corresponding bunching factors |M(k, t )| are
shown in (c) at t = 0 and in (d) at t = 0.22ω−1

r .

the atoms close to the z axis and on the right edge of the initial
distribution are pushed forward by the pump laser, making
the atomic cloud form an “egglike” shape. Since scattered
light is preferentially amplified along the longest propagation
path in the cloud, this path results in being along the edges
of the egglike shape formed after an initial transient time.
If we look at the deformed shape in Fig. 4(b) as if it was a
triangle with two equal angles (located at the negative plane
of the z axis) and a third one (placed on the positive z axis)
that would identify the angle between the two scattered light
directions. Naming θ the angle of the scattered light direction
with respect to the z axis, we still interpret a scattering event
using a photon picture: The incident photon with momentum
qin = h̄k0ẑ is scattered in the directions ±θ as a photon
of momentum q± = h̄k0[ẑ cos θ ± x̂ sin θ ], respectively. The

atomic recoil momentum is

�p = qin − q± = h̄k0[ẑ(1 − cos θ ) ∓ x̂ sin θ ], (11)

with an angle φ with respect to the z axis given by

tan φ = ∓ sin θ

1 − cos θ
. (12)

The previous cases of horizontal and vertical ellipses, shown
in Figs. 2 and 3, correspond to θ = π and θ = π/2, respec-
tively. For the case of circular distribution, we estimated from
Fig. 4(d), the scattering angle to be θ ≈ 135◦. Using this value
in Eq. (12), we obtained two crossed lattices, respectively.
oriented at φ = ∓22.5◦ with respect to the z axis, in qual-
itative agreement with Fig. 4(b). The shape deformation of
the atomic distribution observed here is similar to the elec-
trostrictive effect described in Ref. [34] for a BEC illuminated
by laser light. We postpone the study of this rather surprising
effect to a more extended 2D and 3D investigation, which will
take into account also the vectorial character of the scattered
light.

B. Three-dimensional simulation of scattering

In this section, we relax the assumption of a 2D distribution
of atoms and consider a full 3D case. The computational effort
required to model large systems of atoms in 3D is substan-
tially greater than in 2D, so the efficiency of the computational
methods used becomes more significant. Equations (7) and (8)
are explicit equations whose solution does not require inver-
sion of large matrices nor the use of a mesh, which is attractive
from the viewpoint of run time of numerical simulations. In
addition, use of a code such as PEPC to solve Eqs. (7) and (8)
offers the potential for improved scalability to large 3D sim-
ulations involving extremely large numbers of over a “brute-
force” solution of Eqs. (7) and (8). This is due to the fact
that PEPC is designed to use tree algorithms (e.g., Ref. [18])
originally designed for astrophysical N-body simulations,
which reduce the computational effort or run time associated
with the calculations from O(N2) to O[N ln(N )]. As an
illustrative example, we study a 3D atomic sample, analogous
to the system configuration considered in Sec. III A 1 with the

FIG. 5. Numerical simulations in 3D: (a) Initial disposition of particles in a cloud of particles. (b) One-dimensional grating formation in
the case of laser propagation parallel to the major axis of the cloud of atoms at t = 0.21ω−1

r . In the simulation, we have used N ≈ 10 000
particles distributed randomly in space.
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pump propagation parallel to the major axis of the cloud with
a cigar-shaped distribution—see Fig. 5(a). Again, we have the
atoms initially randomly distributed within the cloud. After a
time t = 0.21ω−1

r , we observe the formation of a longitudinal
density grating along the z axis, depicted in Fig. 5(b), similar
to the one observed in the 2D simulation. We outline again
that the scalar model of light used for the 3D simulations gives
only an approximated description of the scattering so that a
full vectorial model is required for an accurate description
of the scattering. However, preliminary results show that,
for a very elongated atomic cloud and the pump propagating
along the major axis of the cloud, the scalar model describes
correctly the long-range term of the exact force but not its
short-range terms. Since we assume a dilute system where
multiple scattering is negligible, short-range terms in the
force play a minor role, and the collective recoil scattering
is dominated by long-range interactions. For these reasons,
the scalar model is able to reproduce the mean features of the
collective atomic recoil lasing in free space.

Finally, we make some comment about the scaling laws
with N and the size of the atomic cloud. In our 3D simulation,
the number of atoms is N = 104, and the semiaxis of the
ellipsoidal are k0Rx = k0Ry ∼ 5 and k0Rz ∼ 15, correspond-
ing to a volume of V ∼ 6λ3

0 which, for λ0 = 780 nm as
for the Rb atoms, conforms to a rather unrealistic density
of n ∼ 1015 atoms/cm3 and a resonant optical thickness of
b ∼ N/(k2

0RxRy) ∼ 400, which is large but not unreachable.
Hence, it is important to know how the superradiant scattering
rate scales with N and the atomic system size. It results from
a single-mode theory [19] that the superradiant scattering
rate is �SR ∼ (�0/�0)

√
�ωrN/(k0Rx )2, i.e., it scales with

the square root of the optical thickness. Hence, a realistic
atomic cloud with N ∼ 106 and transverse size k0Rx ∼ 50
would have the same optical thickness and, hence, the same
superradiant rate of the simulation shown in Fig. 5. For
�0/�0 = 1/15, N = 106, k0Rx = 50, ωr ∼ 104 rad/s, and
� = (2π ) 6 MHz, then �SR ∼ 106 1/s, which is much more
than the two-photon recoil 4ωr and so satisfying the condition
for the classical regime of superradiant scattering [35]. The
initial velocity spread is negligible if 2kσv � �SR or, equiva-
lently, T0 � h̄�2

SR/(8kBωr ), where T0 = Mσ 2
v /kB is the initial

temperature and kB is Boltzmann’s constant. For Rb atoms and
�SR = 106 1/s, the initial temperature must be much less than
100 μK.

IV. CONCLUSIONS

We have presented a model which describes collective
scattering of light in 2D and 3D due to a gas of cold atoms
in vacuum that depends only on the positions of the atoms,
making it suitable for implementation using a MD simulation
code. Using the public MD code PEPC, we were able to follow
the trajectories of the atoms and calculate the spatial and tem-
poral evolutions of the intensity of the scattered light. The 2D
simulations show that the evolution of collective scattering by
an elliptical atomic cloud is sensitive to the orientation of the
cloud relative to the pump field propagation direction. When
the major axis of the cloud is aligned parallel to the pump
propagation direction, the simulation showed the formation of
a 1D grating in the density of the atoms, analogous to that
occurring in CARL or a FEL, which enhances the backscat-
tered light. In contrast, when the major axis of the cloud is
oriented perpendicular to the pump propagation direction, a
2D pattern formation, similar to that observed in superradiant
scattering experiments of Ref. [14], was observed; in both
cases, the collectively scattered radiation propagates predom-
inantly along the major axis of the cloud. In the intermediate
case of a circular cloud, it was demonstrated that the force
produced by the collective scattering process is electrostrictive
in nature, leading to elongation of the cloud along the pump
propagation direction, simultaneous with the development of
a 2D grating. As an example of the capabilities of the code
and the method we used, we have also been able to produce
3D simulations of the collective scattering process. As the
importance of polarization effects can be significant for 3D
scattering, an extension of the present scalar model of light
scattering to a vectorial model, simulating the 3D collective
scattering from different atomic distributions and orientations
of the pump, is in preparation.
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APPENDIX: DERIVATION OF THE MOTION EQUATIONS

1. Multimode collective recoil equations

We consider the Hamiltonian of N two-level atoms with atomic frequency ωa and dipole d , interacting with a laser field and
the vacuum radiation modes,

H =
N∑

j=1

p2
j

2M
+ h̄

N∑
j=1

[
�∗

0

2
σ−

j ei �0t−ik0·r j + Hc.

]
+ h̄

N∑
j=1

∑
k

gk
[
a†

kσ
−
j ei �kt−ik·r j + σ+

j ake−i �kt+ik·r j
]
. (A1)

Here �0 = dE0/h̄ is the Rabi frequency of the laser with electric-field E0, wave-vector k0, and frequency ω0 with detuning
�0 = ω0 − ωa. The quantum radiation modes in vacuum with wave-vectors k and frequency ωk are described by the operators
ak with �k = ωk − ωa with coupling rate gk = d[ωk/(2h̄ε0Vph)]1/2, and Vph is the quantization volume of the radiation field. We
disregard polarization and short-range effects using a scalar model for the radiation field. The internal dynamics of the two-level
atoms are described by the operators σ z

j = |e j〉〈e j | − |g j〉〈g j |, σ+
j = |e j〉〈g j |, and σ−

j = |g j〉〈e j |. Furthermore, we also consider
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the dynamics of the external degrees of freedom, where r j and p j are operators. The Heisenberg equations are as follows:

ṙ j = p j

M
, (A2)

ṗ j = −∇r j H = ih̄k0

[
�∗

0

2
σ−

j ei �0t−ik0·r j − H.c.

]
+ ih̄

∑
k

kgk
[
a†

kσ
−
j ei �kt−ik·r j − H.c.

]
, (A3)

σ̇−
j = i�0

2
e−i �0t+ik0·r j σ̂ z

j + i
∑

k

gkσ
z
j ake−i �kt+ik·r j , (A4)

σ̇ z
j = i�∗

0ei �0t−ik0·r j σ−
j + 2i

∑
k

gka†
kσ

−
j ei �kt−ik·r j + H.c., (A5)

ȧk = −igk

N∑
j=1

σ−
j ei �kt−ik·r j . (A6)

Introducing σ j = σ−
j ei �0t and neglecting the population of the excited state (assuming weak field and/or large detuning �0) so

that σ z
j ≈ −1,

ṙ j = p j

M
, (A7)

ṗ j = ih̄k0

[
�∗

0

2
σ je

−ik0·r j − H.c.

]
+ ih̄

∑
k

kgk
[
a†

kσ je
i(ωk−ω0 )t−ik·r j − H.c.

]
, (A8)

σ̇ j = (i�0 − �/2)σ j − i�0

2
eik0·r j − i

∑
k

gkake−i(ωk−ω0 )t+ik·r j , (A9)

ȧk = −igkei(ωk−ω0 )t
N∑

j=1

σ je
−ik·r j , (A10)

where we added the spontaneous emission decay term −(�/2)σ j with � = d2k3/2πε0 h̄ as the spontaneous decay rate. Assuming
� � ωrec, where ωrec = h̄k2/2M is the recoil frequency, we can adiabatically eliminate the internal degree of freedom, taking
σ̇ j ≈ 0 in Eq. (A9),

σ j ≈ �0

2(�0 + i�/2)
eik0·r j + 1

�0 + i�/2

∑
k

gkake−i(ωk−ω0 )t+ik·r j . (A11)

The first term describes the dipole excitation induced by the driving field, whereas the second term is the excitation induced by
the scattered field. By inserting it in Eq. (A10), the field equation, we obtain

ȧk = −i
gk�0

2(�0 + i�/2)
ei(ωk−ω0 )t

N∑
j=1

ei(k0−k)·r j − i
gk

�0 + i�/2

N∑
j=1

∑
k′

gk′ak′ei(ωk−ωk′ )t−i(k−k′ )·r j . (A12)

The first term describes the single-scattering process where the momentum transfer to the atoms is from the incident field to the
vacuum field. The second term describes multiple-scattering processes where a photon is exchanged between mode k and all the
other modes k′. We limit our analysis to single-scattering processing, neglecting the second term in Eq. (A12). We also insert
Eq. (A11) in the force equation (A8),

ṗ j = − ih̄

�0 − i�/2

[
k0

�0

2
eik0·r j +

∑
k

kgkakeik·r j−i(ωk−ω0 )t

][
�∗

0

2
e−ik0·r j +

∑
k

gka†
ke−ik·r j+i(ωk−ω0 )t

]
+ H.c. (A13)

