
Constructive Specifications for Compositional Units

Kung-Kiu Lau1, Alberto Momigliano2, and Mario Ornaghi2

1 School of Computer Science, The University of Manchester,
Manchester M13 9PL, United Kingdom

kung-kiu@cs.man.ac.uk
2 Dipartimento di Scienze dell’Informazione,

Universita’ degli studi di Milano,
Via Comelico 39/41, 20135 Milano, Italy
{momiglia, ornaghi}@dsi.unimi.it

Abstract. In previous work, we have introduced a model-theoretic semantics
for compositional units, i.e. reusable units that can be used for compositional
program development. Such units contain open (logic) programs and our model-
theoretic semantics characterizes their correctness and the correctness of their
composition. However, for real-world software development, compositional units
should be inter-operable, i.e. they should accept programs in different languages.
To cater for this, our model-theoretic semantics needs to be used in conjunction
with suitable semantics for behaviours and interfaces. In this paper we describe
one possible approach based on constructive specifications.

1 Introduction

A reusable program unit, or a compositional unit, contains code that can be composed
with other units, to yield a desired behavior. To be widely reusable, a unit should be
open, i.e., not completely defined. The undefined parts become defined as a result of
composition. Examples of open units are generic modules with import/export sections
in modular languages, generic ADT’s [7] and frameworks in OO design [6]. In the
context of Logic Programming, open programs have been proposed as open units, due
to their compositional properties [2]. Units should be only specified by an interface
specification and context dependencies [17], and we need rules for composing and de-
composing interface specifications and to compare them, that is, to state whether inter-
face specification S1 meets or entails interface specification S2. These properties allow
us to combine top-down and bottom-up development.

In all this, the problem context plays an underpinning role. Indeed, context depen-
dencies and specifications have their proper meaning only in the problem context and
the latter plays a fundamental aspect in comparing specifications and to prove program
properties. We have considered the role of the problem context w.r.t. compositionality
in our previous work [10]. We have introduced a model-theoretic semantics for the cor-
rectness of open programs and we have studied how to combine programs, contexts and
specifications into compositional units of interface specifications and code.

Compositional units should be inter-operable, i.e. (pure) logic programs in such
units should be able to inter-operate with programs in different languages. For this,

S. Etalle(Ed.): LOPSTR 2004, LNCS 3573, pp. 198–214, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Constructive Specifications for Compositional Units 199

a model-theoretic semantics does not suffice. Inter-operation involves properties that
are not explicit in the model-theoretic specifications, such as, for example, input and
output modes in a logic program. Properties of this kind should be explicit in the inter-
face specification of a unit. In this paper we propose a notion of constructive interface
specifications, which can be consistently used with the model-theoretic one – classi-
cal model theory still remaining the basic semantics. This allows us to make explicit
modes and other computational behaviours that are relevant for the correct composition
of programs, but are not apparent in a purely model-theoretic approach. The advantage
of a formalisation of these aspects is that we get both a precise semantics and a com-
positional calculus. The latter allows us to reason about interface specifications and to
derive correct unit compositions, possibly using automatic theorem provers.

2 Program Units and Their Composition

In this section we give an informal overview of our approach to program units and
their composition. We define a program unit as a triple U = 〈Σ,C ,Prog〉, where Σ is a
many-sorted signature, C is a class of Σ-models and Prog is a collection of programs.
We call U a program unit (PU) to avoid confusion with compositional units (CU) in-
troduced in our previous work [10]. The class C is called the context of U . It may be
defined formally (as, e.g., in CU’s) or informally (as we will do in the examples), with
the purpose of specifying the meaning of the procedures used in the unit, in terms of the
problem domain. We distinguish between imported, exported and hidden procedures.
The imported procedures are assumed to be supplied by external units. For each ex-
ported procedure p, Prog contains a program implementing p, hidden in U , and a set
of (public) interfaces p : I1, . . ., p : Ik, that refer to when and how p can be correctly
composed with procedures imported from external units.

Example 1. The context section of the following program unit LG specifies the problem
domain of labeled graphs. The ADT List(V) (lists with elements from V) is included

to define predicates on paths. For example, the definition of x
an−→ y (x is linked to y by

n consecutive arcs with label a) uses at : [V,Nat,List(V)], defined in List(V) (at(v, i, l)
means that v occurs at position i in list l). The meaning of the imported and exported
procedures is defined by the specifications Sarc, Sconn, Spath, using the context signa-
ture and the concrete data types of the implementation language, such as int in Sconn;
reprNat(i,n) means that the integer i represents the natural number n. We have used a
many-sorted Prolog, to shrink the gap between the context and the implementation level
for the sorts V , L, List(V).
Program unit LG;
Context. SIGNATURE: V,L : sort; −→ : [V,L,V]; INCLUDES: List(V);
INTERPRETATIONS: For each graph, C contains an interpretation where V and L are the
sets of nodes and labels, and x

a−→ y holds iff there is an arc from x to y with label a.

x
an−→ y ↔ ∃p . at(x,0, p)∧ at(y,n, p)∧ ∀u,v, i. at(u, i, p)∧ at(v,s(i), p) → (u a−→ v)

IMPORT: Sarc:[V,L,V] : arc(x,a,x′) ↔ (x a−→ x′).
EXPORT: Spath:[List(V)] : path(p) ↔∀x,x′, i. at(x, i, p)∧at(x′,s(i), p) →∃a . x

a−→ x′.
Sconn:[V,L,V,int] : reprNat(i,n) → (conn(x,a,y, i) ↔ (x an→ y))

200 K.-K. Lau, A. Momigliano, and M. Ornaghi

Programs.
path : P1 (∀x,y. (∃a . ?arc(x+,a−,y+))∨T (¬∃a . arc(x,a,y)))

→ (∀p. ?path(p+)∨T¬path(p));
path : P2 T (∃n . ∀p. path(p) → length(p) ≤ n)∧ (∃s . ∀!x,a,y ∈ s. ?arc(x−,a−,y−))

→ ∃s′ . ∀!p ∈ s′. ?path(p−);
IMPL : path([]).

path([]).
path([X,Y|R]) : −arc(X, ,Y),path([Y|R]).

conn : C1 (∀x,a. ∃y . !arc(x+,a+,y−))
→ (∀x,a, i. T (i ≥ 0) →∃y . !conn(x+,a+,y−, i+))

IMPL : conn(X, ,X,0).
conn(X,A,Y,I) : −I > 0,J is I−1,arc(X,A,Z),conn(Z,A,Y,J).

