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Abstract. We present constraints on local primordial non-Gaussianity (PNG), parametrized
through f loc

NL, using the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey
Data Release 14 quasar sample. We measure and analyze the anisotropic clustering of the quasars in
Fourier space, testing for the scale-dependent bias introduced by primordial non-Gaussianity on large
scales. We derive and employ a power spectrum estimator using optimal weights that account for
the redshift evolution of the PNG signal. We find constraints of −51 < f loc

NL < 21 at 95% confidence
level. These are amont the tightest constraints from Large Scale Structure (LSS) data. Our redshift
weighting improves the error bar by 15% in comparison to the unweighted case. If quasars have lower
response to PNG, the constraint degrades to −81 < f loc

NL < 26, with a 40% improvement over the
standard approach. We forecast that the full eBOSS dataset could reach σf loc

NL
' 5-8 using optimal

methods and full range of scales.
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1 Introduction

Measurements of the statistical properties of the late-time large-scale structure (LSS) of the Universe
can provide insights into the physics that generated the primordial density fluctuations. In particular,
they offer the possibility to distinguish between different models of cosmic inflation by measuring
primordial non-Gaussianity (PNG), the deviation from Gaussian random field initial conditions. In
this work, we focus on the local type of PNG, through the one parameter f loc

NL. Single-field inflationary
models predict an amplitude of f loc

NL that is unmeasurably small, and a detection of |f loc
NL| & 1 would

robustly rule out this class of inflationary models [1, 2].
The current state-of-the-art constraint on PNG comes not from LSS data but from measurements

of the bispectrum of the cosmic microwave background (CMB) by the Planck satellite, which has
reported f loc

NL = 0.8± 5.0 [3]. Unfortunately, the improvement in precision from CMB measurements
is not expected to reach the level required to distinguish between inflationary models (σ(f loc

NL) ∼ 1) due
to cosmic variance limitations [4, 5]. However, forecasts for future LSS surveys, e.g., [6–15], indicate
a strong potential for PNG constraints. The sensitivity to PNG originates from the distinctive scale-
dependent bias signature that is imprinted on the clustering of biased tracers (e.g., galaxies or quasars)
by local primordial non-Gaussianity [16–19] (see e.g. [20] for a review). The effect is proportional
to the bias of the tracers themselves and scales as f loc

NLk
−2; thus, it is most prominent on the largest
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scales probed by a survey. Further gains can be made by surveys that observe multiple tracers, which
are able to effectively remove uncertainties from sample variance in their measurements [21–24].

The current best constraints from the analysis of large-scale structure data are comparable to
those found by the WMAP CMB experiment [18, 25–29]. The first such analysis by [18] combined a
number of different tracers from early SDSS releases to find f loc

NL = 28+23
−24 (68% CL). This analysis also

demonstrated the constraining power of quasars, finding f loc
NL = 8+26

−37 at 68% CL using only the SDSS
photometric quasar sample. For recent constraints using QSOs see [26, 27, 30]. As quasars are highly
biased and probe large volumes, they are ideal for measuring the PNG signal on large scales. On the
other hand large scales are the most contaminated by systematic effects [25, 28, 31–35]. Systematics
control has spurred work on the use of cross-correlations in LSS PNG analyses, e.g., [36, 37].

Data sets that probe large volumes offer the best chance to detect non-Gaussian biasing features
on large scales, but they also complicate data analysis. For samples that span a wide redshift range,
traditional analysis methods, such as using multiple, smaller redshift bins, become non-optimal. A
proper treatment of the redshift evolution of the tracer bias and PNG signal is therefore necessary to
fully exploit the constraining power of a data set. Recent work has focused on using redshift weights
to optimize LSS surveys for baryon acoustic oscillation (BAO) and redshift-space distortion (RSD)
analyses [38–40]. The methods presented in the aforementioned works have been recently applied
to the first data release and cosmological analyses of the extended Baryon Oscillation Spectroscopic
Survey (eBOSS; [41]) survey [42–46]. The idea of redshift weighting scheme was also extended in [47]
to optimize for PNG constraints. The purpose of this work is to present and clarify the methodology to
perform an optimal, in a statistical sense, signal weighted measurement of PNG using galaxy surveys
data.

Our first goal is to derive a redshift-weighted optimal quadratic estimator for the two-point
statistics that yields optimal constraints for f loc

NL. Our method is general and can be applied to any
other parameter, using measurements in configuration space or Fourier space in a spectroscopic or
photometric catalog. We will also show that optimal redshift weights to a good approximation change
the effective redshift of a survey, in a way that is completely analogous to the standard FKP weights
[48]. As an application of our method we use the Sloan Digital Sky Survey (SDSS) IV eBOSS Data
Release 14 quasar sample (DR14Q) [49] to derive constraints on f loc

NL. This data set includes 148,659
quasars and spans a redshift range of 0.8 ≤ z ≤ 2.2.

This paper is organized as follows. We present our new optimal estimator, which correctly
accounts for redshift evolution of the signal, in §2. In §3 we describe the eBOSS quasar sample
used in this work. §4 outlines our analysis methods, including how we estimate the power spectrum
multipoles of the data and the theoretical model used to estimate parameters. In §5 we study the
Fisher matrix of eBOSS data to try to quantify a-priori the improvement yielded by the optimal
analysis. We present our constraints on f loc

NL in §6 and discuss and conclude in §7.

2 Primordial Non-Gaussianities in the Large Scale Structure

2.1 Local PNG

In this work we focus on the local type of primordial non-Gaussianity, where the primordial potential,
Φp(x), is the sum of a random Gaussian field, φ, and its square,

Φp(x) = φ(x) + f loc
NL

(
φ(x)2 −

〈
φ2
〉)
, (2.1)

with f loc
NL parametrizing the amount of PNG. The relation between Φp and the matter overdensity δm

is easiest to express in Fourier space, where it is given by δm(k, z) = α(k, z)Φp(k), with

α(k, z) =
2c2k2T (k)D(z)

3ΩmH2
0

(2.2)

where T (k) is the transfer function, c is the speed of light, D(z) is the linear growth factor normalized
to (1 + z)−1 in the matter-dominated era, Ωm is the matter density parameter at z = 0, and H0 is
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the present-day Hubble parameter. We also define a related quantity α̃, which will be useful in the
discussion to follow:

α̃(k, z) ≡ 2δc
α(k, z)

=
3ΩmH

2
0δc

c2k2T (k)D(z)
, (2.3)

with δc = 1.686, the critical density in the spherical collapse model in a Einstein-deSitter Universe.
As shown in [16, 18, 19], local PNG as parametrized by f loc

NL introduces a scale-dependent bias,
∆b(k, z), given by

∆b(k, z) ≡ bφf loc
NLα̃(k, z) = (b− p)f loc

NLα̃(k, z), (2.4)

where bφ is the response of the halo or galaxy field to the presence of PNG. In the last equality we
assumed bφ = (b − p) where b is the bias of the sample. This is an approximation to the exact f loc

NL

response of discrete tracers, but measurements in N-body simulations have shown it is good enough
to estimate the amplitude of scale-dependent bias [50]. The parameter p takes a value of 1 for a halo
mass selected sample and 1.6 for samples dominated by recent mergers [18, 51], as could be the case
for QSOs for instance. For the purpose of deriving an optimal estimator we will not fix p for now. At
the linear order, and after adding redshift-space distortions (e.g., [52]), we find the quasar overdensity
is related to the matter overdensity in the presence of PNG as follows

δqso = [b+ fµ2 + ∆b]δm ≡ [̃b+ ∆b]δm (2.5)

where f = d lnD/d ln a is the logarithmic growth rate, µ is the cosine of the angle between the Fourier

modes and the line of sight, and we have defined the convenient quantity b̃ = b+ fµ2, which accounts
for both Gaussian biasing and linear redshift-space distortions.

