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Abstract: Arundo donax L., the giant reed—being a long-duration, low-cost, non-food energy crop able
to grow in marginal lands—has emerged as a potential alternative to produce biomass for both energy
production, with low carbon emissions, and industrial bioproducts. In recent years, pioneering
efforts have been made to genetically improve this very promising energy crop. This review analyses
the recent advances and challenges encountered in using clonal selection, mutagenesis/somaclonal
variation and transgenesis/genome editing. Attempts to improve crop yield, in vitro propagation
efficiency, salt and heavy metal tolerance by clonal selection were carried out, although limited by the
species’ low genetic diversity and availability of mutants. Mutagenesis and somaclonal variation
have also been attempted on this species; however, since Arundo donax is polyploid, it is very difficult
to induce and select promising mutations. In more recent years, genomics and transcriptomics data
are becoming available in Arundo, closing the gap to make possible the genetic manipulation of
this energy crop in the near future. The challenge will regard the functional characterization of
the genes/sequences generated by genomic sequencing and transcriptomic analysis in a complex
polyploid genome.
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1. Introduction

A. donax L. is a widespread species of unclear origin. This perennial grass grows spontaneously
in temperate and tropical zones almost all over the world [1,2]. It can be found in ecosystems highly
altered by anthropic activity and along riparian zones [3], where it often acts as an invasive weed
reducing biodiversity [4], and brings an increased risk of wildfires and floods [5]. The roots can grow to
5 m in depth [1,6] and canes can reach 8–10 m in height and 3–4 cm in diameter (Figure 1). The leaves
are flat, 5–8 cm wide and 30–100 cm long, inserted alternately in two ranks [1,7,8]. In southern Europe,
new canes sprout continuously from rhizomes, starting in early March until August to November,
when flowering takes place. Senescence follows in winter, with canes becoming yellow and generally
losing leaves and inflorescences. Inflorescences are large plume-like panicles 30–100 cm long [7] that
do not produce viable seeds [9–13].
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Figure 1. Crop field of A. donax L. for energy purposes in the third year of cultivation. 
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since a drastic founder effect could explain this, rather than it being a consequence of defective 
chromosome pairing in aneuploid A. donax and A. micrantha Lam. [14]. At first glance, in A. donax, 
male and female gametogenesis fails right after meiosis. Following the megaspores’ mother cell 
formation at the tetrad stage, three chalazal megaspores degenerate, while one micropilar 
megaspore enlarges, develops a large nucleolus but no embryo sac, with the consequent 
proliferation of dysfunctional cells and the failure of ovule development. Pollen grains’ cell walls 
usually collapse by autolysis, with the appearance of large numbers of vacuoles and variable 
numbers of nuclei and micronuclei. Despite this being the common result, the formation of a few 
viable pollen grains is reported with a frequency of 6.2% [14,15]. Meiosis occurs in less than 10% of 
microsporocytes, and no formation of exine occurs in the microsporangium [11]. A. donax sterility 
has been reported to be related to alterations in gametogenesis and fertilization and post-fertilization 
development [16]. A. donax sterility most likely has various causes that have led to its agamic 
propagation strategy. Reproduction is exclusively asexual and occurs through vegetative 
propagation [17,18] by fragmentation of rhizomes and cane fragments, which are dispersed by 
floods or by human activity [1,19]. 

The worldwide spread of A. donax is related to several domestic and agricultural purposes such 
as the making of walking-sticks, baskets, mats, fishing rods, fences, plant stakes and musical 
instruments’ parts, especially the reeds for clarinets and saxophones [1,8,20,21]. A. donax is supposed 
to have spread from Asia, its native center, to America, passing through the Mediterranean area 
[15,22–25]. Other authors suggest that this plant originated in Mediterranean regions from native 
species [26]. At least four other species from the Arundo taxon are present in the Mediterranean area: 
A. plinii L., A. collina Ten., A. mediterranea, and A. micrantha Lam. [27,28]. Six lineages of A. donax are 
supposed to be distributed from Asia to the Mediterranean basin, with a putative area of origin in 
the Western and Southern edges of the Qinghai-Tibet Plateau [29]. The phylogenesis of A. donax is 
still debated, as the hypothesis that this species is polyploid or allopolyploid is shared by various 
authors based on its macroscopic traits, such as the great vegetative vigor and the absence of fertile 
seeds [12,13,30]. The literature data about the chromosome number of A. donax L. show some 
discrepancies, from an often-reported number of 108–110 chromosomes [12,30–33], to 84 
chromosomes [13], or seed-producing cytotypes with 72 chromosomes, although this last result was 
published before the revised classification of the genus Arundo [28]. 
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Studies on A. donax L. sterility are often contradictory. In fact, this topic has yet to be clarified, since
a drastic founder effect could explain this, rather than it being a consequence of defective chromosome
pairing in aneuploid A. donax and A. micrantha Lam. [14]. At first glance, in A. donax, male and
female gametogenesis fails right after meiosis. Following the megaspores’ mother cell formation at
the tetrad stage, three chalazal megaspores degenerate, while one micropilar megaspore enlarges,
develops a large nucleolus but no embryo sac, with the consequent proliferation of dysfunctional
cells and the failure of ovule development. Pollen grains’ cell walls usually collapse by autolysis,
with the appearance of large numbers of vacuoles and variable numbers of nuclei and micronuclei.
Despite this being the common result, the formation of a few viable pollen grains is reported with
a frequency of 6.2% [14,15]. Meiosis occurs in less than 10% of microsporocytes, and no formation
of exine occurs in the microsporangium [11]. A. donax sterility has been reported to be related to
alterations in gametogenesis and fertilization and post-fertilization development [16]. A. donax sterility
most likely has various causes that have led to its agamic propagation strategy. Reproduction is
exclusively asexual and occurs through vegetative propagation [17,18] by fragmentation of rhizomes
and cane fragments, which are dispersed by floods or by human activity [1,19].