We call Sarc, Sconn, Spath model-theoretic specifications, to distinguish them from con-
structive specifications of the interfaces of the procedures implemented in the program
section. By conn : C1 we mean that conn realizes the interface specified by C1. Simi-
larly for path : P1 and path : P2.

We have used moded call statements, such as ?path(p−), where ‘−’ denotes the
output mode and ‘?’ the query mode. They will be explained later in the paragraph in-
troducing behaviours. Interfaces are interpreted according to the constructive semantics
that we are now going to informally introduce. To reuse LG, an external unit Q has to fix
the interpretation of the open symbols V , L and −→ , to represent the set of the nodes,
labels of a specific graph and to implement the procedure arc. We want to guarantee
that the program implementing arc correctly composes with the programs imported
from LG. To this end, in [10], we have considered a notion of model theoretic interfaces
and correctness. For example, LG.path : Sarc → Spath is a model theoretic interface for
LG.path and its (model theoretic) correctness means that Spath is true in the minimum
Herbrand model (MHM) of LG.path, whenever LG.path is composed with a program
Q.arc with a MHM satisfying Sarc. This entails that from LG.path : Sarc → Spath and
Q.arc : true→ Sarc we can infer Q.arc◦arcLG.path : true→ Spath. By ◦arc we denote
the import composition with respect to arc, performed at the program level when the
unit (LG) importing arc includes or is included in a unit (Q) exporting arc. For logic
programs, ◦arc is the union, although renaming may be needed.

As the above discussion shows, model theoretic interfaces have a simple declarative
semantics and simple composition rules. However, they do not take into account com-
putational aspects that are relevant for correct program reuse. For example, the interface
LG.path : Sarc → Spath cannot distinguish the following different uses of P.path:

a) If Q.arc decides ∃a . arc(x,a,y) for every pair x,y of nodes of a graph g, we can
use Q.arc◦arc LG.path to decide path(p), for every ground sequence p of nodes.

b) If g has no infinite paths and via Qarc we can obtain a finite enumeration of all the
arcs of g, then Q.arc◦arc LG.path can be used to enumerate all the paths in g.

Interfaces based on constructive specifications make this kind of computational aspects
explicit, while preserving the declarativeness of model-theoretic specifications. For ex-
ample, interfaces P1and P2 correspond to uses a) and b). Here we give an informal
account of constructive specifications and their role in procedure composition, by ex-
plaining the interfaces of the procedures of LG.

Constructive Specifications for Compositional Units 201

Interfaces and specifications. The interface P1 of LG.path is an implication IP1 →
EP1, where IP1 is a specification for the imported procedure arc and EP1 is a spec-
ification for the exported procedure path. The meaning is that LG.path realizes the
behaviour specified by EP1, whenever LG is composed with a unit Q containing a
program Q.arc realizing IP1. More precisely, after the composition, we get a richer
program unit LG+Q, where Q.arc◦arc LG.path realizes EP1. Thus, interfaces model
unit composition at the program level. IP1 is a universal specification. It is realized
iff the main sub-formula (∃a . ?arc(x+,a−,y+))∨T (¬∃a . arc(x,a,y)) is realized for
all the ground substitutions x = t1,y = t2 of the universally quantified variables. The
main sub-formula is an existential specification. An existential specification E is built
by means of ∧, ∨, ∃, starting from moded call statements (such as ?arc(x+,a−,y+))
and T -formulas (such as T (¬∃a . arc(x,a,y))). A ground instance Eσ of E is realized
by a program unit U iff it is realized by the behaviour of U , observed using the moded
call statements of E.

Behaviours. To explain realizability, we have to consider moded call statements and
behaviours. In the moded call statement ?arc(x+,a−,y+) of P1, parameters x, y have
input mode ‘+’, parameter a has output mode ‘−’and arc has query mode ‘?’. Input
and output modes have the usual meaning [4]: a call arc(t1,A, t2) works properly if
t1, t2 are ground and the (possible) variables of A will be instantiated by the answer
substitution. In particular, the query : −arc(t1,A, t2) is admitted, with A a variable.
The query mode ?arc signifies that the set A = a1, . . ., A = ak, . . . of all the answers
can be obtained by backtracking. We represent the corresponding behaviour Barc by the
b-formulas (behaviour formulas) arc(t1,a1, t2), . . ., arc(t1,ak, t2), . . .; if after n answers
backtracking fails, we put the b-formula T (∀a.¬a = a1∧·· ·¬a = an →¬arc(t1,a, t2))
in Barc (if n = 0, Barc = {T (∀a.¬arc(t1,a, t2))}). The use of T for representing failure
will be explained very soon.

Realizability of existential specifications. The formal definition of B ||= E, i.e. when
behaviour B realizes specification E is given in Def. 1. Note that realizability is con-
structive: a realization of A ∨ B allows us to decide which disjunct holds and a re-
alization of ∃x . A(x) to obtain an answer x = t. For example, (∃a . arc(t1,a, t2))∨
T (¬∃a . arc(t1,a, t2)) is realized by Barc, as follows. If arc(t1,a1, t2) ∈ Barc, then the
disjunct ∃a . arc(t1,a, t2) is realized, with answer a = a1. If no answers exist, then
T (∀a. ¬arc(t1,a, t2)) ∈ Barc. Therefore the disjunct T (¬∃a . arc(t1,a, t2)) is realized
by the truth of ¬∃a . arc(t1,a, t2).

T -formulas. We have used T in a disjunction of the form H ∨ T (F), to deal with fi-
nite failure: if the attempt of realizing H fails, we conclude that F is true, but we do
not require any further information. In this sense, T corresponds to the classical truth
operator of [15]. T -formulas can be also used as pre-conditions, not requiring any com-
putation. For example, T (∃n . ∀p. path(p) → length(p) ≤ n) in P2 requires that all the
paths of the current graph have length limited by a fixed n, but it does not require to
compute n. Another use of T is illustrated by the bounded quantification ∀!x ∈ s. A(x)

202 K.-K. Lau, A. Momigliano, and M. Ornaghi

used in P2, which abbreviates (∀x. A(x)∨T (¬A(x)))∧(∀x. T (member(x,s))↔A(x)) 1.
Let s be [t1, . . . , tn]. Then a behaviour B realizes ∀!x ∈ s. A(x) iff it realizes A(t1), . . .,
A(tn) and T (x �= t1∧·· ·∧x �= tn →¬A(x)). Similarly the notation ∃!x . A(x) abbreviates
∃x . A(x)∧T (∀x,y. A(x)∧A(y) → x = y).