2.2 Optimal estimators in LSS

Our goal is to derive an estimator for the two-point clustering of a data set that yields the tightest
constraint on f loc

NL. We begin by describing the data, positions on the sky and redshifts of set of objects,
in terms of the pixelized overdensity δqso(ri), where ri gives the pixel position. We will also need the
mean density at a given pixel position, denoted as n̄(ri). Optimal analysis invariably requires inverse
noise weighting of the data. For example, if n̄(ri) = 0 then no data have been observed at that pixel
and it should not be used for data analysis, suggesting that the noise should be infinite. An additional
source of uncertainty is sample variance, which is caused by the finite number of measureable modes
and is present even in absence of noise.

When considering Gaussian statistics, the optimal inverse noise weighting of a data set has a well-
defined solution, known as the optimal quadratic estimator [53, 54], which weights the data inversely
by the covariance matrix. If we collect our overdensity pixels into a vector x, with xi = δqso(ri), then
its signal covariance matrix is Sij , and the total covariance matrix reads

Cij = 〈xixj〉 = Nij + Sij == [V n̄(ri)]
−1δKij + Sij , (2.6)

where δKij is the Kronecker delta, V is the pixel volume, and we have assumed Poisson statistics for
the noise term Nij .

The optimal quadratic estimator (OQE) for a parameter θ is then [55–58]

q̂θ =
1

2
xtC−1C,θC

−1x−∆qθ, (2.7)

where C,θ denotes the derivative of C with respect to θ, and ∆qθ subtracts a possible bias of the
estimator. If the response of the covariance matrix is constant in θ, then the OQE is also the
maximum likelihood solution.

The most difficult task is to compute C−1x, and a diagonal form for the configuration space
covariance matrix C is often employed to evaluate C−1. Suppose indeed we want to determine, using
Eq. (2.7), the power spectrum around some k, where we expect the power to be close to a fiducial
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power spectrum Pfid. If we assume that the power spectrum is locally flat (white noise) within the
band powers then its Fourier transfer would be a zero lag correlation function determined by the
amplitude of the power spectrum. This gives rise to a diagonal inverse of the covariance matrix in
configuration space,

C−1
ij = (Pfid(k) + n̄−1)−1V δKij . (2.8)

The fiducial power spectrum should in principle be varied with k, but over the range of scales one is
usually interested in it is a relatively slowly varying function. For PNG, we are concerned with the
power on the largest scales, and we can assume a constant fiducial value Pfid ∼ 3× 104 h−3Mpc3 for
all wavenumbers k.

We also need to evaluate the derivative C,θ, where θ is the parameter we wish to determine, in
our case the averaged value of the power spectrum. Suppose we focus first on a single mode k with
a volume dk = (2π)3/V . The Fourier transform of the power spectrum is the correlation function,
which for this single mode gives Sij = V −1P (k) exp[ik(ri − rj)]. Its derivative with respect to P (k)
gives

dCij
dP (k)

= V −1eik(ri−rj), (2.9)

and the estimator of Eq. (2.7) for the power spectrum becomes

P̂ (k) = A

∣∣∣∣∣∣
∑
j

eikrjwFKP

∣∣∣∣∣∣
2

, (2.10)

where we have replaced the sum over pixels with the sum over discrete objects, such that δqson̄V =
Nqso, where Nqso is the number of objects in the pixel (if the pixels are small enough this can be
viewed just as the sum over object positions ri). The weights wFKP take the well-known form as
first derived in [48], wFKP = (1 + n̄Pfid)−1. We see that the operation in Eq. (2.10) is a Fourier
transform, which can be computed rapidly using fast Fourier transforms (FFTs). The normalization
A can be determined by performing the same operation on an unclustered catalog of synthetic objects,
including FKP weights, and normalized to the total number of observed objects [48, 59–62].

2.3 Optimal estimator for f loc
NL

Now we consider instead the weighting scheme that yields an optimal constraint on f loc
NL. We explicitly

account for redshift evolution by considering overdensity pixels as a function of time, or redshift,
r = r(z). We begin by computing the signal covariance in the presence of PNG from Eq. (2.5),

S12 = 〈δqso(r1(z1))δqso(r2(z2))〉 (2.11)

=
〈[

(̃b1 + ∆b1)δm(r1)
] [

(̃b2 + ∆b2)δm(r2)
]〉
, (2.12)

where we have defined b̃1 = b̃(z1), r1 = r(z1), ∆b1 = ∆b(z1), and similar quantities at z2. Evaluating
the derivative of this expression at f loc

NL = 0 yields

dS12

df loc
NL

∣∣∣∣∣
f loc
NL=0

= b̃1(b2 − p)α̃2 〈δm(r1)δm(r2)〉+ 1↔ 2 , (2.13)

where the second term is symmetric and can be computed via an exchange of indices. We can use the
definition of the the power spectrum to express this equation as

dS12

df loc
NL

∣∣∣∣∣
f loc
NL=0

= (b1 − p)b2
∫

dk

2π3
α̃1(k)(1 + β2µ

2
r2)Pm(k, z1, z2)eik(r1−r2) + 1↔ 2, (2.14)
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where Pm(k) the matter power spectrum, β = f/b is the standard RSD parameter, and µr2 is the
line-of-sight angle associated with position r2.

It is useful to factor out some of the time dependencies in equation Eq. (2.14) using

Pm(k, z1, z2) = Pm(k, z0)(k)D(z1)D(z2)/D(z0)2, (2.15)

α̃(k, z) =
α̃0(k)

D(z)
, (2.16)

with z0 some reference time, we adopted z = 0. 1 With these definitions, we can express the optimal
estimator in Eq. (2.7) as a function of r1 and r2 as

q̂f loc
NL

(r1, r2) =
1

2
C−1xt

dS12

df loc
NL

∣∣∣∣∣
f loc
NL=0

C−1x−∆qf loc
NL

=
1

2

δqso(r1)

C

[∫
dk

2π3
eik(r1−r2)Pm,0(k)α̃0(k)D(z2)(1 + β2µ

2
r2

)(b1 − p)b2

+ 1↔ 2

]
δqso(r2)

C
−∆qf loc

NL
. (2.17)

And now, summing over r1 and r2, we obtain the estimator

q̂f loc
NL

=
1

2

∫
dk

(2π)3
Pm,0(k)α̃0(k){[∫

dr1 e
ikr1

δqso(r1)

C
(b1 − p)

] [∫
dr2 e

−ikr2
δqso(r2)

C
b2D(z2)(1 + β2µ

2
r2

))

]

+ 1↔ 2

}
−∆qf loc

NL
. (2.18)

Note that in these equations the inverse noise weight factors of C−1 are identical to those discussed
in Section 2.2, with the FKP weight being the near-optimal scheme. We can further decompose in
Legendre polynomials the angular part of the Kaiser factor,

(1 + βµ2) =

(
1 +

β

3

)
L0(µ) +

2

3
βL2(µ) (2.19)

then define, for a generic weight w(z), the weighted density multipoles

δw` (k) =

∫
d3r eik·rwFKP(z)w(z)δ(r)L`(k̂ · r̂) (2.20)

to finally obtain

q̂f loc
NL

=

∫
dk k2

2π2
Pm,0(k)α̃0(k)

∫
dΩk
4π

[δw̃0 (−k)
∑
`=0,2

δw`

` (k)]−∆qf loc
NL

(2.21)

where

w̃(z) = b(z)− p , w0(z) = D(z)(b(z) + f(z)/3) , w2(z) = 2/3D(z)f(z) . (2.22)

1Multiplicative constants independent of wavenumber k and redshift, like D(z0), can be safely neglected as the final
result is always properly normalized.
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Figure 1: Redshift weights for the eBOSS DR14 QSO catalog. Since n(z)P0 � 1, the standard FKP
weights, in blue, show small redshift evolution. The optimal weights to estimate PNG are shown in
red, green and orange. The weights depend on the QSOs response to f loc

NL, as one can see from the
difference between the solid red line, for p = 1, and the dashed one, for p = 1.6.

