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ABSTRACT

A machine learning algorithm for partitioning the nuclear vibrational space into subspaces is introduced. The subdivision criterion is based on
Liouville’s theorem, i.e., the best preservation of the unitary of the reduced dimensionality Jacobian determinant within each subspace along
a probe full-dimensional classical trajectory. The algorithm is based on the idea of evolutionary selection, and it is implemented through a
probability graph representation of the vibrational space partitioning. We interface this customized version of genetic algorithms with our
divide-and-conquer semiclassical initial value representation method for the calculation of molecular power spectra. First, we benchmark the
algorithm by calculating the vibrational power spectra of two model systems, for which the exact subspace division is known. Then, we apply
it to the calculation of the power spectrum of methane. Exact calculations and full-dimensional semiclassical spectra of this small molecule
are available and provide an additional test of the accuracy of the new approach. Finally, the algorithm is applied to the divide-and-conquer

semiclassical calculation of the power spectrum of 12-atom trans-N-methylacetamide.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031892

I. INTRODUCTION

When full-dimensional calculations are not computationally
feasible, one needs to introduce some sort of approximation. This
happens quite often in quantum molecular dynamics because the
full-dimensional potential V(q) is generally non-separable. How-
ever, if the system potential were made of the sum of a finite num-
ber of lower-dimensional terms of the type Va(q1, g2) + V,,(g3)
+ V(g4 g5, g6) + ++-, then each collection of variables within the
several terms would compose a sensible subspace suitable for an
independent calculation. Unfortunately, the nuclear potential can
not be written as a sum of lower-dimensional terms, however one
may wonder which is the decomposition of the full-dimensional
vibrational space into subspaces such that the couplings between dif-
ferent subspace modes are minimized. The main goal of this paper
is to provide a possible answer to this issue by means of a clustering
optimization algorithm.

The algorithm we propose has its roots in the sound ground
of Genetic Algorithms (GAs), but it is different for technical defi-
nitions and implementation, and we will refer to it with the more
general label of evolutionary algorithm. The theoretical background
and implementation of GAs could be traced back to the works
of Holland, Goldberg, and Henry.l ® Since then, they have been
successfully applied to various problems in analytical chemistry
and chemometrics, such as the analysis of nuclear magnetic reso-
nance (NMR) pulse patterns from complex molecules,” the optimal
choice of wavelengths to determine the concentration of a sam-
ple, and the conformational analysis.” GAs have been proven to
be the first choice in many cases of feature selection in regres-
sion and classification problems in general”’ and in quantitative
structure activity relationships in particular.”* Evolutionary algo-
rithms have also been used in materials science to study the dynam-
ical properties of molecules on surfaces during molecular dynamics
simulations.”’
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We test the accuracy of the new optimization algorithm when
applied to the calculation of vibrational power spectra using semi-
classical molecular dynamics. Specifically, we employ the divide-
and-conquer approach to the time-averaged semiclassical initial
value representation (DC-SCIVR) method for nuclear power spec-
trum calculations.'’ In the DC-SCIVR strategy, the vibrational
space is divided into subspaces to overcome the issue of the full-
dimensional calculation. So far, to the best of our knowledge, three
methods for the partition of the full-dimensional vibrational prob-
lem into lower-dimensmnal subspaces have been proposed. These
are the Hessian method,'' the Wehrle-Sulc-Vanitek method,'” and
the Jacobi method."' According to the latter, the residual coupling
between subspaces is estimated by recurring to Liouville’s theorem.
In few words, the best clustering of vibrational modes is the one
where each subspace preserves as much as possible its phase-space
volume during a classical, full-dimensional trajectory. This approach
has the advantage of being based on dynamics, i.e., it depends on
both the nuclear kinetic and potential contributions. Originally, we
applied this method by searching over all possible subspace com-
binations. As a matter of fact, the problem scales approximately
as a binomial factor times the number of subspaces ns, i.e., ~n;
x FI/DY(F — D)!, where F is the number of degrees of freedom and
D is the size of a subspace. Furthermore, it is not possible to know
in advance how many subspaces one should choose and the size of
each one.

In this work, we introduce an evolutionary algorithm and
another simplified and less demanding approach. Both are able
to automatize these choices and highly reduce the computational
cost of the optimization. This paper is organized as follows: In
Sec. 1I, we recap the DC-SCIVR method and present the opti-
mization algorithms. Section III presents our results for spectro-
scopic calculations, and Sec. I'V concludes this paper and offers some
perspectives.

Il. METHODS
A. Semiclassical spectra

The semiclassical power spectrum I(E) of a system described by
the Hamiltonian H is equal to the Fourier-transformed wavepacket
survival amplitude (in atomic units),”’

+oo

1) = 5 [ ™ (o)), m

—oo

where [y(t)) = e ™|y} is the quantum time evolution of the arbi-
trary reference state |y). By writing the reference state as a linear
combination of the Hamiltonian eigenstates |y;), i.e., |x) = Xjci|vj),
it can be shown that

HEDY li|*8(E - Ej). )
J

Hence, the power spectrum is equal to a sum of delta functions
centered at the vibrational frequencies Ej. A convenient way to cal-
culate the formula in Eq. (1) is given by the time-averaging semiclas-
sical initial value representation (TA-SCIVR) method."*”* This is
obtained by applying a time- averaglng filter to the Heller-Herman-
Kluk-Kay (HHKK) propagator,”* " which defines the approximate
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quantum time evolution. The final TA-SCIVR expression of Eq. (1)
for a system characterized by F degrees of freedom reads

I(E):( ) ff S 271T

_/ dt X|P q, ) i(S:(Po90) +91 (Po» q0)+Et) 3)

where T is the total simulation time, S;(po, qo) is the instantaneous
action of the classically evolved trajectory (p;.q,), and the phase-
space integration is performed on the initial trajectory momenta po
and positions qo. In the previous equation, |p:q;) are coherent states
with the following form in position representation:’

(xlp,q,) = ( de;(!) )i exp[—%(x - q,)Ty(x ~q,) +ip; (x- q,)],
4)

where y is an F x F diagonal matrix whose elements are chosen to
be numerically equal to the harmonic frequencies of the system. In
3), $:(Po, Qo) is the phase of the HHKK prefactor,’“

1 . .
¢:(Pp-qp) = Phase[\/zp|qu +y ' Mppy — iMgpy + lY_lMpq|:|’