The worldwide spread of A. donax is related to several domestic and agricultural purposes such as
the making of walking-sticks, baskets, mats, fishing rods, fences, plant stakes and musical instruments’
parts, especially the reeds for clarinets and saxophones [1,8,20,21]. A. donax is supposed to have
spread from Asia, its native center, to America, passing through the Mediterranean area [15,22–25].
Other authors suggest that this plant originated in Mediterranean regions from native species [26].
At least four other species from the Arundo taxon are present in the Mediterranean area: A. plinii L.,
A. collina Ten., A. mediterranea, and A. micrantha Lam. [27,28]. Six lineages of A. donax are supposed
to be distributed from Asia to the Mediterranean basin, with a putative area of origin in the Western
and Southern edges of the Qinghai-Tibet Plateau [29]. The phylogenesis of A. donax is still debated,
as the hypothesis that this species is polyploid or allopolyploid is shared by various authors based
on its macroscopic traits, such as the great vegetative vigor and the absence of fertile seeds [12,13,30].
The literature data about the chromosome number of A. donax L. show some discrepancies, from an
often-reported number of 108–110 chromosomes [12,30–33], to 84 chromosomes [13], or seed-producing
cytotypes with 72 chromosomes, although this last result was published before the revised classification
of the genus Arundo [28].

Large-scale cultivation of A. donax was established between the 1930s and the 1960s in Northern
Italy to produce the textile fiber Rayon, but after the Second World War, it became unsustainable due to
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the competition from petroleum-derived products [1,34]. Recently, the economic interest in this species
has risen again and a considerable number of publications have dealt with different topics about this
interesting crop: bioenergy, agronomy, invasiveness, and its use for phytoremediation [35]. The high
yield in dry matter per hectare and the low inputs required for cultivation make A. donax a promising
energy crop [8,36,37]. Chips and pellets for direct combustion are a practical solid fuel obtainable
from A. donax [38], while other possibilities are gasification [39], second-generation bioethanol [40,41],
and biogas for co-generation. For the last-named use, various experiments in northern Italy have
promoted A. donax as an acceptable substitute of Zea mays L. in anaerobic digestion plants. Other
potential benefits include biofuels [42,43], biocompounds for plastic polymers [44], green building
technologies [45] and leaf protein concentrate as a feed ingredient [46].

The capacity of A. donax to grow on marginal and abandoned lands makes this plant viable
for cultivation on soil not suitable for traditional agriculture. Lands can be defined as marginal for
different reasons, such as water scarcity, poor soil quality (e.g., high conductibility, low organic matter,
etc.), and industrial pollution. On sandy loam soil (77% sand) with low organic matter content (1.2%
organic matter) and low nutrients availability, the A. donax dry biomass yield was reported to be about
20 tha−1 [47]. This result was obtained with no irrigation, weeding or pest control. Taken together,
these characteristics take this energy crop out of competition with food/feed cultures. Furthermore, A.
donax has been classified as moderately salt tolerant with a 50% yield reduction at 11 dS m−1 salinity
concentration [48]. Also, in this case, there is no competition with food-feed crops because, for these
crops, the salinity concentrations determining 50% yield reduction are significantly lower, as in the
case of corn (5.9 dS m−1) and rice (3.6 dS m−1) or similar as in the case of sugar cane (8–12 dS m−1). For
sugar beets, it is reported a higher salt tolerance (15 dS m−1) but this culture requires a strong weeding
control, irrigation and fertilization procedures.

Marginal lands are growing worldwide due to anthropic activities, in fact secondary salinization
affects 20% of irrigated land worldwide [49], and in Europe, the soil contaminated with heavy metals
represent 6.24% (137,000 km2) of the total agricultural land [50]. This could mean an opportunity to
cultivate energy crops environmental friendly such as A. donax in the near future.

The optimization of new strategy for the sustainable use of marginal lands in Mediterranean
areas was the aim of the European project, OPTIMA (Optimization of Perennial Grasses for Biomass
Production in the Mediterranean Area) [51]. This project, analyzing the production potential, in
biomass terms, of four perennial species (miscanthus, giant reed, switchgrass and cardoon), together
with other less known endemic species, highlighted the high adaptability and the high biomass
production of A. donax when compared to the other energy crops [52–54].

