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Abstract. We update the ingredients of the Gaussian streaming model (GSM) for the
redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation
theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relat-
ing the GSM to the cumulant expansion, we present new results for the real-space correlation
function, mean pairwise velocity and pairwise velocity dispersion including counter terms
from EFT and bias terms through third order in the linear density, its leading derivatives and
its shear up to second order. We discuss the connection to the Gaussian peaks formalism.
We compare the ingredients of the GSM to a suite of large N-body simulations, and show the
performance of the theory on the low order multipoles of the redshift-space correlation func-
tion and power spectrum. We highlight the importance of a general biasing scheme, which we
find to be as important as higher-order corrections due to non-linear evolution for the halos
we consider on the scales of interest to us.
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1 Introduction

The growth of the large-scale structure in the observed Universe arises due to gravitational
collapse into dark-matter dominated potentials, tempered by the expansion of the Universe.
A wealth of information can be encoded in the growth rate, including constraints on the
expansion history, the nature of dark energy and modified gravity [1, 2]. There are several
ways of studying the growth of structure, but perhaps the oldest and highest signal-to-noise
measurement comes from observations of the anisotropy in the clustering of objects in redshift
surveys. Since the redshift, from which one infers distance, contains a contribution from the
line-of-sight velocity the clustering of objects in redshift surveys exhibits anisotropy [1, 3, 4],
known as redshift-space distortions (RSD).

Over the last several decades measurements of the redshift-space clustering of galaxies
have become increasingly precise (for example the measurements from the recently completed
BOSS survey [5] have percent-level uncertainties on quasi-linear scales) allowing highly precise
tests of the current paradigm but also posing a significant challenge for theorists seeking to
model the data. As we prepare for the next generation of surveys we need models which are
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able to model the redshift-space clustering of biased tracers at the percent level over a wide
range of scales (to break degeneracies between parameters).

In this paper we shall attempt to model the low-order moments of the redshift-space
clustering signal in configuration space, using models based upon Lagrangian perturbation
theory (LPT; see below) and the effective field theory of large-scale structure (EFT [6–13]).
LPT is one of the oldest and most successful analytic model for studying large-scale structure,
and provides a simple connection to N-body simulations and peaks theory [14]. EFT is a
consistent method for incorporating the effects of non-perturbative physics into perturbation
theory by including a number of additional terms, with free parameters, whose structure is
determined by the symmetries of the theory. Our focus here will be on increasing the precision
with which we can predict the clustering moments on intermediate scales (> 25h−1Mpc),
rather than on increasing the range of scales we predict. We believe this is a more appropriate
use of techniques built upon perturbation theory. For an alternative route, see Ref. [15].

The outline of this paper is as follows. In the next section we review the context within
which we will do our calculations: (Lagrangian) perturbation theory and the (Gaussian)
streaming model. The next section describes the computation of each piece of the streaming
model in terms of perturbation theory, including our bias model and the impact of small-scale
physics which is not explicitly modeled. In section 4 we discuss the expected evolution of the
correlation function, and the extent to which measurements in finite redshift slice can be
interpreted as being at an “effective” redshift. We present some preliminary comparison of
our results with N-body simulations in section 5, finding that we are limited by the accuracy of
the simulations. Finally we conclude in section 6. A number of technical steps are relegated to
a series of appendices. Appendix A reviews the derivation of the streaming model. Appendix
B reviews the Fourier-space statistics. Appendix C details the computation of the time-
derivative terms which enter in the velocity statistics. Appendix D presents a more general
Lagrangian bias model which includes derivatives of the initial density field and shear terms.
Appendix E compares our formalism to the distribution function formalism of Ref. [16].

2 Background

The next few subsections present some background to set the stage and our notation. First
we review LPT and then the “streaming model”. Some of the derivations or more technical
details are relegated to appendices.

Our focus will be the prediction of the two-point function in redshift space, i.e. the
correlation function:

ξ(s) = 〈δ(x)δ(x + s)〉. (2.1)

which depends on the separation, s = |s|, and the cosine of the angle between the separation
and the line-of-sight1 µ ≡ ŝ · ẑ. Following common practice we project the µ dependence onto
Legendre polynomials, P`,

ξ(s, µ) =
∑
`

ξ`(s)P`(µ) . (2.2)

By symmetry, odd ` moments vanish. In linear theory, only ` = 0, 2, 4 contribute; we will
focus our model predictions on those moments.

1We adopt the “plane-parallel” approximation throughout, so that the line-of-sight (LOS) is chosen along
a single Cartesian axis: ẑ.
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2.1 Lagrangian perturbation theory

The Lagrangian approach to cosmological structure formation was developed in [17–25] and
traces the trajectory of an individual fluid element through space and time. For a fluid
element located at position q at some initial time t0, its position at subsequent times can be
written in terms of the Lagrangian displacement field Ψ,

x(q, t) = q + Ψ(q, t), (2.3)

where Ψ(q, t0) = 0. Every element of the fluid is uniquely labeled by q and Ψ(q, t) fully
specifies the evolution. In what follows we shall suppress the time dependence of Ψ for
notational convenience. Once Ψ(q) is known, the density field at any time is simply

1 + δ(x) =

∫
d3q δD

[
x− q−Ψ(q)

]
⇒ δ(k) =

∫
d3q eik·q

(
eik·Ψ(q) − 1

)
(2.4)

For tracers which are biased, the density is modulated by a function of the linear density field,
the Laplacian of the linear density field and shear field at q (see §3). The evolution of Ψ is
governed by ∂2

t Ψ + 2H∂tΨ = −∇Φ(q + Ψ). We shall work throughout in terms of conformal
time, dη = dt/a, and write H = aH for the conformal Hubble parameter. The equation of
motion is thus Ψ̈ +HΨ̇ = −∇Φ(q + Ψ), where overdots indicate derivatives w.r.t. conformal
time. In LPT one finds a perturbative solution for Ψ, Ψ = Ψ(1) + Ψ(2) + Ψ(3) + · · · ,
with the first order solution, linear in the density field, being the Zeldovich approximation
[17]. Higher order solutions are specified in terms of integrals of higher powers of the linear
density field [25, 26]. To these perturbative terms are then added a series of ‘extra’ terms,
which encapsulate the effect of the small-scale physics which is missing in the perturbative
treatment [12, 13].

2.2 The streaming model

The effects of super-cluster infall [3] on large scales, and virial motions within clusters on
small scales, act to modify the clustering pattern observed in redshift space. Early models of
this effect [4, 27–31], nowadays termed “dispersion models”, were primarily phenomenological
in nature and treated the two regimes independently. While successful at describing early
survey data they do not describe the effects at the level of detail necessary for current and
future surveys.

A closely related class of models, inspired by [32, 33], are streaming models which aim
to jointly model the density and velocity field. The number of pairs of objects in real space
is related to 1 + ξ, so if one has a model for the probability, P, that a pair with real-space,
line-of-sight separation r‖ will be observed with redshift-space, line-of-sight separation s‖ then
pair conservation implies

1 + ξs(s⊥, s‖) =

∫
dy [1 + ξ(r)]P

(
y = s‖ − r‖|r

)
(2.5)

Our focus will be on the Gaussian streaming model (GSM), as originally developed in [34–
36] and discussed in [37–40]. In the GSM we assume that – for massive enough halos at
sufficiently high redshifts – P can be well approximated by a Gaussian, so that the redshift-
space correlation function can be written (see Appendix A)

1 + ξs(s⊥, s‖) =

∫
dy√

2π σ12

[1 + ξ] exp

{
−

[s‖ − y − µv12]2

2σ2
12

}
(2.6)
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with r =
√
y2 + s2

⊥, µ = s‖/
√
s2
⊥ + s2

‖, ξ the real-space correlation function (of the biased
tracer), v12 the mean, pairwise infall velocity and σ12 the pairwise dispersion. The correlation
function, ξ, and the velocity moments (v12 and σ12) are functions of r, though that dependence
has been suppressed in Eq. (2.6).