(5)

where Mj; with i, j = p, q are the elements of the Jacobian (mon-
odromy) matrix,

apz apt
pp Mpq dp, Oq,
= = . 6
(xqp Mqu) 8qf 8qt ©
dp, Oq,

The determinant |det(J)| is always equal to 1 along the tra-
jectory, in accordance with Liouville’s theorem. The major prob-
lem associated with the TA-SCIVR spectral density calculation is
represented by the computational cost of the Monte Carlo phase-
space integration in Eq. (3).”” To overcome this problem, the mul-
tiple coherent state SCIVR (MC SCIVR) has been introduced. This
method relies on the idea that the most important contribution to
the spectrum comes from the trajectories whose energies are as close
as possible to the quantum mechanical eigenvalues.”’ Thus, in MC
SCIVR, the phase-space integral of Eq. (3) is formally replaced by a
sum over the most relevant trajectories, i.e., those corresponding to
the spectral signals of 1nterest The MC-SCIVR initial conditions for
the jth degree of freedom are’

_

{q%) Geq » @)
po” =/ (2nj + 1w,

G

with qeq) being the equilibrium position of the jth mode and w; being
its harmonic frequency. Our reference states are combinations of
coherent states of the type

F . .
b0 = T1(1ea6”) + 6l - .05 ), (8)

j—l
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where €; = £1 according to which one wants to enhance the spec-
troscopic signal. For example, a collection of +1 values allows
one to enhance the zero-point energy (ZPE) signal (together with
the even transitions), while a selected ¢j = —1 and the remaining
€i+j = +1 enhance the odd transition of the jth mode.” The MC
SCIVR has been successfully applied to the study of several sys-
tems,”" " including the different conformers of the glycine amino
acid.” To improve with respect to the harmonic initial conditions
of Eq. (7), a preliminary adiabatic switching warm up can be imple-
mented with the result that frequency estimates are generally more
accurate and complications due to deterministic chaos are largely
avoided.”

However, for very high-dimensional systems, the overlap
between the initial and the evolved wavepackets of Eq. (1) becomes
smaller and smaller as the dimensionality increases, given that the
reference states are the direct product of monodimensional coherent
states. To overcome this limitation, the Divide-and-Conquer (DC)
SCIVR method has been recently introduced.'”"" The DC basic idea
is to project the system onto lower-dimensional subspaces. Within
these subspaces, it is possible to calculate reduced dimensional-
ity spectra. Then, the full-dimensional spectrum can be obtained
by convolving the subdimensional ones. The DC-SCIVR working
equation is

1= () [] dbudan 5

T i 2
[ at (b gt @) )
0

X

where the quantities projected onto a D-dimensional subspace have
been indicated with the tilde symbol. The DC-SCIVR approach has
been successfully applied to complex and fluxional systems, such as
small water clusters’”’ and the protonated water dimer.”® It is also
possible to implement the multiple coherent states’ idea into the DC-
SCIVR method by replacing the double integral of Eq. (9) with a
sum running on the most relevant trajectories. This method, named
MC-DC SCIVR, can deal with very high-dimensional systems.
Notable applications of MC-DC SCIVR include dipeptide deriva-
tives,”’ nucleobases”’ and nucleosides,”’ and molecules adsorbed on
titania surfaces.”” The most relevant issue to deal with for a suc-
cessful DC-SCIVR calculation is the choice of the optimal subspace
decomposition. In fact, all the quantities appearing in Eq. (9) can
be exactly projected onto subspaces, except for the action, because
the potential is not, in general, separable and its coupling terms sig-
nificantly change the action. To project the action, we adopted the
following equation:

t
o 1.1, i _ N _
St(Py> Gy) = / dt'[5 Prb, - (V(qt,,qff 2y~ V(qeq,qf,F D))>],
0
(10)

which is exact for separable potentials.'” The projected pre-
exponential factor is obtained by substituting the elements of the
2M x 2M sub-block Jacobian matrix of the type of Eq. (6) into the
prefactor of Eq. (5).

Among the possible criteria that one can adopt to partition
the vibrational space into subspaces, the one that makes each
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2D x 2D sub-block Jacobian matrix determinant closer to 1 is the
less severe approximation for the reduced dimensionality spectra.
We have called this procedure the “Jacobi method.”"' By recall-
ing Liouville’s theorem, this vibrational space subdivision is the one
that minimizes the energy exchange between subspaces because an
ideal partition where each sub-block determinant is equal to unity
preserves the energy within each subspace. More specifically, we
compute the Jacobian matrix [Eq. (6)], which, in turn, is com-
puted during the dynamics according to the prescription given by
Brewer et al.”’

The main goal of this work is to find an efficient method for the
subdivision of the Jacobian matrix of Eq. (6) into a number #; of sub-
dimensional Jacobian matrices, each containing a cluster of normal
modes, such that each subspace evolution (f)t, qt) is the closest pos-
sible to satisfy Liouville’s theorem. In other words, an optimal choice
of the normal mode clustering would lead to [T} detJ; as close as
possible to 1, where J; is the Jacobian matrix of subspace i and it
is extracted from the full-dimensional Jacobian by simply selecting
all the entries involving the modes that belong to subspace i. In our
procedure, we compute the Jacobian matrix at every time step along
a test trajectory, which starts from the equilibrium position of the
atom coordinates and with an initial kinetic energy equal to the har-
monic zero-point energy. Originally,'" we presented a hierarchical
search of the most frequently selected subspaces along the test trajec-
tory in a two-step procedure. First, for each possible dimensionality
1...D < F all the (g) possible subspaces were considered and
the most frequently chosen along the dynamics were saved. Then,
the absolute value of the deviation from one of each subspace Jaco-
bian was computed at each time step, and the optimal subspace for
each dimensionality was declared to be the one with the smallest
average deviation. The subspace associated with the overall small-
est deviation was selected, and the whole procedure reiterated on
the remaining degrees of freedom until all modes had been included
into a subspace. This approach has still a non-convenient compu-
tational scaling cost, which is proportional to Y5} D( g), since all
subspace combinations need to be tested. Furthermore, it is hierar-
chical and thus prone to find local optima for the global subdivision.
In this study, we develop and test an algorithm that is able to find the
global optimal subspaces with lower computational efforts, given a
constrained maximum subspace dimensionality D. This maximum
dimensionality constraint can be freely chosen at the beginning of
our proposed procedure. It is useful because, as anticipated, it comes
from the necessity to perform semiclassical calculations below a
certain dimensionality to get sensible results.

B. Probability graph-evolutionary algorithms (PG-EA)

Here, we introduce a combined Probability Graph and Evo-
lutionary Algorithm (PG-EA) approach to find the best vibrational
space subdivision according to Liouville’s criterion explained above.
Evolutionary algorithms emulate the natural selection of an initial
population, where the “fittest” individual is the most likely to survive
and its genes to be inherited by the next generation. In GAs’ jargon,
the population is composed of chromosomes, which are collections
of fitness parameters, each one called a gene. There is no obvious
or required way to represent the genes, and there are many valid
choices. At each epoch, all chromosomes are evaluated and sorted
according to their fitness score. First, a fraction of the best individ-
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uals gives birth to a set of newborn chromosomes by mixing and
mutating genes during the crossover and mutation processes. Then,
the new chromosomes take the place of those individuals that are
least fit to survive so that the next epoch would be enriched by the
more fitted chromosomes.