Different kinds of interfaces. According to the informal explanations above, one can
see that P1 corresponds to use a). Its import part IP1 and export part EP1 specify deci-
sion behaviours. P2 corresponds to use b). Its import and export parts specify enumera-
tion behaviours. Import and export parts of C1 specify selection behaviours: if for every
node x and label a, Qarc selects a y such that x

a−→ y, then for every node x, label a and

integer i ≥ 0, LG.conn selects an y such that x
ai−→ y. Here, !arc is the selection mode.

It means that by means of a call to arc we get an answer (selected by the program),
but backtracking is forbidden or it may not work properly. Functional behaviours are a
special case of selection behaviours, where the selected output is also unique. Decision,
enumeration, selection and functional behaviours are the most common. Of course, a
complex specification may mix them.

Composition calculus. Finally, we have a calculus to compose procedures according
to their interfaces, while preserving realizability. The composition calculus is explained
in Sect. 5.1. We conclude our informal overview with an example, which shows the
application of the calculus and introduces bridge proofs, namely proofs that allow us to
link interfaces in case they do not match exactly. When we include a unit, the context
is included with possible renaming and closures, i.e. instantiations of open symbols, as
illustrated in the next example. Then procedures may be selectively included. We may
hide them (when appropriate) via the operator #. We may also use local (hidden) bridge
programs generated when building bridge proofs.

Example 2. The unit IT implements an iterator of a generic binary operation
Program Unit IT . Context. Contains Nat, a generic domain D and a binary opera-
tion · : [D,D] → D with left unit u : D. Defines x0 = u, x(n+1) = xn · x.
IMPORT: Sunit:[D] : unit(x) ↔ x = u; Sop:[D,D,D] : op(x,a,y) ↔ y = x ·a;
EXPORT: Siter:[D,int,D] : reprNat(i,n) → (iter(x, i,z) ↔ z = xn).
Programs.
iter : IT (∃x . !unit(x−))∧ (∀x,a. ∃y . !op(x+,a+,y−))

→ (∀x, i. T (i ≥ 0) →∃!z . iter(x+, i+,z−));
IMPL: iter(X,0,U) : −unit(U).

iter(X,I,U) : −I > 0,H is I−1,iter(X,H,V),op(V,X,U).

In the unit LG, LG.conn is tail recursive and conn(x,a,y,n) is defined as x
an−→ y. If

we include IT into LG and we take the sets V of nodes and L of labels as D, we may

interpret each pair (x,x ·a) as an arc x
a−→ x ·a and we can prove x

an−→ y ↔ y = x ·an.
Thus we can (re)use LG.conn to compute iter in a tail-recursive way, as follows.

Program Unit LGIT EXTENDS LG, INCLUDES IT .
CLOSE: V := D; L := D; x

a−→ y ↔ y = x ·a;

1 With quantifiers such as ∀!x,a,y ∈ s. in P2, s is a list of triples.

Constructive Specifications for Compositional Units 203

THM: i ≥ 0 → (iter(x, i,z) ↔ conn(u,x,z, i)); op(x,a,y) ↔ arc(x,a,y).
Programs.
iter : #IT (∃x . !#unit(x−))∧ (∀x,a, i. T (i ≥ 0) →∃y . !#conn(x+,a+,y−, i+))

→ (∀x, i. T (i ≥ 0) →∃!z . !iter(x+, i+,z−)) :
IMPL: iter(X,I,Y) : −#unit(U),#conn(U,X,Y,I).

iter : IT (∃x . !unit(x−))∧ (∀x,a. ∃y . !op(x+,a+,y−))
→ (∀x, i. T (i ≥ 0) →∃!z . !iter(x+, i+,z−))

IMPL: (rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn))◦#conn,#unit (iter : #IT).

Program iter : #IT is a local bridge program (#IT is a local specification, hidden
by #). The clause implementing iter : #IT has been derived from the following bridge
proof pr(#lm1) and corresponds to lemma bd1.

∀E,→ E
rn,∧E2,

T (i ≥ 0)

rn[] : ∃x . !#unit(x−)

rn,
∧E1

I#IT

I#IT

(iter : #IT) : I#IT → EIT

(iter : #IT) : ∃!z. !iter(x+, i+,z−)

∃!I

◦∃E

◦∃E,→ I,∀I,→ I

rn[] : ∃y. !#conn(u+,x+,y−, i+) (iter : #IT) : ∃!z. !iter(x+, i+,z−)
(iter : #IT) : !iter(x+, i+,y−)

!#conn(u+,x+,y−, i+)
bd1

!#unit(u−)T (i ≥ 0)

!iter’s mode follows from !#conn and modes +, − are treated as usual in logic pro-
grams. I#IT and EIT denote the import and export parts of the interface #IT of LGIT
(the export part coincides with the one of IT). The unicity T -formula needed in ∃!I is
inherited from LG. The empty renaming rn[] is generated by the rule rn. For homoge-
neous programs (as in our example), rn[] works as the identity for import composition.
For heterogeneous programs, it corresponds to a ”communication channel”. ◦∃E is a
derived rule and gives rise to rn[]◦ (iter : #IT), equal to (iter : #IT) 2. The composite
program implementing LGIT.iter is obtained by the following composition proof.

rn[unit/#unit] : ∃x . !#unit(x−)

IIT

rn[op/#arc]◦#arc LG.#conn : E#C1

rn, ∧E1 → E
rn[op/#arc] : I#C1 LG.#conn : I#C1 → E#C1[pr(LG)]

IIT
rn,∧E2

rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn) : I#IT (iter : #IT) : I#IT → EIT[pr(#lm1)]
|1, |2,∧I

→ E,→ I(rn[unit/#unit] | (rn[op/#arc]◦#arc LG.#conn))◦#conn,#unit (iter : #IT) : IIT → EIT

I#C1 and E#C1 denote the import and export parts of interface #C1 (included from
LG and hidden by LGIT). The hiding renaming rn[unit/#unit] generates the clause
#unit(X) : −unit(X) (# preserves the model theoretic semantics). rn[op/#arc] is not
a purely hiding renaming. It requires to prove op(x,y,z) ↔ arc(x,y,z) in the context
and generates #arc(X ,Y,Z) : −op(X ,Y,Z). The operation | is parallel program com-
position. LGIT extends IT and LGIT.iter correctly overrides IT.iter (the exported
iter programs implement the same interface).