2. Genetic Variability

Many studies in the last 20 years have investigated the genetic variability among A. donax
populations, not only for taxonomic purposes, but also to evaluate the possibility of genetic improvement
programs. Fingerprinting A. donax by molecular markers often showed low genetic differences even
in populations with large areas of diffusion. The first studies run under “The European Giant Reed
(Arundo donax L.) Network” consisted of RAPD (Random Amplification of Polymorphic DN) analysis,
and found a low percentage of polymorphism among populations from Greece, Italy and southern
France, clustered by their respective origins [23]. A subsequent paper reported a G/N (G = number of
distinct genotypes, N = number of samples) diversity index of 0.460 by the analysis of 97 accessions
in eight populations along the Santa Ana River (United States) by RAPD markers. These authors
suggested that multiple introductions of different clones had been made into the area of that survey.
Isozyme analysis also detected variations, even if they were slightly lower than the RAPD markers
analysis [47].

Further analysis by 10 SRAP (Sequence Related Amplified Polymorphism) and 12 TE-based
(Transposable element) primer combinations, on 185 accessions from a wider area in the United
States, suggested genetic identity, and the authors hypothesized that even if multiple introductions are
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documented, the same clone could be growing in different parts of the world. The G/N diversity index
reported was 0.011 in the United States and 0.050 in France [24]. A further investigation resulted in a
Nei’s index of 0.0566 for Italian, 0.099 for Asian and Middle-Eastern, and 0.0744 for Mediterranean A.
donax accessions [15].

Two years later, AFLP (Amplified fragment length polymorphism) fingerprinting scored the
lowest genetic diversity for the species among 16 accessions in the Mediterranean area, with a Nei’s
diversity index of 0.008 [28]. Higher diversity has been reported in an Australian study, where the
investigation on three river systems led to 31 unique genotypes among 58 plant samples, with a
G/N ratio of 0.815 [13]. Variability assessed with the biggest sample size of 362 accessions, mostly
concentrated in the Rio Grande basin, Texas, Mexico and Spain, retrieved relatively high variability,
with a higher Nei’s diversity index of 0.929 in Spain and 0.243 in north-central America. The same
similar genotypic clusters can be found in both continents, and the conclusions of the authors are,
as already pointed out by previous studies, that A. donax has been introduced several times in the
areas of the survey [55]. The same set of primers, used for the molecular fingerprints of 15 Italian
clones, revealed genetic clusters, with no exclusive correlation to geographical data, but shared among
different sampling sites and a G/N of 0.933 [56]. Seven SSR primers randomly selected from Maize
GDB, used to fingerprint a collection of 86 Italian A. donax accessions, revealed a low genetic diversity,
with a Nei’s diversity index of 0.093 [57]. The genetic diversity among 31 accessions sampled in the
United States, India and Nepal resulted in a G/N ratio of 0.81 and 21 distinguishable genotypes [58].
The next year, 218 accessions from Australia were fingerprinted by AFLP, identifying two groups
through Nei’s identity test, one dominant as in previous studies, and genetic diversity of 1.5% within
the groups. Somatic variation could be the source of this variability, even if the frequency of mutations
for A. donax has not yet been reported [59]. As a synthesis of all the studies reviewed, the efforts to
describe A. donax variability are summarized in Table 1.

Table 1. Genetic difference among A. donax L. accessions using different molecular approaches expressed
as G/N ratio (G = number of distinct genotypes, N = number of samples) or Nei’s index.

Sample Size Markers (n) Location G/N Nei’s Index Reference

97
RAPD (14) California 0.460 - [54]
Isozyme (2) USA 0.092 - [54]

185
SRAP (10) USA 0.011 - [24]
SRAP (10) France 0.050 - [24]

12 ISSR (10) Italy 0.083 0.0566 [15]

122
AFLP (6) Asia-Middle

East - 0.099 [15]

AFLP (6) Mediterranean - 0.0744 [15]
16 AFLP (6) Mediterranean - 0.008 [28]
58 ISSR (10) Australia - 0.815 [13]

159 ISSR (10) Mexico-USA - 0.243 [55]
203 ISSR (10) Spain - 0.929 [55]
15 ISSR (10 Italy 0.933 - [56]
86 SSR/STS (7) Italy 0.093 - [57]
31 ISSR (20) USA-India-Nepal 0.81 - [58]

218 AFLP Australia 0.94 0–0.192 [59]

The different values for genetic variability among A. donax clones reported in the other studies
could be explained by considering the use of different molecular markers, population sizes and
sampling techniques [60].

For example, higher scores resulted from studies on river systems or single countries and are
often explained by multiple introductions. A lower variability is possible when a wider area but
a limited number of accessions has been sampled [28]. Moreover, sampling from hydrogeological
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basins can maximize the probability of collecting A. donax genotypes that have adapted differently to
environmental conditions [61].