In our case, each chromosome represents a possible cluster-
ing of vibrational degrees of freedom into subspaces to compose
the full vibrational space. The collection of all the chromosomes
provides many possible subdivisions of the full-dimensional vibra-
tional space. Each chromosome is evaluated by an appropriate score
function that rates the individual’s fitness. The fitness function is
evaluated after the time evolution of the Jacobian matrix along a
test trajectory, which, in our case, is the trajectory that evolves from
the equilibrium geometry with the energy of the vibrational ground
state. Given the consideration at the end of Sec. II A, we propose
the following fitness function for a possible collection C of normal
modes subdivisions:

f(C) = Z |1 - |det(J (11)

steps seC

where the external sum is over the N time steps. We prefer Eq. (11)
with respect to a possible fitness function, such as |1 — [T} detJ, as
employed in Ref. 11, because in the latter case, there could be a com-
pensation of error that the internal sum in Eq. (11) avoids. More
specifically, the optimal criterion in Eq. (11) is satisfied when all
the subspaces have the determinant of the Jacobian closest to +1 in
the modulus, at every trajectory step. Furthermore, this function
rewards preferentially a chromosome made of few large subspaces
over one made of several small subspaces because any new term in
the internal sum over C is addictive and positive. We prefer to have
large subspaces to account for as many normal mode couplings as
possible.

Once an initial guess of possible chromosomes is given, we
need a probability distribution function to generate the new chro-
mosomes, i.e., the new mode subdivision into subspaces. We pro-
pose our own customized evolutionary algorithm inspired to GAs
for updating the probability distribution ®(7) from which newborn
chromosomes are sampled at a certain epoch 7.

First, we represent a chromosome as the adjacency matrix of
an unweighted cluster graph, which is a graph where each con-
nected component is a clique (i.e., a fully connected subgraph), as
reported in Fig. 1. The vertices are the normal modes that are con-
nected only if they fall into the same subspace. This representation
minimizes the redundancy of information since cliques are invari-
ant to vertex permutation and a cluster graph is invariant to clique
permutations.

All the information about the subspaces is codified in the adja-
cency matrix C. It is defined by C;; = 1 only if modes i and j are in the
same subspace; otherwise, C;j = 0. C;; = 1 only if mode i is in a one-
dimensional subspace. In the end, we have increased the problem
variables from the F-dimensional redundant representation [such as
in the linear representation (1, 2, 3,4, 5)(6, 7, 8)(9) = (2, 4, 1, 5, 3)(8,
7, 6)(9) = ...] to the F(F + 1)/2-dimensional non-redundant one.
The F-dimensional representation is redundant because any mode
permutation within a given subspace leaves the subspace unaffected.
Our adjacency matrix representation is invariant to row and col-
umn permutation within the subspace block. Hence, every subspace
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) “e 7

FIG. 1. Chromosome expressed in a cluster graph representation. Here, nine
normal modes, corresponding to the graph vertices, are grouped into three sub-
spaces (gray, blue, and red), containing 5, 3, and 1 modes, respectively. Each
subspace is a fully connected graph (a clique), and there is no interaction between
any two subspaces. On the right, the corresponding adjacency matrix is colored
accordingly.
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configuration has a unique adjacency matrix representation. Fur-
thermore, our adjacency matrix is symmetric and thus completely
defined by its F(F + 1)/2 lower (upper) triangular elements.

Second, we customize the crossover and mutation operators to
mix the chromosomes with simple arithmetic rules and store the
genetic information in a matrix of weights ®(7), which represents
the probability distribution of the mixed chromosomes at the evolu-
tion epoch 7. We define the crossover X of a couple of chromosomes
Cand C’ as a weighted average of their adjacency matrices,

1
X=———(wcC+weC), (12)
we + wer

where C and C' are adjacency matrices and the weights wc and wcs
depend on the chromosome fitnesses. The pure mutation M of a
chromosome C with probability  is

1

where 1 is the square matrix of ones and F is the number of genes.
In our approach, each vibrational normal mode corresponds to a
gene, as illustrated in the previous example of Fig. 1. Both crossover
and mutation have the basic property of scattering the gene prob-
ability. More specifically, the crossover distributes the probability
among the genes expressed in C and C’, depending on their fit-
ness, and the mutation distributes it among every possible outcome,
independently of the fitness and the expression. The combination
of the crossover and mutation processes is obtained by the sub-
sequent application of the two operations: the mutation can be
equivalently applied to the single chromosomes prior to undergo-
ing crossover or to the result of the crossover process. In addi-
tion, considering that we use m chromosomes for the optimization,
only an elite fraction # < 1 of these are the fittest chromosomes
that undergo the crossover and mutation processes. Eventually, the
resulting probability distribution at epoch 7, ®(1), is

P(7) =

1
iCi |, 14
1+F,u ; ,Iz;w (14)

where C; is the ith chromosome adjacency matrix and the new prob-
ability distribution is essentially generated by suitably mixing the
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adjacency matrices of the previous generation. This is the machine
learning part, where the algorithm, epoch by epoch, learns the opti-
mal probability distribution from an evolving population of chro-
mosomes. For this work, we use the simple weighting scheme w;
= (mn — i)/mn with the resulting normalization constant ¥} w;
= (mn - 1)/2, and the elite fraction is # = 0.4, while the muta-
tion probability 4 and the number of chromosomes will be specified
below case by case. ®(7) is updated at every epoch and contains the
average genetic material of the previous generation of chromosomes
according to Eq. (14).

To sample new chromosomes from the probability distribution,
®(7) must be normalized. This means that @ (¢) of Eq. (14) has to be
symmetric and doubly stochastic, i.e., with rows and columns sum-
ming up to 1, so that we can consider ®(7) a weighted undirected
graph to sample from. To enforce the doubly stochastic property
and, at the same time, retain the symmetry, we rely on Sinkhorn’s
theorem,”* which ensures that there exist two diagonal matrices R
and S such that R®(7)S is doubly stochastic. R;; and Sjj are found by
repeatedly and alternatively normalizing the rows and the columns
of ®(7), according to the updates

1
- % ;i(7)Sjj
5 1
7 @(7)Ri

Rii
(15)
v,

with Sjj initialized to 1 for all j. R and S will converge, up to a small
threshold ¢, after an unspecified number of iterations.”’ In all the
applications described below, we use € = 10™® on each element of R
and S, which is always satisfied in less than 100 iterations.