2 Importing #conn from an heterogeneous LG, the communication channel (rn[]◦#conn (iter :
#IT)) would be generated.

204 K.-K. Lau, A. Momigliano, and M. Ornaghi

3 Behaviours and Program Composition

In this section, we define behaviours and we discuss the rationale behind them. A be-
haviour represents the knowledge obtained from an observation of a program unit by
calling some of its procedures. The observer may be a human or another procedure. A
call is characterized by the observed call statement C and by the activation substitution
α, indicating the values observed for the variables of C when the call is activated. For
conciseness, we do not consider negation, i.e., C is an atom. We call Cα an activation.
The (call corresponding to an) activation Cα starts a computation, which may succeed,
fail, yield an error or loop. According to the case, we define the answer of Cα as follows:

– If the computation started by Cα yields an error or loops, we do not have any
answers.

– If the computation started by Cα succeeds, we get an answer substitution β, indi-
cating the values returned for the variables of Cα, if any.

– If the computation started by Cα fails, we get the negative answer NO.

To consider backtracking, we use an observation index. The same index is only used
when a call is repeated (by backtracking) to obtain a new answer. Otherwise, differ-
ent observations have different index. Thus we define observation sequences and their
components as follows (components underline backtracking).

– An observation sequence S is a sequence of observations of the form 〈c : Cα,β〉,
where Cα is an activation with observation index c and β is its answer

– the component with index c of S is the sequence S[c] obtained by deleting all the
observations of S with index different from c.

Example 3. Let us consider the composite procedure sum◦sum prod:

sum : sum(X,0,X).
sum(X,s(Y),s(Z)) : − sum(X,Y,Z).

prod : prod(X,0,0).
prod(X,s(Y),Z) : − prod(X,Y,P),sum(P,X,Z).

If prod observes the call statement sum(P,X,Z) in the computation of
prod(s(0),s(s(0)),0), it obtains the following sequence S with components S[1], S[2]:

S = 〈1 : sum(0,s(0),v0),v0 = s(0)〉,〈2 : sum(s(0),s(0),0), NO〉,
〈1 : sum(0,s(0),v0), NO〉

S[1] = 〈1 : sum(0,s(0),v0),v0 = s(0)〉,〈1 : sum(0,s(0),v0), NO〉
S[2] = 〈2 : sum(s(0),s(0),0), NO〉

The following property is required (and assumed) in our approach.

Property 3.1. Let S[c] = 〈c : Cα,β1〉, . . . ,〈c : Cα,βn〉 be a component of an observation
sequence S. If βn is NO, then 〈c : Cα,βn〉 is the last observation with observation index
c occurring in S.

Property 3.1 codifies the fact that backtracking halts when the answer NO is reached.
We define the behaviour BS[c] of a component S[c] as the following set of b-formulae:

Constructive Specifications for Compositional Units 205

– An atom A belongs to BS[c] iff S[c] contains an observation 〈c : Cα,β〉 s.t. A = Cαβ.
– T (∀y. y �= t1 ∧·· ·∧ y �= th →¬Cα) belongs to BS[c] iff the last answer of S[c] is NO

and t1, . . . , th are all the ground terms associated with the open variables y of Cα by
the answer substitutions of S[c].

We define the behaviour BS associated with an observation sequence S as the union
of the behaviours of its components.

Example 4. The behaviours corresponding to the observation sequences of Ex. 3 are:
BS[1] = {sum(0,s(0),s(0)),T (∀x. x �= s(0) →¬sum(0,s(0),x))}
BS[2] = {T (¬sum(s(0),s(0),0))}
BS = BS[1]∪BS[2]

Now we link behaviours and unit composition at the program level. A procedure p
exported by P depends on a set π of import procedures of P iff every procedure called
by the program implementing p belongs to π. By P : π ⇒ δ we mean that δ is the
set of the export procedures, π is a set of import procedures and the procedures of δ
depend on π. If P : /0 ⇒ δ, P is a closed program unit, i.e., every and each program
does not need other imported procedures to run. Program composition occurs when
the contexts of two units have been merged. We can model this stage by two C -units
P = 〈Σ,C ,Prog1〉 and Q = 〈Σ,C ,Prog2〉 with a common context C , which specifies the
import, export and hidden procedures of both Prog1 and Prog2. That is, a set of C -units
is a set of separate program units with a common context C . C -units can be composed
by restriction, parallel and import composition, yielding new C -units, as follows:

Restriction. The restriction R.δ of R to a subset δ of the exported procedures is the
C -unit where those procedures and related interfaces not in δ have been deleted.
Parallel composition. The parallel composition R | S is defined only if R : π1 ⇒ δ1,
S : π2 ⇒ δ2, and (π1∪π2)∩(δ1∪δ2) = /0. The resulting C -unit contains and exports
R.δ1 and S.δ2, i.e.: R | S : π1 ∪π2 ⇒ δ1 ∪δ2. The (possible) shared procedures must
have the same interfaces and implementations. We have: R | S = S | R.
Import composition. The import composition R◦γ S is defined only if R : π1 ⇒ δ1 ∪ γ,
S : π2 ∪ γ ⇒ δ2 and (π1 ∪π2)∩ (δ1 ∪δ2) = /0. The resulting C -unit exports R.δ1 and
the procedures R.γ are locally composed with S.δ2, so that they no longer depend
on γ, i.e.: R◦γ S : π1 ∪π2 ⇒ δ1 ∪δ2. We have: R◦γ1 (S ◦γ2 T) = (R◦γ1 S)◦γ2 T and,
if R | S is defined, R◦γ1 (S◦γ2 T) = (R | S)◦γ1∪γ2 T .