The above Eq. (2.21) and the associated set of weights defines the optimal signal weighting of the power
spectrum, and they represent one of the main results of this work. One can immediately recognize
that, if we neglect the optimal weights, the structure of angular integral over the wavenumber k is the
same of standard estimators of the monopole and quadrupole of the power spectrum [59–63]. This is
expected, as the optimal redshift weights are no different than FKP weights in this respect. Within
our model, the hexadecapole, ` = 4, does not carry any information about PNG and therefore does
not appear in the optimal estimator. We notice that optimal weights for PNG up-weight high redshift
galaxies, which are highly biased and have therefore larger f loc

NL response. The OQE also exploits the
fact that the primordial potential does not evolve in redshift, whereas the Gaussian part of the signal
does. This can be seen by comparing the different dependence of w̃ and w` on the linear growth
function D(z). Figure 1 shows the redshift evolution of the unormalized weights in the eBOSS DR14
QSOs catalog, described in more details in Section 3. For the DR14 sample, wFKP(z), blue line, and
w`(z), green and orange lines, slowly vary across the survey, the former since n(z)P0 � 1 whereas
the latter because bqso(z)D(z) ' const. One the other hand w̃(z) grows quite rapidly with resdhift,
up-weighting galaxies with a larger response to f loc

NL.
Finally, the estimator in Eq. (2.21) in principle needs to be made unbiased by subtracting out

the signal in the absence of any f loc
NL via the ∆qf loc

NL
term. As we will see in the next section, op-

timal weighting boils down to a redefinition of the mean redshift of the survey, allowing us to use
standard tools to constrain f loc

NL or other parameters, and obtain statistically unbiased results. It is
also straightforward to generalize the estimator defined above to the case of cross-correlation between
different tracers.

We conclude this section with a few remarks. Our estimator differs from the one in [47], in which
the authors defined optimal weights for pairs of galaxies, under the assumption that a single redshift
can be associated to each pair. The drawback of this approach is that there is no straightforward
implementation in Fourier Space, as there is no Fourier space analog of a pair of objects. This led
[47] to define weights for individual galaxies as a square root of pair weights. However, weights can
be negative and one is forced to take an absolute value before the square root. We’d like to stress
that configuration and Fourier space carry the same amount of information, and as such the same
weighting scheme should apply to both. Our method naturally addresses this issue, as the optimal
weights are defined for each individual object. The same arguments hold for the weights derived in
[40] for redshift-space distortions parameters and for BAO in [39].
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3 Data

In this section, we describe the eBOSS DR14Q sample and the synthetic mock catalogs used in our
analysis.

3.1 eBOSS DR14Q sample

The extended Baryon Oscillation Spectroscopic Survey [41] is part of the SDSS-IV experiment [64].
The eBOSS cosmology program relies on the same optical spectrographs [65] as the SDSS-III BOSS
survey, installed on the 2.5 meter Sloan Foundation Telescope [66] at the Apache Point Observatory
in New Mexico. In addition to observing luminous red galaxies and emission line galaxies, eBOSS will
observe and measure redshifts for ∼500,000 quasars across a volume of the Universe unexamined by
previous spectroscopic surveys. First eBOSS cosmology results for the DR14Q sample were recently
presented in [67], which reported the first BAO distance measurement in the range 1 < z < 2. The
clustering properties of the eBOSS quasars have also been previously examined in [68, 69], although
these works do not make use of the full DR14Q sample. Recent work in [42–46, 70, 71] has presented
several application of eBOSS DR14 data to measurements of BAO and redshift space distortions
parameters.

The imaging data, target selection, and catalog construction methods for the DR14Q sample
used in this work are discussed in detail in [49, 72]. Targets are selected from the catalogs of the
SDSS I/II surveys [73], released as part of SDSS DR7 [74], and the SDSS-III survey [75, 76], released
as part of SDSS DR8 [77]. The eBOSS also makes use of several bands of the Wide Field Infrared
Survey Explorer (WISE; [78]), as described in [79]. The target selection criteria for the DR14Q sample
is presented in detail in [80, 81].

Accurate redshift estimation is crucial for achieving the cosmology goals of eBOSS, which is
particularly challenging for quasar spectra [82]. As described in [72], the DR14Q sample contains
three automated redshift estimates per object. In this work, we use the so-called “fiducial” redshift
zfid, which can be any of the three redshift estimates, depending on which one yields the lowest
catastrophic failure rate (see [72] for further details).

The DR14Q sample contains 148,659 objects with spectroscopic redshifts in the range 0.8 ≤
z ≤ 2.2. The observed objects are distributed in two separate angular regions in the North Galactic
Cap (NGC) and South Galactic Cap (SGC). The effective areas of these regions are 1214.6 deg2 and
899.3 deg2, respectively. We show the observed number density as a function of redshift for the NGC
and SGC regions in Figure 2. There are slight discrepancies in n(z) between the two regions due to
differences in targeting efficiency.

3.2 Completeness weights

Objects in the DR14Q sample are assigned weights to account for the incompleteness of the target
selection process and other systematic effects that could potentially bias our clustering measurements.
There are two main types of weights that we will discuss in this section, spectroscopic completion
weights wspec and systematic imaging-based weights wsys. The former accounts for the fact that
a small percentage of targets do not receive a redshift while the latter set of weights corrects for
systematics arising from photometric inhomogeneities in the targeting selection. When combining
these two sets of weights, we take the total completeness weight as

wc = wsys · wspec. (3.1)

3.2.1 Spectroscopic weights

The first main cause of spectroscopic incompleteness in the DR14Q sample is fiber collisions. Fiber
collisions result when a pair of quasars are separated by less than the 62′′angular size of the SDSS
spectrograph fiber, which prevents one of the objects from being observed. Missed observations are
partially alleviated by the eBOSS tiling pattern, which naturally has overlapping tiles in regions with
a density of targets on the sky, and thus, allows redshifts to be measured for objects separated by
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Figure 2: The mean density of quasars in the DR14Q sample as a function of redshift for the
NGC (blue) and SGC (red) regions of the sky. The differences between the two regions are due to
known discrepancies with the targeting efficiency. The two vertical lines bracket the DR14 QSOs in
0.8 < z < 2.2.

less than the 62′′collision scale. Ultimately, 4% and 3% of the eBOSS quasar targets are fiber-collided
objects that do not receive a spectroscopic observation in the NGC and SGC regions, respectively.

We account for the missing objects due to fiber collisions by up-weighting the nearest neighbor
with a valid redshift and spectroscopic class. This procedure follows previous clustering analyses,
e.g., as in BOSS [83, 84]. In practice, this is not a perfect correction, as a fraction of fiber collision
pairs are mere projections and are not associated with the same dark matter halo. However, the
nearest neighbor weighting scheme does preserve the large-scale bias of the clustering sample. As we
are concerned only with the PNG signal on large scales, we leave exploration of most advanced fiber
collision correction schemes, e.g., [85], for future work. We denote the weight used to correct for fiber
collisions as a close pair weight, wcp. By default, its value is unity for all objects that are not involved
in a fiber collision, and for the case of fiber collisions, it is equal to an integer with value greater than
unity.

The second main cause of spectroscopic incompleteness is redshift failures, which refers to the
subset of quasars that do not receive a valid automated redshift and are not visually inspected.
The distribution of these objects is not uniform within the focal plane due to variations in detector
efficiency. In past BOSS releases [86], redshift failures were an almost negligible fraction of the total,
less than 1%. However, redshift determination for a quasar at z ∼ 1.5 is more difficult than for an
LRG at z ∼ 0.5, and the DR14Q sample has a redshift failure rate of 3.4% and 3.6% in the NGC
and SGC, respectively. With this increased rate, a more complex scheme than was used in previous
BOSS analyses, is required to adequately correct for the effect. Here, we use a focal plane weight wfoc

defined as

wfoc = [1− Prf(xfoc, yfoc)]
−1
, (3.2)

where Prf defines the probability of obtaining a redshift failure as a function of position in the focal
plane. With this weight, quasars with measured redshifts that are observed in positions on the focal
plane where Prf is greater than zero will be up-weighted to account for the fact that, on average,
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targeted quasars are missing from the sample due to redshift failures. We refer the reader to [71] for
further details on the redshift failure weights.

Finally, we assign the total spectroscopic completeness weight as the product of the fiber collision
and redshift failure weights, wspec = wcp · wfoc.