In addition, the limited genetic variability is unlikely to explain the phenotypical variations
among accessions, and epigenetic variations need to be considered. Flowering traits, for example,
are positively correlated to the latitude of sampling sites, even years after transplanting, and a fast,
epigenetic adaptation to climatic factors could be responsible for the high variability of these traits [56].
Considering the phenotypical variations reported, like variegation, no evidence of correlation with
genetic differences has been detected by molecular markers’ analysis [24]. Epigenetic variability
can compensate for the low genetic diversity and explain the great adaptability of this plant species.
Phenotypical differences among ecotypes due to genetic and epigenetic differences were studied
analyzing 96 accessions of A. donax collected from 14 different populations in Italy by a combined
approach with AFLP and MSAP markers [62]. The genetic diversity highlighted was explained by
subdivision of populations into two clusters, one including most of the mainland Italy accessions,
and the other, samples collected in the Sardinia and Campania regions, suggesting two different
introductions of A. donax L. and confirming a low genetic diversity. Pedo-climatic conditions may
generate variations in DNA methylation status that drive the mechanisms of convergence and/or
divergence of populations experiencing similar or dissimilar habitats [62]. Methylation patterns in
response to stress may vary among ecotypes with tissue specificity. Considering the salt-tolerant
ecotypes, “Canneto” and “Domitiana” exhibited a different methylation profile in roots and leaves in
comparison with the more susceptible “Cercola” ecotype [63].

3. Clonal Selection

The clonal selection of A. donax L. was a strategy already used at the end of 1970s to improve the
trait’s “cane number” [64]. A clone comparison was carried out in Italy in 1997 and 1998, utilizing
springtime-transplanted rhizomes of 39 clones collected in the Sicily and Calabria regions. Different
biometrical parameters were measured, in particular, stem density, stem weight and plant height,
showing for each clone a positive correlation with biomass yield. These traits had a significant variance
among clones, maintained during the two years of this study, with heritability (h2) of 0.23 for yield
and 0.48 and 0.46 for, respectively, stem density and stem height [65]. Positive results in term of
heritability in the first year also resulted from an investigation on eight clones, part of a 100 Italian
A. donax collection, with a heritability index (h2) of 0.21 and 0.34 for stem height and stem diameter,
respectively. As pointed out by the authors, differences may disappear over the years, considering that
the heritability of certain traits could be related to epigenetic regulation [57,66].

Clonal selection recently gave results in terms of selection for propagation efficiency during field
establishment. From the field-grown collection of the University of Milan of 100 Italian A. donax L.
clones, nine clones were tested for hydroponic propagation, and thirty-two clones for in vitro shoot
multiplication. Significant differences were reported among clones, considering the percentage of node
buds sprouting in hydroponic propagation, which ranged from 19.6% to 71.7%, and the number of
shoots produced in a 45-day cycle of tissue culture, which ranged from less than 10 to over 40. The
clone Ad20 gave the best performance during hydroponic cultivation and had a high predisposition
towards micropropagation [67].

Clonal selection has also been performed to select clones with relevant anthocyanin production
(unpublished results). In fact, anthocyanin pigments are an easy, visible marker easy to obtain in a
large clone collection. The germplasm collection managed by the University of Milan was evaluated
during the regeneration phase, looking for the presence of red pigments. The clone Ad47 exhibited red
tissues in 30% of the explants, while the other clones showed this trait with an average frequency of
15%. The Ad47 clone showed red pigmentation in different tissues, including callus, embryo, root,
shoot and leaf (Figure 2). This result suggested that clonal selection could be used to improve/also
modify secondary metabolites, or in general useful molecules, in A. donax.
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Figure 2. Accumulation of anthocyanins in different tissues of Ad47 clone. (a) Embryogenic callus
grown under circadian light cycle. (b) Shoot regenerated from organogenic callus. (c) Swollen bud
from hydroponic propagation of vegetatively active canes.

The low tolerance to freezing of A. donax is one of the factors limiting its diffusion. Clonal selection
through screening in controlled environment chambers is a viable method to select cold-resistant A.
donax clones, to enlarge the possible cultivation areas. Low temperature exposure has been reported
to increase the freezing tolerance of a Honduras A. donax ecotype, also resulting in increased soluble
sugars and proline production [68].

Other environmentally limiting factors, such as drought and soil salinity, are met with a significant
tolerance by A. donax, making this species suitable for producing energy on marginal lands, in a
strategy of competition avoidance with food crops [69]. Calculation of the stress susceptibility index
(SSI) based on physiological values, such as SLA, total dry weight, surface of green leaves and CO2