The first and second terms in the first squared brackets describe the absorption of an incident photon with momentum h̄k0 and a
scattered photon with momentum h̄k, respectively. The second squared brackets are the response of the atom, i.e., the induced
polarization of the atoms to the total radiation. Explicitly, we write

ṗ j =
[

��2
0

4�2
0 + �2

]
h̄k0 + 2i�0

4�2
0 + �2

∑
k

h̄(k0 − k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t − H.c.
]

+ �

4�2
0 + �2

∑
k

h̄(k0 + k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t + H.c.
]

+ 1

�2
0 + �2/4

∑
k

∑
k′

gkgk′ â†
kâk′ei(k′−k)·r j [i�0h̄(k − k′) + (�/2)h̄(k + k′)]. (A14)
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Note that the first term is the radiation pressure exerted by the incident light (which is constant for a plane wave); the second and
third terms describe the momentum transfer due to the exchange of photons between the incident and the scattered light. The
last term is the contribution due to the exchange between two scattered vacuum photons of momentum h̄k and h̄k′. Again, since
we neglect multiple-scattering events, we drop the last term. Then, we assume �0 � � so that the first and the third terms of
Eq. (A14) are negligibly small, thus, achieving

ṗ j ≈ i

2�0

∑
k

h̄(k0 − k)gk
[
�∗

0ake−i(k0−k)·r j−i(ωk−ω0 )t − H.c.
]
. (A15)

The force on the atoms is the usual dipole (or gradient) force where the momentum transfer is maximum for backscattering
emission (i.e., k = −k0). In conclusion, the multimode equations describing the collective recoil are as follows:

ṙ j = p j

M
, (A16)

ṗ j = ih̄g
∑

k

(k0 − k)
[
Ake−i(k0−k)·r j − A†

kei(k0−k)·r j
]
, (A17)

Ȧk = −ig
N∑

j=1

ei(k0−k)·r j − iδkAk, (A18)

where Ak = ake−iδkt , δk = ωk − ω0, and g = gk0 (�0/2�0); we assumed gk ≈ gk0 and �0 real.

2. Collective recoil equations in free space

In free space, the light is scattered in the 3D vacuum modes. Following Ref. [16], we eliminate the scattered field by integrating
Eq. (A18) to obtain

Ak(t ) = Ak(0)e−i(ωk−ω0 )t − igN
∫ t

0
ρk0−k(t − τ )e−i(ωk−ω0 )τ dτ, (A19)

with

ρq(t ) = 1

N

N∑
j=1

eiq·r j (t ). (A20)

The first term in Eq. (A19) gives the free electromagnetic field, i.e., vacuum fluctuations, and the second term is the radiation
field due to Rayleigh scattering. If Eq. (A19) is substituted into Eq. (A17) for p j , we obtain

ṗ j = h̄g2N
∑

k

(k0 − k)
∫ t

0
dτ

[
ρk0−k(t − τ )e−i(k0−k)·r j e−i(ωk−ω0 )τ + H.c.

]
, (A21)

where the first term of Eq. (A19) has been neglected. Then, transforming the sum over k into an integral and using Eq. (A20),
we attain the coming expression,

ṗ j = h̄g2 Vph

8π3

∑
m �= j

[
e−ik0·(r j−rm )

∫ t

0
dτ eiω0τ

∫
dk(k0 − k)eik·(r j−rm )e−ickτ + H.c.

]
, (A22)

in which we used the Markov approximation so that r j (t − τ ) ≈ r j (t ). The integral over k, in the latter equation, can be
manipulated as follows:∫

dk(k0 − k)eik·(r j−rm )e−ickτ = 4πk0

∫ ∞

0
dk k2 sin(kr jm)

kr jm
e−ickτ + 4iπ r̂ jm

∫ ∞

0
dk k3

[
cos(kr jm)

kr jm
− sin(kr jm)

(kr jm)2

]
e−ickτ (A23)

being r jm = r j − rm, r jm = |r jm|, and r̂ jm = r jm/r jm. Since k ≈ k0, we can replace k by k0 in the integrals; we also extend the
lower integration limit to −∞, reaching the next expression,∫

dk(k0 − k)eik·(r j−rm )e−ickτ ≈ 4πk3
0

ẑ
k0r jm

∫ ∞

−∞
dk sin(kr jm)e−ickτ + 4iπk3

0
r̂ jm

k0r jm

∫ ∞

−∞
dk

[
cos(kr jm) − sin(kr jm)

k0r jm

]
e−ickτ

= 4π2k3
0

c

{
ẑ

ik0r jm
[δ(τ − r jm/c) − δ(τ + r jm/c)] − r̂ jm

ik0r jm
[δ(τ − r jm/c) + δ(τ + r jm/c)]

− r̂ jm

(k0r jm)2
[δ(τ − r jm/c) − δ(τ + r jm/c)]

}
, (A24)
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where we assumed k0 = k0ẑ and used the following two integrals:∫ ∞

−∞
dk sin(kR)e−ickτ = π

ic
[δ(τ − R/c) − δ(τ + R/c)],

∫ ∞

−∞
dk cos(kR)e−ickτ = π

c
[δ(τ − R/c) + δ(τ + R/c)]. (A25)

By inserting Eq. (A24) into Eq. (A22), together with the definitions of g and �, we are able to derive the final expression for the
force,

ṗ j = �

2
h̄k0

(
�0

2�0

)2 ∑
m �= j

[
eik0(r jm−z jm )

(
(ẑ − r̂ jm)

ik0r jm
− r̂ jm

(k0r jm)2

)
+ H.c.

]

= �h̄k0

(
�0

2�0

)2 ∑
m �= j

{
(ẑ − r̂ jm)

sin[k0(r jm − z jm)]

k0r jm
− r̂ jm

cos[k0(r jm − z jm)]

(k0r jm)2

}
. (A26)

3. Radiation field

The scattered radiation field amplitude is

Es(r, t ) = i
Vph

(2π )3
ei(k0·r−ω0t )

∫
�k

dk EkAk(t )ei(k−k0 )·r (A27)

being Ek = (h̄ωk/2ε0Vph)1/2 the single-photon electric field. Using Eq. (A19), neglecting the fluctuation term and transforming
the sum over k into an integral as performed before, we obtain

Es(r, t ) = Vph

(2π )3
ge−iω0t

N∑
j=1

∫ t

0
dτ eiω0τ eik0·r j (t−τ )

∫ ∞

0
dk kEk

sin[k|r j (t − τ ) − r|]
|r j (t − τ ) − r| e−ickτ . (A28)

The scattered intensity will be centered about the incidence laser frequency ω0. The quantity ck varies little around k = ω0/c for
which the time integral in τ is not negligible. We can, therefore, replace k by ω0/c and extend the lower limit in the k integration
by −∞,

Es(r, t ) = Vph

2π2
gk0Ek0 e−iω0t

N∑
j=1

∫ t

0
dτ eiω0τ+ik0·r j (t−τ )

∫ ∞

−∞
dk

sin(k|r j − r|)
|r j − r| e−ickτ . (A29)

By using Eq. (A26), we obtain

Es(r, t ) = dk3
0

4πε0

�0

2�0

N∑
j=1

eik0Rj

ik0Rj
ei(k0·r j−ω0t )�(t > Rj/c), (A30)

where Rj = |r j − r| and r j is evaluated at the retarded time t − Rj/c. Assuming r � r j , we can write Rj ≈ r − ir̂ · r j with
r̂ = r/r, and

Es(k, t ) ≈ dk2
0

4πε0

�0

2�0

ei(k0r−ω0t )

ir

N∑
j=1

ei(k0−k)·r j , (A31)

where k = k0r̂. We have obtained the expression of the Rayleigh scattering field in the far-field limit, i.e., a spherical wave
proportional to the factor form, depending on the geometrical configuration of the scattering particles. For small clouds, we can
neglect the retarded time Rj/c. In conclusion, the scattered intensity spatial distribution in the far-field limit is

Is(k) = I1N2|M(k, t )|2, (A32)

in which I1 = (h̄ω0�/8πr2)(�0/2�0)2 is the single-atom Rayleigh scattering intensity and

M(k, t ) = 1

N

N∑
j=1

ei(k0−k)·r j (t ) (A33)

is the optical magnetization or bunching factor.
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Cooperative cooling in a one-dimensional chain of optically bound cold atoms
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We discuss theoretically the optical binding of one-dimensional chains of cold atoms shone by a transverse
pump, where particles self-organize to a distance close to an optical wavelength. As the number of particles
is increased, the trapping potential increases logarithmically as the contributions from all atoms add up
constructively. We identify a cooperative cooling mechanism, due to the mutual exchange of photons between
atoms, which can beat the spontaneous emission for chains that are long enough. Surprisingly, the cooling is
optimal very close to the resonance. This peculiar cooling mechanism thus gives new insights into the cooperative
physics of low-dimensional cold atom systems.

DOI: 10.1103/PhysRevA.102.013312

I. INTRODUCTION

After the pioneering work by Ashkin on optical forces for
microsized particles [1,2], the manipulation of small objects
using light beams has been applied successfully to a wide
range of systems, from atoms [3,4] to biological systems [5].
In this context, the role of the interparticle optical forces
was soon noted [6]. These forces can be either attractive
or repulsive, depending on the specific distance between the
scatterers, which suggests it can act as a mechanism for
self-organization of the matter. Several years later, the self-
organization of dielectric particles in suspension in a fluid was
reported, with a pronounced preference for the particles to be
separated by an integer number of optical wavelengths [7].
Coined optical binding (OB) at the time, it has since known
various developments [8].

OB can be realized using two main configurations: In the
transverse one, the scatterers are spread in a plane orthogonal
to the direction of propagation of the pump, and are submitted
to a rather homogeneous phase and intensity profile [9]. In
the longitudinal configuration, the pump propagates in the
direction of the aligned scatterers [10]. In all cases, the cou-
pling between the scatterers becomes increasingly complex
as their number increases, due to the propagation effects
within the system. To circumvent these effects and generate
longer bound chains, it has been proposed to resort to Bessel
beams [11,12].

OB relies on the trapping optical force overcoming the
stochastic effect due to spontaneous emission. The trapping
component is generally analyzed in terms of potentials, con-
sidering that each particle is trapped in a potential generated

*angel.tarramera@unimi.it
†nicola.piovella@unimi.it
‡bachelard.romain@gmail.com

by the other scatterers. Finding stable configurations is then a
self-consistent problem as moving a single scatterer affects the
global stability of the system [9,13,14]. More generally, while
a pair of scatterers tends to self-organize at a distance equal
to an integer number of optical wavelengths, larger systems
suffer from diffraction effects which alter this spacing, but
also the system stability [15]. Finally, despite the fact that the
binding force scales poorly with decreasing scatterer size [16],
OB has recently attracted a lot of attention for nanoparticles,
as it appears as a potential mechanism for self-structuring at
the nanoscale [17].

In this context, only recently was the possibility of binding
optically cold atoms [18] discussed. Indeed, the binding force
is comparatively stronger for particles of size comparable to
the optical wavelengths [16], and the smallest objects such as
atoms present unstable configurations as the heating due to
the random recoil overcomes the binding potential [19]. Nev-
ertheless, differently from dielectrics, cold atoms present an
atomic resonance, which leads to an extra cooling mechanism
for pairs of atoms in an OB configuration [18,19]. Although
this extra damping is not sufficient to reach stability for pairs
of cold atoms without an additional stabilization mechanism
such as molasses, it represents a further step toward this goal.