Example 5. We consider C -units P = 〈Σ,C ,Prog〉 containing logic programs. Within
P, we associate the axioms Ax(p) = Ocomp(p)∪CET (p) with the program-clauses im-
plementing a procedure P.p, where Ocomp(p) is the open completion of (the clauses
implementing) p [11] and CET (p) is Clark’s Equality Theory for p [12]. The operation
P | Q is defined if the general conditions introduced above for composition are satisfied
and Ax(δ1 ∪δ2) = Ax(δ1)∪Ax(δ2). The resulting C -unit contains and exports the pro-
grams for δ1∪δ2. Operation P◦γ Q is defined if the general conditions introduced above
for composition are satisfied and Ax(δ1 ∪ γ∪ δ2) = Ax(δ1 ∪ γ)∪Ax(δ2). The resulting
C -unit contains the programs for δ1 ∪ γ∪ δ2, hides γ and exports δ1 ∪ δ2. The hidden
procedures γ are used locally by δ2. Going back to Ex. 3, if SUM is the closed unit
exporting sum and PROD the one importing the latter and exporting prod, the import

206 K.-K. Lau, A. Momigliano, and M. Ornaghi

composition SUM.sum ◦sum PROD.prod : /0 ⇒ prod is defined and satisfies the above
requirements. As we have seen, if we are only using Prolog programs, it suffices to put
the various programs together, in the same name space. Hiding may be performed, e.g.,
by renaming. If we are using heterogeneous programs, we need also an environment
supporting the communication among them. This is necessary for import composition.

Let P ◦γ Q : /0 ⇒ δ be a C -unit. We can build an observation sequence SE by means
of calls to δ. We call SE an experiment for P ◦γ Q. While doing the experiment SE , we
observe the calls performed by Q on γ. We obtain an observation sequence SI , with
a behaviour BSI . We say that SI is an interface observation sequence and BSI is an
interface behaviour for P◦γ Q. We can abstract from the “server” unit P by introducing
generic behaviours and “oracles”.

A generic b-formula is a ground procedure-atom (i.e., built by a procedure symbol)
or a T -formula of the form T (∀x. �= t1∧·· ·∧x �= tn →¬A), where A is a procedure-atom
with variables x. A generic behaviour is a consistent set B of generic b-formulae. B is
an import behaviour for Q if the atoms of B contain only import procedures of Q. We
now introduce B-oracles (B [o]): when an activation Cα is performed with observation
index c, a B-oracle B [o] yields one of the following answers:

– 〈c : Cα,β〉, if there is an atom A ∈ B such that A = Cαβ, or
– 〈c : Cα, NO〉, if B contains T (∀y. y �= t1 ∧ ·· ·∧ y �= tn →¬Cα) and all the possible

answers to Cα have been given in previous steps, or
– the computation aborts, if none of the previous cases holds.

If there are different possible answers, the oracle makes a choice. It is only obliged
to be fair on backtracking, that is, if an answer of an activation Cα can be chosen,
it will be. An oracle B [o] for a finite behaviour B can (in principle) be implemented
and composed with other programs. To simulate moded procedures, an oracle may be
moded. A moded oracle B [oµ] has a set µ of moded call statements and aborts if a call
is activated that is not allowed by µ.

Example 6. Let P be a C -unit containing logic programs and B be an import behaviour
for P. A B-oracle is a logic program that contains every atom A ∈ B as a fact and suit-
able clauses that abort the program when required. For example, the following program
is an oracle for the behaviour B of Ex. 3.

sum(0,s(0),s(0)).
sum(s(0),s(0),s(s(0))).
sum(X,Y,Z) : − not((X == 0,Y == s(0))),

not((X == s(0),Y == s(0),Z == s(s(0)))), abort.

Different oracles are obtained by changing the order of the facts and allowing pos-
sible repetitions. As an example of another kind of programming language style, we
can consider program units containing imperative style procedures. If we only allow
input-output procedures, the modes will always be of the kind !p(x+ ;y↓). In the con-
text, a model-theoretic specification Sp specifies p as a predicate. By the input mode
x+ , we declare that x are value parameters. By y↓ we denote the reference mode (var-
parameters in Pascal). In an activation, reference parameters can be only replaced by

Constructive Specifications for Compositional Units 207

variables. Oracles can be defined as follows: when a computation performs a call to an
imported procedure q, we provide the result by a table-look-up mechanism, where the
table contains a finite part of B . By the selection mode !, only the first answer is con-
sidered; the computation aborts if no answer is found or the activation is not allowed by
!p(x+ ;y↓). That is, the oracle is moded.

If J is an interface behaviour of P◦γ Q observed by an experiment S, then there is an
oracle oP such that J [oP]◦γ Q replicates exactly the computation of P◦γ Q. However, a
different oracle o′ may yield a different computation of J [o′]◦γ Q. We assume that Q is
behaviourally stable (b-stable), i.e., we assume that for every o′ there is an experiment
S′ for J [o′] ◦γ Q with the same observed behaviour (BS′ ⊇ BS suffices). B-stability of
Q means that it is able to cooperate with external units (simulated by the oracles) in-
dependently from the backtracking details, such as order or repetitions of the answers.
We believe b-stability should be a property of high-level program units, because this
enhances their re-usability. In the next section we will consider b-stability with respect
to the moded import behaviours that realize their specification.

4 Behaviour Specifications and Their Realization

A constructive specification is a Σ-formula given by the following syntax, where BF
stands for b-formulas (atoms built by a procedure symbol) and T F for T -formulas (of
the form T (F), where F is any Σ-formula):

Basic specifications BS ::= BF | T F.
Existential specifications ES ::= BS |ES∧ES | ES∨ES | ∃x . ES.
Universal specifications US ::= ES |US∧US | ∀x. US.

Interfaces IC ::= US |US → IC | IC∧ IC | ∀x. IC.

Universal specifications are a description of behaviours that are realized (exported) or
used (imported) by a program unit. Interfaces relate imported and exported behaviours
and model correct unit composition. They will be explained in the next section. Here,
we consider universal specifications and their realization by closed C -units within a
signature Σ. For behaviours of closed programs we assume that data are reachable (i.e.,
representable by ground Σ-terms). The partial model theoretic correctness of programs
is assumed, to ensure the truth (in C) of the observed b-formulas. Thus a behaviour
correct in C is a set B of b-formulas of the signature Σ, such that C |= B .

The behaviour semantics of universal specifications is given by the realization re-
lation ||= . We write P ||= H to denote that a C -unit P realizes a specification H. This
means that H is realized by the observable behaviour of P, in the way informally ex-
plained in Sect. 2. We firstly define realizability by correct behaviours, considered as
sets of b-formulas true in C . Then we define it by program units.