assimilation rate, has been used in a comparative study including five clones from the collection of the
University of Catania, Italy, two clones from Spain, and one commercial clone from Germany. Water
scarcity and excess of NaCl were combined or considered individually, for a two-month period, with
measurements every 15 days of the physiological parameters in the different clones. Five salt-tolerant
clones were selected, and a further experiment for the evaluation of their performance under mild
and severe salt stress corroborated the results obtained. “Agrigento” was the most resistant clone to
water stress and “Martinensis” to salt stress; “Martinensis” and “Piccoplant” were the most suitable
for combined stress conditions, while “Fondachello”, “Cefalù” and “Licata” performed better under
increasing salt levels [70]. In hydroponic conditions, severe treatment for 3 weeks under 150 mM NaCl
can successfully discriminate salt-tolerant ecotypes, while a mild stress obtained with 50 mM did not
succeed. Practical parameters that highlighted differences in stress tolerance include the fourth-leaf
width and dry weight of shoots and roots. Among ten ecotypes tested with this method, “Sant’Angelo”,
“Canneto” and “Nisida” had the highest leaf growth at day 7, while “Torre del Greco”, “Domitiana”,
“Policastro” and “Cercola” had smaller leaves with significant reductions from control to salt treatment.
“Torre Lama” had the highest shoot biomass production, followed by “Canneto”, “Domitiana and
“Sant’Angelo”, and showed no influence of salt treatment on this parameter [54]. Comparing three
Italian ecotypes from the region Campania, the most salinity tolerant ecotypes were “Domitiana”
and “Canneto”, with low impact on growth performance in 3 weeks of cultivation, while “Cercola”
exhibited a fast stress response with detrimental effects on growth [56].

A faster response of one clone sampled from dry environmental conditions, in terms of stomatal
closure due to ABA diffusion, was highlighted in a comparison between Clone 6 and Clone 20
from southern Italy, even if other physiological measures were not significantly different in drought
conditions [66]. Comparing two ecotypes, one Italian and one Bulgarian, the latter showed higher
performance in drought stress conditions, due to metabolic adaption in terms of increased release of
isoprene and a more consistent production of ROS-scavenging compounds such as flavonoids. On the
other side, the Italian ecotype showed a lower ability to produce isoprene, resulting in higher oxidative
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pressure, with increased content of zeaxanthin and more severe effects on primary metabolism in
conditions of mild drought stress [71]. In analogy with salt stress, mild water stress caused by rainfed
conditions, and tested on three clones, sampled in Morocco and in the two Italian regions Sicily and
Tuscany, did not succeed in highlighting qualitative traits for the improvement of A. donax tolerance
to environmental stress. However, physiological and morphological variations among ecotypes can
still be observed, in particular the Sicilian clone maintained its photosynthetic efficiency late into
the growing season in comparison with the other clones [72]. The comparison of Moroccan with
northern Italian ecotypes in drought conditions over 2 years, on physiological values, highlighted
how adaption to drought could be flagged by a reduced stem density, considering that this trait of
the Moroccan ecotype, was paired with a better root water uptake efficiency in 20–40 cm deep soil, in
the second growing season, a higher leaf water potential, and increased xylem vessel area and water
conductance in drought conditions. Moreover, this clone had reduced stem density and shallow roots
density, when grown in these limiting conditions, while the Italian clone maintained its morphology
unchanged [73]. Early stomatal closure in response to drought stress and recovery during subsequent
watering had no discriminating value to evaluate A. donax ecotypes for water stress tolerance, but
actual consideration of the Moroccan ecotype’s morphology, paired with its high ash content, could
represent interesting selection measurements for improving productivity [74]. The comparison within
a panel of 82 Euro-Mediterranean ecotypes, beside confirming phenotypical variations and heritability
of 21 traits among clones, allowed the authors to associate ecotypes adapted to arid zones with early
flowering and to cluster ecotypes based on this measure, providing additional tools for early evaluation
of A. donax clone productivity [56,75].

Despite a vast literature on the phytoremediation potential of A. donax L., fewer publications have
approached this topic in terms of clonal selection. Comparing two ecotypes, the American Blossom and
the Hungarian 20 SZ, in in vitro embryogenic cultures with increasing amounts of sodium-selenate,
differences among ecotypes for survival rate, selenium accumulation and growth parameters could
be detected, especially at the concentration of 20 mg/L Na2SeO4. The Blossom ecotype exhibited
higher selenium accumulation, with detrimental effects on growth performance [76]. On the base of
these results, selection for target traits have to be carefully considered in the widest view possible,
considering that a single positive parameter can negatively correlate to other key performance indices.
In a similar setup, the copper tolerance, in the range of 0–26.8 mg L−1 CuSO4 pentahydrate, resulted in
both ecotypes proving suitable for phytoremediation for this element [77]. Selection of clones suitable
for lead and cadmium phytoremediation has been reached through sampling of ecotypes from ten
populations of A. donax in non-ferrous and smelting areas of South China. Clones from Hunan and
Yunan exhibited the highest accumulation factors for Pb and Cd, respectively, identifying these clones
as promising for phytoremediation of these elements. This strategy suggested that a viable way for
clonal selection with the purpose of phytoremediation is the in-situ evaluation of clones, considering
the content of contaminants in the soil and some physiological parameters in A. donax plants, most
notably the content of malondialdehyde [78].

4. Somaclonal Variation and Mutagenesis

To stably increment the genetic variability of A. donax besides observing the rise of epigenetic
variants, somaclonal variation and mutagenesis methods must be considered. In a research project
with our group, a large experimental field (5 ha) has been established in Uboldo, Italy, and four
unique phenotypes have been identified among 15,000 individuals propagated via in vitro shoot
culture. Among the four unique traits, three were variegated with a defective photosynthetic pathway
(Figure 3), and one was a brachytic phenotype.
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These individuals have reduced growth, and the chlorotic yellow to white striped sectors exhibit
defective chloroplasts, with no accumulation of chlorophylls and reduced membrane organization
and dimensions.