3.2.2 Imaging weights

Each quasar in the DR14Q sample is also assigned a weight to mitigate photometric systematics,
using the prescription studied in [68]. The weights, denoted here as wsys, account for inhomogeneities
in the quasar targeting selection related to the Galactic extinction and depth of the targeting image
data. The weights used in this work have been utilized in previous eBOSS cosmology analyses [67, 71].
They are described in detail in section 3.4 of [67], and we refer the reader to that work for further
details.

3.3 Synthetic DR14Q catalogs

We make use of a set of mock catalogs to estimate the covariance matrix of the eBOSS power spectrum
measurements. The mocks are based on the Extended Zel’dovich (EZ) approximateN -body simulation
scheme [87]. Throughout this work, we refer to this set of synthetic catalogs as EZ mocks. In total,
we utilize 1000 independent realizations for each Galactic cap region. We also use the mocks to verify
and test our analysis and parameter estimation pipelines.

The set of EZ mocks are generated following the methodology outlined in [87], matching both the
angular footprint and redshift selection function of the DR14Q sample. Briefly, the EZ mock scheme
relies on the Zel’dovich approximation to generate a density field, and implements nonlinear and halo
biasing effects through the use of free parameters. These free parameters are tuned to produce two-
point and three-point clustering of a desired data set. The method allows for the fast generation of
a large number of mock catalogs without the computational cost of full N -body simulations, and it
has been used extensively in previous BOSS cosmology analyses, e.g., [88, 89].

The EZ mock catalogs account for the redshift evolution of the eBOSS quasars by constructing
a light-cone out of 7 redshift shells, generated from periodic boxes of side length L = 5000 h−1Mpc at
different redshifts. The free parameters of each box are calibrated independently, and the boxes are
combined using the make survey software [90]. The background density field of the light cone mocks
is continuous, as each of the boxes shares the same initial Gaussian density field. The NGC and SGC
data sets are treated independently when deriving the best-fit internal EZ mock parameters. The
cosmology of the EZ mocks is a flat, ΛCDM model with Ωm = 0.307115, Ωb = 0.048206, h = 0.6777,
σ8 = 0.8255, and ns = 0.9611.

Finally, we mirror the effects of fiber collisions and redshift failures (as discussed in section 3.2.1)
and each object in an EZ mock catalog also has associated values for wfoc and wcp. Fiber collisions are
implemented by applying the tiling pattern to the mock data, and removing pairs that fall within the
collision scale that are not in overlapping tiles. Redshift failures are applied by statistically removing
objects based on the position of the object in the focal plane, using the probability of a redshift failure
Prf(xfoc, yfoc).

4 Analysis Methods

Throughout our analysis, we assume a flat ΛCDM cosmology from [91] as our fiducial background
cosmology. The parameter set we use is h = 0.6774, Ωbh

2 = 0.0223, Ωch
2 = 0.1188, ns = 0.9667, and

σ8 = 0.8159. We use this fiducial cosmology to convert observed quasar coordinates (right ascension,
declination, and redshift) to Cartesian coordinates during the estimation of the power spectrum of the
sample (see §4.1). The fiducial cosmology also determines the shape of the real-space matter power
spectrum, which is used in our theoretical modeling (see §4.2).

4.1 Power spectrum estimation

We begin by defining the weighted quasar density fields [48]

F̃ (r) = w̃tot

[
n′qso(r)− α′sns(r)

]
, F`(r) = wtot,`

[
n′qso(r)− α′sns(r)

]
, (4.1)
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where n′qso and ns are the number densities of the quasar sample and a synthetic catalog of random
objects, respectively. The total weights are the product of FKP and the optimal redshift weights

w̃tot(z) = wFKP(z)w̃(z) , wtot,`(z) = wFKP(z)w`(z) , (4.2)

and they are applied to both the quasar and synthetic samples. The synthetic catalog contains
unclustered objects – it is used to define the expected mean density of the survey, accounting for the
radial and angular selection functions. The factor α′s gives the ratio of quasars to synthetic objects and
serves to properly normalize the number density of the synthetic catalog. In our notation, quantities
marked with a prime (′) include the completeness weights wc specified in Section 3.2. The synthetic
catalog defines our expected number density, and as such, does not require completeness weights. The
synthetic sample has a number density 1/α′s times more dense than the true sample. We assume that,
on average, the relation

〈
n′qso(r)

〉
= α′s 〈ns(r)〉 holds true. We define α′s as α′s = N ′qso/Ns, where

N ′qso =
∑

qso wc and Ns is the total number of objects in the synthetic catalog.
Now, the multipoles of the cross-correlation between the weighted density fields can be estimated

following [59],

P̂` =
2`+ 1

A`

∫
dΩk
4π

[∫
dr1 F̃ (r1)eik·r1

∫
dr2 F`(r2)e−ik·r2L`(k̂ · r̂2)

]
− S`, (4.3)

where we have introduced the shot noise contribution S`, defined as

S` = A−1
`

∫
dr n′qso(r)(wc(r) + α′s)w̃totwtot,`(r)L`(k̂ · r̂), (4.4)

which is different than zero only for the monopole ` = 0. The normalization is defined as

A` =

∫
dr wtot,`(r)w̃tot(r)[n′qso(r)]2 . (4.5)

We compute the shot noise (equation 4.4) and the normalization (equation 4.5) as discrete sums over
the quasar and synthetic catalogs. To do so, we make use of the following relation:

∫
dr n′qso(r) . . . −→

Nqso∑
i

wc(ri) . . . −→ α′s

Ns∑
i

. . . , (4.6)

where the integral can be expressed equivalently as a sum over the quasar or synthetic catalogs. Thus,
the normalization A` can be computed as

A` =

Nqso∑
i

n′qso(ri)wc(ri)wtot,`(ri)w̃tot(ri) (4.7)

= α′s

Ns∑
i

ns(ri)wtot,`(ri)w̃tot(ri) . (4.8)

Note that while equations 4.7 and 4.8 are equivalent on average, in practice, we use the latter equation
to estimate the normalization due to the increased number density of the synthetic catalog. Similarly,
we can express the shot noise contribution to the monopole (equation 4.4) as

S0 = A−1
0

Nqso∑
i

w2
c (ri)w̃tot(ri)wtot,0(ri) + α′2s

Ns∑
i

w̃totwtot,0(ri)

 , (4.9)

where the two terms compute the contributions to the shot noise from the quasar and synthetic
catalogs, respectively. There is some uncertainty surrounding the impact of fiber collisions and com-
pleteness weights on the Poisson shot noise calculation of equation 4.9 [92–94]. We choose to use the
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standard Poisson expression and vary a shot noise parameter while performing parameter estimation
to account for any discrepancies (see section 4.2).

Our implementation of equation 4.3 uses the FFT-based estimator of [62]. This estimator builds
upon similar estimators presented in [60, 61], but reduces the number of FFTs required per multipole
using a spherical harmonic decomposition. We calculate the power spectrum multipoles as

P̂`(k) =
2`+ 1

A`

∫
dΩk
4π

F̃ (k)F`(−k), (4.10)

with

F`(k) ≡
∫
dr F`(r)eik·rL`(k̂ · r̂),

=
4π

2`+ 1

∑̀
m=−`

Y`m(k̂)

∫
dr F`(r)Y ∗`m(r̂)eik·r, (4.11)

where Y`m are spherical harmonics. Note that equation 4.11 requires the calculation of 2`+ 1 FFTs
for a multipole of order `.

To compute the FFTs required by our estimator, we estimate the overdensity field on a mesh of
10243 cells for the quasar and synthetic catalogs using a Triangular Shaped Cloud (TSC) interpolation
scheme (see e.g., [95]). When interpolating to the mesh, each quasar contributes a weight of wcwtot

and each synthetic object a weight of wtot. When computing FKP weights, we use a fiducial power
spectrum value of P0 = 3 × 104 h−3Mpc3, roughly equal to the expected power on the scales where
PNG is prominent in our sample, k ' 0.03 hMpc−1. We use the interlaced grid technique of [95, 96]
to limit the effects of aliasing, and we correct for any artifacts of the TSC scheme using the correction
factor of [97]. With the combination of TSC interpolation and interlacing, we are able to measure
the power spectrum multipoles up to k = 0.4 hMpc−1 with fractional errors at the level of 10−3 [96].
To perform these operations, as well as estimate the power spectrum multipoles via equation 4.10,
we utilize the massively parallel implementations available as part of the open-source Python toolkit
nbodykit [98].