Definition 1 (Behaviour Realizability). Let B be a behaviour correct in C and E a
ground instance of an ES. Then B ||= E iff one of the following clauses applies:
Basis. For a T -formula T (F), B ||= T (F) iff C |= F.
For a b-formula B, B ||= B iff B ∈ B .

208 K.-K. Lau, A. Momigliano, and M. Ornaghi

Step. According to the cases, we have:

– B ||= F ∧G iff B ||= F and B ||= G.
– B ||= F ∨G iff B ||= F or B ||= G.
– B ||= ∃x . F(x) iff there is a ground term t such that B ||= F(t).
– B ||= ∀x. F(x) iff B ||= F(t), for every ground term t.

Theorem 1. Let B be a correct behaviour and U an US. B ||= U entails C |= U.

That is, the realized formulas are true in the context (assuming reachability). In the
previous definition, behaviours may be infinite. Behaviors of observation sequences are
finite. The following theorem can be easily proved.

Theorem 2. Let E be an ES and B ||= E. Then there is a finite B ′ ⊆ B s.t. B ′ ||= E.

A realization of a universal specification U is, in general, infinite. It can be seen as
the unions of the finite realizations of the existential instances of U .

Definition 2 (Inst(U)). The set Inst(U) of the instances of a ground universal specifi-
cation U is the smallest subset of formulas satisfying the following clauses:

– if U is an ES, then U ∈ Inst(U);
– if t is a ground term and F ∈ Inst(H(t)), then F ∈ Inst(∀x. H(x));
– if F ∈ Inst(H) and G ∈ Inst(K), then F ∧G ∈ Inst(H ∧K).
– If U is open, Inst(U) is the union of the Inst(Uσ), where σ is a grounding substi-

tution.

Theorem 3. Let U be a ground universal specification and B be a behaviour. B ||= U
iff for every instance E ∈ Inst(U) there is a finite B ′ ⊆ B s.t. B ′ ||= E.

Now we can consider realizability by program units. Since T -formulas do not re-
quire any realization, the (possible) procedure symbols occurring in them do not require
computations. We say that they are hidden by T , or inactive; non-hidden occurrences
are called active. A specification S is an export specification for a closed program unit
P : /0 ⇒ δ iff the active call statements of S have procedure symbols from δ. Program
realizability is defined starting from finite experiments. Let E be a ground export exis-
tential specification for P. We say that P realizes E with a (finite) experiment S, written
P ||=S E, iff S is a finite experiment for P such that BS ||= E. For a universal specifica-
tion U , we need to validate the various instances I ∈ Inst(U) by U-moded experiments,
namely experiments that apply moded call statements from U .

Definition 3 (Program Realizability of US). Let U be an export universal specifica-
tion for a closed C -unit P. P ||= U iff for every instance I ∈ Inst(U) there is an U-moded
experiment S s.t. P ||=S I.

Export US are specifications for closed program units. In particular, decision, enu-
meration, selection and functional behaviours can be specified as explained in Sect. 2.
We can use a universal specification U also as an assumption on the expected import
behaviuor of an open unit. In this case, U states the following collaboration agreement:

Constructive Specifications for Compositional Units 209

a client unit Q is assumed to apply only moded call statements of U , while a server unit
P is assumed to answer without loop or abort errors, when it is called according to the
modes declared in U . Concerning the server side (the client side will be considered in
the next section), we require correct moding, as the past history is needed to properly
treat the call index i.

Definition 4 (Correct Moding). Let U be an export universal specification for a closed
C -unit P. U is correctly moded with respect to P iff every U-moded experiment S for P
can be continued into an experiment S,〈i : Cα,ans〉, whenever the activation i : Cα is
legal with respect to the modes of U and the past history S.

5 Interfaces

Interfaces allow us to specify open program units and their clients relations. To properly
abstract from moded server units, we introduce U-moded J -oracles J [oU], where J is
a possibly infinite 3 behaviour, U is a universal specification and oU is a moded oracle
with moded call statements from U . An experiment S for J [oU] is obtained through the
answers chosen by oU and J [oU] ||= U is defined as in Def. 3. We assume fairness (if J
contains an answer for a call statement i : ?Cα, this answer will be chosen by oU) and
correct moding (U is correctly moded with respect to oU , i.e., each legal continuation
of an experiment is answered by oU).

For every server program unit P realizing U there are a behaviour J and an U-moded
oracle oU , such that the experiments of P coincide with those of J [oU]. We use J [oU]
as abstractions of server units and we introduce the semantics of interfaces. We proceed
gradually. We say that U →V is a simple interface if U , V are universal specifications.
U must be an import specification, that is a specification with only import-active call
statements. It is an assumption on the possible import behaviours. V must be an export
specification, that is a specification with only export-active call statements. It states the
expected export behaviour.

Definition 5 (Realizability for Simple Interfaces). Let Q be a C -unit and U → V a
simple interface. Q ||= U →V iff U is an import specification, V an export specification
and for every import oracle J [oU] such that J [oU] ||= U, it holds J [oU]◦U Q ||= V .

This definition of realisability requires b-stability (see Sect. 3) with respect to the
behaviours realizing U (we may choose, for a behaviour J , any oracle oU). The compo-
sitional meaning of simple interfaces is given by the following theorem.

Theorem 4. Let P be a C -unit such that P ||= U and U correctly moded with respect
to P and let Q be a C unit such that Q ||= U →V , for a simple interface U →V . Then
P◦U Q ||= H.

Simple interfaces represent simple composition rules, where the import behaviour
U has to be realized by the server unit as a whole. It may be useful to choose server units

3 We could consider only finite behaviours, but this would complicate our treatment.

210 K.-K. Lau, A. Momigliano, and M. Ornaghi

incrementally, by building intermediate open units. To this aim, we allow conjunctions
and right-nested implications. For example, the interfaces U → (V → H) allows us to
choose a server unit for U and delay the choice of the unit for V .