Third, we need to elaborate a procedure for obtaining the new-
born chromosomes from the symmetric and doubly stochastic prob-
ability matrix ®(7). To sample representative cluster graphs from
®(7), we propose a sampling procedure to generate a population,
which reflects the original distribution:

1. generate the random numbers r;, i = 1, 2, ..., F and sample
independently the chances of each mode to be in a subspace
alone. If 7; < ®@;i(7), then the normal mode i is in a subspace
alone;

2. iterate on the leftover modes in a random order: if the kth mode
is already joined with another mode, then continue with the
next one; otherwise, sample the edge between modes k and
j # k with a random number and join them with a probabil-
ity given by the matrix element ®j (7). If the kth mode cannot
be joined to any j (for instance, because each of them is in a
one-dimensional subspace), it stays in a subspace by itself;

3. identify the connected components of the sampled graph and
complete them, obtaining the cluster graph for a newborn
chromosome.

Note that before step 3, the procedure samples tree graphs, which
means that there are no redundant sampling steps. Each chromo-
some sampled with this procedure may be weakly biased anyway,
and the random shuffle of the mode order in step 2 is required to
make the sampled population representative and the overall sam-
pling unbiased. To achieve step 3, we look for a basis of the Laplacian
matrix Kernel, with the Laplacian matrix defined as L;j = —Cj; + §;;
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>.;iCij. Since ¥ ;L;; = 0 by definition, the vector of ones always belongs
to Ker(L), i.e., to the collection of vectors x, such that Lx = 0. Fur-
thermore, if the graph is disconnected, L can be rearranged to be
the block diagonal by swapping row and column indices, with each
block being the Laplacian of the corresponding connected subgraph.
Hence, each basis vector of Ker(L) is 1 on the entries of the con-
nected vertices and 0 elsewhere. The sum of all basis vectors is the
vector of ones. To practically find a basis for Ker(L), we solve the
linear equation Lx = 0 by applying Gaussian elimination” to the
augmented matrix L|I, with output Lyyef|B, where Lyyf is the reduced
row echelon form of L. The rows x in B corresponding to the row
indices where Lyyes = 0 do solve the linear equation and hence form
a basis for the kernel.

To measure the likelihood of a subspace s of size D sampled
from ®(7), we sum the edge products of all the possible trees that
span the clique (subspace), as

(D-1)P!

p(s7) = 555

D
> T (16)

Tespan(d,(7)) €=1

where T, is the edge of the tree graph T, which spans the subspace
probability distribution ®;(7) (that is, the probability distribution
considering only the modes in s). The first factor is a normalization
constant so that p(s, 7) does not depend on the subspace size, and
it is maximized to 1 when ®(7) is uniform. D2 is the number of
spanning trees for a clique according to Cayley’s formula.” p(s, 1)
measures the degree of convergence toward the chosen subspace s
such that, as p(s, 7) approaches unity, the population becomes more
and more uniform and eventually the algorithm stops learning. The
brute force application of Eq. (16) is out of reach for large subspaces
(D > ~ 10); therefore, we use it only to check the algorithm pro-
gression toward an optimal solution of the small systems described
below. Furthermore, GAs, in general, and PG-EA, in particular, do
not require a full convergence of the population for the solution to
be satisfactory. On the contrary, if the solution is unknown or hard
to find, a homogeneous population is undesirable as it kills diversity
and damps the optimization.

In Fig. (2), we report a four normal mode example to show how
the PG-EA algorithm works in practice. First, as we do in all our sim-
ulations, the initial probability distribution is set as ©;;(0) = 1/F V i, j.
Then, we generate the initial chromosome population according to
the sampling procedure described at points 1-3 above. Each chro-
mosome graph is reported together with the corresponding adja-
cency matrix in panel 1 in the left side of Fig. (2). The chromo-
somes C; are ordered by the fitness score, which is calculated using
the function f(C) [pay attention that according to our definition of
the fitness function, Eq. (11), the preferred chromosomes are those
with a lower fitness score]. The chromosome fraction m# undergoes
crossings and mutations. We reject (i.e., apply an infinite penalty)
to any subspace that has a dimension larger than the largest sub-
space value D that one fixes a priori. Since assigning the fitness score
is the most expensive step, it is advisable to build a score database,
i.e., a list of already known chromosomes with their fitness value,
so that whenever a known chromosome is encountered, its score
does not have to be recomputed. After undertaking crossovers and
mutations according to Eq. (14), a new (non-normalized) probabil-
ity distribution is generated (panel 2 on the right side of Fig. 2). After
transforming the new probability distribution into a symmetric and
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FIG. 2. A numerical example of the PG-EA for a four dimensional system. The procedure is broken down into three steps. The inner rectangle in panel 1 includes the mz elite

chromosomes, which will be employed for mutation and crossover in panel 2.

doubly stochastic distribution matrix using Sinkhorn’s algorithm,
we generate the newborn chromosomes according to the sampling
procedure of points 1-3 described above. A likelihood coefficient is
calculated according to Eq. (16). In the lower right part of Fig. 2, the
four-dimensional solution is rejected because its dimensionality is
greater than the largest subspace value D, which, in this numerical
example, has been fixed to be D = 3. Finally, a fitness coefficient is
attributed to each chromosome, and we are back to panel 1 for the
next iteration. At each epoch, the fittest ith chromosome, i.e., the
one with the lowest f(C;) value, provides the graph with the so far
optimal normal mode arrangement into subspaces.

C. Two-mode interaction method

As an alternative, we propose an approximate and computa-
tionally cheaper method to deal with large molecules when the com-
putational cost of PG-GA is prohibitive or in instances in which one
can reasonably assume that for each normal mode, the coupling is
mainly due to the interaction with just a second mode.

In this alternative approach, we first compute a two-mode cou-
pling network, where each vertex i, j is a normal mode and each edge
is weighted by the two-mode Jacobian determinant G = det(jij). i,j
is a 4 x 4 matrix containing all the partial derivatives between the
phase-space momenta and positions of modes i and j with respect
to the initial conditions. For each full-dimensional Jacobian matrix J
along the trajectory, we evaluate the determinant of every two-mode
combination, Gj. Then, we compute the distance matrix E= |G - 1|,
which measures how large is the error done by assuming that the
relevant interaction is only between the couple (i, j) of modes, while

other interactions are disregarded. Specifically, when Ej; = 0, then
modes i and j are fully correlated and uncoupled to any other mode.
E is computed at every time step of the test trajectory, and all E
matrices are averaged into a single distance matrix representative of
the whole trajectory.