An alternative asymptotic expansion to the GSM is the “Edgeworth streaming model”
of Ref. [39]. This keeps higher orders in the cumulant expansion (e.g. Appendix A) which
improves the performance of the model at smaller scales and for higher multipoles. Ref. [39]
show that for the halo masses they probed innaccuracies in the perturbative expansion are
more significant than the neglect of the higher-order cumulants in the GSM, suggesting that
improving the ingredients in the GSM will yield the most benefit. This mirrors the conclusions
of Ref. [34], and forms part of the motivation for this work.

Ref. [39] also explore a number of coarse-graining approaches for perturbative evaluation
of the pieces of the GSM, an approach which has been furthered by Ref. [40]. As we will discuss
later, smoothing the initial field can mimic some of the effects of EFT operators (e.g. it can
reduce the rms displacement, which tends to be over-predicted by LPT) and hence improve
the numerical agreement between perturbation theory and simulations. However there are
couplings between the long- and short-scale modes which need to be “integrated out” which are
not taken into account in the smoothing approach. The apparent need for different smoothing
scales in different cumulants can be naturally explained by the structure of the EFT counter
terms entering the calculation.

3 The model ingredients

In this section we review the predictions of “Lagrangian effective field theory” for the ingre-
dients going into the streaming model described above. Much of this material has been well
developed in the literature, so we shall present here only the main results. The reader is
referred to Refs. [22–24, 36, 41] for the development of ‘standard’ LPT and Refs. [12, 13] for
the effective field theory corrections. We shall closely follow the notation in Refs. [22, 36], in
particular we define 〈δ(q1)δ(q2)〉 = 〈δ1δ2〉c = ξ(q = q1 − q2), ∆i = Ψi(q1)−Ψi(q2) and

Umni = 〈δm1 δn2 ∆i〉c , Amnij = 〈δm1 δn2 ∆i∆j〉c , Wijk = 〈∆i∆j∆k〉c (3.1)

with the shorthand notation Aij = A00
ij and Ui = U10

i .
All of the LPT results presented in the paper rely on an approximation where these

kernels are time independent (as in an Einstein-de Sitter cosmology). This is a potential source
of systematic error since in other cosmologies, including ΛCDM, the LPT kernels can be time
dependent. The effect of this on the one-loop matter power spectrum is typically at a sub-
percent level [42–44], but can reach 1% or more when also considering momentum statistics
[44] i.e. pairwise velocities and velocity dispersions. These effects are thus of particular interest
if sub-percent predictions of the statistics in redshift space are required, but will not dominate
our error budget.

We shall present our description of biased tracers in Lagrangian space. We use a gen-
eralised approach where, in addition to the expansion in powers of the linear density field δL
(Refs. [22, 23]), we include the shear of this field sij up to second order (see e.g. [45–55])
and an explicit derivative expansion starting with (∇2/Λ2

L)δL [47, 56–60]. The associated
scale, 1/ΛL, is related to the typical size of the object we are describing (also called also
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proto-halos). We shall refer to it as the Lagrangian radius of the halo. Thus we can write

1 + δX(x) =

∫
d3q F

[
δ(q),∇2δ(q), s2(q)

]
δD
[
x− q−Ψ(q)

]
(3.2)

with s2 = sijsij . For more detailed description of the biasing model we refer the reader to
Appendix D. After auto-correlating the field we keep the biasing terms up to quadratic order
(in the bias expansion) and one loop in the perturbative description of the nonlinear dynamics.
We denote the first two functional derivative of F w.r.t δ as b1 and b2, the functional derivative
w.r.t. ∇2δ as b∇2 and the functional derivative w.r.t. s2 as bs2 .

The corresponding terms of the general expansion in the Eulerian framework have been
discussed in [47, 56–59] who also include third order terms. The precise relation of these
Eulerian and Lagrangian biasing terms is not simple and parts of the third order Eulerian
terms are dynamically produced from evolving the Lagrangian bias framework [45, 46, 50, 51,
61, 62]. We intend to return to this question in a future publication.

Alternatively, biasing of dark matter halos can be studied in a phenomenological frame-
work like the excursion set model [49] or the theory of Gaussian peaks [14, 63, 64]. The
derivative (or in general ‘scale dependent bias’) and tidal terms can be analytically derived
within these frameworks leading to predictions for the corresponding bias coefficients. For
example, the derivative terms arise in the peaks model as a consequence of the peak constraint
imposed on the initial field when smoothed on the halo scale [53, 65, 66]. These predictions
can be very useful in describing the time evolution and approximate values of these bias
parameters, which can be used e.g. as priors in the EFT framework (see §3.5).

Finally, we note that the one-loop integrals that appear in the calculation of both the
LPT and bias terms typically rely on the computation of 2D numerical integrals (with higher
loops involving higher dimensional integration). It has been shown recently that all of these
integrals can be recast in a convenient form where Hankel transforms can be used to speed
up the computation (see e.g. Appendix B in Ref. [67] for the one-loop LPT expressions and
Ref. [68] for discussion of bias and RSD terms). Some of our biasing terms are already
expressed in this form (see Appendix D).

3.1 The real-space correlation function

The real-space correlation function for tracers which are locally biased in Lagrangian space
is given as the integral

1 + ξ(r) =

∫
d3q M0(r,q) . (3.3)

where [24, 36, 41]

M0 =
1

(2π)3/2|Alin|1/2
e−(1/2)(qi−ri)(A−1

lin )ij(qj−rj)

×
{

1− 1

2
GijA

1−loop
ij + b21ξL +

1

2
b22ξ

2
L − 2b1Uigi +

1

6
WijkΓijk − [b2 + b21]U

(1)
i U

(1)
j Gij

−b21U11
i gi − b2U20

i gi − 2b1b2ξLU
(1)
i gi − b1A10

ij Gij

−bs2
(
GijΥij + 2giV

10
i

)
+ b2s2ζ − 2b1bs2giV

12
i + b2bs2χ

12

−1

2
αξtrG+ 2b∇2B + 2b∇2b1B2,igi + · · ·

}
. (3.4)
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Figure 1. The terms in Eq. (3.4) evaluated at z = 0.8 for illustration. The left panel shows the terms
independent of bs2 while the right panel shows the bs2-dependent terms. In each case the solid black
line shows the DM-only correlation function (times r2) corresponding to the “1” term in Eq. (3.4). To
guide the eye on the relative size of the other terms, 1 per cent of this is shown as the dashed black
line. It is clear that to first approximation ξ(r) ≈ (1 + b1)2ξm(r) with corrections coming in at the
few per cent level. It is also clear that the shear terms are at least as important as the b2 terms.

and we have defined

gi = (A−1
lin )ij(qj − rj) , Gij = (A−1

lin )ij − gigj ,
Γijk = (A−1

lin )ijgk + (A−1
lin )kigj + (A−1

lin )jkgi − gigjgk .
(3.5)

Note our sign convention for gi follows that of Ref. [36] and differs from that of Ref. [13] by
a minus sign. This accounts for the difference in the sign of the Γijk terms when comparing
those two papers. It can be useful to have Fourier-space expressions as well, we relegate these
to Appendix B.

The first 2 lines within the Eq. (3.4) are the predictions of standard Lagrangian pertur-
bation theory. In the final line, the term depending on α is the “EFT term” which encapsulates
the effects of unmodeled, small-scale physics. The numerical prefactor is conventional, and
serves to standarzie the k-space expression. The b∇2 terms on the last line come from the
∇2δ bias, while the bs2 terms on the third line are from the shear-dependence of the bias.
Further details of the bias model, and expressions for B, V , χ, ζ and Υ terms, are given in
Appendix D.