Definition 6 (Realizability for Interfaces). Let Q be a C -unit and I be an IC. We
inductively define realizability, as follows:
Basis. I is a universal specification. Realizability is defined as in the previous section.
Step. According to the cases:

– I is U → H. We proceed by a secondary induction on H. The base case coincides
with simple interfaces. The step case is as follows:
• H is V → K. Q ||= U → (V → K) iff U,V are universal import specifications

for Q and Q ||= U ∧V → K.
• H is H1∧H2. Q ||= U → (H1∧H2) iff U is a universal import specification for

Q, Q ||= U → H1 and Q ||= U → H2.
• H is U →∀x. H(x). Q ||= U →∀x. H(x) iff U is a universal import specifica-

tion for Q and Q ||= U → H(t), for every ground term t.
– I is H ∧K. Q ||= H ∧K iff Q ||= H and Q ||= K.
– I is ∀x. H(x). Q ||= ∀x. H(x) iff Q ||= H(t) for every ground t.

Composition proofs, bridge proofs and correct modes. The compositional meaning
of interfaces is given by the rules of the compositional calculus shown in Sect. 5.1. By
these rules, we can correctly compose C -units at the program level. Our syntax dis-
tinguishes universal specifications and interfaces. Correspondingly, we have two kinds
of proofs. A proof that applies only the renaming rule rn and the rules for →, ∧, ∀
to interfaces is called a composition proof. It allows us to compose units whose in-
terfaces match via (possible) renaming. If this level of “exact” matching fails, then
we de-structure the universal specifications used in the interfaces and we try to re-
structure them in a different form, by means of the other rules and possible “bridge
lemmas”, such as bdl1 in Ex. 2. Proofs of this kind are called bridge proofs. Correct
modes are required to prove the validity theorem (Thm. 5). They are preserved by com-
position proofs, but might be destroyed by the bridge proofs. For example, a (trivial)
unit containing the procedure p(a) realizes ∃x . !p(x−). If we apply the ∨I2-rule with-
out restrictions, we prove that it realizes ∃x . !p(x−)∨∃x . !q(x−). But : −q(X) fails,
while it should succeed by mode !. Thus correct moding should be always checked in
bridge proofs. Fortunately, there are universal specifications that are correctly moded
independently from the implementation details. Specifications of this kind are called
correctly moded (with respect to any unit P). They have the following property: for ev-
ery instance E ∈ Inst(U), every finite behaviour B such that B ||= E, and every moded
oracle oU (applying the modes of U), there is an observation sequence S for B [oU]
such that B [o] ||=S E. There are syntactical sufficient conditions for correct moding
(omitted here). For example, A ∨ T (F) is correctly moded if so is A and it has the
query mode (modes of complex formulas are determined starting from those in call
statements).
Bidirectional interfaces. In our syntax, interfaces model unidirectional composition.
If we enlarge the syntax by allowing interfaces of the form (H → K) → R, we can
model bidirectional composition. We have not yet completed the analysis of this case,

Constructive Specifications for Compositional Units 211

so we only briefly comment on it, by considering the simpler case (U →V) →W , with
U,V,W universal specifications. The active procedures that occur positively (namely in
U and W) must be export procedures, while the ones occurring negatively (namely in V)
must be import procedures. Moreover, the export procedures of U must not depend on
the import procedures of V . In this case, the interface correctly specifies a bidirectional
collaboration, as follows. We say that Q ||= (U → V) → W iff Q ||= U and Q ||= V →
W . A server unit P has to realize U → V . We want to get a bidirectional composition
◦U→V such that P◦U→V Q ||= W . Under our hypotheses, we can say: P◦U→V Q = (Q◦U

P)◦V Q. That is, P uses the behaviour for U exported by Q to realize the behaviour for
V needed by Q. Q uses this behaviour to realize W .

5.1 The Compositional Calculus

In this section we present a possible compositional calculus, where proof-trees are in
the style of natural deduction. The root of a proof-tree is of the form P : A, where P is
a logic program and A is a constructive specification. P : A is the consequence of the
proof tree. Assumptions are specifications. The rules are shown next.

H1, . . . ,Hn
tt(L)

P : T (F)

H1, . . . ,Hn
pr(L)

P : A

f alse
ff

P : A

H1, . . . ,Hn
rn

rn[ρ] : ρ Hi

Pi : A |i
P1 | P2 : A

P : A1 P : A2 ∧I
P : A1 ∧A2

P : A1 ∧A2 ∧Ei
P : Ai

P : Ai ∨Ii
P : A1 ∨A2

A1 ∨A2

[A1] [A2]
...

...
P : C P : C

∨E
P : C

P : A(t)
∃I

P : ∃x . A(x)

∃x . A(x)

[A(a)]
...

P : C
∃E

P : C

[A]
...

P : B
→ I

P : A → B

P : A Q : A → B
→ E

P◦A Q : B

P : A(a)
∀I

P : ∀x. A(x)

P : ∀x. A(x)
∀E

P : A(t)

The rules apply to C -units at the program level. The program rule pr(L j) allows us
to use an already proven pr-“lemma” L j about a unit P. It is also possible to introduce
knowledge from the problem context by the rule tt(Lk), indicating a tt-“lemma” Lk,
proving C |= H1 ∧ ·· · ∧Hn → F . Lemmas (in particular tt-lemmas) are not necessar-
ily developed in the compositional calculus, but may use any system consistent with
classical logic, or they may be informal. Rule rn encodes renaming, which may be
needed for hiding or bridging purposes (see Ex. 2). The application of rn is system-
atically enforced by our calculus (programs do not occur in the assumptions, but are
needed in the consequences). The idea is that renaming correspond to “communication
channels”. The way of forcing renaming is preliminary and needs to be further exper-
imented. The other rules are similar to the ones of intuitionistic predicate logic. The

212 K.-K. Lau, A. Momigliano, and M. Ornaghi

usual provisos apply. We require also that the involved formulas are constructive spec-
ifications in the syntax given in Sect. 4. This entails, in particular, that the assumptions
may only be universal specifications and that the rules for ∨, ∃ can be only applied to
existential specifications. To deal with assumptions, we enlarge our definition of inter-
face and allow interface sequents Γ ⇒ K, where Γ is a set of interfaces that are universal
specifications:

Definition 7 (Realizability for Interface Sequents). Let Γ ⇒ K be an interface se-
quent for a C -unit P. We say that P realizes Γ ⇒ K, written P ||= Γ ⇒ K, iff for every
grounding Σ-substitution σ, P ||= (∧(Γ) → K)σ.