4.2 Modeling

4.2.1 The power spectrum model

We use linear theory to predict the quasar power spectrum in redshift-space [52]

Pqso(k, µ) = G(k, µ;σP )2
[
btot(k) + fµ2

]2
Pm(k) +N, (4.12)

where Pm is the real-space matter power spectrum, N is a free parameter accounting for residual shot
noise, and btot is the total quasar bias, including PNG, given by

btot(k) = bqso + ∆b = bqso + f loc
NL(bqso − p)α̃(k), (4.13)

where bqso is the linear bias of the quasar sample, and α̃ is defined in Eq. (2.3). To account for
redshift-space related damping of the power spectrum, we include a Lorentzian damping function,

G(k, µ;σP ) =
[
1 + (kµσP )2/2

]−1
, (4.14)

with a single free parameter σP , which represents the typical damping velocity dispersion. The
physical motivation for the inclusion of G(k, µ) is the Finger-of-God (FOG) effect in redshift space
due to the virial motions of the quasar within its host dark matter halo [99]. However, the damping
term also accounts for errors in the spectroscopic redshift determination of the quasars [41]. The
effect can be estimated for the DR14Q sample as σz = 300 km s−1 for z < 1.5 and σz = [400 · (z −
1.5) + 300] km s−1 for z > 1.5 [41].

The multipoles of the power spectrum are then computed as
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P`,qso(k) =
2`+ 1

2

∫ 1

−1

dµPqso(k, µ)L`(µ), (4.15)

We evaluate the linear, real-space matter power spectrum Pm(k) and the transfer function in ∆b using
the classylss software [100], which provides Python bindings of the CLASS CMB Boltzmann solver
[101]. We evaluate the linear power spectrum using the fiducial cosmology and keep the shape of
the power spectrum fixed during parameter estimation. This choice assumes that the uncertainty as
determined by [3] for most of the parameters which define the shape of the power spectrum is much
smaller than the uncertainty of our measurement and can be neglected. This has been shown to be a
reasonable assumption for current data sets, e.g., [92, 102].

4.2.2 Window function and effective redshift

The measured power spectrum multipoles are the result of the convolution of the true underlying
power spectrum with the Fourier transform a window function W (s), defined by the footprint on the
sky and the redshift selection function. It is easy to see that the ensemble average of the estimator in
Eq. (4.3) measures the following multipoles of the power spectrum PA,eff (k) [63, 103–105]

PA,eff (k) = (2A+ 1)

∫
dΩk
4π

d3s1 d3s2 e
ik(s2−s1)δ(s1)δ(s2)W (s1)W (s2)LA(k̂ · ŝ1) (4.16)

= (−i)A(2A+ 1)
∑
`, L

(
` L A
0 0 0

)2 ∫
ds s2jA(ks)

∫
ds1 s

2
1 ξ`(s; s1(z))QL(s; s1(z)) (4.17)

where we have defined the multipoles of the window function

QL(s) ≡ (2L+ 1)

∫
dΩs

∫
d3s1W (s1)W (s + s1)LL(ŝ · ŝ1) (4.18)

≡
∫

ds1 s
2
1QL(s; s1) . (4.19)

In the above equations we have chosen the direction to one of the two QSOs to be the line of sight
for the multipole decomposition, s1(z), explicitly accounting for the redshift evolution of the signal.
In principle, one should perform the redshift integral

∫
d s1(z) in Eq. (4.16) for each evaluation of

the model parameters in the likelihood, which makes the data analysis numerically quite challenging.
However, as we will now show, an effective redshift approximation is often very close to the full answer
in Eq. (4.16).

Under a generic set of weights w(z) of the density field δ, the effective redshift is defined as

zeff =

∫
dz n(z)2[χ2/H(z)] w(z)2z∫
dz n(z)2[χ2/H(z)]w(z)2

(4.20)

and the power spectrum evaluated at the effective redshift reads

PA(k; zeff) = (−i)A(2A+ 1)
∑
`, L

(
` L A
0 0 0

)2 ∫
ds s2jA(ks)ξ`(s; zeff)QL(s) (4.21)

For FKP weights and smoothly varying selection function the above expression is sub-percent accurate,
even in large redshift bins [106]. In particular, on scales where linear theory is a good approximation,
it is always possible to define an effective redshift because in linear theory redshift evolution preserves
the shape of the power spectrum. For the DR14 QSOs in NGC, neglecting for the moment the angular
mask, assuming the fiducial cosmological parameters and the model in Eq. (4.12), the accuracy of
the effective redshift approximation is shown in the left hand panel of Figure 3 for FKP weights. For
NGC, between 0.8 ≤ z ≤ 2.2 the effective redshift is zeff = 1.52. The measured monopole power
spectrum, in blue, can be accurately described by a model evaluated at the effective redshift of the
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survey, with deviations smaller than 1%. Moreover the difference between Eq. (4.21) and Eq. (4.16)
is well captured by a constant, which can therefore absorbed when marginalizing over galaxy bias.
Similar conclusions hold for the quadrupole. The large difference at high k is a mere consequence
of the fact that the quadropole crosses zero at k ' 0.25 hMpc−1, the relative deviation is still quite
small. The bottom line is that, within FKP weighting, the error introduced by evaluating the model
at an effective redshift is always well below the measurement uncertainties.

Our optimal weights are smooth in redshift, thus we expect to be able to evaluate the theoretical
model at new effective redshifts, one for the monopole

z0,eff =

∫
dz n(z)2[χ2/H(z)] w2

FKP w̃(z)w0(z)z∫
dz n(z)2[χ2/H(z)]w2

FKP w̃(z)w0(z)
, (4.22)

and one for the quadrupole

z2,eff =

∫
dz n(z)2[χ2/H(z)] w2

FKP w̃(z)w2(z)z∫
dz n(z)2[χ2/H(z)]w2

FKP w̃(z)w2(z)
. (4.23)

Since the optimal analysis up-weights high-redshift galaxies where the PNG signal is larger, the
effective redshift goes up compared to the FKP-only case, zeff = 1.52, to

z0,eff = 1.64 , z2,eff = 1.58 , (4.24)

for p = 1.0, and to

z0,eff = 1.74 , z2,eff = 1.70 , (4.25)

for p = 1.6. For an optimally weighted case the comparison between the effective redshift approxima-
tion, Eq. 4.21, and the full integral over redshift, Eq. 4.16, is shown in the right hand panel of Figure 3.
We find that despite the large redshift range covered by eBOSS QSOs, evaluating the power spectrum
at the effective redshift is accurate at the percent level for both the monopole and the quadropole.
We have further tested this assumptions in mock catalogs, finding that we can reproduce the weighted
clustering using the effective redshifts defined above.

We finally stress that effective redshifts can be defined using optimal weights with respect to any
other cosmological parameter, and thus, upon checking they provide an accurate description of the
data, vastly simplify the cosmological analysis. For instance, see [107] for an implementation of the
effective redshift approximation for BAO and RSD in eBOSS data.

The shape of the window function multipoles QL(s) and their effect on the monopole of the
eBOSS QSOs power spectrum at zeff is shown in Figure 4. The main effect of the survey mask is to
reduce the amplitude of clustering at large scales compared to the true underlying power spectrum,
and therefore needs to be properly taken into account for unbiased estimates of PNG. Given the high
effective redshift and the small fraction of the sky covered by DR14Q, wide angle effects in redshift
space distortions and their possible coupling to the survey mask can be safely neglected [63, 104].