The last three terms in Eq. (3.4) all have leading order contributions of the form k2 PL(k).
For this reason they are largely degenerate at the scales of interest and we can fit for just one
(combined) free parameter, which we take to be the coefficient αξ. We emphasize that the
degree of degeneracy is to some extent a numerical coincidence, since PT is an expansion in
k/kNL and bias is an expansion in k/ΛL. The two scales are in principle separate, with kNL
typically larger than ΛL. For this reason higher order terms in k/ΛL could become important
at k’s for which the lowest order terms in k/kNL are sufficient. The nature and degree of
degeneracies at higher order remains an open question. Also note that our resummation
scheme (keeping the Alin in the exponent) breaks the degeneracies, but only by terms which
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are higher order (see also the discussion in Ref. [13]; where a similar argument is made to
drop some of the other EFT counter terms which would be degenerate with k2 PL(k) to lowest
order — similar approximations, neglecting higher angular dependencies, are made in [69]).
We have verified that these differences are numerically small so henceforth we shall neglect
the B terms.

Ref. [36] kept all of the 1-loop terms contributing to Aij in the exponential, but here
we have followed Ref. [13] and kept only the linear (Zeldovich) terms exponentiated while
expanding the 1-loop terms into the {· · · }. This is more consistent with our retention of only
the lowest order EFT terms (while keeping the IR modes resummed). Note that our formalism
allows for an alternative IR resummation procedure that was described in Appendix B of
Ref. [13], which is similar to, albeit more general than, the procedure suggested in Ref. [69].
Similarly we have kept only terms up to second order in the linear theory power spectrum,
O(P 2

L), in the {· · · } of Eq. (3.4). This implies that only the lowest order contributions to Ui
are used in the terms indicated. We have found that this makes little difference numerically,
but again is more self-consistent if we view the terms in Eq. (3.4) as an expansion in powers
of PL.

Fig. 1 shows the contributions to r2 ξ(r) evaluated at z = 0.8. The left panel shows
the terms independent of bs2 while the right panel shows the bs2-dependent terms. The
dominant terms are the “1”, b1 and b21 terms whose sum closely approximates (1 + b1)2 times
the matter result. The dashed black line in each panel shows 1% of the matter result as a
guide to the level of correction. We see that all of the terms (with the possible exception of
b22) are important at the 1% level. Naively the αξ term is smaller than our 1% mark, however
we expect αξ ∼ O(10) given our normalization convention so that this term does become
significant and can alter the width of the BAO peak (as well as modifying the small-scale
correlation function).

3.2 The (mean) pairwise velocity

The mean, pairwise velocity is v12 = v12,nr̂n with

v12,n(r) = [1 + ξ(r)]−1

∫
d3q M1,n(r,q) . (3.6)

and [36]

M1,n =
f

(2π)3/2|Alin|1/2
e−(1/2)(qi−ri)(A−1

lin )ij(qj−rj)

×
{

2b1U̇n − giȦin + b2U̇
20
n + b21U̇

11
n −

1

2
GijẆijn − 2b1giȦ

10
in

+ 2b1b2ξLU̇
(1)
n − [b2 + b21]

(
giU

(1)
i U̇ (1)

n + giU
(1)
i U̇ (1)

n

)
− b21ξLgiȦ

(1)
in − 2b1GijU

(1)
i Ȧ

(1)
in

+ αv∇nξL − α′vgn − 2b∇2B2,n

+ bs2
(

2V̇ 10
n − giΥ̇in

)
+ b1bs2 V̇

12
n + · · ·

}
, (3.7)

The dot notation and the relationship between the derivatives and base quantities is elucidated
in Appendix C.

As above, the first 2 lines within the Eq. (3.7) are the predictions of Lagrangian per-
turbation theory, while the terms depending on α are the EFT terms which encapsulate the
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small-scale physics and the extra terms are due to the scale-dependent and shear-dependent
bias. As for ξ, we have truncated the expansion in Eq. (3.7) at second order in the linear
theory power spectrum, PL, which explains the use of U (1)

i and A(1)
ij in some terms.

3.3 The (pairwise) velocity dispersion

We decompose the velocity dispersion tensor into components parallel to and perpendicular
to the separation. The cumulant2 which enters Eq. (2.6) can be written as σ2

‖ = σ̂2
‖ − v

2
‖ and

σ2
⊥ = σ̂2

⊥ where

σ̂2
‖ = σ̂2

12,nmr̂nr̂m , σ̂2
⊥ =

1

2
σ̂2

12,nm

(
δKnm − r̂nr̂m

)
. (3.8)

with

σ̂2
12,nm(r) = [1 + ξ(r)]−1

∫
d3q M2,nm(r,q) . (3.9)

and we have (see Ref. [36] )

M2,nm =
f2

(2π)3/2|Alin|1/2
e−(1/2)(qi−ri)(A−1

lin )ij(qj−rj)

×
{

[b21 + b2]
(
U̇ (1)
n U̇ (1)

m + U̇ (1)
n U̇ (1)

m

)
− 2b1

(
Ȧ

(1)
in giU̇

(1)
m + Ȧ

(1)
imgiU̇

(1)
n

)
− Ȧ(1)

imȦ
(1)
jnGij

+ Änm + b21ξLÄ
(1)
nm − 2b1U

(1)
i giÄ

(1)
nm + 2b1Ä

10
nm + 2bs2Ϋmn − Ẅinmgi

+ ασδnm + βσδnmξL + . . .
}
. (3.10)

where above the first two lines in brackets {· · · } are the results from the usual Lagrangian
perturbation theory, truncated to second order in PL, and the terms in the last line are the
EFT caunterterms. The first, constant, counterterm is a “contact” or “zero lag” term coming
from all of the terms with a non-trivial q → ∞ limit. In Fourier space these terms require
an integration over all modes, including very high k modes. The second term, δnmξL, stands
in for a number of terms which cancel the high-k sensitivity of the Änm, Ä10

nm and Ẅinm

terms. In general there are counterterms with more complex structure, involving higher order
Bessel functions, but they are largely degenerate on the scales where our 1-loop calculation
is applicable (see also [13]) so we include only ξL above. We find these terms to be small,
numerically. The predictions for σ2

ij are weakly dependent on the bias, except the dependence
that comes through ασ.

In Refs. [34, 36] it was noted that perturbation theory compares relatively well with
numerical simulations on the shape of the pairwise velocity dispersion, but does much less
well on the overall amplitude. The difference between the N-body measurements and the
predictions of both Eulerian and Lagrangian perturbation theory is close to a constant. Here
we see that the leading order EFT term, ασδij , changes

σ2
ij → σ2

ij + α
1 + ξ0−loop

mat

1 + ξ1−loop
halo

δij . (3.11)

2The cumulant, σ2, was used in the original GSM of Ref. [34] and in Ref. [39]. The non-cumulant version,
σ̂2, was used in Ref. [36]. The differences manifest themselves primarily on small scales. We shall use the
cumulant throughout (see Appendix A).
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On large scales (ξ � 1) this is equivalent to adding a constant to both σ2
‖ and σ2

⊥ and
drastically improves the agreement between theory and simulation3. This term corresponds
to the lowest order correction for the finger of god effect suggested by Ref. [34]. Fingers of
god are one of several small-scale effects missing from the perturbative treatment that can be
handled using EFT methods. As noted above the ασ counterterm has (zero lag) contributions
from multiple terms: Änm, Ä10

nm and Ϋmn. Thus it can have a non-trivial bias dependence.
The ασ term appears as a δ-function in Fourier space, as does the ασPZel contribution

(which corresponds to the leading P02 contributions in [70, 71], see also Appendix B). When
considering M0 and M1,n, we have been assuming that the b∇2 terms whose leading order
contributions are k2 PL are of similar size to the one-loop terms of similar form. In M2,nm

these b∇2 terms enter multiplied by terms like U (1) and hence can be dropped. This, in
principle, breaks the degeneracy of the EFT counterterms and these derivative bias terms.