In a study on the results of embryogenic callus culture, variegation of A. donax plantlets was
described, with 11 distinctive band pattern phenotypes reported out of 50,000 acclimated plantlets
obtained from micropropagation, with white or clear green bands deficient in chlorophyll a and
b, [79]. Based on these data, variegated phenotypes of A. donax obtained from regeneration through
embryogenic callus or shoot culture, can occur with a frequency of approximately 1/5000. Variegated
clones of A. donax L. were already reported 250 years ago [80] and were sold as ornamental plants
in the United States [54]. Somaclonal variation can result in such cytological abnormalities but
also in frequent qualitative and quantitative phenotypic mutations, sequence changes, and gene
activation and silencing. Epigenetic mechanisms play a role in somaclonal variation, including
activation of transposable elements, silencing of genes, and variating methylation pattern of single-copy
sequences [81]. In A. donax L., transposable elements are estimated to represent 37.55% of the genome.
The Ty3-Gypsy LTR-RT (Long Terminal Repeat-Reverse-Transcriptase) superfamily was the most
represented, and estimated to represent 12.88% of the genome. Highly conserved copies of RIRE1-like
Ty1-Copia elements are estimated at about 3%, while a majority remain unclassified and considered
species-specific, not similar to any coding gene and not of plastidial origin [82]. During the in vitro
development, the genome of the explants follows cycles of demethylation, while undifferentiating,
and reaches different levels of methylation during regeneration. A consequence is that methylation at
specific loci would decrease during dedifferentiation, and could not be re-established normally during
regeneration [81]. In this perspective, important traits can be discovered or improved, and somaclonal
variation represents a tool to increase and study A. donax variability. For example, in vitro somaclones
tested for dehalogenation activity in roots extracts show higher variability than clones propagated
vegetatively in nurseries. Application of near-lethal levels of trichlorophenol to in vitro cultures further
increase the variability. As a measure of the effect of somaclonal variation on dehalogenation activity,
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the highest 95th and 99th percentile of somaclones increased, respectively, by 14% and 31% with no
selective pressure, and by 64% and 93% with near-lethal levels of trichlorophenol [83].

Different methods for A. donax tissue culture, essential in the frame of its genetic improvement,
have been investigated by different authors. Large scale shoot culture micropropagation of A. donax is
rapidly achievable starting from stem nodes, preferably sampled in autumn, followed by subcultures
on a modified Murashige and Skoog (MS) medium supplemented with BAP (benzylaminopurine)
concentrations of 2–3 mg/L [84], 0.3 mg/L [85], 0.5–5 mg/L [86], 2.5–5 mg/L [87] or 1.25–5mg/L [67], with
roots developing on the same shoot propagation medium. Successful acclimatization (>95% survival)
of plantlets can be carried out, even in late winter, in a cold greenhouse or under simpler facilities
such as shade nets [84]. Starting from a single explant, shoot organogenesis can produce up to 700
plantlets/year [86]. Embryogenic cultures can be obtained from immature inflorescences on a refined
MS medium, that includes 2,4-D (2,4-dichlorophenoxyacetic acid), picloram, BAP, ZEA (zeatin) and
TDZ (thidiazuron) growth regulators [87].

Young inflorescence segments can also be explanted and grown as callus cultures on medium
supplemented with 05–5 mg/L of 2,4-D [88,89]. Another possibility is to utilize in vitro auxiliary
buds, excised and cultured in dark conditions, on media supplemented with BAP 0–0.25 mg/L and
2,4-D 0–10 mg/L, with 3 mg/L as the optimal concentration that harmonizes organogenesis and callus
formation, while BAP 0.25 mg/L alone is the best supplement to generate shoots [90]. The best
material to initiate a callus culture, to our experience, is the basal node of in vitro micropropagated
sprouts, followed by internode shoot sections. After initiation of the subculture, A. donax callus
cultures can be maintained as undifferentiated tissue with up to 10 mg/L 2,4-D and 0.25–0.5 mg/L
of BAP for 4–12 weeks long subcultures, also in light conditions. A method for callus preservation
is cryo-conservation by one-step vitrification in liquid nitrogen, in vials containing a protective
solution with MS salts, sugar, DMSO, glycerol and ethylene glycol. The loss of growth caused by
the treatment is below 10% [91]. In most papers, totipotent calli of A. donax are often described
as embryogenic calli, corresponding to light yellow-white calli, with granular friable consistency.
As described in the more detailed papers, this totipotent tissue must be transferred to a secondary
medium to effectively produce unipolar embryos [83]. Most papers do not report a clear distinction
between organogenetic and embryogenetic regeneration, and this is notable, considering that the
second is preferable in biotechnological improvement processes. Different media supplemented with
different hormone combinations can be used to regenerate shoots and roots through the callus phase,
using A. donax composite meristems and leaves. In our laboratory, undifferentiated callus cultures
sub-cultured for 2 years on medium supplemented with 2,4-D 10mg/L and BAP 0.5 mg/L have been
stimulated to regenerate on media supplemented with no growth regulators, 0.25 mg/L or 0.75 mg/L
BAP. Measurement of explant-specific heterogeneity and semi-quantitative selection of regenerant
callus lines may solve the problems limiting pro-embryogenic and organogenic regeneration from the
callus phase (Figure 4). Only 7 out of 201 explants exhibited shoot regeneration, while roots were
developed in the vast majority of explants. Well-developed embryo-like structures were obtainable by
transferring pro-embryogenic callus lines onto a primary medium for embryogenesis [88].