4.3 Parameter estimation

In summary, our base model has three free parameters in each patch of the sky: the linear bias b1,
the damping velocity dispersion σP , and the shot noise parameter N . When fitting for PNG, we
introduce f loc

NL as an additional free parameter. Since we are not interested in BAO information or
RSD we keep cosmological parameters fixed to Planck best fit values and do not include the Alcock-
Paczynski (AP) effect [108]. Actually, the onset of the PNG signal is fixed by the position of the
wavenumber associated with the size of the horizon at matter-radiation equality, which is one of the
most precise derived parameters measured by Planck [91, 109]. Since we have shown that the optimal
quadratic estimator, in the limit of diagonal pixel covariance, boils down to a standard measurement
of the power spectrum, we don’t need to remove the any estimator bias and just model the expected
signal. We estimate the best-fit parameters of the model using a likelihood analysis. We assume that
the probability that our data vector D corresponds to a realization of our model T (θ) is given by a
multi-variate Gaussian of the form,
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Figure 3: Accuracy of the effective redshift approximation for the eBOSS DR14 QSOs sample (NGC).
Left panel : The monopole, blue lines, and quadropole, red lines, evaluated at the effective redshift
defined by FKP weights, dashed lines, compared to the full integral of the signal power spectrum over
the QSOs selection function, continuous lines. The accuracy for both the monopole and quadrupole
is at a percent level, well withing the error in the measurements. Right panel : Same as the left panel
but including f loc

NL optimal weights. The amplitude and shape of the multipoles of the power spectrum
have changed compared to the plot on the left, but new effective redshift can be defined to provide
an excellent description of the full redshift integral.

L(D|θ,Φ) ∝ exp

[
−1

2
χ2(D,θ,Φ)

]
, (4.26)

where θ is our vector of model parameters, and χ2 takes the quadratic form,

χ2(θ) =
∑
ij

(Di − Ti(θ))Φij(Dj − Tj(θ)), (4.27)

and Φ is the inverse of the covariance matrix C, often referred as the precision matrix.
When performing our likelihood analysis, our data vector D consists of the monopole and

quadrupole, measured using the procedure outlined in section 4.1. We use linearly spaced bins of
width ∆k = 0.001 hMpc−1. With the first bin separation at k ∼ 0.005 hMpc−1 and extending to
kmax = 0.3 hMpc−1, we have a total of 120 data points in D (60 bins per multipole).

We estimate the covariance matrix of our data measurement using the 1000 EZ mock realizations,
described previously in section 3.3. As the covariance is computed from a finite number of mock
realizations, its inverse Φ provides a biased estimate of the true precision matrix due to the skewed
nature of the inverse Wishart distribution [110]. To correct for this bias, we re-scale the precision
matrix as

Φ′ =
Nmock − nb − 2

Nmock − 1
Φ. (4.28)
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geometry. In the right panel, the solid lines show the original multipoles, while the dashed lines
correspond to the model after convolution with the window function, P̂`(k). The main consequence
of the presence of the survey geometry is a change in power on large scales.

We performing our likelihood analysis following equation 4.26, we use the rescaled precision matrix
Φ′. In our analysis, we use Nmocks = 1000 and nb = 120, yielding a Hartlap factor of ∼0.88. Following
[71] we do not include the extra correction of [111] since it has a minor impact on the errors.

We find the best-fitting model parameters using the LBFGS nonlinear minimization algorithm
[112]. We verify that the minimization procedure converges by starting the algorithm from a number
of different initialization states. We compute the full posterior distribution of the parameters of
interest using the emcee software [113] to perform Markov chain Monte Carlo (MCMC) sampling. We
assume broad, uniform priors on all parameters of interest such that the priors serve only to bound
the parameter values to the largest possible physically meaningful parameter space; they do not have
an impact on our derived posterior distributions.

5 Fisher Information

It is useful to look at what a Fisher analysis [114] based on eBOSS number densities and sky area
returns for the error on f loc

NL using measurements of scale-dependent bias. This will tell us the best
possible constraints, and on how much improvement we can expect from an optimal analysis.

For simplicity we will assume shot-noise and the redshift error σv are perfectly known, as they
both have a small impact on the final f loc

NL bounds. Since we are interested in quantifying the maximum
information of the survey we assume QSOs in NGC and SGC have the same value of linear bias. We
consider measurements of the monopole and quadropole only, for which the Fisher matrix reads

Fij = V

∫ kmax

kmin

dk k2

2π2

∂P(k)

∂θi

T

C(k)−1 ∂P(k)

∂θj
(5.1)

where θ = {bqso, f
loc
NL}, P(k) = {P0(k), P2(k)} is a vector formed by the monopole and quadrupole of

the power spectrum, and C(k)−1 is the inverse of the covariance matrix of the measurements. The
fiducial value for the QSO bias is taken from the fitting function in [68], while the fiducial redshift
error from [41].

The Fisher matrix can be evaluated at the effective redshift defined by FKP weights or by the
optimal ones. In both cases σf loc

NL
is defined via (

√
F−1)22. The DR14 catalog contains QSOs from

redshift 0.5 < z < 3.5, of which the redshift range 0.8 < z < 2.2 corresponds to the fiducial survey.
We will repeat the calculation in both redshift ranges, to assess the gains of an extended, in redshift,
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Figure 5: Constraints on PNG from a combined analysis of NGC and SGC in the redshift range
0.8 < z < 2.2. Different colors corresponds to different value of kmin. Dashed lines show the FKP
only weights, whereas continuous lines refer to the optimal analysis. Left and right panels correspond
to p = 1.0 and p = 1.6 respectively.

analysis. We furthermore distinguish between NGC and SGC, and thus perform two separate Fisher
calculations which are then added together. NGC covers a larger area of the sky than SGC, by ' 30%,
and will therefore be more constraining. As discussed in Section 2, Eqs. 2.4 and 4.13, the response
of a generic tracer to the presence of PNG depends on one parameter p, that for QSOs takes a value
between 1 and 1.6. We therefore repeat the Fisher matrix calculation, and in Section 6 the fit to the
data, for both values of p = 1, 1.6.

5.1 Fiducial Survey: 0.8 < z < 2.2

The left panel of Figure 5 shows the constraints on f loc
NL, for p = 1, in NGC plus SGC, as a function

of kmax and for different values of kmin. The values of kmin correspond to the first three k-bins of the
measured power spectra. The dashed lines correspond to the FKP weighting, while the continuous
one to the optimal analysis. The error σf loc

NL
strongly depends on the largest scales included in the

analysis, since the signal peaks at low k, but it very weakly changes with kmax. Comparing the
standard analysis to the optimal one, we find that the optimal method provides roughly 20% better
error bars than the FKP one, with larger improvement for higher values of kmin. The right panel
in Figure 5 displays the results of the Fisher analysis for p = 1.6. The optimal analysis for p = 1.6
moves the effective redshift further up, in order to compensate for the reduced response to f loc

NL. We
thus expect, compared to p = 1, larger difference with respect to the FKP-only weighting. We indeed
find 40-60% benefit of the optimal analysis comparing it to a standard one. A comparison of the two
panels in Figure 5 also shows that σf loc

NL
degrades by almost a factor of 2 going from p = 1 to p = 1.6

in the standard FKP analysis, whereas with our method we lose only 50% of the constraining power.
It is worth emphasizing again that we do not know the exact value of p for the eBOSS QSOs

sample. This implies that an analysis of the eBOSS data assuming p = 1 or p = 1.6 will not necessarily
return the error bar of the Fisher calculation described above. It is nonetheless reasonable to expect
that, in absence of systematic effects at low-k, σf loc

NL
. 20 and σf loc

NL
. 30, for p = 1 and p = 1.6

respectively, are in the reach of eBOSS DR14Q data.