In this theoretical work, we report on a cooperative cooling
mechanism in a one-dimensional chain of cold atoms. The
long-range nature of the light-mediated interaction manifests
not only in the deepening of the OB potential, but also in
the enhancement of the cooling mechanism for resonant scat-
terers. Differently from other cooling mechanisms, including
the cooling of a pair (N = 2) of optically bound atoms, the
cooling for larger systems (N � 3) is most efficient at or very
close to the atomic resonance, and in the one-dimensional
(1D) chain under study, it grows logarithmically with the
system size. This self-generated cooling makes stable OB
possible for chains of a few dozens of cold atoms. Our result
shows that cooperative effects in low-dimensional cold-atom
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FIG. 1. Scheme of the one-dimensional cloud of atoms trapped
by four laser beams, the self-organization as a chain occurring under
the effect of mutual optical forces. The strongest coupling between
neighbors is achieved when the mutual distance is close to the optical
wavelength λ. The four laser beams drawn form a 2D optical lattice
in the transverse directions and aim to emulate a one-dimensional
system: They are ideally far from resonance. Differently, the near-
resonant pump which generates the OB is also transverse, so it should
be operated on a different transition.

systems may be particularly useful for self-organization pro-
cesses.

II. OPTICAL BINDING IN A CHAIN OF COLD ATOMS

A. Modeling the atomic chain dynamics

The dynamics of the optical binding involves monitoring
the coupled evolution of both the vacuum modes and the
atoms internal and external degrees of freedom. In order to
reach an efficient description of the system, we focus on the
atom dynamics, by tracing over the degrees of freedom of the
light and studying the coupled dipole dynamics [20–22]. Con-
sidering we are dealing with two-level atoms, the dynamics of
their dipoles, hereafter labeled β j and treated classically, is
given by

dβ j

dt
=

(
i� − �

2

)
β j − i�(r j ) − �

2

∑
l �= j

G jlβl , (1)

where � is the linewidth of the atomic transition, � the Rabi
frequency of the driving field, and � = ω − ωa the detuning
of the pump field from the atomic transition frequency ωa.
We consider a setup of transverse one-dimensional OB, where
the atoms are trapped in one dimension by a two-dimensional
(2D) optical lattice created by four plane-wave beams in
the orthogonal plane (see Fig. 1). Such a scheme allows to
reduce the cold atom dynamics to one dimension and has been
explored in various experiments [23–25].

It corresponds to a pump with a homogeneous phase
along the chain: �(r) = �0. The light-mediated interaction
between the dipole is given by the kernel Gjl = exp(ik|r j −
rl |)/(ik|r j − rl |), where r j refers to the position of the atom
center of mass and k = 2π/λ the light wave number. This
kernel can be seen as referring to scalar dipoles (scalar light
approximation), or to vectorial dipoles oriented at a magic an-
gle such that near-field terms cancel (i.e., a pump polarization

which makes an angle θ = arcsin (1/
√

3) from the chain
axis). In the linear-optics regime considered throughout this
work, this dynamics can be obtained either from a quantum
description of the light-matter interaction [20] or from a
representation of the atoms as classical oscillators [26,27].

Regarding the atom center of mass, their dynamics is
driven only by the field from the other dipoles, since the
trapping beams do not induce any force along the z axis:

m
d2r j

dt2
= −h̄(β∗

j ∇r j � j + c.c.)

= −h̄�
∑
l �= j

Im(β∗
j βl∇r j G jl ), (2)

with � j (r j ) = �0 − i(�/2)
∑

l �= j G jlβl the effective Rabi
frequency at position r j , m the atom mass, and h̄ the reduced
Planck constant. In this equation, stochastic effects associated
with spontaneous emission have been eliminated—see Sec.IV
for a more detailed discussion.

B. Adiabatic approximation

Systems of dielectrics previously considered for OB do not
possess a resonance like atoms; it is equivalent to considering
that the internal degrees of freedom, here the β js, are always at
equilibrium. Performing such an adiabatic approximation, i.e.,
considering that the dipole relaxation time �−1 is negligible
compared to the time needed for an atom center of mass to
perform an oscillation in the binding potential, corresponds
to taking the left-hand term in Eq. (1) equal to zero. This
allows one to rewrite the dipole as β j = α� j , with α =
1/(� + i�/2) the normalized atom polarizability. Defining
� j = |� j |eiϕ j , the center-of-mass dynamics in turn rewrites
as

m
d2r j

dt2
= −h̄(α∗�∗

j∇r j � j + c.c.)

= h̄�

�2 + �2/4
|� j |2∇r j ϕ j − h̄�

�2 + �2/4
∇r j |� j |2,

(3)

where the first right-hand term corresponds to the radiation
pressure force, and the second to the dipolar force.

Despite we are dealing with an open system, for a pair of
atoms (N = 2) and after a short transient, the dipoles syn-
chronize and the adiabatic approximation can be mapped to a
conservative dynamics, derived from a potential energy [19].
This conveniently allows one to monitor the evolution of the
effective energy of the system. Differently, for a many-atom
chain (N � 3) the absence of synchronization translates into
different dipole amplitudes, which in turn prevents defining a
potential energy for the system: The mutual radiation pressure
terms [i.e., the phase gradient term in Eq. (3)] cannot be
expressed as deriving from a potential. Nevertheless, simu-
lations of the kinetic energy with and without the adiabatic
approximation show that performing this approximation leads
to a conservative dynamics: On the time scales over which
the system otherwise cools or heats, no significant long-term
evolution of the kinetic energy is observed for the adiabatic
dynamics (see Fig. 2).
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FIG. 2. Evolution of the normalized kinetic energy for a chain of
N = 15 atoms with an initial interparticle distance λ, and pumped
with a laser detuned by � ≈ −0.2�. The darker black curve refers
to the evolution with the full dipole dynamics, Eqs. (1) and (2), the
lighter curve was obtained from the adiabatic dynamics [canceling
the left-hand term in Eq. (1)], and the red lines refer to the envelope
obtained by averaging over a short time. The two kinetic energies
have been normalized by the maximum of both curves.

C. Local potential at equilibrium

In this work, the system is prepared out of equilibrium as
follows: A chain of atoms separated by λ is generated; the
atom positions corresponding to the minima of the optical
potential are then obtained by letting the system relax in the
presence of an artificial friction force −ξ (dr j/dt ) applied
to all atoms. These minima correspond to a separation of
the atoms slightly different from λ, and must be found as
a self-consistent problem where all scatterers mutually in-
teract [14]: The friction allows one to reach the equilibrium
in an efficient way. We have checked that the equilibrium
positions are not affected by the value of ξ , which we have
set to 0.02m� throughout this work. Then, the two atoms
at the extremity of the chain are shifted away by 3% of
the distance to their nearest neighbor. The dynamics is then
initiated with the atoms in these positions, without any initial
velocity.

In this review, we have simulated Eqs. (1) and (2) using
�0 = 0.1� and ωrec = 0.045�, where ωrec = h̄k2/2m is the
recoil frequency. This value of ωrec is low enough to neglect
the shift induced by the scattering on the light frequency,
yet large enough to observe the cooling over dozens of os-
cillations (lower ratios ωrec lead to larger time scales for the
cooling Ref. [19]).

The OB potential for each atom strongly depends on the
system size. Indeed, due to the long-range nature of the
dipole-dipole interaction, all atoms contribute to the instanta-
neous potential Uj for atom j, which is deduced from Eq. (2)
as

Uj = h̄�
∑
l �= j

Im(Gjlβ
∗
j βl ). (4)

FIG. 3. (a) Potential energy landscape for chains of N = 5, 9
and 13 atoms at equilibrium, for a normalized detuning �/� =
−0.06, −0.13 and −0.18, respectively. The potential is computed
using Eq. (4), considering all atoms apart from the closest one, as it
generates a local singularity. (b) Optical potential (in absolute value)
for the edge atoms of a chain of length N , as a function of N , and for
a detuning that optimizes the cooling. The green line corresponds to
a logarithmic fit.

Let us discuss the potential generated by atoms once they
have reached the minimum of the optical potential (since, in
practice, the OB potential is a dynamical quantity). As can
be observed in Fig. 3(a), the optical potential for each atom
becomes deeper as the chain size increases. This effect can be
understood from the 1/r decay of the electric field. If, for sim-
plicity, we assume that each atomic dipole is mainly driven by
the laser field, β j = �0/(� + i�/2), then the optical potential
reads

Uj = h̄�
�2

0

�2 + �2/4

∑
l �= j

Im(Gjl ). (5)
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Assuming that all the atoms are separated by λ (i.e., r j =
jλẑ), the potential simplifies into

Uj = U0

∑
l �= j

1

|l − j| = CjU0, (6)

with U0 = −h̄(�/2π )�2
0/(�2 + �2/4) the potential mini-

mum for a pair of atoms, and Cj = ∑
l �= j 1/|l − j| the coop-

erativity parameter for atom j. Thus, in a long chain, an atom
in the middle of the center is submitted to a potential that is
the coherent sum of the contributions of all atoms, the overall
potential scaling as

∼U0

N/2∑
j=−N/2, j �=0

1/| j| ∼ 2U0 ln(N/2).

An atom at the chain border is submitted to a smaller poten-
tial, U1 = UN ∼ U0 ln N . This explains the scaling observed
in Fig. 3(a), which clearly favors larger chains in terms of
stability.

In Fig. 3(b), the logarithmic growth of the potential can
be observed, for chains up to N = 60 atoms. A fit of the
numerically computed potential minimum for the atoms at
the extremes of the chain gives the following approximated
expression:

Umin ≈ −0.8h̄�

(
�0

�

)2

ln N. (7)

A slight decrease in the potential depth is observed for
the largest system sizes, which can be explained from the
finite optical thickness which separates remote atoms in long
chains. Indeed, the exchange of photons between two remote
atoms is screened by the in-between atoms, which modify
both the amplitude and phase of the wave. As a result, the
coherent sum (6) is no longer valid. Longer chains obviously
suffer stronger screening effects, which represents a limit to
the length of optically bound chains. In order to overcome
such effect and bind efficiently long chains of scatterers, it
has, for example, been proposed to shrink the coherence of the
incident field to reduce the number of coherently interacting
dipoles, or to spatially modulate the phase of the incident
field [15].

III. COOPERATIVE COOLING

As mentioned earlier, an important difference of cold
atoms as compared to dielectrics spheres is the presence of
a resonance: It makes the atomic dipoles have a finite-time
response to the local electric field. As a consequence, the
system may either present a long-term cooling or heating
trend [18,19], beyond the adiabatic dynamics described above.
This is illustrated in Fig. 2, where the evolution of the kinetic
energy of the atomic chain presents a slow decay when the
dipole dynamics is accounted for. The oscillations observed
occur at a frequency provided by the trapping potential, which
can be estimated from Eq. (6):

ω2
j = ωrec�

π

�2
0

�2 + 4�2

∑
l �= j

1

|l − j| . (8)

FIG. 4. (a) Maximum cooling rate γc as a function of the particle
number N . (b) Detuning �c of maximum cooling rate, as a function
of N . (c) Cooling rate γc/� as a function of the normalized detuning
�/� of the pump light and for different particle numbers.

where ωrec = h̄k2/2m is the recoil frequency. This frequency
contains the cooperativity parameter Cj = ∑

l �= j 1/|l − j|,
which scales as ln N .

The cooling observed in Fig. 2, obtained from the envelope
of the kinetic energy E , is exponential in time, so we deduce
a cooling rate γc by an exponential fit. The dependence of this
rate on the particle number N is presented in Fig. 4, for the
detuning �c that optimizes this rate (see discussion below).
However, we first remark that the cooling rate γc scales with
ln N [see Fig. 4(a)], leading to an increased cooling rate for
larger systems. This cooperative enhancement of the cooling,
and the detuning �c that optimizes this rate, are given by the
following expressions, obtained by numerical fit:

γc ≈ ωrec

(
�0

�

)2

[0.4 ln N − 0.3], (9)

�c

�
≈ 0.14 − 0.12 ln N. (10)

We remind that in the present setup there is no external

damping force such as fluid friction for scatterers maintained
in fluids [7]. Furthermore, in the case of transverse OB, the
pump laser confines the particles only along the chain, and
have no direct role on the dynamics along that direction: Only
interparticle optical forces contribute here.