Then, we employ an agglomerative hierarchical clustering tech-
nique called Weighted Pair Group Method with Arithmetic Mean
(WPGMA)® to cluster the normal modes using the information
encoded in E. The algorithm produces a dendrogram where each
branching is an optimal subspace. Among the several hierarchical
clustering techniques available in the literature, we choose WPGMA
because it provides results that are the closest to the exact ones for
the model systems considered below. WPGMA clustering is itera-
tive and hierarchical. To start, each mode is in a subspace by itself.
Then, at every iteration, the two “closest” subspaces are merged into
one, and the dendrogram profile shows a link. The distance between
the newly formed subspace (j U k) and a given subspace i is calcu-
lated as the arithmetic mean of the distances from the newly merged
subspaces j and k,

Ejjoy = B ;E”‘. (17)
The procedure goes on until a maximum distance criterion has been
met, i.e., until all modes fall into one large subspace.

The whole process is represented by using a dendrogram, where
each node corresponds to a subspace and each edge represents the
link between two subspaces. At the root of the dendrogram, there is
the full-dimensional system, which contains all modes. The leaves
are the subspaces containing one mode only. The distance Ej; of
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every update is a measure of how close the linked subspaces are.
Finally, this process generates a number of arrangements of normal
modes at different levels of the tree, and for every such arrangement,
we measure the fitness score, i.e., the full-dimensional Jacobian
factorization error with Eq. (11), along with E;;.

Ill. RESULTS

This section presents our results, and it can be divided into
three parts. In Subsection III A, we show how PG-EA and the two-
mode interaction method are effective when applied to model sys-
tems such as coupled Morse oscillators with non-trivial coupling
topologies but with obvious mode separations. In Subsection III B,
we show that we can improve spectral accuracy with respect to previ-
ous calculations where the hierarchical subspace optimization origi-
nally proposed was adopted.'" Finally, in Subsection III C, we show
that PG-EA allows us to apply the DC-SCIVR method and select
the subspaces with the Jacobi criterion even for the simulation of
mid-large molecules such as the 12-atom trans-N-Methylacetamide
(NMA). Remarkably, it would not have been possible to accomplish
this task with a brute force combinatorial approach.

A. Model systems

To preliminarily test our algorithms, we consider the arrange-
ments of F coupled Morse oscillators A and B in Fig. 3. Each
oscillator experiences the following Morse-type potential:

F 2
me'se _ ZDe(l _ e—w,(ZDg)‘l/Z(%—%q,x))
i=1

F-1 F

+ 3 > Xi(qi = Geqi) (a4 — Geq)s (18)

i=1 j>i

where the dissociation energy D, = 38 293 cm ™" and the equilibrium
position geq = 1.4 a.u. are valid for all F degrees of freedom. Accord-
ing to the coupling graphs and matrices A schematically represented
in Fig. 3, the oscillators might be uncoupled (no edge), weakly cou-
pled (A = 1077 a.u., dashed edge), or strongly coupled (A = 107>
a.u., solid edge). We devise two topologies (A and B) to provide

ARTICLE scitation.org/journalljcp

non-trivial examples. A has an oscillator frequency of w = 3000 cm ™"
for oscillators 1 through 6 and w = 4000 cm™" for oscillators 7 and
8; B has all oscillators with the same frequency of @ = 3000 cm™". In
both cases, the correct separation into subspaces is unique.

Both PG-EA and the two-mode interaction method sepa-
rate system A correctly. In PG-EA, we use m = 50 chromo-
somes, a mutation probability of y = 0.001, a crossover fraction of
1 = 0.4, and 70 epochs, with the constraint that the maximum dimen-
sion is D = 6. The likelihood of the optimal subspaces calculated
using Eq. (16) is plotted against the epochs in panel (a) at the top
left of Fig. 4, showing that the population quickly converges to the
unique global optimum represented by the continuous lines. The
two-mode interaction method provides three choices for the sub-
spaces, the best of which is the global optimum (1, 2, 3, 4, 5, 6)(7, 8),
reported in the first branching of the dendrogram in panel (b) at the
top right of Fig. 4. This global optimum has a Jacobian factoriza-
tion error of about 3.37- 107, The example of topology B is much
more challenging as it is an 18-dimensional system divided into four
loosely connected regions, one of which containing a single mode.
As expected, it turns out that the best subspace division has oscilla-
tor 10 (black subspace in Fig. 3) joined together with five oscillators
(7-12, green subspace) since there is one term less in the fitness func-
tion summation with respect to the case in which oscillator 10 is left
isolated. In panel (c), at the bottom left of Fig. 4, PG-EA provides
the optimal desired solution using m = 300 chromosomes, 4 = 0.1,
# = 0.4, and 1000 epochs, with the constraint that the largest sub-
space dimension is D = 10. In panel (d), at the bottom right of Fig. 4,
the two-mode interaction method also provides the optimal solu-
tion, as shown in the upper part of the dendrogram with the smallest
Jacobian factorization error.

Now, one may wonder if these subdivisions are, indeed, the
most suitable ones for DC-SCIVR spectroscopic calculations. In
Fig. 5, we show that DC SCIVR can account properly for most of the
spectral features of these systems if the subspaces are chosen accord-
ing to the algorithms described above. For example, when choosing
the subspace separation (1, 3, 5, 8)(2, 4, 6, 7), which is the least fit
for case A, i.e,, it has the largest fitness score in the case of requir-
ing two subspaces only, the corresponding spectra are quite noisy,

=\=10"
A=10""1
A ) B B B
(D—) /8 /@_@\ (9—) (14—15)
(3 (6)—-(7 (1 \ /> (7) @ (13) \1(,\
@— (6—5) (12— a8—a7)
Apue Ai7 0 0
Aved o7 M7 Ageen  Mo-i01-10 0
Ap = Ap = g
A </\<» 7 A(//rrn) B 0 A9-10,11-10 Abplack Al0-13
0 0 Ao-13 Avea
w = 3000 cm ™! -1

w = 4000 cm~? w=w=w=w=3000 cm
FIG. 3. Toy model systems with different coupling topologies. The circled numbers represent Morse oscillators, and the edges represent their couplings. When two oscillators
are not connected by an edge, the relative coupling matrix element A; is zero. The oscillator frequencies w, reported below each coupling matrix, are 3000 cm~" except for
modes 7 and 8 of topology A, for which w = 4000 cm~". Note that for topology A reported on the left, oscillators 1 and 5 are equivalent and they produce the same signal,
and 2 and 4. Similar symmetry considerations can be applied to topology B.
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FIG. 4. Vibrational modes’ subdivision optimizations of the model systems in Fig. 3 using PG-EA [left panels (a) and (c)] and the two-mode interaction method [right panels
(b) and (d)]. In the top panels [(a) and (b)], the subspace optimizations of topology A are effectively achieved using both methods. The dendrogram (b) is colored to highlight
the least error branching. In the bottom panels [(c) and (d)], the subspace optimization is effectively reached by both methods for topology B.

as shown in Fig. 5. Furthermore, phantom signals are observed, for
example, at 2686 cm™'. Conversely, the spectra of the subspaces
suggested by both our algorithms, which are reported with green
and red lines, are without noise to the naked eye. However, we
note that the signal originated from a combination band of modes
from different subspaces at 7006 cm™" is too weak at this scale to
be observed. This is not a drawback of the algorithms proposed

in this work but is a known feature of the DC-SCIVR method in
predicting mixed overtones originated from modes belonging to

different subspaces.