3.4 Impact of parameters

In this section we take a closer look at how the various parameters affect the predictions of
the ingredients going into the GSM.

One of the earliest models of structure formation is the Zeldovich approximation, which
does a good job of describing the growth of large scale structure into the non-linear regime
(see e.g. Ref. [54]). Our theoretical model has several terms beyond the Zeldovich approxi-
mation, including 1-loop corrections in LPT, corrections for missing small-scale physics and a
generalized, non-linear bias parameterization. In this subsection we will turn on these terms
one at a time so that their impact on the clustering predictions can be assessed (see also
Fig. 1).

Fig. 2 compares models for the real-space clustering in both Fourier (see Appendix B)
and configuration space. To better show small deviations from the lowest order result we
also show residuals compared to a reference model, and we take as the reference to be the
Halo-Zeldovich model [72] in the form

P hhHZ(k) ≡ (1 + b1)2PmZel(k) + const (3.12)

where PmZel is the Zeldovich approximation for the mass power spectrum [21, 24, 72–75]. This
model takes out the large-scale trends, allowing us to focus on the features in more detail.
Notice that the const term in P (k) transforms to a δ-function at zero lag in the correlation
function, so our reference model for ξ(r) is simply the Zeldovich matter correlation function
times (1 + b1)2.

The blue line shows the effect of including lowest order Lagrangian bias (b1) compared
to simply multiplying the matter result by (1 + b1)2. We then add the EFT counter term
(cyan line), which is degenerate with the b∇2 terms, which affects the width of the peak in
configuration space and adds additional power at higher k with undamped BAO oscillations
in Fourier space. Both of these effects are expected from the nature of the term, k2 PL(k)
or a Laplacian of ξL(r). We have chosen a very large value of α in order to emphasize the
effect, and the sharpening of the peak is quite pronounced in the figure. Adding b2 has little
effect at the BAO peak but reduces the correlation function at smaller r. Including b2 adds

3In principle this counter term can be negative and lead to σ2
12 < 0 at small scales. We have not found

this to be an issue in practice in our case. Should this become an issue one can keep just the linear part
of σ2

12, including the positive ασ contribution, in the exponent and determinant and expand in the higher
orders. This guarantees positive definiteness and introduces corrections only at higher orders higher than we
are keeping.
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Figure 2. The contribution of different terms to the real-space 2-point function in (left) configuration
and (right) Fourier space. The upper panels show r2 ξ(r) or k P (k) while the lower panels show the
ratio to a fiducial theory (taken to be the Halo-Zeldovich model, the black dashed line in the upper
right panel; see text). The blue lines show the predictions with b1 = 1 and all other parameters set
to zero. Including the counter-term with α = −20 (to emphasize the effect) generates the cyan line.
Further adding b2 = 0.25 gives the magenta line and finally adding bs2 = 0.5 gives the black line.

significant power to P (k) at high k. Finally we add bs2 . The dominant effect in configuration
space is a steepening of the correlation function, with a small change in the shape of the BAO
peak. In Fourier space the shear terms modify high k significantly like the b2 terms do.

We don’t show the impact of the parameters on v12 and σ2
ij in a figure, as very few

terms matter. On large scales v12 is proportional to 1 + b1, with the b2 terms having very
little effect. Either of the two counter terms causes a steepening of v12 at small r, which we
will see improves agreement with the N-body and is important for matching the quadrupole
to small scales (see discussion in Ref. [34]). The parallel and transverse components of the
dispersion are very insensitive to any of the bias terms. The EFT counter term amounts to
adding (or subtracting) a constant to both σ2

‖ and σ2
⊥, which helps improve agreement with

the simulations and matches the finger-of-god correction implemented by Ref. [35].

3.5 The bias model and advantages of a Lagrangian formulation

We end this section with a few words about the bias model. When comparing to observations
of biased tracers of the density field, choosing a suitably powerful and flexible bias model
is clearly essential in order to not introduce biases into a fit. We have seen above that the
relative size of even quite high-order bias terms is comparable to the affects of gravitational
non-linearity at 1-loop or beyond.
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The most general approach to bias is an EFT-inspired one (see [47, 56–59]). In fact,
reasoning purely from symmetry is even more attractive for the bias model than for per-
turbative non-linearity because the ultimate theory we are wishing to describe in the case
of bias is considerably more complex than the N-body problem. However, these approaches
have the huge drawback of an explosion of undetermined parameters, especially as we push to
higher order and include terms like ∇2δ and sij in our expansion. When the fitting range and
accuracy are constrained, and only a small number of statistics are fit for, the difficulties of
exploring multidimensional likelihood surfaces with strong degeneracies can become extreme.

While some gains can be made by including additional statistics (e.g. the 3-point func-
tions) in the fits, we believe the appropriate approach is a combination of symmetry-based
parameterizations with priors based on physical models of bias (e.g. Refs. [14, 76–79]). By
allowing a flexible bias scheme, one can explore evidence from the data of violations of the
simplest models. By including priors based on our decades of exploration of biasing in sim-
ulations and observations we can mitigate (to some extent) the difficulties inherent in any
high-dimensional scheme.

In this approach a Lagrangian formulation of the problem appears to us to be highly
beneficial. In cosmology the initial conditions are often considerably less complex than the
late-time observations one is trying to describe. By formulating our bias model in terms
of the Lagrangian field, and by disentangling the effects of evolution from complex bias,
the Lagrangian formulation allows a more straightforward implementation of the programme
described above.

4 Evolution and the effective-redshift approximation

Observations unavoidably measure clustering not at fixed time but along the past light-cone.
Since the structure, and the bias of objects, evolves with time the measured correlation
function is an “effective” one. If we define

Xeff =

∫
dz(dN/dz)2(H/χ2) X(z)∫
dz(dN/dz)2(H/χ2)

(4.1)

then on scales small compared to the scale of variation of dN/dz we measure ξ`,eff [80–82] which
we interpret as ξ`(zeff), depending on parameters θeff . The accuracy of this approximation
depends on the width of dN/dz and how rapidly the bias parameters (and the sample) are
changing.

We use our analytic theory to investigate this issue, taking flat dN/dz of width ∆z = 0.1
and 0.2. We have found that, for smoothly varying bias parameters, approximating ξ`,eff as
ξ`(θeff , zeff) induces very small errors, typically below one percent even for ∆z = 0.2. This
is true whether we take θ(z) to be constant, or impose an evolution based upon the peak-
background split and fixed peak height [76, 79] or use the theory of excursion sets [76–79] or
Gaussian peaks [14]. In making this comparison we need to assume a redshift-dependence
of the counter terms, αi. This is in principle arbitrary. While we know that the piece
which absorbs the cut-off dependence must scale as D2(z), any finite pieces could evolve in a
different way. Morevover, our αi also account for ∇2-bias terms, which are not expected to
be proportional to D2(z). Despite these complications, we assume αi ∝ D2(z), which is close
to what is measured in N-body simulations [83].

For these assumptions, within our model, approximating ξ`,eff by ξ`(θeff , zeff) induces
sub-percent errors for both the monopole and the quadrupole. This suggests that, for such
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smoothly evolving parameters, the neglect of light-cone effects is subdominant to higher order
terms in the perturbative expansion or bias expansion. Of course, the redshift evolution of
a real galaxy sample could be much more complicated than the models we have used, since
several observational effects could start to play a role. Such situations would need to be
investigated on a case-by-case basis, but the formalism above allows a rapid exploration of
these approximations.

5 Comparison with simulations

We now make a preliminary comparison of the performance of the GSM, and its components
predicted in perturbation theory, to the clustering of halos from N-body simulations. We find
that we are currently limited by the size of systematic errors in the simulations, and so we
defer a more detailed comparison to future work.