The following theorem states the validity of the calculus. The proof considers sep-
arately the bridge proofs, which structure and de-structure universal specifications and
the composition proofs, which structure and de-structure the interfaces. For the bridge
proofs, the preservation of correct moding ought to be checked.

Theorem 5 (Validity). Consider a proof-tree with assumptions Γ and consequence P :
H. If the (possibly informal) tt-lemmas and pr-lemmas are correct, then P ||= Γ ⇒ H.

6 Discussion

Constructive specifications make explicit aspects that are important for correct compo-
sition. They are based on correct modes and on a constructive semantics. This semantics
is not alternative, but complementary to our previous model-theoretic approach [10]: the
reference semantics still remains classical model theory and constructive logic is used
to obtain more expressive interface specifications. The idea of using constructive logic
to specify interfaces has been influenced by [16], even if we use a different semantics.
The semantics and the calculus explained here are a first step and have been inspired
by the collection semantics introduced in [13, 14] to prove constructivity results for in-
termediate first order systems. The T -operator for formulas that are not constructively
evaluated comes from [15]. The use of distinguished levels for the problem context and
for programs and their interfaces, as well as the possibility of using different program-
ming languages is similar to the Larch specification language [8], although in the latter
constructive logic is not used. We next outline some improvements to our work.

Constructive proofs bridging not exactly coinciding specifications are, in general,
simpler than the proofs needed to derive programs from scratch. A study of proof strate-
gies oriented to module composition and reuse would be interesting.

Behaviours with closed formulae allow us to capture input-output modes with ground
results and the query mode. A possible improvement, as far as logic programs are con-
cerned, is to consider open b-formulas, as e.g. in [1], to capture more general kinds of
modes and compositions, including open answers.

The restriction to correctly moded universal specifications guarantees that a con-
structive evaluation of the export specifications of a server program unit P can be ob-
tained by a client unit Q, by querying P. This explains also our restricted syntax. For
example, we do not allow a disjunction such as (∀x. A(x))∨ (∀x. B(x)). Indeed, to state

Constructive Specifications for Compositional Units 213

that (A(t) holds for all the ground terms t), or (B(t) does), a (possibly) infinite com-
putation is needed. On the other hand, if we know that, say, ∀x. A(x) holds, we can
use this information by inserting it in the behaviour. In this way, is possible to use any
first order formula as a constructive specification. The price to pay is that we have to
introduce in behaviours the knowledge needed to trace constructive evaluations, along
the lines of [13]. The advantage of a restricted syntax is that it adapts to the operational
semantics of any kind of programs, with the only requirement that the model theoretic
meaning of the procedures and functions is to be specified in the context.

Nevertheless, it is useful to investigate possible extensions, related to other kinds
of module operations. In particular, it would be useful to extend ◦ to bidirectional col-
laboration of program units. This corresponds to the use of implications of the form
(A → B) → C. From a first partial analysis of this case (see the discussion in Sect. 5),
it seems that it can be treated without altering the general lines of our approach. In this
way we get a notion of interface that has similarities to the one discussed in [3].

The requirement of b-stability is suited to relatively complete programs, while it
may not work for small pieces of code. In this case a lower level of abstraction is re-
quired. It can be introduced by a different definition of the behaviour associated to
observation sequences and experiments. We believe that an analysis of different levels
of abstraction is interesting and potentially fruitful. In particular, it would be interest-
ing to consider behaviours as multisets to exploit the use of linear logic programming
techniques [9] to express properties of program units that consume resources and to
consider their geometry of collaboration.

In this paper we have concentrated on the definition of behaviour semantics and we
have devised a first composition calculus. We have a validity result. It is difficult to
even define completeness, due to the presence of modes and the fact that we want to
deal with heterogeneous systems. The next step is to experimentally check our ideas
and our calculus in real examples, e.g. addressing case studies of formal specification.

References

1. A. Bossi, M. Gabbrielli, G. Levi, and M.C. Meo. A compositional semantics for logic pro-
grams. Theoretical Computer Science, 122:3–47, 1994.

2. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. J. Logic Program-
ming, 19-20:443–502, 1994. Special issue: Ten years of logic programming.

3. L. de Alfaro and T. Henzinger. Interface Theories for Component-based Design Proc. of
EMSOFT 2001, LNCS 2211, pp. 148–165, Springer Verlag, 2001.

4. S.K. Debray. Static Inference of Modes and Data Dependencies in Logic Programs, ACM
Transactions on Programming Languages and Systems, 11(3):418–450, 1989.

5. Y. Deville. Logic Programming. Systematic Program Development. Addison-Wesley, 1990.
6. D.F. D’Souza and A.C. Wills. Objects, Components, and Frameworks with UML: The Catal-

ysis Approach. Addison-Wesley, 1999.
7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Springer-Verlag, 1989.
8. J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal Specification.

Springer-Verlag, 1993.
9. J. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear Logic.

Information and Computation, 110(2):327–365, 1994.

214 K.-K. Lau, A. Momigliano, and M. Ornaghi

10. K.-K. Lau and M. Ornaghi. Specifying Compositional Units for Correct Program Develop-
ment in Computational Logic. Program Development in Computational Logic: A Decade of
Research Advances in Logic-Based Program Development, LNCS, vol 3049, pp. 1–29, 2004

11. K.-K. Lau, M. Ornaghi, and S.-Å. Tärnlund. Steadfast logic programs. J. Logic Program-
ming, 38(3):259–294, March 1999.

12. J.W. Lloyd. Foundations of Logic Programming. 2nd ed., Springer-Verlag, 1987.
13. P. Miglioli, M. Ornaghi. A logically justified model of computation I , II Fundamenta

Informaticae, 4(1): 151-172, 4(2): 277-342 , 1981.
14. P. Miglioli, U. Moscato, M. Ornaghi. Constructive theories with abstract data types for

program synthesis In D.G. Skordev, editor, Mathematical Logic and its Applications, pages
293–302. Plenum Press, 1987.

15. P. Miglioli, U. Moscato, M. Ornaghi and G. Usberti. A Constructivism based on classical
truth Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

16. D. Miller. A logical analysis of modules in logic programming. JLP, 6(1-2):79–108, 1989.
17. C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, second edition, 2002.

	Introduction
	Program Units and Their Composition
	Behaviours and Program Composition
	Behaviour Specifications and Their Realization
	Interfaces
	The Compositional Calculus

	Discussion