On the right panel of Fig. 5, we show the optimal subspace
spectra for system B. In this case, the system is too large to have a
well-converged semiclassical full-dimensional TA-SCIVR spectrum

as shown by the black continuous line spectrum.”
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FIG. 5. Spectra of the coupling topolo-
gies A and B of Morse oscillators with
ZPE signals shifted to 0 cm~". Left panel
for system A: black represents the full-
dimensional spectrum; red and green
represent the best subspaces (ring and
segment, respectively, with reference to
Fig. 3), while blue and purple repre-
sent the two worst subspaces. Right
panel for system B: blue, dark green,
and red represent the best subspaces,
and black represents the full-dimensional
calculation.
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possible to recover the most significant spectroscopic features of the
system with a DC-SCIVR calculation based on the optimal subspaces
suggested by the algorithms.

B. The CH, molecule

This section further confirms the ability of the proposed algo-
rithms to find optimal subspace separations for DC-SCIVR cal-
culations when applied to real systems. We show that our tech-
niques can reproduce and improve the DC-SCIVR spectra even
for small molecules. We consider CHy as the case system. The
methane vibrational spectrum is a tough challenge for DC SCIVR
because the molecule is characterized by highly chaotic dynamics
and high symmetry, which is difficult to recover if a proper subspace
partition is not implemented. We simulate 180 000 trajectories for
30000 a.u. long, and each trajectory is rejected during the dynamics
||det(J"))| - 1] > 107°. The initial trajectory conditions are sampled
from the Husimi distribution centered in phase space at (\/w, q.,):
while gradients and Hessian matrices are computed by finite dif-
ferences with infinitesimal displacements equal to 107> a.u. for all
modes.

We use the force field by Lee, Martin, and Taylor,“‘\' which takes
into account the symmetry relations of cubic and quartic force con-
stants.”””’ The same potential energy surface (PES) and the hierar-
chical subspace optimization with the Jacobi method were employed
in a previous work of the group.'’ For this system, PG-EA success-
fully converges with the constraint D < 7, which leads to the optimal
couple of subspaces (2, 5)(1, 3, 4, 6, 7, 8, 9), with a fitness score of
about 0.71. The three subspaces (1)(2, 3)(4, 5, 6, 7, 8, 9) were selected
in a previous work of the group'’ using the Jacobi criterion but look-
ing for optimal subspaces with a brute force hierarchical approach
and constraining the largest subspace to be six dimensional. These
three subspaces have an associated fitness score of about 0.91. For
methane, PG-EA converges using m = 100 chromosomes, # = 0.4,
¢ = 0.01, and 50 epochs. The likelihood plot is represented in panel
(a) in the left part of Fig. 6.

As shown in Fig. 6 [panel (b)], the two-mode approximation
leads, in this case, to a poor subspace separation: the best branch
in the dendrogram is the colored (1, 3, 4)(2, 5, 6)(7)(8)(9) subspace
with a score of 4.84, leading to a bigger error than PG-EA for the
Jacobian factorization.
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FIG. 7. Spectrum of methane: the full-dimensional spectrum is in red, and the
reduced dimensionality spectra chosen according to PG-EA are in green and blue.

Methane, in the absence of a preliminary adiabatic switch-
ing sampling,”® is known to be characterized by highly chaotic
dynamics;”® thus, we employed 180 000 trajectories to provide con-
vergent results, with a rejection rate of about 90%, keeping nearly
2000 trajectories per degree of freedom. Figure 7 reports both the
full-dimensional spectrum (red continuous line) and the partial
dimensional ones (green and blue), according to the PG-EA vibra-
tional space sub-division found above. All spectroscopic features are
properly reproduced. Note that degenerate modes belonging to dif-
ferent subspaces give rise to spectral lines at the same energy (see,
for instance, 11 and 2; signals displayed in both subspace spectra of
Fig. 7). In these cases, we consider more accurately the peaks appear-
ing in the largest subspace as more mode interactions are taken into
account, even if frequencies of degenerate modes in different sub-
spaces are very similar and cannot be distinguished by the naked
eye. In Fig. 7, we employ an incremental notation for the spectral
features so that degenerate signals are collected together under the
same label. For a deeper insight, we report in Table I the value in
wavenumbers of each spectral peak frequency.

In conclusion, PG-EA provides a subdivision of the vibrational
space appropriate for DC-SCIVR spectroscopic calculations, and we
can move to apply it to larger systems where previous recipes for the
vibrational space subdivision are impractical.

two-mode method

FIG. 6. Likelihood of the optimal sub-
spaces of methane during the PG-EA
optimization (a) and dendrogram for sep-
aration with the two-mode approxima-
tion method (b). Note that the two-mode
approximation leads to a very different
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TABLE |. Quantum frequencies of vibration of the methane molecule in cm—" calculated on the PES by Lee, Martin, and
Taylor®® using the full-dimensional TA SCIVR, DC-SCIVR based on PG-EA subspace partition, and discrete variable repre-
sentation calculations (Exact). MAE stands for mean absolute error, calculated using exact [MAE (Exact)] or full-dimensional
semiclassical values [MAE (TA SCIVR)] as reference. In the fourth column, we report the DC-SCIVR frequencies obtained
from the subdivision proposed in Ref. 11 where a different approach for the Jacobi method was employed.

Incremental Modes i DC SCIVR DC SCIVR PG-EA (2, 5)
label (symmetry) Exact’’ TASCIVR (1)(2,3)(4-9)" (1,3, 4,5-9) [sub]*
1 1,2,3 (F) 1313 1304 1287 1305 (G)

2 4,5 (E) 1535 1529 1534 1530 (G)

1, 1,2,3 2624 2600 2562 2610 (G)

1 +2 1,2,3,4,5 2836 2827 2807 (B)

3 6 (A1) 2949 2948 2960 2980 (G)

4 7,8,9(F2) 3053 3051 3044 3036 (G)

2, 4,5 3067 3051 3044 3036 (G)
MAE (exact) 9.6 22.0 19.3

MAE (TA SCIVR) 14.3 13.4

*Subspace from which the wavenumber is taken: G for the 7D green one and B for 2D blue one with reference to Fig. 7.