In Fig. 4(c) we observe a maximum cooling rate very close
to resonance, nevertheless the steady state is also determined
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FIG. 5. Cooling rate γc/�, scattering cross section σ , and inverse
temperature 1/T for a chain of N = 7 atoms and as a function of the
detuning of the pump light �.

by the spontaneous emission rate, which is also maximum
at resonance. Indeed resonant light corresponds to a maxi-
mum scattering cross section σ (�) = σ0/(1 + 4�2/�2), with
σ0 = 4π/k2 the resonant scattering atom cross section. The
equilibrium temperature resulting from the cooling and the
stochastic heating is obtained using a Langevin equation, and
scales as T ∝ σ (�)/γc(�) (see Sec. IV). As can be observed
in Fig. 5, despite the increased spontaneous emission, the
equilibrium temperature is predicted to be lowest very close
to resonance. The cooling thus appears to rely on the radiation
pressure force rather than on the dipolar one.

This makes the cooling mechanism for large (N � 3) op-
tically bound atomic chains quite different from other cool-
ing mechanisms. In the case of an optically bound pair of
atoms [18,19], the scaling on the cooling rate was similar to
the one obtained for Doppler cooling: Cooling is achieved
for negative detuning, ideally for � ≈ −�/2, whereas posi-
tive detuning is associated with heating [see Fig. 4(c)]. For
N � 3 atoms in an OB configuration, the cooling not only
appears most efficient very close to resonance, and even scales
differently from the N = 2 case: It reaches a maximum ∼20
times higher for N = 3 than the maximum reached for a pair
of atoms. Only for larger numbers does the optimal pump
frequency start to deviate from the atomic resonance [�c ≈
�/4 for N = 20; see Fig. 4(c)]. The present situation is at odds
from the cooling by diffuse light reported for atoms trapped in
a reflecting cylinder [28–30], where the cooling was achieved
in a fully disordered system, and was optimal off resonance
(� ≈ −3�).

A hint on the origin of this peculiar behavior, as compared
to a pair of atoms, can be found in the evolution of the atomic
dipoles. Indeed a close analysis of the dynamics shows that for
N � 3, differently than for N = 2, the dipoles do not evolve
synchronously (see Fig. 6). One observes that the dipoles
present substantial differences in their oscillations, both in
terms of amplitude and oscillations maxima.

This lack of synchronization of the dipoles has strong
consequences on the macroscopic dynamics, as revealed by

FIG. 6. Evolution of the dipole amplitude β j over time, for a
chain of N = 10 atoms. Simulation realized for a detuning � =
−0.3� and a pump strength � = 0.1�. The atomic chain was here
initialized with atoms separated by λ, with a tilt of 0.03λ toward pos-
itive z of four atoms ( j = 1, 3, 8, 10): This breaking of symmetry
allows one to visualize the distinct dynamics of the 10 dipoles.

comparing the full dynamics of Eqs. (1) and (2) to a synchro-
nized ansatz, obtained by substituting in Eq. (2) the values of
the dipole amplitudes β j by their average β = (1/N )

∑
j β j .

As shown in Fig. 7(a), close to resonance the synchronized
dynamics presents a heating trend, whereas the full coupled
dynamics exhibits a damping of the kinetic energy over time.
The systematic comparison presented in Fig. 7(b) confirms
that using the synchronized ansatz, a chain of N = 3 atoms
displays the features of Doppler cooling (we checked that
larger chains present a similar behavior, up to a shift in the
detuning that optimizes the cooling): Cooling is achieved
only for negative detuning, and is maximal for � ≈ −�/2,
whereas resonant light strongly heats the system. Differently,
the N � 3 coupled dipole dynamics obtained from Eqs. (1)
and (2) exhibits a cooling which is maximum at resonance, but
also significantly larger than for the synchronized case. Un-
fortunately, the asynchronous nature of this dynamics makes
it very challenging to analyze it in more details, as one would
need to deal with N internal and N external coupled degrees
of freedom. Hence, despite the apparent complexity that the
system dynamics presents, it is quite remarkable that this lack
of synchronization results in a cooling rate much larger than
the one encountered for synchronous dipoles.

IV. IMPACT OF THE SPONTANEOUS EMISSION
AND VELOCITY CAPTURE RANGE

Let us now discuss in more detail the effect of heating due
to spontaneous emission on the trapping. Considering that this
process is dominated by the trapping beam �0, the rate of
kinetic energy induced by spontaneous emission is

(
δE

δt

)
SE

= h̄ωr�

3

�2
0

�2 + 4�2
, (11)
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FIG. 7. (a) Dynamics of the kinetic energy for N = 3 atoms,
comparing the full dipole dynamics of Eqs. (1) and (2) with the
synchronized obtained from the synchronization ansatz. Simulations
realized with the detuning of optimal cooling for the exact case, � ≈
0.01�. (b) Cooling or heating rate γc/� for N = 3 atoms, for the
full dynamics (“exact”) and imposing synchronized dipoles (“sync”),
and for N = 2 (the two dipoles spontaneously synchronize). The
cooling or heating rate has been calculated using the evolution of
the envelope of the kinetic energy until it reaches the 90%/110% of
its initial value.

where the factor 1/3 comes from the fact that the atomic
recoil is distributed over the three spatial directions. Due to
its oscillating nature [see Fig. 3(a)], the potential minimum
is the opposite of its maximum (as the potential is here
defined to be zero at large distances), so the heating has to
overcome a barrier twice larger than the minimum potential,
�U = 2|Umin|, where Umin is provided by Eq. (7).

Considering the exponential decay of the kinetic energy
over time observed in the simulations, it is reasonable to
include the cooperative cooling as a linear damping force,
which leads to the following equation for the kinetic energy:

dE

dt
= −γcE +

(
δE

δt

)
SE

, (12)

FIG. 8. Steady-state energy Es obtained from the Langevin equa-
tion and potential barrier �U , as a function of the number of particles
and for different pump strength �/�.

where γc is given by Eq. (9). The steady-state energy is thus
given by

Es = 1

γc

(
δE

δt

)
SE

(13)

≈ 0.83

ln N − 0.8

h̄�

1 + 4(�c/�)2
. (14)

Stability is achieved when Es < �U . For instance, for
�0/� = 0.2 stability should be reached for N � 40 (see
Fig. 8). While increasing pump strength suggests that a lower
number of atoms is necessary to reach stability, it actually
challenges the validity of the linear optics approximation [31],
just as in the case of Doppler cooling.

In a similar way, we can estimate the velocity capture range
�v, assuming that the initial kinetic energy must be smaller
than the potential barrier for the atoms to become trapped:
(m/2)(�v)2 < 2|Umin|. Using Eq. (7), we obtain

k�v < 2.4
√

(ωr/�) ln N �0. (15)

For example, for 87Rb atoms on the D2 line (52S1/2 → 52P3/2

transition) one has that ωr/� ∼ 6 × 10−4, allowing one to
attain k�v/� ∼ 0.06

√
ln N (�0/�). This can be compared to

the values for Doppler cooling in optical molasses, k�v/� ∼
1, and for Sisyphus cooling, k�v/� ∼ √

ωr/�0(�0/�) [32]:
The present cooperative cooling mechanism thus shares a
scaling closer to Sisyphus cooling although, as discussed
earlier, it is more efficient close to resonance. Finally, we point
out that since the potential is self-generated by the atoms,
this value is a simple estimation of the order of magnitude of
the capture velocity, and a detailed study of the microscopic
dynamics is necessary to obtain a precise value.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have here shown that one-dimensional
chains of cold atoms present a cooling mechanism which
grows logarithmically with the system size. It relies on the
presence of a resonance, and is thus absent from dielectric
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scatterers. Differently from other cooling mechanisms of cold
atoms, the atomic chains are here most efficiently cooled very
close to resonance, despite the strong spontaneous emission.
A promising consequence is that chains of a few dozens of
cold atoms could become stable thanks to this internal mech-
anism, without an additional stabilizing mechanism such as
optical molasses. Such a self-organization mechanism could
be probed, for example, using techniques inspired from Bragg
scattering [33].

This cooperative cooling mechanism, here discussed in the
context of a purely one-dimensional system, may be even
more promising for two-dimensional systems. Indeed, the 1/r
term of the dipole-dipole interaction leads to a scaling as ln N
in one dimension, but in two-dimensional systems the same
argument will lead to a scaling as

√
N . Indeed, in a 2D lattice

of atoms of edge
√

N , the cooperativity parameter for an atom

at site (i, j) scales as
∑√

N
l,m=1 1/

√
(l − i)2 + (m − j)2 ∼ √

N .
The OB forces are then expected to overcome in a more
efficient way the fluctuations due to spontaneous emission,
making two-dimensional self-generated lattices even more
robust. One may also consider manipulating the balance
between the OB potential and the spontaneous emission by
taking advantage of the more complex internal structure of
the atoms, using an electromagnetically induced transparency
configuration [34,35].

Finally, the self-cooling effect observed in our chain of
atoms, connected by the exchanged photons scattered off the
transverse driving fields, presents some analogies to collective
cavity cooling in a high-finesse optical resonator [36]. These
cavity self-organization effects have been suggested and stud-
ied theoretically by different groups in the 2000s [37,38] and
experimentally by Black et al. [39] and, later, by Brennecke
et al. [40]. Similarly, the atoms self-organize and cool into a

self-generated potential with λ spacing, built from the field
scattered from a transverse drive. The main difference with
free space scattering is that the cavity pre-selects a single
mode of the electromagnetic field, in addition to strongly
recycling the photons in some cases. More recently, it was
suggested [41] that a single, strongly populated mode can
spontaneously emerge also in free space from cooperative
scattering by the atoms, which presents some analogies with
the synchronization issue observed in the present work. An
important difference of our work is that addressing all vacuum
modes leads to a more complex system, for which the analogy
with a single-mode approach remains to be demonstrated. Fur-
thermore, we have observed that the adiabatic approximation,
which could be used to simplify drastically the system by sup-
pressing the fast time scale, has important consequences on
the long-term stability of the atomic chain. In this context, the
present work can be considered another step toward bridging
the gap between free space and cavity-based self-organization
of cold atoms.
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Appendices

Several topics exposed throughout this doctoral thesis need further explanation or
derivation, so they are expanded using this chapter. They are presented in the
following order:

A) Derivation of the coupled dipole equations (CDE) used in optical binding to
study the dynamics of the internal vibration of atoms.

B) The analytical derivation of the vectorial model used to track the path of
each individual atom in a cold atomic cloud, provided it is irradiated by a
laser beam with a defined polarization vector.

C) The cooling mechanism of the optical binding effect can be considered as a
first order correction of the adiabatic solution. The equations of motion for
the solution that lays beyond this approximation is derived.

D) The hypothetical case in which the dipoles of the atoms in an optically bound
string would be in sync is compared to the actual non-synchronized dynamics
of the system.

E) The OB cooling mechanism is shown to be a linear dissipative effect with the
velocity of a particle. The optical effect can be combined with other cooling
methods, such as optical molasses.
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A Coupled dipole equations

The current appendix is introduced to help any reader to understand how the
coupled dipole equations, announced in Eq. (3.5), are derived. Obviously, the
derivation also includes the origin of the kernel describing the light-mediated dipole-
dipole interaction, presented in Eq. (3.2). The whole appendix is a mere extract of
the 4th chapter [210] from the 2nd volume of the annual review of cold atoms and
molecules from 2014 [211]. The only modification performed is related to reference
to another section of the original source [210]; it has been eliminated and rephrased
to avoid any unnecessary misunderstanding. This small fragment, in order to keep
the originality of the essay, is written in italics for an easier identification on this
very page.

Quoting...