We make use of the halo catalogs4 from the simulations described in Ref. [84]. Briefly,
there were 4 realizations of a ΛCDM (Ωm = 0.2648, Ωbh

2 = 0.02258, h = 0.71, ns = 0.963,
σ8 = 0.8) cosmology simulated with 40963 particles in a 4h−1Gpc box. The simulations were
run with “derated” time steps chosen so that the matter power spectrum is accurate to better
than 1% out to k = 1hMpc−1 and halo masses were adjusted to match the halo abundance
of a simulation with finer time steps.

We retrieved the halo catalogs for z = 0.8 and 0.55. The halos were defined by a friends-
of-friends algorithm [85] with a linking length of 0.168 times the mean interparticle spacing
(and the masses were redefined, as described in [84]).

Ref. [84] did not present convergence tests for the multipoles of the halo correlation func-
tion or power spectrum (though their Fig. 6 compares the monopole of the cross-correlation
of the real- or redshift-space halo field with the real-space matter field). However the authors
kindly made available two sets of simulations, one with derated time steps and one with time
steps they consider “converged”. By comparing the clustering of halos, with remapped masses,
in the two simulations we can estimate5 the effects of the derated time steps and hence a sys-
tematic error. The real-space power spectrum and the monopole of the redshift-space power
spectrum show coherent, oscillatory residuals at the 1-2% level with slowly decreasing ampli-
tude to k ' 0.5hMpc−1. The power spectrum quadrupole shows oscillatory signals at just
over 2%, with a feature near the acoustic scale. The effects are much larger in configuration
space, with the ratio of the multipole moments differing from unity by 5% over much of the
range of interest to us, with differences of more than 10% near 80h−1Mpc. The impact of
these artifacts is likely highly dependent upon the use to which the simulations are being put,
and quite difficult to assess without doing a detailed fit to a specific template. In our case,
where we want to make precise predictions at large scales, they limit us to semi-qualitative
comparisons below.

It is worthwhile to note that the total volume simulated, 256h−3Gpc3, is equivalent
to > 40 and > 25 full-sky surveys for redshift slices 0.5 < z < 0.6 and 0.75 < z < 0.85,
respectively, and approximately 50× the total volume of the BOSS survey [5]. The statistical
errors from the simulations should thus be much smaller than those of any future survey

4The data are available at http://www.hep.anl.gov/cosmology/mock.html. Of the 5 realizations, the data
for the first were corrupted so we used only the last 4.

5Our estimate is uncertain because the two simulations were evolved from different initial conditions, and
thus some of the differences between the runs are due to sample variance and not methodological differences.
However, the very large size of the boxes mitigates this uncertainty to some extent.
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confined to a narrow redshift slice (see §4), and are dominated by systematic errors in the
algorithms or physics missing from the simulations themselves.

We first computed the real- and redshift-space power spectrum and correlation function
multipoles for halos in bins of mass (12.5 < lgM < 13.0, 13.0 < lgM < 13.5 and 13.5 <
lgM < 14.0; all masses in h−1M�) using the full periodic box, and used the average and
scatter from the 4 boxes as our estimate of the signal and statistical uncertainty. We compute
the power spectra in bins of width 0.0031hMpc−1 and the correlation functions in bins of
width 2h−1Mpc, which is small enough that effects due to binning areO(0.1%) for the theories
we wish to test. For the best measured, lowest mass, sample the statistical uncertainty on the
redshift-space correlation function is at most a few percent on the scales of interest (< 1% for
s < 50h−1Mpc; ∼ 3% at s ' 80h−1Mpc; and ∼ 2− 3% for s > 100h−1Mpc for the redshift-
space monopole for the lowest mass sample with smaller fractional errors for the quadrupole),
with larger errors for the rarer halo samples (growing to tens of percent at high-s for the rarest
samples). For the real-space correlation function the errors on the best-measured sample are
< 1% for r < 60h−1Mpc and still < 2% across the acoustic peak. These rise to 4% across the
acoustic peak for the highest mass sample. Similarly we computed the mean pairwise velocity
and dispersion as a function of separation (in 100 bins equally spaced in r) for halos in the
same mass bins. The mean pairwise velocity and dispersion were determined, statistically,
to better than a percent on all relevant scales (though the systematic error from the derated
time steps and halo mass is larger). The power spectrum used to generate the simulation
intial conditions was not available to us, so we used CAMB6 [86] to compute the linear
theory power spectrum (using the cosmological parameters above) which is needed for the
perturbation theory predictions.

We first checked that the lowest order streaming model is accurate when the “true”
ingredients from the simulation are used. This updates the tests done in [34, 39]. Specifically
we took the ξ, v12 and σ12 measured from the simulations and used the GSM as in Eq. (2.6) to
generate the multipoles of the correlation function. As had been found previously, the GSM
works well, lying within ±2% of the simulations on scales above 25h−1Mpc for all masses and
redshifts shown (i.e. within the systematic error budget of the simulations themselves). The
monopole performs exceptionally well all the way down to 20h−1Mpc. Below this scale the
model requires extrapolating v12(r) and σ2

i (r) to very small scales where it is hard to measure
directly.

Now we check how well perturbation theory predicts each of the ingredients going into
the streaming model. This updates the tests done in [34, 36, 39]. Overall the agreement
between the theory and simulations is very good. We find this for all redshifts and mass bins
that we have checked. Fig. 3 compares the model predictions for the real-space halo correlation
function and power spectrum, the mean infall velocity and the velocity dispersions to the N-
body results at z = 0.55 for halos with 12.5 < lgM < 13.0. We show this sample as it has the
smallest statistical errors in the simulations, but the results for the other redshifts and mass
sample are very similar. Errors on the N-body points are omitted for clarity. The statistical
errors are approximately the size of the points. As we have argued above, the systematics
errors are at the several per cent level.

Fig. 3 also compares the N-body and model results for the mean pairwise velocity, and
again the agreement is very good. We also find that the model captures the scaling with mass
and redshift well. Inclusion of the ∇ξ counter term improves the agreement with the N-body

6http://cosmologist.info/camb
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Figure 3. A comparison of the ingredients of the GSM, as computed in LEFT, with N-body simu-
lations. We have chosen z = 0.55 and 12.5 < lgM < 13.0 as it has the smallest errors in the N-body
(the other redshifts and mass ranges are qualitatively similar). (Top Left) The real-space correlation
function, (Top Right) the mean infall velocity, (Bottom Left) the real-space power spectrum and
(Bottom Right) the velocity dispersions parallel to (dotted) and transverse to (dashed) the separation
vector. In each case the lines show the analytic prediction, while the points show the N-body results.
The agreement on large scales is good, comparable to the numerical accuracy of the N-body results
themselves.

Mass b1 b2 bs2 αξ αv ασ
12.5 < lgM < 13.0 0.68 -1.01 -0.92 -24 -52 -18
13.0 < lgM < 13.5 1.28 -1.34 -0.14 -9 25 -3

Table 1. The best-fit parameters of the model shown in Fig. 4. These parameters have been fit ‘by
eye’ and thus should be taken as indicative.

results on small scales, steepening the slope of v12 at small r. As has been noted before [34],
correctly predicting the slope of v12 is crucial to modeling ξ2 well in the GSM.

Finally Fig. 3 also compares the N-body and model predictions for the pairwise velocity
dispersion (σ̂2

i ) parallel and transverse to the separation vector. As noted in Ref. [34], the
theory without the EFT terms mistestimates the dispersion. However the misestimate is very
close to a constant, as expected from the lowest order EFT correction. This EFT correction
is degenerate with the finger-of-god correction, as implemented by Ref. [35], which is also a
non-linear effect. As such it does not increase the number of parameters in the model.