C. Trans-N-methylacetamide

Here, we present the subspace optimization and the associ-
ated DC-SCIVR spectroscopic calculations for the 30-mode trans-
N-Methylacetamide (NMA) molecule represented in Fig. 8. NMA

has been studied thoroughly both computationally”” "> and exper-
imentally””""" as it is one of the simplest examples of a molecule
featuring the HNCO peptide bond. We use the full-PES by Qu and
Bowman,”” which has been designed for both cis- and trans-NMA
and accounts for the three-fold symmetry of the methyl rotors. The
PES is permutationally invariant and was fitted to thousands of
ab initio calculated energies and gradients at the B3LYP/cc-pVDZ
level of theory.” In this case, we can compare our DC-SCIVR spec-
troscopic results with harmonic frequencies and gas phase IR and
Raman experimental values.”®

The two methyl rotational frequencies, i.e., the two lowest-

frequency normal mode values, are not considered to be part of the

FIG. 8. Trans-N-methylacetamide equilibrium geometry on the potential energy
surface by Qu and Bowman.”” Representative bond lengths of the equilibrium
geometry are shown in Astrém. The HNCO peptide bond is of fundamental
importance for the dynamics of peptides.

vibrational space. Thus, the dimensionality of the vibrational space
we consider is 28. We use a simulation time step of 5 a.u. The finite
difference displacement of the ith normal mode for Hessian and gra-

dients is rescaled by 107>/max(w)/w;" to account for different
PES curvatures along each one of the normal mode coordinates. We
use the signal obtained from a single 30 000 a.u. long trajectory with
the initial conditions (\/w, qeq). We do not observe any conforma-
tional change from the trans to the cis potential energy basin during
our simulations.

We apply PG-EA, the two-mode interaction method, and the
Hessian method'’' to divide the vibrational space into subspaces.
The results are quite different. For PG-EA, we run a thorough opti-
mization using 10 000 epochs, m = 300 chromosomes, 4 = 0.01, and
1 = 0.4, with the largest subspace constraint set to D = 15, and we
obtain the following three subspaces: A = (3, 5, 7, 10, 11, 12, 15, 21,
23, 26, 28, 30), B = (4, 9, 14, 16, 17, 18, 19, 22, 24, 25, 27, 29), and
C = (6, 8, 13, 20). The fitness score of the chromosome, i.e., the score
of the Jacobian factorization, is 1.96. When applying the basic aver-
age Hessian criterion'' with a coarse-graining parameter equal to
8-107°, we obtain the following subspaces: a = (3, 5, 7, 22), b = (10,
11, 13, 16-18, 20, 24-29), c = (4), d = (6), e = (8), f = (9), g = (12),
h=(14),i=(15),j=(19), k = (21), I = (23), and m = (30), which can
be associated with a fitness score equal to 4.49. Finally, we apply the
two-mode dendogram approach and obtain the following subspaces:
a=(3,4,6-8,10-17,20-24,29), B = (5,9,22, 30), y = (18, 19, 26), and
6 = (25,27, 28) with a fitness score of 2.18. The two-mode interaction
method produced the dendrogram reported in Fig. 9, which has a
slightly worse score than the PG-EA result. However, the presence of
an 18-dimensional subspace makes this subdivision not convenient
for Monte Carlo phase-space integration convergence. The Hessian
method is, instead, clearly penalized by many 1D subspaces found.
These considerations suggest that the PG-EA subdivision into three
subspaces is, indeed, the best choice. Based on PG-EA, we calculate
the spectra reported in Fig. 10, where the different spectral regions
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o the experiment because DC SCIVR calculates the power spectrum,

2000 | which is made of all vibrational levels (that we scale with respect to

the zero-point energy), even those associated with transitions that

[ [ 1 2 are not IR active. An IR spectrum simulation with related intensi-

- 1500 At — 1 EPRE N ties would require calculation of the vibrational eigenfunctions. This

K 1 l. !_'L L 1 o383 3 feature is not implemented yet in our divide-and-conquer approach,

g (| [ 1 - i but we are planning to do it soon. In addition, according to our sim-

= 1000 IJ1 JI_ _! g0l ¢ ulations and referring to the experimentalists’ denomination, mode

& LLLETTL T L 060 Eg 23 is the only one responsible for the amide I band, and subspace

~ |l L 1 L 1.00 A contributes the most to amide III and A bands, while amide II is
500 | [l L] AL - 1.02 mostly localized in subspace B.

| | ! ! ! ! ! ! ! N e - All these subspace choices produce spectra with almost the

= e PO same MAEs, as reported in Table II. This suggests that the subspace

0 ! ! ! I ! ! ! ! ! I ! ! ! ! ! ﬂ choice is flexible, as well as the choice of the subdivision criterion.

ZARIRZOCARSIEBRITEPSPSTRCTRTR However, PG-EA is the method that minimizes the number of sub-

modes spaces and prevents from having many 1D subspaces, which could

result in a very noisy and not resolved spectrum.””
A closer inspection of the vibrational frequency values in
Table IT allows us to better understand the physical meaning of the

FIG. 9. Two-mode interaction dendrogram of trans-NMA. Four subspaces are gen-
erated with a Jacobian factorization score equal to 2.18. As an alternative, one
might prefer the five-subspace option with an error of 3.83. We do not show the

likelihood vs epochs plot since the convergence of the whole population is not MAE of the different methods, in particular of the Harmonic vs the
achieved nor desired. Furthermore, computing the likelihood in Eq. (16) for a DC-SCIVR one. In the case of the harmonic frequencies reported
12 dimensional subspaces is not feasible as it requires the computation of 120 in the second column of Table I, 22 out of 26 vibrational frequen-
products. cies are higher than the experimental values. Thus, the MAE value

of 48 cm™" is because of estimates by excess. In the case of the
DC-SCIVR calculations, it is the other way around. For example,
20 PG-EA values are underestimating the experimental frequencies,
are highlighted by different colors according to the experimentalists’ and the MAE value of 30 cm™' is given by estimates by defect.
denomination. Overall, the DC-SCIVR spectra are reproducing well Thus, the amount of anharmonic contribution introduced by the
all the spectroscopic features of this molecule. Actually, there are DC-SCIVR calculations is on average per mode ~78 cm™'. This
more spectral features in the DC-SCIVR simulation than there are in amount is comparable with the MAE under the column HO/MP2,