A.I Scalar microscopic theory

Model

Here a model that describes the interaction of a collection of static two-level atoms
with a scalar wave is presented. It accounts for the fact that each atom is affected
by the radiation of all the other atoms and so it describes multiple scattering and
collective effects. This model has been used to predict several features of collectivity
in disordered clouds, such as the modification of the radiation pressure force [118],
Mie scattering and resonances [117, 225] or the collective Lamb shift [207]. While
the model is formally the same for ordered atoms, as first discussed in Ref. [226],
the scattering properties of optical lattices are very different.

The atomic cloud is described as a system of two-level (g and e) atoms, with
resonant frequency ωa and position rj , which are driven by a uniform laser beam
with electric field amplitude E0, frequency ω0 and wave vector k0 = (ω0/c)êz. The
atom-laser interaction is described by the Hamiltonian:

Ĥ =
~Ω0

2

N∑
j=1

[
σ̂je

i(∆0t−k0·rj) + h.c.
]

(A.1)

+ ~
N∑
j=1

∑
k

gk

(
σ̂je
−iωat + σ̂†je

iωat
) [
â†ke

i(ωkt−k·rj) + âke
−i(ωkt−k·rj)

]
,

where Ω0 = dE0/~ is the Rabi frequency of the incident laser field and ∆0 = ω0−ωa
is the detuning between the laser and the atomic transition. For simplicity only
scalar light and the two-level atom model is considered.

In (A.1), σ̂j = |gj〉〈ej | is the lowering operator for the jth atom, âk is the
photon annihilation operator and gk = (d2ω2

a/2~ε0ωkVν)1/2 is the single-photon
Rabi frequency, where d is the electric-dipole transition matrix element and Vν
is the photon volume. The special case of a low-intensity laser, where a single
photon from mode k can be assumed to be present in the system, was extensively
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investigated in Refs. [114, 122, 227]. In this case the system (atoms+photons) is
described by a state of the form [205]:

|Ψ〉 = α(t)|g1 . . . gN 〉|0〉k + e−i∆0t
N∑
j=1

βj(t)|g1 . . . ej . . . gN 〉|0〉k (A.2)

+
∑
k

γk(t)|g1 . . . gN 〉|1〉k +
∑
k

∑
j 6=m

εj,m,k(t)|g1 . . . ej . . . em . . . gN 〉|1〉k.

The first term in (A.2) corresponds to the initial ground state without photons,
the second term is the sum over the states where a single atom has been excited
by the classical field, and the third term corresponds to the atoms that returned
to the ground state having emitted a photon in the mode k. Hence, the square
modulus of α, βj and γk represent respectively the probability that the is no photon
in the system and no excited atom, the probability that atom j is excited (and no
photon), and the probability to have a photon in mode k (and all atoms in the
ground state). Finally, |εj,m,k|2 describes the probability of having two excited
atoms and one virtual photon in mode k with ‘negative’ energy. This last term of
(A.2) is due to the counter-rotating terms in the Hamiltonian (A.1) and disappears
when the rotating wave approximation is made. The scattering process using the
latter approximation was studied in several references [77, 118, 228–230], but the
importance of counter-rotating terms during the relaxation process was pointed
out in Ref. [231] .

The dynamics of each component of the state (A.2) are deduced from the
Schrödinger equation:

∂|Ψ(t)〉
∂t

= − i
~
Ĥ|Ψ(t)〉. (A.3)

Hence, the Hamiltonian (A.1) leads to the following set of differential equations:

α̇(t) =− i
2Ω0e

i∆0t
N∑
j=1

βj(t)e
−ik0·rj , (A.4)

β̇j(t) =i∆0βj − i
2Ω0α(t)e−i∆0t+ik0·rj − i

∑
k

gkγk(t)e−i(ωk−ω0)t+ik·rj

− i
∑
k

gke
−i(ωk+ωa−∆0)t

∑
m 6=j

εj,m,ke
ik·rj , (A.5)

γ̇k(t) =− igkei(ωk−ω0)t
N∑
j=1

βj(t)e
−ik·rj . (A.6)

ε̇j,m,k(t) =− igkei(ωk+ωa−∆0)t
[
e−ik·rjβm + e−ik·rmβj

]
. (A.7)

Then integrating Eqs. (A.6) and (A.7) over time with γk(0) = 0 and εj,m,k(0) = 0
and substituting them in to (A.5), we obtain N coupled equations describing the
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dynamics of the atomic dipoles:

β̇j(t) =i∆0βj − i
2Ω0αe

ik0·rj (A.8)

−
∑
k

g2
k

N∑
m=1

eik·(rj−rm)

∫ t

0

e−i(ωk−ω0)(t−t′)βm(t′)dt′

−
∑
k

g2
k

∫ t

0

dt′ei(∆0−ωk−ωa)(t−t′)

×

∑
m6=j

e−ik·(rj−rm)βm(t′) + (N − 1)βj(t
′)

 . (A.9)

The interaction with the vacuum field yields diagonal terms with m = j whose
real part corresponds to the single-atom decay term and imaginary part to the
self-energy shift, and off-diagonal terms with m 6= j which correspond to the atom-
atom interaction mediated by the photon. By separating the two contributions, we
can write:

β̇j(t) =i∆0βj − i
2Ω0αe

ik0·rj

−
∑
k

g2
k

∫ t

0

dτ
[
e−i(ωk−ω0)τ + ei(∆0−ωk−ωa)τ (N − 1)

]
βj(t− τ)

−
∑
k

g2
k

∑
m6=j

eik·(rj−rm)

×
∫ t

0

dτ
[
e−i(ωk−ω0)τ + ei(∆0−ωk−ωa)τ

]
βm(t− τ). (A.10)

We assume a smooth density of modes, so the discrete sum
∑

k can be replaced
by the volume integral [Vν/(2π)3]

∫
dk. In the linear regime α ≈ 1 and in the

Markov approximation, valid if the decay time is larger than the photon time-of-
flight through the atomic cloud, in the integrals of (A.10) we can replace βj(t− τ)
with βj(t) and extend the upper integration limit to infinity, so that (A.10) is
approximated by

β̇j(t) =i∆0βj − i
2Ω0e

ik0·rj

− Vν
(2π)3

∫
dkg2

k

∫ ∞
0

dτ
[
e−i(ωk−ω0)τ + e−i(ωk+2ωa−ω0)τ (N − 1)

]
βj(t)

− Vν
(2π)3

∫
dkg2

k

∑
m 6=j

eik·(rj−rm)

×
∫ ∞

0

dτ
[
e−i(ωk−ω0)τ + e−i(ωk+2ωa−ω0)τ

]
βm(t). (A.11)

The imaginary part of the self-field contribution (third term of the right hand
side of (A.11)) consists of the self-energy shift of the atom in the excited state
plus the self-energy contribution of the atom in the ground state. The effect is an
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adjustment to the transition frequency ωa, which is assumed to already include the
shift. It can not be computed realistically using our model, which treats the atoms
as point particles, and is disregarded in the present approach. After performing
the integration over τ the real part of the self-field contribution yields:

Vν
2π

∫ ∞
0

dkk2g2
k [δ(ωk − ω0) + (N − 1)δ(ωk + 2ωa − ω0)] =

Γ

2
, (A.12)

where ωk = ck and Γ = d2ω3
0/(2πc

3~ε0) is the single-atom spontaneous decay rate in
the radiation scalar theory. The last term in (A.12) arises from the counter-rotating
wave terms of the Hamiltonian (A.1) and does not contribute as it corresponds to
a negative photon energy ωk ≈ −ωa. Using (A.12) in (A.11) we obtain:

β̇j(t) =

(
i∆0 −

Γ

2

)
βj − i

2Ω0e
ik0·rj − Vν

(2π)3

∫
dkg2

k

∑
m6=j

eik·(rj−rm)

×
∫ ∞

0

dτ
[
e−i(ωk−ω0)τ + e−i(ωk+2ωa−ω0)τ

]
βm(t). (A.13)

The last term on the right hand side of (A.13) can be calculated as follows:

Vν
(2π)3

∫
dkg2

ke
ik·(rj−rm)

∫ ∞
0

dτ
[
e−i(ωk−ω0)τ + e−i(ωk+2ωa−ω0)τ

]
=

cΓ

πk0

∫ ∞
0

dτ cos(ω0τ)

∫ ∞
0

dkk
sin(krjm)

krjm
e−ickτ , (A.14)

where rjm = |rj − rm| and we assumed ω0 ≈ ωa. We use the integral expression∫ ∞
0

dkk
sin(kr)

kr
e−ickτ =

1

2cr

[
1

τ + r/c− iε −
1

τ − r/c− iε

]
where ε → 0+. Changing the sign of the integration variable τ in the first term,
(A.14) becomes

− Γ

2πk0rjm

∫ ∞
−∞

dτ
cos(ω0τ)

τ − rjm/c+ iε
=

Γ

2

exp(ik0rjm)

ik0rjm
. (A.15)

Finally, the scattering problem reduces to the set of differential equations [125, 207,
230]:

β̇j =

(
i∆0 −

Γ

2

)
βj − i

Ω0

2
eik0·rj − Γ

2

∑
m6=j

exp(ik0|rj − rm|)
ik0|rj − rm|

βm. (A.16)

The kernel in the last term of (A.16) has a real component, −(Γ/2)
∑
m6=j sinc(k0|rj−

rm|), describing the collective atomic decay, and an imaginary component, i(Γ/2)∑
m 6=j cos(k0|rj − rm|)/(k0|rj − rm|), which contains the collective Lamb shift

due to short range interactions between atoms induced by the electromagnetic
field [124, 125, 232, 233].
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In what follows we will focus on the stationary state of (A.16), which reads

(2∆0 + iΓ)βj = Ω0e
ik0·rj − Γ

∑
m 6=j

exp(ik0|rj − rm|)
k0|rj − rm|

βm. (A.17)

Practically, the value of the atomic dipoles βj in the stationary regime is eval-
uated numerically by inverting the linear problem (A.17), since it is easily cast in

the form M~β = eik0·~r, where ~β and ~r refer to the vectors of βj and rj . From the
βj , the observables described in the next sections are easily calculated.

While we adopted a quantum, single-photon treatment to derive a description
of the collective scattering a classical interpretation is also possible. In fact, (A.16)
also describes the dynamics of atomic dipoles driven by the total electric field, the
sum of the incident field and of the field radiated by the other dipoles. Indeed,
the last term of ((A.16)) gives the emission of spherical waves by the latter, as
described by Huygens principle. Furthermore, model (A.16) has also been derived
through another classical approach which treats the two-level atoms as weakly
excited classical harmonic oscillators [205, 234].

156



B. Collective Recoil 3D Equations: vectorial model

B Collective Recoil 3D Equations: vectorial model

B.I Multimode collective recoil equations

In the current appendix the simplified CARL scalar model is extended by including
the effects of the polarization of the incident and scattered light. The authorship of
the analytical derivation found in the whole appendix, has to be attributed to the
professor Nicola Piovella. The writer of this PhD thesis has contributed to adjust
the text to improve its readability and to solve numerically the final equations of
the model.

As usual, the Hamiltonian for N two-level atoms interacting with an external
field and all possible vacuum modes is considered. The atoms have a transition
frequency ωa and dipole d, the vacuum modes’ wave-vector are kk and their fre-
quency ωk, the optical field’s counterparts are k and ωk, with a polarization ε̂0.
Thus, the interaction Hamiltonian reads

H =

N∑
j=1

p2
j

2m
+ ~

N∑
j=1

∑
α

[
Ω∗0α

2
σ−αje

i∆0t−ik0·rj + h.c.

]

+ ~
N∑
j=1

∑
k

∑
ε̂⊥k

∑
α

gk

[
ε̂α∗a

†
k,ε̂σ

−
αje

i∆kt−ik·rj + ε̂ασ
+
αjak,ε̂e

−i∆kt+ik·rj

]
,

(B.1)

although this time there are a couple of additional sums: one accounting for the
two polarization vectors ε̂(1,2) of the vacuum field operator ak,ε̂ and the other one
considering the Cartesian coordinates α = x, y, z of the polarization operators
σαj . Here Ω0α = dE0α/~ is the Rabi frequency of the laser with polarization ε̂0,
with electric field E0α and detuning with the electron transition of ∆0 = ω0 − ωa.
Moreover, the radiation modes in vacuum are described by ak,ε̂, have a detuning
with the electronic transition of ∆k = ωk − ωa and a coupling constant gk =
d[ωk/(2~ε0Vph)]1/2, being Vph the radiation field’s quantization volume.