Finally we test the whole model. Fig. 4 shows the monopole and quadrupole of the
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Figure 4. The comparison of the multipole moments of the redshift-space correlation function, ξ`(s),
with the N-body results. The circles indicate the monople moment, the squares the quadrupole
moment while blue points are for the 12.5 < lgM < 13.0 mass bin and red points the 13.0 < lgM <
13.5 bin. The fit is only to the points above 30h−1Mpc, but the model clearly provides a good fit to
the data below this scale as well.

redshift-space correlation function for two mass bins at z = 0.8 (the parameters are given in
Table 1). This is the redshift bin for which we had the worst agreement with the ingredients,
so gives the most pessimistic view of the model performance. We show the absolute agreement
in the upper panel and the ratio of the N-body to the theory in the lower panel so that small
deviations can be seen. Note in all cases the level of agreement is comfortably within the
systematic errors of the simulations, which we estimate to be several per cent (we have shown
±1, ±2 and ±5% as dotted lines to guide the eye).

6 Conclusions

Redshift surveys by neccessity measure large-scale structure in redshift space, in which pecu-
liar velocities sourced by large-scale gravitational potentials have induced anisotropic cluster-
ing. Measurement of these anisotropies allows us to probe the growth of large-scale structure,
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breaking degeneracies in cosmological distance measures and providing a key test of general
relativity and the gravitational instability paradigm on quasi-linear, cosmological scales.

In this paper we update earlier treatments of the Gaussian Streaming Model (GSM) and
present tests against a new set of N-body simulations. We improve upon previous calculations
of the ingredients in this model – the real-space correlation function, mean pairwise velocity
and pairwise velocity dispersion – using a Lagrangian effective field theory with an extended
bias model. We show that the Lagrangian approach provides a solid framework for studying
large-scale structure, and provides a simple connection to N-body simulations and peaks
theory. Effective field theory techniques provide a straightforward means of incorporating
the effects of non-perturbative physics into perturbation theory by including additional terms
whose structure is determined by the symmetries of the theory. The expressions for the
ingredients, and the bias model, are new and present the most general expressions at the
given order7.

Throughout our focus has been on increasing the precision with which we can predict
the clustering moments on intermediate scales (> 25h−1Mpc), rather than on increasing the
range of scales we predict. We believe this is the most appropriate use of techniques built
upon perturbation theory. Ultimately the precision of our model is limited by the neglect of
2-loop terms in the perturbative calculation, higher derivative orders in the EFT expansion,
higher order terms in the bias expansion and the neglect of lightcone evolution. We find that
these effects alter the predictions for the monopole and quadrupole moment of the correlation
function and power spectrum at the per cent level on scales above 25− 30h−1Mpc.

The inclusion of 1-loop corrections to the Zeldovich approximation changes the clustering
statistics by several per cent on large scales. The EFT terms encapsulate the effects of small-
scale physics which is missing from the standard perturbative treatment. In ξ(r) the primary
effect is to change the width of the BAO peak and slightly decrease ξ at lower r. The EFT
terms steepen v12 at small r, which is important in the streaming model in order to match
the quadrupole. The EFT terms are most important for σ2, where there is a large mismatch
between the perturbative prediction and the N-body results [34, 36]. The difference is very
close to a constant, independent of scale and orientation, which is also the behavior of the
lowest-order EFT counter term. Such an offset was included in earlier versions of the GSM
as a “finger-of-god” term, referring to a specific type of small-scale effect.

We find that a flexible bias model is at least as important as including the higher-order
contributions to the evolution of clustering. The most general approach to bias is an EFT-
inspired one, and reasoning purely from symmetry is highly attractive when describing the
complex physics which leads to bias. We use a Lagrangian bias expansion up to the second
order, including a derivative term and a shear term. This generates all the terms present in
the corresponding third order Eulerian biasing expansion (see e.g. Refs. [47, 57–59]), although
the latter has more freedom coming from an additional third order bias parameter in the real
space two-point statistics. Adding the third order terms in Lagrangian space would yield the
same number of free parameters in both Lagrangian and Eulerian picture. We argue that
using a symmetry-based approach to bias, with priors set by theory and simulations, has
many benefits. In such a scheme, a Lagrangian framework has multiple advantages over an
Eulerian one (§3.5).

We have compared our theoretical calculations with 4 large N-body simulations [84], with
a total simulated volume of 256h−3Gpc3. This volume, many times larger than accessible

7Code to evaluate these expressions is available at https://github.com/martinjameswhite/CLEFT_GSM.
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observationally, leads to very small statistical errors. However the simulations were run with
an approximate time-stepping scheme, which limits the overall accuracy to several percent on
the statistics (and scales) of relevance here. With this caveat in mind, our model performs
very well when compared to N-body simulations.

The model presented here achieves per cent level accuracy on the monopole and quadrupole
of the correlation function and power spectrum on quasi-linear scales. This level of accuracy
is likely sufficient for all upcoming surveys – going to higher order in perturbation theory or
including additional EFT terms will yield little return. In order to push to smaller scales,
detailed modeling of highly-nonlinear effects are required (e.g. Refs. [15, 87]) which will likely
increase the number of parameters dramatically for even a small increase in dynamic range.
Increasing the volume, to decrease the errors at fixed scale, requires increasing the redshift
range and requires modeling of the evolution of the bias (in addition to survey non-idealities).

Our model works in a Lagrangian framework, with parameters that are easy to interpret
within the context of the Gaussian peaks formalism or N-body simulations. Along with
the LPT-based model for post-reconstruction BAO presented in [88], this formalism can be
used to interpret the measurements from upcoming redshift surveys. The analytic nature
of the calculation makes it possible rapidly explore changes in cosmology, and the flexible,
parameterized bias model allows exploration of a wide range of effects with little effort. The
analytic calculation can be used to set requirements for future grids of N-body models, both
in terms of modeling the response surface for an emulator and in terms of which modes and
which statistics need to be well converged.
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A The Gaussian Streaming Model

There are several routes to deriving the GSM, and its generalizations. The continuity equation
allows us to relate the 2-point function in redshift space to a generating function [33, 34, 39]. If
we recall that a shift in configuration space generates a phase in Fourier space, the generating
function is

1 +M(J, r) =
〈
[1 + δ(x)]

[
1 + δ(x′)

]
eiJ·∆u

〉
(A.1)

where r = x−x′, ∆u = u(x′)−u(x), u is the velocity field in units of the Hubble expansion
and J = k‖ẑ. Fourier transforming 1 +M(k‖ẑ, r) gives the redshift-space power spectrum.
Using the cumulant expansion, i.e. expanding ln [1 +M] in powers of J, we have

1 +M = exp

[ ∞∑
n=0

in

n!
ki1 · · · kinCi1···in

]
(A.2)
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Figure 5. A test of the GSM using ξ(r), v12(r) and σ2
ij(r) measured directly from the simulation.

We have measured the ingredients of the GSM from the halo catalogs of the four N-body simulations,
averaged them and then smoothed them to reduce noise. These were then used as ingredients in the
GSM to compute ξ`(s). The figure shows the ratio of the ξ`(s) measured directly in the simulations
(and smoothed to reduce noise) to the GSM prediction. The agreement on the monopole is excellent.
The agreement on the quadrupole is within ±2% above 25h−1Mpc.

where Ci1···in are the density-weighted velocity cumulants. The first few cumulants are

C = ln [1 + ξ] (A.3)

Ci =
〈(1 + δ)(1 + δ′)∆ui〉

1 + ξ
≡ vi12 (A.4)

Cij =
〈(1 + δ)(1 + δ′)∆ui∆uj〉

1 + ξ
− vi12v

j
12 ≡ σ

ij
12 (A.5)

Keeping only terms through n = 2 in 1 +M, and performing the Fourier transform, the
redshift-space correlation function is

1 + ξ(s) =

∫
d3r [1 + ξ(r)]

∫
d3k

(2π)3
e−iki(si−ri−v12ẑi) e−(1/2)kikjσ12ẑiẑj (A.6)

The d3k integral can be performed analytically and the result is the GSM, given in the main
text. Higher order cumulants introduce higher corrections. These higher cumulants could be
significant in case of large dispersion objects, and low redshifts. For example dark matter
particles exhibit large FoG effects and some of these would be decomposed into these higher
cumulants. Similar effects, but to smaller extent, might show up in smaller size halos, while
we expect the higher terms to be less relevant for more massive halos and higher redshifts.
The performance of the GSM when ξ(r), v12(r) and σ2

ij(r) are measured from the simulations
are shown in Fig. 5.