Amide II: NH bend II: -CH3 umbr, wag, bend; CN stretch [I: CO stretch -CHgs stretchh A: NH stretch
(a) PG-EA A (b) PG-EA B (c) PG-EA C
301 291 i
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FIG. 10. Panels (a)~(c) are the three partial spectra for the three A, B, and C PG-EA subspaces. The colored spectrum is the experimental IR spectrum.”® The black
continuous spectra are DC-SCIVR spectra calculated using different ¢; values [see Eq. (8)] for each normal mode of the subspace. Colored windows are for different
spectroscopic regions as denominated by experimentalists. These windows are commonly labeled amide Il (green and orange), amide | (blue), and amide A (pink). The
purple window corresponds to CHj stretching. Amide Ill, IV, and V bands are located below ~1200 cm=" and are very dependent on the side chains.
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TABLE II. Vibrational fundamental frequencies for trans-N-Methylacetamide (NMA). The first column denominates the vibrational modes. In the second column, the fundamental
frequencies in the harmonic approximation (HO) are reported. The DC-SCIVR fundamental frequency of vibrations is obtained on the basis of subspace partition by means of
PG-EA (third column), the Hessian method (Hess, fourth column), and the two-mode interaction method (two-mode, fifth column). The results are sorted by increasing the value
of the harmonic frequencies and assigned by comparing the associated vibrational motion to the corresponding experimental description. Superscripts refer to the subspace that
each mode belongs to. The sixth column reports the ab initio harmonic frequencies at the MP2/aug-cc-pVTZ level of theory (HO/MP2).0 All data are compared by calculating

the Mean Absolute Error (MAE) with respect to the experimental values (last column, exp.) by Ataka, Takeuchi, and Tasumi.

76

Frequency subD (= 1y
ModesNo. HO  DCSCIVR PG-EA (3subs)  DCSCIVR hess (12 subs)  DC SCIVR two-mode (4 subs) ~HO/MP2""  Expt.”
3 150 1634 159° 156° 151
4 290 2898 285¢ 283¢ 259 279
5 393 4214 417° 4168 347 429
6 433 451¢ 4519 448% 423 439
7 621 609* 608° 606" 630 619
8 629 613°¢ 611° 612° 633 658
9 866 8815 875 871" 883 857
10 995 9674 970" 972¢ 1003 980
11 1038 10244 1028° 1025° 1058 1037
12 1112 10784 10808 1080° 1119 1089
13 1132 1075°¢ 1069° 1072¢ 1169
14 1166 11375 1138" 1134¢ 1195 1168
15 1260 12084 1210° 1205% 1290 1266
16 1391 13455 1344° 1347% 1402 1370
17 1415 14015 1388? 1388% 1460 1419
18 1434 1418° 1409° 14157 1487 1432
19 1474 1462° 1463 14617 1494 1446
20 1485 1422¢ 1426° 1430° 1499 1432
21 1491 14534 1453% 1453¢ 1529 1472
22 1550 14415 1444° 1472° 1561 1511
23 1772 17744 1747 1745° 1749 1707
24 3019 29367 2934° 2920% 3088 2915
25 3040 2914° 2923° 2919° 3091 2958
26 3072 29204 2903° 2908 3165 2916
27 3125 29268 2933° 2924° 3188 3008
28 3126 29244 2912° 29120 3188 3008
29 3137 30308 3044° 3037% 3197 2973
30 3630 34854 3484 3485F 3703 3498
MAE exp 47.9 30.0 29.7 27.5 78.5

where harmonic frequencies are calculated at a higher level of
ab initio theory than the DFT-B3LYP/cc-pVDZ one. These consid-
erations are suggesting that most probably, for this molecule, the dis-
crepancies with respect to the experimental values are mainly due to
the DFT level of ab initio theory. Conversely, only at a lower degree,
the inaccuracy can be related to the semiclassical approximation
or the quality of the potential energy surface fitting, as previously
shown on other systems.”’ Unfortunately, a DC-SCIVR simulation
at the MP2/aug-cc-pVTZ level of ab initio theory is out of reach at
time of writing due to its computational burden.

IV. SUMMARY AND CONCLUSIONS

We have presented a machine learning algorithm based on a
probability graph representation and an evolutionary algorithm pro-
cedure. The algorithm is able to find the best subdivision of the
full-dimensional vibrational space into subspaces for model systems
in which the best subspace division is known. Our approach is able
to preserve Liouville’s theorem for each subspace as much as possi-
ble and for a given maximum dimensionality of the subspaces. We
proved that the clustering provided by PE-GA is, indeed, one of
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the possible solutions that minimize the energy exchange between
subspaces during the vibrational dynamics and thus the most con-
venient for DC-SCIVR and spectroscopic calculations in general.
As an alternative, we have proposed a two-mode coupling scheme,
which is not only less computationally intense but also less accurate.
Application to the DC-SCIVR power spectrum calculation of trans-
N-Methylacetamide is made manageable under Liouville’s criterion
restrictions only by means of these algorithms. The calculation of the
DC-SCIVR power spectrum of trans-NMA with the subspace divi-
sion selected with Liouville’s criterion is manageable only employing
these two algorithms.

The choice of the PG-EA parameters is arbitrary to some extent.
As a matter of fact, the method is bound to look for new solutions
at every epoch, and hence, it will get the global optimum, eventu-
ally. However, a sensible choice of the number of chromosomes and
the mutation probability may significantly enhance the optimiza-
tion. Assuming that the number of epochs is fixed, increasing the
number of (elite) chromosomes means that the population evolves
more slowly, enhancing the chances of eventually hitting the global
optimum. However, as the evaluation of the fitness function is the
most expensive step, a large population requires significantly more
computational time. Conversely, using a small population means a
fast evolution, and therefore, it is likely to obtain a fast local mini-
mum. We suggest that a sensible choice of the mutation probability
is in the interval of [0.001, 0.2]. This parameter makes sure that the
algorithm does not get stuck in a local minimum, even if the whole
population is homogeneous. It becomes less and less important as
the pool of possible solutions and the number of elite chromosomes
increase.

There are several quantum methods that can take advan-
tage from partitioning the nuclear vibrational degrees of freedom.
Clearly, dividing the vibrational space into putative independent
subspaces is an approximation. However, if this subdivision is per-
formed according to Jacobi’s criterion, it may turn out not to be a
rough approximation, especially for high-dimensional and loosely
connected systems. We believe that at the affordable cost of a sin-
gle adiabatic classical trajectory with Hessian calculation, the PG-EA
algorithm can be useful to assist any method that has to deal with
increasing computational costs with system dimensionality but is
able to perform accurate spectroscopic calculations for each sub-
space independently. This may be the case, for example, of the local
mode variant of multimode® ** or other semiclassical wavepacket
propagation methods developed by other groups.”*’

The work we have presented provides a rigorous rationaliza-
tion of the simplification of a larger dimensional problem into a set
of lower-dimensional ones. The examples illustrated in this paper
demonstrate that reliable spectroscopic results are obtained if a rig-
orous strategy is employed to get to a reasonable subspace partition
while a non-educated, unwise choice of subspaces may lead to inac-
curate or unreliable results. Our algorithms might serve as a pow-
erful tool for advancing the computational spectroscopy of large
molecules.
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