Suspension cultures of A. donax could represent a powerful technique to exploit somaclonal
variation, due to fast subcultures cycles and a higher increase in weight compared to solid medium,
with considerable growth over 10–14 days. Liquid culture medium can contain a combination of 2–4,D
and BAP or just glutamine as growth regulators [92]. Considering somatic embryogenesis to produce
variegated variants for commercial use [79], embryogenetic culture, or a suspension culture before
regeneration, should be preferred to reduce chimerism while increasing A. donax variability.

Besides this method, a more direct technique to increase variability in A. donax is mutagenesis by
physical means. A ionizing radiation of 40–60 Gy is a suitable dose of gamma radiation to regenerate
mutant clones from A. donax undifferentiated calli via organogenesis, considering a RD50 in the range
of the dosage used to mutagenize other polyploid species. The frequency reported of almost 10% of
aberrant phenotypes is quite high, suggesting that this technique is very promising to increase genetic
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variability in A. donax. Brachytic and dwarf phenotypes exhibited high heritability of these traits
while variegated mutants showed different variegation levels among different shoots in the plants [93].
Physical mutagenesis by gamma radiation can induce modifications in biomass composition of A. donax,
like increasing cellulose content to the levels of hardwood (41%), thus generating clones promising for
second generation bio-ethanol production, but also reducing the Si/K ratio of biomass and so the ash
melting point, which represents a detrimental trait for thermochemical conversion [94].
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5. Genetic Engineering

So far, to our knowledge, no transgenic A. donax plants with improved characteristics have been
developed, possibly due to the limited regeneration of tissues and the absence of traits of interest
well characterized at the molecular level. In any case, transient expression of GUS and GFP reporter
genes is obtainable by an optimized particle bombardment protocol on Arundo donax callus cells.
Important parameters to be taken into account include helium pressure, distance from stopping screen
to target tissue, value of vacuum pressure, material and size of the microparticles, DNA concentration
and number of bombardments. Higher efficiency in DNA transfer, resulting in 100–150 modification
positive spots for explant, is achievable with cells bombarded twice at 1100 psi, with 9 cm target
distance, 24 mm Hg vacuum pressure, 1 mm gold particle size, 1.5 µg DNA per bombardment, three
days of pre-culture before the bombardment and six days of culture after bombardment. Bombardment
with a GFP reporter gene resulted in higher expression than using GUS gene. The 35s promoter
of CaMV can be used for the constructs, with hygromycin resistance to select modified cells [89].
Transformation of A. donax is also possible through protoplast manipulation. Starting from suspension
culture, cell walls can be digested with a solution containing food-grade enzymes and 2–3 h incubation
at 37 ◦C. The comparison among promoters highlighted that Ubi2 promoter from P. virgatum L. is a
stronger promoter than CaMV 35S, with the second inducing low expression in A. donax. Trials with a
different set-up of PEG-mediated transformation failed, while electroporation carried out at 130 V and
1000 µF resulted in a transformation efficiency of 3.3% ± 1.5% [92].

The study of the A. donax genome is still a demanding research topic aimed at collecting knowledge
needed for A. donax genetic improvement, since the lack of a high-quality reference genome sequence. A
hybrid approach combining Illumina and long-read sequencing technologies, i.e., Pac Bio or Nanopore,
could be used as previously reported for de novo sequencing in other crops [95,96]. In particular, the
high-quality reference genome of Oryza longistaminata has been obtained incorporating Illumina and
PacBio sequencing data [95], while the de novo genome sequence assembly of trifoliate yam (Dioscorea
dumetorum) was the result of Illumina and Oxford Nanopore technologies [96].

A parallel approach to identify putative target genes for A. donax genetic improvemt is the
utilization of S. italica genome, the more related species that is actually sequenced. In fact, considering
the lignin biosynthetic pathway genes, in particular PAL-like and CCoAMT-like genes, the high
homology of four Mediterrean ecotypes of A. donax transcripts with S. italica L. [90] represent
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an important perspective for mining possible target sequences about this trait improvement by
bioinformatics. A similar approach has been recently applied to isolate potential gene target to be
used for genetic improvement of Miscantus × giganteus, a promising lignocellulosic biomass crop for
biofuel production. Transcriptional analyses and phylogenetic and genome synteny analyses have
allowed the identification of the major monolignol biosynthetic genes and the putative transcription
factors regulating their expression [97] (Zeng et al. 2020).