The dynamics of the system is obtained by calculating the Heisenberg picture
for the position, momentum and dipole moment operator of each atom, together
with the field operator of each mode:

ṙj =
pj
m

(B.2)

ṗj = i~k0

∑
α

[
Ω∗0α

2
σαje

−ik0·rj − h.c.

]
+ i~

∑
k

∑
ε̂⊥k

∑
αkgk

[
ε̂α∗a

†
k,ε̂σαje

i(ωk−ω0)t−ik·rj − h.c.
]

(B.3)

σ̇αj = (i∆0 − Γ/2)σαj − i
Ω0α

2
eik0·rj − i

∑
k

∑
ε̂⊥k

ε̂αgkak,ε̂e
−i(ωk−ω0)t+ik·rj (B.4)

ȧk,ε̂ = −igkei(ωk−ω0)t
∑
α

ε̂α∗
N∑
j=1

σαje
−ik·rj . (B.5)
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In the latter expression, a term rearrangement has been introduced σαj = σ−αje
i∆0t,

the population of the excited state has been neglected (assuming weak field and/or
large detuning ∆0) and the an spontaneous decay term −(Γ/2)σαj has been added.
By adiabatically eliminating the internal degree of freedom (making σ̇j ≈ 0 and
substituting the resulting σj in the other equations) and, assuming ∆0 � Γ to
neglect multiple scattering effects, considering the process to be single-scattering
process, the equations can be reduced to three and be rewritten as:

ṙj =
pj
m

(B.6)

ṗj =
i~Ω0

2∆0

∑
α

∑
k

∑
ε̂⊥k

gk(k0 − k)
[
ε̂αε̂
∗
0αAk,ε̂e

−i(k0−k)·rj − ε̂∗αε̂0αA†k,ε̂ei(k0−k)·rj

]
(B.7)

Ȧk,ε̂ = − igkΩ0

2∆0

∑
α

ε̂0αε̂
∗
α

N∑
j=1

ei(k0−k)·rj − iδkAk (B.8)

with the new filed variable redefine as Ak,ε̂ = ak,ε̂e
−iδkt; the detuning between

external field and the vacuum modes as δk = ωk −ω0; and assuming Ω0α = Ω0ε̂0α.

B.II Collective recoil equations in free space

The idea is to get the external motion of the atoms and, since the internal degree
of freedom has already been adiabatically eliminated, the only thing left to do is
to couple the radiation field with the atoms motion. Consequently, by integrating
Eq.(B.8) assuming the Markov approximation (there is no re-absoprtion from ra-
diated modes) and neglecting the initial constant term Ak,ε̂(0), the scattered field
for the 3D vacuum modes due to Rayleigh scattering can be calculated to

Ak,ε̂(t) = − igkΩ0

2∆0

∑
α

ε̂0αε̂
∗
α

N∑
j=1

ei(k0−k)·rj

∫ t

0

e−i(ωk−ω0)τdτ (B.9)

Then, substituting the latter expression in the force equation (B.7), the external
motion of the atoms becomes:

ṗj = ~
(
gk0Ω0

2∆0

)2
Vph
8π3

∑
m6=j

[
e−ik0·rjm

∫ t

0

dτeiω0τ

∫
dk(k0 − k)eik·rjme−ickτ

∑
α,β

∑
ε̂⊥k

(ε̂αε̂
∗
β)(ε̂∗0αε̂0β) + h.c.

 ; (B.10)

where the sum over al possible modes k have been transform into an integral and
there is a two dumb indexes sum covering the Cartesian axes —one coming from
the field equation (α) and the one from the force (β)–.

The expression can be further reduced if the following relation is employed (see
Sec. B.IV for demonstration):∑

ε̂⊥k

ε̂α(ε̂β)∗ = δαβ − k̂αk̂β . (B.11)
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Instead of applying this relation directly to the force, it is introduced in the second
integral of Eq. (B.11) (expression’s second row) in order to reduce this one. It is
done without taking the sum of the projection of the laser polarization onto the
axes α and β (i.e.,

∑
α,β ε̂

∗
0αε̂0β), because the two sums are independent from each

other. Now the calculation proceeds with four steps to derive an expression than
can be more suited to be solve numerically.

Firstly, the modes Cartesian variables (kx, ky, kz) are transform into spherical
coordinates (k, θ, ϕ)∫

dk(k0 − k)eik·rjme−ickτ (δαβ − k̂αk̂β) =

= k0

∫ 2π

0

dϕ

∫ π

0

dθ sin θ

∫ ∞
0

dkk2eikrjm cos θe−ickτ (δαβ − k̂αk̂β) · · ·

− r̂jm
∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos θ

∫ ∞
0

dkk3eikrjm cos θe−ickτ (δαβ − k̂αk̂β)

(B.12)

where rjm = rj − rm, rjm = |rjm| and r̂jm = rjm/rjm. In the integral, the z-
axis is chosen pointing along rjm, so that θ is the polar angle of k about rjm (for
simplicity, is is written θ instead of θjm).

Secondly, since the dependence on ϕ is contained only in the polarization factor
δαβ − k̂αk̂β , the integration over ϕ gives (see Sec. B.IV for demonstration)∫ 2π

0

dϕ(δαβ − k̂αk̂β) = π[(1 cos2 θ)δαβ + (1− 3 cos2 θ)r̂αr̂β)] (B.13)

Also here, for simplicity of notation, rjm is replaced by r. As a third step the a
new change of variable, t = cos θ, is applying and the integral becomes:∫

dk (k0 − k) eik·re−ickτ
(
δαβ − k̂αk̂β

)
=

= πk0

∫ ∞
0

dkk2e−ickτ
∫ 1

−1

dteikrt
[
(1 + t2)δαβ + (1− 3t2)r̂αr̂β)

]
− πr̂

∫ ∞
0

dkk3e−ickτ
∫ 1

−1

dtteikrt
[
(1 + t2)δαβ + (1− 3t2)r̂αr̂β)

]
(B.14)

As a third stage, because it can be assumed that k ≈ k0, the external field
wave-vector k can be replaced by k0 in the integrals (everywhere except in the
exponential terms) and the lower integration limit can be extended to −∞:∫

dk(k0 − k)eik·re−ickτ
(
δαβ − k̂αk̂β

)
=

= πk3
0

∫ ∞
−∞

e−ickτdk

∫ 1

−1

eikrt(ẑ − tr̂)
[
δαβ + r̂αr̂β + t2(δαβ − 3r̂αr̂β)

]
dt (B.15)

Lastly, there only some integrals that can be calculated straightforwardly, con-
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sidering the following definite integrals [235]:

∫ 1

−1

eixtdt = +2

[
sinx

x

]
, (B.16)∫ 1

−1

eixtdt = −2i

[
cosx

x
− sinx

x2

]
, (B.17)∫ 1

−1

t2eixtdt = +2

[
sinx

x
+ 2

cosx

x2
− 2

sinx

x3

]
, (B.18)∫ 1

−1

t3eixtdt = −2i

[
cosx

x
− 3

sinx

x2
− 6

cosx

x3
+ 6

sinx

x4

]
. (B.19)

Once these expressions are employed in Eq. (B.15), it is possible to attain the final
expression for the integral contained in the force

∫
dk(k0 − k)eik·re−ickτ (δαβ − k̂αk̂β) =

=
4π2k3

0

c
δ(τ − r/c)

{
ẑ

[ −i
k0r

(δαβ−r̂αr̂β) +

(
1

(k0r)2
+

i

(k0r)3

)
(δαβ−3r̂αr̂β)

]
− r̂jm

[−i(δαβ−r̂αr̂β)

k0r
+

2(δαβ−2r̂αr̂β)

(k0r)2
+

3i(δαβ−3r̂αr̂β)

(k0r)3
− 3(δαβ−3r̂αr̂β)

(k0r)4

]}
.

(B.20)

Concluding, the final expression of the motion equation of the atoms can be ob-
tained, by inserting the new expression for the integral (B.20) into the force Eq. (B.10):

ṗj =Γ~k0

(
Ω0

2∆0

)2∑
α,β

(ε̂∗0αε̂0β)
∑
m 6=j

{
ẑ
[
(δαβ−r̂αr̂β)S1+ (δαβ−3r̂αr̂β)

(
C2−S3

)]
− r̂jm

[
(δαβ−r̂αr̂β)S1 + 2(δαβ−2r̂αr̂β)C2 − 3(δαβ−3r̂αr̂β)

(
S3+C4

)]}
,

(B.21)
where the Euler’s formula1 has been applied and two new change of variables
have been used to compact the expression; Sn = sin(k0[rjm − zjm] )/(k0rjm)n and
Cn = cos(k0[rjm − zjm] )/(k0rjm)n, being the exponent n = 1, 2, 3, 4.

The final expression can be re-written into an even more organized form by
re-grouping the term with the same interaction range; since its a final expression,

1eix = cosx+ i sinx
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the changes of variable Sn and Cn have been undone

ṗj = Γ~k0

(
Ω0

2∆0

)2∑
α,β

(ε̂∗0αε̂0β)
∑
m 6=j

{
(ẑ − r̂jm) (δαβ−r̂αr̂β)

sin[k0(rjm−zjm)]

k0rjm

+ [ẑ (δαβ−3r̂αr̂β)− 2r̂jm (δαβ− 2r̂αr̂β)]
cos[k0(rjm−zjm)]

(k0rjm)2

− (ẑ − 3r̂jm) (δαβ−3r̂αr̂β)
sin[k0(rjm−zjm)]

(k0rjm)3

+ 3r̂jm (δαβ− 3r̂αr̂β)
cos[k0(rjm−zjm)]

(k0rjm)4

}
.

(B.22)
Remember that for simplification the unit vector between two atoms have sim-
plified, so in this expression r̂α and r̂β , actually represent (r̂jm)α and (r̂jm)β ,
respectively.

B.III Radiation field

The α-component of the scattered radiation field amplitude is described by the
next expression:

Eαs (r, t) = i
Vph

(2π)3
ei(k0·r−ω0t)

∑
ε̂⊥k

ε̂α

∫
∆k

dkEkAk,ε̂(t)e
i(k−k0)·r, (B.23)

where Ek = (~ωk/2ε0Vph)1/2 is the ’single-photon’ electric field. Substituting the
radiation field attained in Eq.(B.9), it is possible to obtain

Eαs (r, t) =
VphgkEkΩ0

2(2π)3∆0
e−iω0t

∑
β

ε̂0β

∫ t

0

dτeiω0τ
N∑
j=1

eik0·rj

∫
∆k

dkeik·(r−rj)−ickτ
∑
ε̂⊥k

ε̂αε̂
∗
β .

