Innovative high pressure photoreactors for the photoreduction of CO₂

Ilenia Rossetti *1, Antonio Tripodi 1, Elnaz Bahadori 2, Gianguido Ramis 2

¹DICCA, Università degli Studi di Genova and INSTM Unit-Genova, Genoa (Italy) * gianguidoramis@unige.it ²Dip. di Chimica, Università degli Studi di Milano, CNR-ISTM and INSTM Unit-Milano università, Milan (Italy)

INTRODUCTION

Photocatalysis can be seen as a route for the storage of solar energy by producing "solar fuels", i.e. with artificial photosynthesis. In this work, we dealt with one of the most challenging applications: the photoreduction of CO₂. The transformation of CO₂ into regenerated organic compounds, to be used as fuels or chemicals (CH₄, HCOOH, HCHO, CH₃OH) was studied. Our attention was predominantly focused on the development of innovative photoreactors, operating under unconventional conditions, with the fine tuning of the operation parameters. In particular, we have set up and optimized a new photoreactor operating at pressure up to 20 bar and relatively high temperature (up to 90°C) which allowed to overcome one of the main limitations for the photoreduction of CO₂ in liquid phase, i.e. the low CO₂ solubility. The possibility to increase the operating pressure also allowed to explore unconventional reaction conditions, evidencing an unexpected boost of productivity with respect to literature results.

EXPERIMENTAL/THEORETICAL STUDY

The selected photocatalysts were based on TiO₂, since the main focus was reactor optimization. The materials were prepared by flame spray pyrolysis as dense nanoparticles, or in mesoporous form through a soft template synthesis, and compared with commercial samples of nanostructured TiO₂ P25 by Evonik. Different metals, such as Cu and Au, Pt, Pd, Ag, Ni, with loading ranging from 0.1 to 1 mol% were added as co-catalysts (mono or bimetallic formulations. The role of the metals was that of electron sinks, to inhibit the electron-hole recombination and they were also selected due to the formation of a plasmon resonance band which improves visible light absorption. The samples were characterized by N2 adsorptiondesorption, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and temperature programmed reduction/oxidation (TPR/TPO).

The photocatalytica activity tests have been carried out in batch mode using a high pressure photoreactor described elsewhere [1,2], using a UVA immersion lamp, coaxial with the photoreactor ($\lambda_{max} = 365$ nm, ca. 77 W/m²).

RESULTS AND DISCUSSION

Operation at high pressure allowed to boost the conversion to partially reduced compounds (HCOOH, HCHO and CH₃OH), with much more limited conversion to CO and CH₄. The present high pressure photoreactor

also showed extremely versatile to drive the reaction towards the desired product among those listed by tuning pressure, temperature, reaction time and pH. The highest productivities reached up to now were obtained with 0.2% Au/TiO₂: 40 mol/h kg_{cat} of HCOOH (7 bar, 80°C, pH=14, 24 h reaction time), 17 mol/h kg_{cat} of HCHO (7 bar, 80°C, pH=14, 6 h reaction time) and 1.7 mol/h kg_{cat} of CH₃OH (7 bar, 80°C, pH=7, 24 h reaction time, 0.2% CuO/TiO₂ as catalyst).

The increase of pressure from 7 to 19 bar almost doubled the amount of HCOOH obtained and, also in this case, the increase of temperature allowed to increase the productivity. This was unexpected, since the increase of temperature is often discussed as negative for photocatalysis due to an increased recombination rate of the photogenerated charges.

The apparent quantum yield (AQY) has been here calculated as follows:

$$AQY (\%) = \frac{\text{moles of product(i) } per second \times v(i)}{Incident \ photons \ per \ second}$$

where v(i) is the number of electrons consumed to reduce CO_2 to the desired product. And is directly calculated from the productivity data here reported. The incident photons flow has been calculated based on the measured intensity of radiation.

CONCLUSION

In this work we have investigated the effect of unconventional reaction conditions, i.e high pressure and relatively high temperature, on the photoreduction of CO_2 . The increase of temperature to 80-90°C revealed beneficial and the increase of pressure boosted the productivity for CO_2 photoreduction to results presently unrivalled in the literature. For this latter application, the use of this photoreactor also allowed to tune the selectivity towards different compounds by simply changing the reaction conditions.

REFERENCES

- F. Galli, M. Compagnoni, D. Vitali, C. Pirola, C. Bianchi, A. Villa, L. Prati, I. Rossetti, Appl. Catal. B: Environmental 200, 386 (2017).
- E. Bahdori, A. Tripodi, A. Villa, C. Pirola, L. Prati, G. Ramis, I. Rossetti, Catalysts 8, 430 (2018)

ACKNOWLEDGMENTS

I. Rossetti and E. Bahadori are grateful to Fondazione Cariplo and Regione Lombardia for financial support through the grant 2016-0858 – Up-Unconventional Photoreactors.