Different reviews have been published on genetic improvement of energy crops, but for the energy
crops suitable for genetic transformation, such as swichgrass, important results in the improvement
of energy production have been obtained by gene silencing [98,99] and CRISPR/CAS 9 (Clustered
Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9) [100] techniques.
However, the data reported for A. donax are based on the results of agronomic studies with the aim of
optimization of biomass quality.

Currently, sequence databases and information on organs diversity and possible targets for
improvement can be found in RNA-seq Illumina transcriptomics studies. Gene Ontology Analysis of
metabolic differences among bud, culm, leaf and root tissues highlighted that the most variety can be
found in the leaves, most notably for light, osmotic, salt and metal stress response, and for primary
and secondary metabolites production [101]. About 40–45% of transcripts showed homologies with
known sequences and functional annotations of Oryza sativa L., Triticum aestivum L. and mostly with S.
bicolor L. and Z. mays L., most importantly for gene categories related to flowering time, plant height
and structure, carbohydrates composition and vernalization response. CCoAMT-like genes deserve
particular attention for their possible role in obtaining mutants with decreased content of lignin in
culms [101]. The response of A. donax to low oxygen stress analyzed by a metabolomic approach [102]
provided numerous insights required to target functional genes by transcriptomics.

About the well-known A. donax tolerance to low soil quality, RNA-seq provided insights of
the available defenses from adverse soil conditions. Considering the excess of Ni and Cu, doses of
25–100 mg/L activated the expression of a metal-uptake YSL-like gene and a macrophage protein
which was NRAMP-like [103]. Adjustments in phytochelatin synthases expression could represent
a reliable strategy to increase A. donax uptake of metalloid contaminants with the purpose of
phytoremediation. With an RNA-seq methodology, three putative genes, AdPCS1-3 have been
identified in A. donax. The expression of these three genes in response to CdSO4 stress was tissue
specific, with AdPCS1 the most up-regulated compared with control. However, the production of
Arabidopsis thaliana L. transgenic lines overexpressing these genes resulted in deleterious effects on
growth, with necrotic effect, while the same strategy applied to yeast resulted in Cd-tolerant lines [104].
The responses to salt stress and salt tolerance are other important traits investigated by RNA-seq
with improvement purposes. Different ecotypes exhibited a possible positive correlation of salt
exposure with the expression of stress-induced transcription factors DREB2A-like and WRKY53-like,
activation of detoxification processes and abscisic acid increase. Moreover, a fast response to salt stress,
with overexpression of ion transporters and K+/Na+ homeostasis-related genes, such as SOS1-like,
NHX1-like or KHT1-like, represents an effort to reduce the ionic stress, but was detrimental to the
growth performance [63,105]. A RNASeq analysis [106] conducted under long-term salt stress allowed
the identification of differentially expressed genes with a dose-dependent response. The analysis
was performed on a total 38,559 DEGs (differentially expressed genes) and among them, 2086 were
up-regulated and 1766 were down-regulated.

In this paper, in particular, it is reported the analysis of clusters related to salt sensory and
signaling, hormone regulation, transcription factors, Reactive Oxygen Species (ROS) scavenging,
osmolyte biosynthesis and biomass production. Several unigenes identified have the potential to be
used to improve productivity and stress tolerance in A. donax. In particular, the silencing of the GTL1
gene (a homolog of Setaria italica trihelix transcription factor) acting as a negative regulator of water
use efficiency could be a good target for NBT (new breeding techniques).



Plants 2020, 9, 1584 12 of 18

6. Conclusions

The aim of this review was to emphasize the potential genetic methodologies to improve Arundo
donax, an emerging perennial crop plant for biomass production and industrial applications and to
discuss the main challenges and putative solutions.

In Figure 5, we have summarized the main targets of short-to-medium-term A donax genetic
improvement. In particular, we considered four steps regarding the complete A. donax pipeline: plant
production, stand establishment, crop growth and biomass processing.
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Literature data suggest that clonal selection is the best effective method up to now for
selection towards yield [57,65], in vitro propagation efficiency [67], salt tolerance [61,63,70] and
phytoremediation [76–78]. Physical/chemical mutagenesis [93] and somaclonal variation [79,83]
could represent opportunities to generate new genetic variability, although, since A. donax L. is a
polyploid species, it may be very difficult to genetically modify it and overcome the redundancy of
genetic information.

Due to the low genetic variability found in A. donax L. wild populations, genetic engineering
could represent an alternative solution to directly modify the expression of specific genes, making A.
donax even more competitive than other energy crops. In fact, A. donax L. transformation [89,92] is
possible, although so far, it is not a consolidated method due to the low regeneration efficiency from
callus cultures.
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Once efficient protocols to overcome these technical limits become available, the recent advances
in A. donax L. molecular markers [13,15,55,57,58] and transcriptomics [63,101,103,105,107] could be
used to improve several important traits of this energy crop, for example herbicide resistance [108]
and lignin content [109]. New genome editing techniques like CRISPR/cas9, are waiting to be applied
for straightforward improvement of a wide range of selected traits, overcoming possible genetic
redundancy caused by polyploidy. However, the potential of A. donax L. for energy production and
industrial applications is becoming established, and genetic improvement of this species will represent
an important part in the new deal of the green economy.
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