(B.24)
As before, the relation described in the last section of this appendix B.IV and
referred in Eq. (B.11), is employed to get rid of the right-most sum

Eαs (r, t) =
VphgkEkΩ0

2(2π)3∆0
e−iω0t

∑
β

ε̂0β

∫ t

0

dτeiω0τ
N∑
j=1

eik0·rj (B.25)∫
∆k

dkeik·(r−rj)−ickτ (δαβ − k̂αk̂β); (B.26)

consequently, the integral is evaluated in polar coordinates, using once again the
expression proved in Sec. B.IV and regarded in Eq.(B.13):

Eαs (r) =
VphgkEkΩ0

8π2∆0
e−iω0t

∑
β

ε̂0β

∫ t

0

dτeiω0τ
N∑
j=1

eik0·rj (B.27)

∫ ∞
0

dkk2e−ickτ
∫ 1

−1

dt eik|r−rj | [δαβ + r̂αr̂β + t2( δαβ−3r̂αr̂β) ]. (B.28)
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Evaluating the integral in t (second row) and keeping only the term decreasing as
1/kr (far-field approximation), the field can be approximated to

Eαs (r, t) = −iVphgk0k0EkΩ0

2π∆0cr
e−iω0t

∑
β

(δαβ − r̂αr̂β)ε̂0β

N∑
j=1

eik0·rjeik0|r−rj |. (B.29)

then, by assuming the far field limit r � rj , it is viable to write |r−rj | ≈ r− r̂ ·rj
where r̂ = r/r and the field becomes

Eαs (k, t) =
dk2

0

4πε0

Ω0

2∆0

ei(k0r−ω0t)

ir

∑
β

(δαβ − r̂αr̂β)ê0β

N∑
j=1

ei(k0−k)·rj (B.30)

where k = k0r̂ and ê0 is the polarization unit vector of the pump. The expression
of the Rayleigh scattering field in the far-field limit, depending on the geometrical
configuration of the scattering particles have been ontained, , like in the scalar case
derivation [160] (or appendendix of section 5.2).

Lastly, if the latter equation is considered in its vectorial form, the final radiation
fields is:

Es(k, t) ≈ [r̂ × (r̂ × ê0)]
dk2

0

4πε0

Ω0

2∆0

e(k0r−ω0t)

ir

N∑
j=1

ei(k0−k)·rj . (B.31)

which, in conclusion, renders the scattered intensity spatial distribution in the
far-field limit is

Is(k) = I1N
2|M(k, t)|2sin2ψ, (B.32)

where I1 = (~ω0Γ/8πr2)(Ω0/2∆0)2 is the single-atom Rayleigh scattering intensity
and

M(k, t) =
1

N

N∑
j=1

ei(k0−k)·rj(t) (B.33)

is the ’optical magnetization’, or ’bunching factor’.
Notice that, when defining the scattered intensity there is an additional factor

sin2ψ (coming from 1− cos2ψ), when comparing with the scalar model. The angle
ϕ is the angle between the polarization of the pump (ε̂0) and the scattering direction
(k). It comes from the extra polarization factor derived in the vectorial expression
of the field (B.31), i.e., r̂ × (r̂ × ê0), where the scattering intensity is suppressed
whenever the polarization is parallel to the main scattering direction, or ψ = 0.

B.IV Mathematical expressions demonstration

Equation (B.11)

Following the book by Mandel and Wolf [236], a pair of orthonormal, real vectors

ê(1,2) we select such that k̂ · ê(1,2), ê(1)∗ · ê(2) = 0 and ê(1) × ê(2) = k̂. The unit
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vectors k̂, ê(1) and ê(2) form an orthogonal Cartesian basis. In general, since the
elliptical polarization is also considered, ê(1,2) can be complex. However, when

real, the components ê
(1)
α , ê

(2)
α and k̂α are the three direction cosines of the α-axis

of the basis (with α = x, y, z). Resulting from the well-known direction cosines
properties, the general orthogonality condition for the cosines of the angle between
the α-axis and the β-axis (where α, β = x, y, z) can be written as

ê(1)
α ê

(1)
β + ê(2)

α ê
(2)
β + k̂αk̂β = δαβ

or, rearranging terms, in an equivalent expression as∑
s=1,2

ê(s)
α ê

(s)
β = δαβ − k̂αk̂β , (B.34)

where the sum is over the two polarization vectors. In the case of complex polariza-
tion vectors, since these can be obtained from an unitary transformation, Eq.(B.34)
can be generalized into: ∑

s=1,2

ê(s)
α (ê

(s)
β )∗ = δαβ − k̂αk̂β . (B.35)

In order to have an even more general notation to use in the derivations of both
sections above, the sum over ε̂ ⊥ k has been added, leaving the final expression
stated in Eq.(B.11) as follow:∑

ε̂⊥k

ε̂α(ε̂β)∗ = δαβ − k̂αk̂β . (B.36)

Equation (B.13)

The paper by Manassah [237] is followed to achieve the resulting expression when

the define integral within the interval [0, 2π] is calculated for of (δαβ − k̂αk̂β) (re-
sulting from the relation from the previous section). Such expression depends on ϕ
(the azimuthal angle between k̂ and r̂) and cos θ, being θ the polar angle between
k̂ and r̂. When the polar coordinates are applied to express k̂, the z-axis points
along r̂ and it is possible to write

Cαβ(cos θ, r̂) =
1

2π

∫ 2π

0

dϕ(δαβ − k̂αk̂β) = A(cos θ)δαβ +B(cos θ)r̂αr̂β (B.37)

with A and B to be determined. If the latter expression is considered for a unique
α-direction, the first equation to find A and B reads

∑
α

Cαα = 3A+B =
1

2π

∫ 2π

0

dϕ

(
3−

∑
α

k̂2
α

)
=

1

2π

∫ 2π

0

dϕ(3− 1) = 2 (B.38)
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since
∑
α r̂

2
α =

∑
α k̂

2
α = 1. The second equation need it to find the value of the

two parameters comes from two different derivations of the same expression:

∑
α,β

Cαβ r̂αr̂β =
∑
α,β

(Aδαβ+Br̂αr̂β)r̂αr̂β = A
∑
α

r̂2
α +B

(∑
α

r̂2
α

)∑
β

r̂2
β

= A+B,

(B.39)∑
α,β

Cαβ r̂αr̂β =
1

2π

∑
α,β

∫ 2π

0

dϕ
(
δαβ−k̂αk̂β

)
r̂αr̂β=1−

(∑
α

k̂αr̂α

)∑
β

k̂β r̂β

=1−cos2θ,

(B.40)

where it has been exploited the fact that
∑
α k̂αr̂α = k̂ · r̂ = cos θ. Therefore,

equating both expressions ((B.39) and (B.40)), the second equation is achieve.
Hence, the values of A and B come from the result of the following determined
system of two equations and two unknowns:

3A+B = 2, (B.41)

A+B = 1− cos2 θ (B.42)

so that

A =
1

2
(1 + cos2 θ) (B.43)

B =
1

2
(1− 3 cos2 θ) (B.44)

and giving the final results stated in Eq. (B.13) of Sec. B.II

1

2π

∫ 2π

0

dϕ(δαβ − k̂αk̂β) =
1

2

[
(1 + cos2 θ)δαβ + (1− 3 cos2 θ)r̂αr̂β

]
. (B.45)
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C Beyond the adiabatic case for atoms optically
bound in a line

This appendix section develops the necessary equations to represent a one-dimensional
chain of atoms, constrained to move along one dimension. Eqs. (C.1), (C.2)
and (C.3), refer to the Eqs. (3.6), (3.2) and (3.3), respectivelly, introduced in the
third Chapter of this thesis. Once more, the following derivation are the work of
Nicola Piovella annd the author of this PhD thesis has contributed to adjust the
text to improve its readability and to solve numerically the final equations.

C.I Setup and basic equations

An ensemble of N atoms with atomic transition of linewidth Γ and frequency ω0

is considered. It is confined along the x axis by two pairs of standing wave along
the transverse direction y and z, with wavevector k, Rabi frequency Ω � Γ and
detuned from the atomic transition by ∆ = ω− ω0. The resonant dynamics of the
atomic dipoles βj is given by a set of N coupled equations:

β̇j =

(
i∆− Γ

2

)
βj − iΩ(rj)−

Γ

2

∑
m 6=j

Gjmβm, (C.1)

where

Gjm =
exp ik |zj − zm|
ik|zj − zm|

, (C.2)

describes the light-mediated interaction between the dipoles. The dynamics of the
atoms center of mass couples to that of the dipoles:

mr̈j = −~Γk2
∑
m6=j

=
(
∂xj

Gjmβ
∗
j βm

)
= −~Γ

∑
m6=j

ûjm
q2
jm

<
[
(1− iqjm) eiqjmβ∗j βm

]
,

(C.3)
with qj = kzj , qjm = k |zj − zm| and

ûjm =


+1 if zj > zm

−1 if zj < zm

0 if zj = zm

(C.4)

The existence of a short-range potential or a cutt-off parameter is assumed (see
Sec.2.3), such that atoms can not cross each other. In this way, the ordering
imprinted to the initial configuration, with z1 < z2 · · · < zN , does not change
during the dynamics.

C.II Synchronization ansatz

The atomic dipoles are assumed to be synchronized after a short transient, with
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j = s for all j = 1, · · · , N , which reduces Eqs. (C.1) and (C.3) to:

β̇s =

[
−1

2
(1 + γN ) + i

(
δ +

1

2
ωN

)]
βs − i

Ω

Γ
(C.5)

q̈j = −2ωr
Γ

∑
m 6=j

ûjm

(
sin qjm
qjm

+
cos qjm
q2
jm

)
|βs|2 (C.6)

where the time t has been scaled the in 1/Γ units and with

γN =
1

N

∑
j

∑
m6=j

sin qjm
qjm

(C.7)

ωN =
1

N

∑
j

∑
m6=j

cos qjm
qjm

(C.8)

C.III Non adiabatic approximation and friction term

Defining

g(t) = γN − iωN =
1

N

∑
j

∑
m 6=j

eiqjm

qjm
(C.9)

and following the approximation and derivations exposed in the appendix of the
annexed paper in Sec. 5.1, it can we written that the dipole moment is

β(t) ≈ −i2Ω

Γ

1

−2iδ + g(t)]

{
1 +

2ġ(t)

[1− 2iδ + g(t)]2

}
. (C.10)

where

ġ(t) =
1

N

∑
j

∑
m 6=j

[(
cos qjm
qjm

− sin qjm
q2
jm

)
+ i

(
sin qjm
qjm

+
cos qjm
q2
jm

)]
q̇jm (C.11)

being q̇jm = q̇j − q̇m. Considering q̇jm at the first order, the following equation for
the dynamics of each of the N atoms in a line can be obtained:

q̈j = −ε2 (1 + λN )
∑
m 6=j

w(qjm)ûjm (C.12)

with the function w and the friction coefficient λN defined as

w(qjm) =
1

DN

(
sin(qjm)

qjm
+

cos(qjm)

qjm

2
)
, (C.13)

λN =
1

N

4

DN

∑
j

∑
m6=j

{
cos(qjm)

qjm
− sin(qjm)

q2
jm

− 2w(qjm) (1 + γN ) (2δ + ωN )

}
,

(C.14)
where

DN = (2δ + ωN )
2

+ (1 + γN )
2

(C.15)
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D Forcing dipoles synchronism in an atomic string

The dynamic behaviour of a cold molecule (N = 2) formed by the effect of the op-
tical binding is completely different from that observed in a larger system (N ≥ 3).
The cause has been reduced to the unsynchronized oscillation of the dipoles that
form the chains, as shown in Fig 3.4 of Sec. 3.4.1. For that reason, the current ap-
pendix studies how the one-dimensional system of a chain of atoms optically bound,
introduced in 3.3.2, would behave if all of its dipoles were completely synchronized
in a single oscillation.

Figure D.1: (a) Shows the dynamics of kinetic energy for N = 3 atoms, comparing
the exact dipole dynamics obtained from Eqs.((3.7)) and ((3.4)) with the evolution
obtained from the synchronization ansatz. Simulations realized with the optimal
detuning for the exact case, ∆ ≈ 0.01Γ. (b) Exposes the cooling/heating rate
γc/Γ for N = 3 atoms for the exact dynamics (’exact’) and its comparison with
the synchronized dipoles ansatz (’sync’). The same rate for the exact solution of
a system with two atoms N = 2, which presents a single naturally synchronized
dipole, it is also included in (b). The cooling/heating rate has been calculated
using the evolution of the kinetic energy envelope until it reaches 90/110% of its
initial value.