5.2 Including QSOs at z > 2.2

The analysis of the previous section suggests that extending the f loc
NL analysis to z > 2.2 could

significantly increase the sensitivity to PNG. The benefit of a larger redshift coverage is two-fold.
First, at fixed kmin, sample variance is reduced in a larger volume simply because more modes are
available. The error σf loc

NL
indeed roughly scales with V 1/2 at fixed kmin, see Eq. (5.1). Second, since

– 16 –



0.10 0.15 0.20 0.25 0.30

10

15

20

25

kmax [h/Mpc]

σ
f N
L
,N
G
C
+
S
G
C

kmin = 2.7 × 10-3 h/Mpc

kmin = 5.0 × 10-3 h/Mpc

kmin = 1.0 × 10-2 h/Mpc

Optimal

FKP

0.8<z<3.5

0.10 0.15 0.20 0.25 0.30

15

20

25

30

35

40

kmax [h/Mpc]

σ
f N
L
,
p
=
1.
6,
N
G
C
+
S
G
C

kmin = 2.7 × 10-3 h/Mpc

kmin = 5.0 × 10-3 h/Mpc

kmin = 1.0 × 10-2 h/Mpc

Optimal

FKP

0.8<z<3.5

Figure 6: Constraints on f loc
NL using DR14Q in 0.8 < z < 3.5, encompassing the full redshift range

of eBOSS. Left and right panel correspond to p = 1 and p = 1.6 respectively. Note the difference in
scale of the y-axis between the two panels.

the signal peaks at the largest scales, including lower k modes into the analysis shrinks the error
bars by another factor of V 1/6. The latter improvement would however require a careful study of the
systematic effects at large scale, as described in Section 3.2.1. In this section we calculate the Fisher
information of the full redshift range covered by the eBOSS survey, providing a motivation to further
investigate and reduce the systematics at low k. The redshift distribution of eBOSS QSOs is such
that at z > 2.5 the number of objects drops very quickly. In terms of the effective redshift defined in
Section 4.2.2 we find

0.8 < z < 2.5 : zeff = 1.54 ,

{
zeff,0 = 1.72 , zeff,2 = 1.66 , for p = 1

zeff,0 = 1.83 , zeff,2 = 1.78 , for p = 1.6
(5.2)

and

0.8 < z < 3.5 : zeff = 1.56 ,

{
zeff,0 = 1.78 , zeff,2 = 1.69 , for p = 1

zeff,0 = 1.89 , zeff,2 = 1.82 , for p = 1.6 .
(5.3)

The inclusion of QSOs in the range 2.2 < z < 2.5 basically does not change the FKP effective redshift,
but it moves up the optimal effective redshift by a substantial amount compared to Eq. (4.25). This
indicates that a large amount of signal could become accessible by including z < 2.5 QSOs in the
analysis. Minor shifts in the effective redshift are produced by adding QSO all the way to z = 3.5,
suggesting that this redshift range will likely only help to reduce sample variance.

Figure 6 shows the error on PNG, σf loc
NL

, that could be obtained by optimally combining all the
eBOSS data between 0.8 < z < 3.5. Several choices of kmin are displayed, to help understand how the
lack of control on systematics on the largest scales affects the final result. Similarly to what we find
in the nominal DR14 redshift range, the optimal analysis yields 25-30% improvement for p = 1, and
40-50% for p = 1.6. We notice that only in the case of the optimal weighting the full survey could in
principle achieve σf loc

NL
' 10, even at relatively high kmin. The final eBOSS footprint is expected to be

roughly 3 times larger than the one of DR14, which could in principle shrink σf loc
NL

by an additional

31/2. A survey like eBOSS could therefore achieve an error as low as σf loc
NL
' 5-8, depending on the

value of f loc
NL response, if systematics can be kept under control.
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Figure 7: Measurements, points with error bars, and best fit theoretical models, continuous lines, of
the monopole power spectrum of the eBOSS DR14 QSOs. The top row shows the power spectra in
NGC and the lower ones in SGC.

6 eBOSS DR14 constraints on Primordial Non Gaussianities

We now move to the analysis of the DR14Q catalog. Given the different targeting efficiency in the
two patches we treat NGC and SGC separately, with two different values of bias, velocity dispersion
and shot noise. This implies that the constraints on f loc

NL will not be as tight as in the idealised Fisher
calculation.

The first thing we notice in the measured power spectra is that the redshift-space quadrupole
in NGC shows an excess of power on large scales not compatible with a cosmological signal. In this
paper we therefore focus on the monopole only, which does not show sign of contamination at low-k
that could cause a biased estimate of PNG. It is worth keeping in mind that generically residual
foregrounds will affect ` = 2 stronger than ` = 0, and that systematic effects can only add power to
the monopole of the power spectrum. So as long as there is no detection, an upper limit on f loc

NL should
be reliable. Since we work at fixed shape of the power spectrum, the quadropole is almost irrelevant
for the final constraint on f loc

NL, but could become important if the growth factor, or equivalently Ωm,
is allowed to vary. A brief description of the inconsistency of the quadrupole data can be found in
Appendinx A.

In Figure 7 we show the measurements, points with error bars, of the monopole of the power
spectrum of eBOSS DR14Q in the two regions of the sky, NGC in the upper plots and SGC in the
lower ones. The three columns correspond to the standard FKP weighting of the data, and the optimal
redshift weighting for p = 1.0 and p = 1.6. The best fit models, including f loc

NL as a free parameter,
are displayed as the continuous lines and provide an excellent fit to the data, χ2

d.o.f. ' 1 in all cases.
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Figure 8: The 1-dimensional posterior of f loc
NL from separate fits to the NGC (upper panels) and

SGC (lower panels). The red histograms show the optimal weighting while the blue ones the FKP
weighting. Dot-dashed lines indicate 95% confidence intervals.

Figure 8 shows the one dimensional posterior of f loc
NL for the different measurements. The first

thing worth pointing out is the non-Gaussian posteriors. One expects this because the response to
the negative f loc

NL is very different to the positive f loc
NL, as seen in the right panel of Figure 4. It could

be explained by the fact that negative f loc
NL is a worse fit for FKP weights, and for NGC in particular,

see Figure 7, unless |f loc
NL| is very large and the bias is much larger than the fiducial value of [68]. Non-

Gaussian posteriors make the comparison between the FKP and the optimal analysis more difficult,
in general there is no unique procedure to compare the two. In all the panels, the dot-dashed lines
correspond to the narrowest region encompassing 95% of the area under the posterior, the highest
posterior density interval. The actual numbers at 95% confidence level for both patches of the sky
can be found in Table 1.

The optimal analysis, in red, always returns smaller 95% c.l. intervals, as it can be most easily
noticed in the lower right panel. For p = 1.0 we find that in NGC the 95% confidence interval for
the optimal analysis is very close to the FKP one (but 10% smaller at 99.7%), and it is 5% smaller
in SGC (15% smaller at 99.7%). Compared to the Fisher analysis we therefore find smaller gains
for the optimal weighting. For p = 1.6, the optimal analysis improves considerably over FKP, with
the 95% c.l. now 35-40% smaller for both NGC and SGC. Despite NGC being larger than SGC we
do not find any appreciable difference between the two in constraining power on PNG, which could
be a statistical fluctuation, or an indication of some systematic differences. Even though it is not
significant enough to bias our results, it should be further investigated in new data releases of eBOSS,
which will have better statistics.

The best possible constraints on f loc
NL correspond to the joint analysis of NGC and SGC, for

which the results are shown in Figure 9. The left panels show the f loc
NL posterior, while the right

shows QSOs bias parameters for the two areas of the sky. At 68 (95)% confidence level we find
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Figure 9: Posterior distribution from jointly fitting the NGC and SGC sky regions, assuming p =
1.0 for the f loc

NL response. Left: 1-dimensional posteriors of f loc
NL (blue). Right: The 1-dimensional

posteriors for the QSO bias in NGC (red) and SGC (green). The upper panels show the FKP
weighting, while the lower ones show the optimal weighting.

(41) − 11 < f loc
NL < 29 (39) for NGC+SGC, p = 1.0 and FKP weights. In the optimal case the

constraint reads (51) − 26 < f loc
NL < 14 (21). In the combined NGC+SGC case the FKP analysis is

therefore 10% worse than the optimal one. As expected the QSO bias has increased in the optimal
case, in accordance with the higher effective redshift of the survey. For p = 1.6 the joint constraints
on PNG are shown in 10. The improvement of the optimal analysis is more than 35%. It is also
important to notice that the optimal weights make the difference between the constraints on f loc

NL for
the two values of p much smaller compared to ones in the FKP case, where p = 1.6 is almost a factor
of 2 worse than p = 1.0. Since the true response of any discrete tracer will never be exactly known,
our results shows the importance of optimal signal to noise weighting in making this extra source of
uncertainties less important.