B Fourier space representation

The text focuses on the configuration-space description of the model and the clustering statis-
tics, however on numerous occasions we have found it useful to examine the Fourier-space
versions as well. In this appendix we give an example of the relevant formulae, referring the
reader to Refs. [13, 24, 36, 41] for further details.
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For example, the real-space, power spectrum (for k 6= 0) of halos can be written

P hh(k) =

∫
d3q eik·q exp

[
−1

2
kikjA

lin
ij

]{
1− 1
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L

)
− bs2

(
kikjA

20
ij − 2ikiV

10
i

)
+ b1bs2

(
2ikiV

12
i

)
+ b2bs2χ

12 + b2s2ζL

− 1

2
αξk

2 + i2b∇2

(
ki
∇2

Λ2
L

U
(1)
i

)
+ 2b1b∇2

(∇2

Λ2
L

ξL

)
+ . . .

}
+ “stochastic”, (B.1)

where “stochastic" represents the stochastic contributions to the power spectrum which we
take to be a scale independent constant up to the order we work at. The ordering of the terms
in this expression follows that for ξ in the main text, so that the correspondance is clear. The
d3q integral can be written in spherical polar coordinates, and the φq integral trivially gives
2π. The k · q in the exponent can be written as kq µ, with the standard definitions of those
terms. Expanding kikjAij gives terms going as µ0 and µ2. The integral over µ can then be
written as a sum of spherical Bessel functions using the identities in Appendix A of Ref. [13]
resulting finally in sums of 1D integrals:

P hh = (1− 1
2αξk

2)Pzel + P1−loop + b1Pb1 + b21Pb21 + b2Pb2 + b1b2Pb1b2 + b22Pb22 + bs2Pbs2

+ b1bs2Pb1bs2 + b2bs2Pb2bs2 + b2s2P(bs2 )2 + 2b∇2Pb∇2 + 2b1b∇2Pb1b∇2 + “const.” + . . . (B.2)

where Pzel and P1−loop are the dark matter contributions, see e.g. Ref. [13]. For additional
biasing terms we have terms of the form

Px = 4π

∫
q2dq e−

1
2
k2(XL+YL)

(
f (0)
x (k, q)j0(qk) +

∞∑
n=1

f (n)
x (k, q)

(
kYL
q

)n
jn(qk)

)
, (B.3)

where integrands are:

term f
(0)
x f

(n)
x

b1, −k2
(
X10 + Y 10

)
, −k2

(
X10 + Y 10

)
+ 2

(
nY 10 − qU10

)
/YL,

b21, ξL − k2(U10)2, ξL − k2(U10)2 +
(
2n(U10)2 − qU11

)
/YL,

b2, −k2(U10)2, −k2(U10)2 +
(
2n(U10)2 − qU20

)
/YL,

b1b2, 0, −2qU10ξL/YL,

b22,
1
2ξ

2
L,

1
2ξ

2
L,

bs2 , −k2
(
X20 + Y 20

)
, −k2

(
X20 + Y 20

)
+ 2

(
nY 20 − qV 10

)
/YL,

b1bs2 , 0, −qV 12/YL,

b2bs2 , χ12, χ12,

(bs2)2, ζL, ζL,

b∇2 , 0, −q∇2U10/(Λ2
LYL),

b1b∇2 , ∇2ξL/Λ
2
L, ∇2ξL/Λ

2
L,
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The 1D integrals are Hankel transforms which can be done efficiently using FFTs [89] as was
shown in [41]. The translation of the mean pairwise velocity and velocity dispersion terms is
very similar.

C Time derivatives

We have followed Ref. [36] in writing the terms in Eqs. (3.7, 3.10) in terms of time derivatives.
This is a shorthand, in which e.g. Ȧij stands for 〈∆i∆̇j〉. If we follow the normal convention
and write each of the Aij terms as Xδij + Y q̂iq̂j , the time derivatives become:

f−1Ẋ = X(11) + 2X(22) + 4X(13) (C.1)
f−2Ẍ = X(11) + 4X(22) + 6X(13) (C.2)

f−1Ẋ(10) = (3/2)X(10) (C.3)
f−2Ẍ(10) = 2X(10) (C.4)

and analogously for the Y terms.
The displacement-density correlators behave as

f−1q̂iU̇i = U (1) + 3U (3) (C.5)

f−1q̂iU̇
(20)
i = 2U (20) (C.6)

f−1q̂iU̇
(11)
i = 2U (11) (C.7)

f−1q̂iV̇
(10)
i = 2V

(10)
i (C.8)

f−1q̂iV̇
(12)
i = V

(12)
i (C.9)

(C.10)

while f−1Υ̇ij = Υij and f−2Ϋij = Υij .
Finally the Wijn terms go as

f−2Ẅijn = 2W
(112)
ijn + 2W

(121)
inj +W

(211)
nji . (C.11)

Note that only LPT contributions are considered in this section. In addition to the LPT
terms we need to consider the counter terms which have a time dependent coefficient. This
is taken into account in the main text above.

D Biasing expansion in the Lagrangian coordinates

When modeling the clustering of biased tracers to high precision, the modeling of the biasing
can be of equal importance as the higher order corrections in perturbation theory (and the
EFT terms) describing the nonlinear dynamics. Phrased in another way, the “cut-off” scale
associated with the biasing can be larger than for dynamics, so we might need to keep higher
order terms [57–60]. As we move into the future the tightest constraints will increasingly
come from galaxies at higher redshifts (where surveys have the most volume) which will tend
to be brighter and hosted by more massive halos for which we expect this will be even more
true.
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In our scheme we follow Ref. [22] in assuming local Lagrangian bias, but extend the
model to include a dependence on derivative term ∇2δ/Λ2

L (with associated Lagrangian scale
ΛL) and the tidal shear tensor (see also [45–47, 50, 51, 54])

sij(k) =

(
kikj
k2
− 1

3
δij

)
δ(k) (D.1)

as in Eq. (3.2). We assume that the biasing function is smooth, and can be Taylor expanded.
We keep terms through second order in the field, neglecting the third order terms shear and
local terms8. Explicitly, we can write for the overdensity of bias tracers in the Lagrangian
coordinates

δX(q) = cδ δL(q) + cδ2
(
δ2
L(q)−

〈
δ2
〉)

+ cs2
(
s2(q)−

〈
s2
〉)

+ c∇2

∇2
q

Λ2
L

δL(q) + . . .+ “stochastic”, (D.2)

where “stochastic" stands for the stochastic contributions to the overdensity field of the biased
tracers, and we have neglected the third biasing order terms like s3, δs3 etc. Fourier trans-
forming F on ∇2δ, s2, ... as well as δ we need to find the expectation value of exponentials
such as [22–24]〈

exp
[
i
(
k ·∆ + λ1δ1 + λ2δ2 + η1∇2δ1 + η2∇2δ2 + ζ1s

2
1 + ζ2s

2
2 + · · ·

)]〉
. (D.3)

This can be evaluated using the cumulant expansion, and the terms depending on ηi, ζi,
etc. can be Taylor expanded out of the exponential as is usually done for λi. As for the EFT
counter terms, we treat the terms depending on (∇2/Λ2