The closest example to an array of two atoms is studied in Fig. D.1(a), where
the evolution of the kinetic energy of a chain of a three atoms is analysed. The panel
compares the results of the exact equations of motion (Eqs. 3.14 and 3.15) and the
results calculated from a synchronized dipole ansatz. This synchronism is achieved
by calculating the mean value of the dipole of all the atoms in each iteration
step, subsequently assigning this value to each of the dipoles in the system. The
artificially synchronized configuration, used in Fig. D.1(a), shows a heating trend
close to resonance, while the dynamics of the fully coupled system evolves in the
opposite way, with a cooling mechanism. When these two cases are studied for a
range of detuning, with their comparison displayed in Fig. D.1(b) together with an
additional curve for a two-atom chain, some observations can be made:

– The ansatz with the three dipoles N = 3 synchronized in a single oscillation,
seems to behave as the case of two atoms, i.e., like Doopler cooling. Note
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that in such a mechanism, the resonant light generates a heating process, and
the cooling phenomenon is achieved only by negative detuning, the maximum
cooling being ∆ ≈ −Γ/2.

– The ansatz follows the same trend traced by the two-atom system, where the
dipoles spontaneously synchronize, and this behavior extends to larger chains
of atoms. The only difference for larger chains is that the optimal detuning
value undergoes a shift towards negative values and is slightly stronger with
each atom added to the system. Analyzing the ansatz for larger systems,
both the change and the cooling improvement with increasing N are not as
strong as in the exact dynamics, shown in Fig. 3.15 in second segment of
Sec. 3.5.2.

– Oppositely, the results obtained for the N = 3 chains from Eqs. Eqs. 3.14 and
3.15, display the inverse trend: with a slight heating for negative detuning
and a cooling maximum closer to resonance, which is twice as large as for the
one obtained in the ansatz.

The asynchronism of the dipole for OB systems with more than two atoms
(N ≥ 3), makes it very difficult to solve analytically such systems, instead simula-
tions need to be run to solve then numerically. It means dealing with N coupled
external and N internal degrees of freedom, which makes the complexity of the
problem scale to equations of N2 equations. However, despite the apparent more
complex dynamics of the 1D chain, it is quite extraordinary that precisely this
lack of synchronization translates into a higher cooling rate than that obtained for
synchronized systems.
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E Collective cooling linear behaviour

The current appendix reviews the response of the one-dimensional array if the
cooling rate (γ), which occurs naturally due to the optical binding effect, when an
additional artificial damping mechanism is added to the system. This trick will
allow you to understand if the addition of an extra cooling mechanism alters the
conditions of the spontaneously occurring one. The imposed damping is introduced
into the general force that describes the external motion of the atoms, as a viscous
force term; is proportional to velocity as −ζv, so it contributes to the final solution
as exp(−ζt). The equation of motion with this additional term reads as follows:

mr̈j = −~Γ
∑
m6=j

=
[
∇rjGjmβ

∗
j βm

]
− ζq̇j . (E.1)

The first RHS term can be simplified for a system that can only move in one
direction. Therefore, the equation can be expressed in a simpler analytical form,
where the gradient has been calculated. The new expression for the external motion
of atoms reads

r̈j = −ε2
c

∑
m6=j

ûjm
r2
jm

Re
[
(1− irjm)eirjmβ∗j βm

]
− ζq̇j , (E.2)

where the position and time have been changed to rj = k0rj and t = Γt, respec-

tively, and the epsilon represents εc =
√

2ωr/Γ, as in equation (3.15) in the main
text. There are other variables that have been modified or redefined, such as: the
distance between the atoms qjm = |qj − qj |, the kernel of the dipole-dipole inter-
action Gjm = exp(irjm) = irjm, and the unit vector of the distance between atoms
ujm = qjm/qjm.

To facilitate the readability of this manuscript, the couple dipole equations,
expressed in Eq. 3.14, are here rephrased

β̇j =

(
iδ − 1

2

)
βj − i

Ω

Γ
− 1

2

∑
m 6=j

Gjmβm, (E.3)

After all, to get the dynamics of the systems, both the internal and external degrees
of freedom are coupled in Eqs. (E.2) and (E.3).

The points obtained for the maximum cooling rate for several 1D-chains (1 ≤
N ≤ 30) in the Fig.3.16 (on page 105), are reproduced in Fig. E.1 using a black
trace of asterisks located for the lowest values of γN/Γ. These results are first
translated manually twice: once adding a constant of ζb = 1e − 4, represented by
the center trace of blue asterisks, and a second time ζr = 2e − 4, depicted with
the upper trace of red asterisks). Then, the solution of the system is obtained by
solving both Eq. (E.2) and Eq. (E.3) numerically, representing the ζb solution with
blue squares and the ζr case with red diamonds.

By examining Fig. E.1,small discrepancies can be detected between the trans-
lation of the collective damping (coloured asterisk) and its numerical solution (di-
amonds and squares) can be detected. Disagreements are especially evident for
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Figure E.1: The circular markers of Fig. 3.16 are represented again employing black
asterisks. These latter markers may differ slightly from those used in the quoted
figure of Chapter 3, because a different final kinetic energy was fixed. In addition,
with red and blue asterisks two manual linear translation from this black tendency
of ζr = 1e − 4 and ζb = 2e − 4 are respectively represented. Both diamonds (red)
and square (blue) are obtained by calculating Eqs.(E.2) and (E.3).

larger chains, making points with larger N less accurate with the expected value
(blue and red asterisks). Such inaccuracies are due to the way of calculating the
cooling rates, which are obtained by extracting the envelope of the oscillating ki-
netic energy, as described in Secs. 3.4 and 3.5 in the Chapter 3. Despite this error,
the asterisks in red and blue, mere translation of the curve represented by black
asterisks, coincide quite well with the numerical solution of the system when it is
represented numerically using the equations of motion described in the current ap-
pendix. Consequently, it can be stated that when an artificial damping is added to
the collective cooling, the final total cooling rate is the linear sum of both cooling
rates. This statement allows the cooperative cooling described in Sec. 3.5 to be
treated as independent cumulative exponential cooling, opening the possibility of
using an additional friction mechanism, such as an optical molasses, to control the
heating produced by the spontaneous emission.
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[175] M. Hofmann, G. Rünger, P. Gibbon, and R. Speck. Parallel sorting algo-
rithms for optimizing particle simulations. In 2010 IEEE International Con-
ference On Cluster Computing Workshops and Posters (CLUSTER WORK-
SHOPS), pages 1–8, 2010. doi:10.1109/CLUSTERWKSP.2010.5613105.
ISBN Information: 978-1-4244-8397-6.

[176] Richard Feynman, Robert Leighton, and Matt Sands. The Feynman Lectures
on Physics. Addison–Wesley, 1964. ISBN 0201021153. (Link).

[177] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles.
Taylor & Francis, 1988. ISBN 0852743920.

[178] Several contributing authors (Link). Frequently Asked Questions of Differ-
entialEquations.jl. Accessed: July 2020.

[179] Nisha Chandramoorthy and Jerry Chun-Ping Wang. Jamd : Julia-accelerated
molecular dynamics. pages 1–10. Semantic Scholar, 2015. Corpus ID:
52972603. (Link).

[180] Several contributing authors (Link with list). Dynamical, hamiltonian, and
2nd order ode solvers. (Link); accessed: July 2020.

[181] MATLAB. version 9.6.0.1335978 (R2019a). The MathWorks Inc., Natick,
Massachusetts, 2010. (Link).

184

https://doi.org/10.1007/BF01327754
https://doi.org/10.1080/00268970701261449
https://doi.org/10.1515/zna-2003-1104
https://doi.org/https://doi.org/10.1093/mnras/71.5.460
https://doi.org/10.1093/mnras/224.1.13
https://doi.org/10.1051/0004-6361:20021064
https://doi.org/10.1038/324446a0
https://doi.org/10.1103/PhysRev.159.98
https://www.researchgate.net/publication/265908915_Error_Propagation_of_Verlet_Algorithm
https://doi.org/10.1109/CLUSTERWKSP.2010.5613105
https://www.feynmanlectures.caltech.edu/
https://diffeq.sciml.ai/stable/
https://diffeq.sciml.ai/stable/basics/faq/
https://diffeq.sciml.ai/stable/basics/faq/
https://www.semanticscholar.org/paper/JAMD-%3A-Julia-Accelerated-Molecular-Dynamics-Chandramoorthy-Wang/6977cf116ea1da4a5e5a81be5fab967206fa260a
https://diffeq.sciml.ai/stable/
https://diffeq.sciml.ai/stable/solvers/dynamical_solve/
https://www.mathworks.com/products/matlab.html


References

[182] Christopher Rackauckas and Qing Nie. Differentialequations. jl–a performant
and feature-rich ecosystem for solving differential equations in julia. Journal
of Open Research Software, 5(1), 2017. doi:10.5334/jors.151.

[183] Dominik Schneble, Yoshio Torii, Micah Boyd, Erik W. Streed, David E.
Pritchard, and Wolfgang Ketterle. The onset of matter-wave amplification in
a superradiant bose-einstein condensate. Science, 300(5618):475–478, April
2003. doi:10.1126/science.1083171.

[184] S. Giovanazzi, D. O’Dell, and G. Kurizki. Density modulations of bose-
einstein condensates via laser-induced interactions. Physical Review Letters,
88(13):130402, March 2002. doi:10.1103/PhysRevLett.88.130402.

[185] Noam Matzliah, Hagai Edri, Asif Sinay, Roee Ozeri, and Nir Davidson. Ob-
servation of optomechanical strain in a cold atomic cloud. Physical Review
Letters, 119(16), October 2017. doi:10.1103/physrevlett.119.163201.

[186] T. Thirunamachandran. Intermolecular interactions in the presence of
an intense radiation field. Molecular Physics, 40(2):393–399, June 1980.
doi:10.1080/00268978000101561.

[187] A Ashkin and J. Dziedzic. Optical trapping and manipulation of
viruses and bacteria. Science, 235(4795):1517–1520, March 1987.
doi:10.1126/science.3547653.

[188] A. Ashkin. Acceleration and trapping of particles by radiation
pressure. Physical Review Letters, 24(4):156–159, January 1970.
doi:10.1103/physrevlett.24.156.

[189] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and Steven Chu. Observation
of a single-beam gradient force optical trap for dielectric particles. Optics
Letters, 11(5):288, May 1986. doi:10.1364/ol.11.000288.

[190] M. M. Burns, J.-M. Fournier, and J. A. Golovchenko. Optical matter: Crys-
tallization and binding in intense optical fields. Science, 249(4970):749–754,
August 1990. doi:10.1126/science.249.4970.749.

[191] Marc Guillon, Olivier Moine, and Brian Stout. Longitudinal optical binding
of high optical contrast microdroplets in air. Physical Review Letters, 96(14):
143902, April 2006. doi:10.1103/physrevlett.96.143902.

[192] Marc Guillon, Olivier Moine, , and Brian Stout. Erratum: Longitudinal
optical binding of high optical contrast microdroplets in air [phys. rev. lett.
96, 143902 (2006)]. Physical Review Letters, 99(7):079901, August 2007.
doi:10.1103/PhysRevLett.99.079901.

[193] Shiyang Liu and Ji-tong Yu. Comment on “longitudinal optical binding of
high optical contrast microdroplets in air”. Physical Review Letters, 100(19):
199403, May 2008. doi:10.1103/physrevlett.100.199403.

[194] P. C. Chaumet and M. Nieto-Vesperinas. Optical binding of particles with
or without the presence of a flat dielectric surface. Physical Review B, 64(3):
035422, June 2001. doi:10.1103/PhysRevB.64.035422.
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Bloch. Tonks–girardeau gas of ultracold atoms in an optical lattice. Nature,
429(6989):277–281, May 2004. doi:10.1038/nature02530.

[215] Antoine Glicenstein, Giovanni Ferioli, Nikola Šibalić, Ludovic Brossard, Igor
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