L)δ and s2 as “higher order”, in this
case in an expansion of k times the Lagrangian radius (∼ 1/ΛL) of the halo. When expanding
these terms down from the exponential, keeping only linear contributions in the exponent,
we truncate at O(P 2

L). We obtain the result given in the Eq. (3.4). The usual bias terms
(due to the local Lagrangian bias) can be expressed in terms of linear correlation function
ξL = 〈δ1δ2〉c and correlatiors

U10
i = 〈δ1∆i〉c, U20

i = 〈δ2∆i〉c, U11
i = 〈δ1δ2∆i〉c, A10

ij = 〈δ∆i∆j〉c . (D.4)

for which expressions are given in Refs. [22–24]. To lowest order the ∇2δ terms introduce
only two new correlators:〈

∇2δ(q1)δ(q2)
〉

and
〈
∇2δ(q1)Ψ

(1)
i (q2)

〉
. (D.5)

Calling these Bi we have

B1(q) ≡ −∇2ξL(q) =

∫
k2 dk

2π2
k2PL(k)W (k;R) j0(kq), (D.6)

B2,i(q) ≡ −∇iξL(q) = q̂i

∫
k3 dk

2π2
PL(k) j1(kq) (D.7)

where W is a smoothing window which we shall not need explicitly. Note the similarity of
B1 to the EFT counter term, which is k2PL(k) in Fourier space [13]. For this reason we shall
not include this term in our model, as discussed in more detail in §3.1.

8We note that, by construction, the field ψ introduced in Ref. [47] vanishes in the initial conditions. This
term arises (deterministically) due to evolution, so it does not have a biasing coefficient.
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We note that including third order shear terms s3 and δs3, interestingly, leads to the
trivial contributions in the sense that no new biasing parameters are needed. Specifically, we
find that terms like V 11

i = 〈s2
1δL1∆i〉c, which involve s2 and δ at the same point and which

would have given rise to new bias coefficients, vanish. Thus up to O(δ4) we have

V 10
i = 〈s2∆i〉c, V 12

i = 〈s2
1δ2∆i〉c, Υij = 〈s2∆i∆j〉c (D.8)

and
ζ = 〈s2

1s
2
2〉c, χ12 = 〈s2

1δ
2
2〉c, (D.9)

where we have

χ12 =
4

3

[∫
k2 dk

2π2
P (k) j2(kq)

]2

, (D.10)

and similarly the expression9 for ζ can be found in [54]. The shear correlators introduce new
combinations. Some of these terms can be written as products of integrals of PL, viz

V 12
i = 2q̂i

∫
k dk

2π2
PL(k)

[
4

15
j1(kq)− 2

5
j3(kq)

] ∫
k2 dk

2π2
PL(k) j2(kq), (D.11)

and similarly

Υmn = 2
〈
s2

1,ijΨ2,m

〉 〈
s2

1,ijΨ2,n

〉
= 2

{
δmn

(
2J 2

3

)
+ q̂mq̂n

(
3J 2

2 + 4J2J3+

2J2J4 + 2J 2
3 + 4J3J4 + J 2

4

)}
(D.12)

where we have defined [54]

J2 =

∫
k dk

2π2
PL(k)

[
2

15
j1(kq)− 1

5
j3(kq)

]
(D.13)

J3 =

∫
k dk

2π2
PL(k)

[
−1

5
j1(kq)− 1

5
j3(kq)

]
(D.14)

J4 =

∫
k dk

2π2
PL(k) j3(kq) (D.15)

Finally, V 10
i = 〈s2∆i〉c which we can write

V 10
i =

〈
s2(q1)Ψ

(2)
i (q2)

〉
c

= −2q̂i
7

∫
k dk

2π2
Qs2(k) j1(kq) (D.16)

with

Qs2(k) =
k3

4π2

∫
dr PL(kr)

∫
dx PL(k

√
y)Qs2(r, x), (D.17)

where we have followed Ref. [22] and written y = 1 + r2 − 2rx and have defined

Qs2(r, x) =
r2(x2 − 1)(1− 2r2 + 4rx− 3x2)

y2
. (D.18)

9There is a typo in Eq. (A6) of Ref. [54]: the coefficient of the J7J9 should be 4, not 2.
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E Connection to the distribution function formalism

An alternative formalism for describing redshift-space distortions has been developed in
Refs. [16, 70, 71, 90–92], and is known as the distribution function (DF) formalism. In this
formalism the redshift space power spectrum is expanded in terms of the velocity moments
defined as

TL‖ (x) = (1 + δ(x))vL‖ (x) for L ≥ 1, and T 0
‖ (x) = δ(x). (E.1)

The redshift space power spectrum is then given as

P s(k) =
∑
L,L′

(−1)L
′

L!L′!

(
ik‖

H

)L+L′

PLL′(k), (E.2)

where PLL′ =
〈
TL‖ (k)

∣∣∣T ∗L′‖ 〉′
are the velocity moment correlators10.

There is a tight connection between the DF formalism and the GSM. The mean pairwise
velocity, v12, corresponds to the density-momentum contribution, P01, to P (k) while the pair-
wise velocity dispersion, σ2

ij , corresponds to the P11 and P02 contributions in the distribution
function approach. Moreover, expanding the exponent in the GSM and keeping only the terms
up to a given PT order one generates all the disconnected contributions to the PLL′ correla-
tors (up to the same PT order). In this way, on a basic level, two approaches are equivalent
and the difference comes in through the resummation of the connected contributions.

We can show this connection more explicitly. The density momentum correlator, P01,
in the DF formalism can be directly related to the pairwise velocity (see also [92]). We have

2P01,i(k) = 2
〈
δ(k)|

[
1 + δ(k′)

]
◦ ui(k′)

〉′
=

∫
d3r eik·r

〈[
1 + δ(r)

][
1 + δ(r′)

]
∆ui(r)

〉′
=

∫
d3r eik·r [1 + ξ(r)] v12,i(r). (E.3)

or inversely

[1 + ξ(r)] v12,i(r) = 2

∫
d3k

(2π)3
e−ik·r P01,i(k). (E.4)

A similar expression holds for the pairwise velocity dispersion, σ12, which we can decompose
as

[1 + ξ(r)]σ12,ij(r) =
〈[

1 + δ
][

1 + δ′
]
∆ui∆u

′
j

〉
= 2

〈[
1 + δ

][
1 + δ′

]
u′iu
′
j

〉
− 2

〈[
1 + δ

]
ui
[
1 + δ′

]
u′j
〉

= 2
(
ξij02(0) + ξij02(r)− ξij11(r)

)
, (E.5)

where we have introduced correlators

ξij02(0) =
〈[

1 + δ(x)
]
ui(x)uj(x)

〉
,

ξij02(r) =
〈
δ(x)

[
1 + δ(x′)

]
ui(x

′)uj(x
′)
〉
,

ξij11(r) =
〈[

1 + δ(x)
]
ui(x)

[
1 + δ(x′)

]
uj(x

′)
〉
. (E.6)

10For 〈. . .〉′ correlators we drop the delta function, and it is to be understood that only the ‘on shell’
momentum is considered
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When Fourier transformed and projected to the line of sight direction ẑ, these give the
momentum-momentum P11 and density-energy density P02 correlators used in the DF for-
malism.

If we restrict our comparison to one-loop in PT, all the higher momentum correlators
PLL′ (P12, P03, P13, P04 and P22 at one loop) can be reduced to the contributions of irre-
ducible components (cumulants) of terms P00, P01, P11 and P02 (or equivalently ξ, v12 and
σ12) [70, 71]. In streaming models these higher momentum correlators (at one loop) cor-
respond to products of cumulants obtained from expansion of the exponent in Eq. (A.6).
At higher PT orders these momentum correlators start to collect the nontrivial (irreducible)
contributions from the cumulants C, Ci and Cij of Appendix A.
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