The numbers given above are among the tightest constraints on PNG using LSS data, and the
most stringent one using spectroscopy data of a single tracer. Given the much smaller area of the
sky and number of objects compared to [18, 34], our analysis strongly indicates the 3D information is
crucial to achieve tight constraints on PNG. At the same time our work makes clear that much more
effort should be devoted to studying systematic effects at large angular separation, and remove those
modes altogether if a proper foreground cleaning procedure cannot be found [27, 31, 35, 62].

Optimal weights also help in reducing degeneracies between f loc
NL and other parameters. Figure 11

shows the 2-dimensional posterior of f loc
NL and the QSOs bias in NGC (similar results hold in SGC).

The FKP case is shown in the left panels, and for p = 1.0 and p = 1.6 in the upper and lower plots,
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Figure 10: Posterior distribution from jointly fitting the NGC and SGC sky regions, assuming
p = 1.6 for the f loc

NL response. Left: 1-dimensional posteriors of f loc
NL (blue). Right: The 1-dimensional

posteriors for the QSO bias in NGC (red) and SGC (green). The upper panels show the FKP
weighting, while the lower ones show the optimal weighting.

respectively. Comparison with the optimal analysis on the right hand panels shows that the optimal
weights help shrinking the 2-dimensional contours and the correlation between f loc

NL and the QSOs bias.
A summary of the constraints on f loc

NL can be found in Table 1. We repeated the analysis removing
the first k-bin, and found an increase of 20-30% in errors as compared to the analysis including all
the bins presented above.

Finally, we would like to comment on the use of mocks to validate the constraints we get from
the data. The EZ mocks have not been tuned to reproduce the f loc

NL response bφ of the eBOSS data, as
the latter is unknown. One would need full physics simulations of the specific eBOSS QSOs sample in
order to at least have a theoretical prior on the value of p, and consistently compare the constraints on
the mocks with the ones obtained in the data. This implies that, if the PNG response of the sample is
poorly determined, mocks can only be used to estimate the covariance matrix of the measurements at
the fiducial value of f loc

NL = 0. We also found that the way the mocks have been generated, with BAO
and RSD as their primary goals, does not guarantee that the power spectrum on the largest scales
correctly reproduce linear theory. We indeed find a small discrepancy, not significant compared to
the expected cosmic variance of the measurements, between the mocks and the theory at the largest
scales, that to the best of our knowledge cannot be attribute to modeling systematics. We were
nevertheless able to check that even in the mocks the optimal analysis improves over the standard
FKP one, but the actual mock constraints cannot be compared with the data.
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Figure 11: 2-dimensional posterior of f loc
NL and QSOs bias in NGC (similar results hold in SGC).

The upper panels assume p = 1.0, on the right including only FKP weights, on the left with the
addition of f loc

NL optimal weights. Notice how the 2-dimensional contours shrinks in the optimal case,
and the f loc

NL and the QSOs bias become less correlated. The lower set of plots show the same results
for p = 1.6, with exactly the same conclusions.

7 Conclusions

Primordial non Gaussianities of the local form, parametrized by f loc
NL, leave a unique fingerprint in the

clustering of LSS tracers through the presence of scale-dependent bias on large scales. In this work we
presented new constraints on f loc

NL using the measurements in Fourier space of the clustering of QSOs
in DR14 of the eBOSS survey. In order to access the largest available volume we took all the data
in the redshift range 0.8 < z < 2.2 without applying any redshift binning. This allowed us to probe
modes up to k = 3.7 × 10−3 hMpc−1. In such a wide redshift range the evolution of the Gaussian
part of the signal is quite significant, and differs from the one of the non-Gaussian piece.

We derive a set of weights that maximizes the information content on PNG in the form of a cross
correlation between two differently weighted fields, a statistically optimal way to exploit the different
evolution of the two signals. Our approach extends the standard FKP weighting, in which all the
galaxies are treated the same way from the point of view of their signal content. The optimal weights
for PNG up-weight higher redshift objects for two main reasons. First they are more highly biased,
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f loc
NL Constraint

NGC

p = 1.0
FKP −34 ≤ f loc

NL ≤ 61

Optimal −56 ≤ f loc
NL ≤ 38

p = 1.6
FKP −67 ≤ f loc

NL ≤ 112

Optimal −87 ≤ f loc
NL ≤ 42

SGC
p = 1.0

FKP −64 ≤ f loc
NL ≤ 31

Optimal −61 ≤ f loc
NL ≤ 26

p = 1.6
FKP −122 ≤ f loc

NL ≤ 63

Optimal −92 ≤ f loc
NL ≤ 42

NGC+SGC

p = 1.0
FKP −39 ≤ f loc

NL ≤ 41

Optimal −51 ≤ f loc
NL ≤ 21

p = 1.6
FKP −74 ≤ f loc

NL ≤ 81

Optimal −81 ≤ f loc
NL ≤ 26

Table 1: Summary of the f loc
NL constraints of this work for NGC and SGC separately, as well as their

joint analysis.

thus have a higher f loc
NL response, and second is that the relative size of the dominant Gaussian term

to the non-Gaussian piece is smaller at high redshift since the Gaussian term had less time to grow.
In a spectroscopic survey, one in principle has to integrate the expected signal over the redshift

distribution of the galaxies for a proper comparison to the data. However, it is quite often a good
approximation to introduce an effective redshfit, defined by the n(z) and the desired set of weights
w(z). This is the standard assumption in all galaxy survey analyses, and it has been extensively
tested for FKP weights. We checked that the effective redshift approximation is quite accurate even
for f loc

NL optimal weights, and defined two effective redshifts, one for the monopole and one for the
quadrupole.

We then quantified, using a Fisher matrix approach, the expected improvement on σf loc
NL

of the

optimal treatment compared to a standard one, finding 15-40% gain depending on the exact value of
the f loc

NL response. We also forecasted the possible improvement yielded by including QSOs at z > 2.2.
Our calculation indicates that σf loc

NL
' 5-8 could be obtained by final eBOSS QSOs in the redshift

range 0.8 < z < 3.5, if the low k systematics can be kept under control. We find no significant
contamination at low k for the z < 2.2 QSO sample used in this work.

The exact value of the QSOs response is not known, and can be parametrized by a single number p
(higher p means smaller f loc

NL signal), which the optimal weights depend on. In this work we considered
p = 1.0 and 1.6, with the former value valid if QSOs halo occupation is random, and the latter if QSOs

– 23 –



occupy recent merger halos [18]. Our current constraints can be summarized as −51 ≤ f loc
NL ≤ 21 at

95% confidence level for p = 1.0, and they degrade to −81 ≤ f loc
NL ≤ 26 for p = 1.6. It is also worth

stressing that the optimal analysis makes the difference between the p = 1.0 and p = 1.6 case much
smaller than in a standard approach. The constraints on PNG presented here are some of the tightest
ever obtained using tracers of LSS.

To conclude, in this work we demonstrated the importance of optimal signal weighting in order
to extract the maximum information from the data. This required prior analytic knowledge of the
signal one is trying to measure, and it reinforces the need for stronger connection between the theory
and data analysis for primordial non Gaussianity. We focused on Primordial Non Gaussianities in
the power spectrum, but our approach can be straightforwardly extended to any other cosmological
parameter and summary statistics. We will return to these interesting questions in future work.
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A The power spectrum quadropole

In the main text we included only the monopole of the power spectrum in the data analysis. This
was motivated by the anomalous excess power we observe in the quadropole of the data. In Figure 12
we show the power spectrum quadropole in NGC, point with errorbars (dotted for negative values),
compared to the theoretical prediction for f loc

NL = 0 and f loc
NL = −51, 21, which correspond to the ±95%

values of f loc
NL in the analysis on the monopole data. Clearly even for such high value of PNG the

quadropole data are inconsistent with the theoretical model, and should therefore be neglected due
to their covariance with the monopole measurements.
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Large Scale Structure: Connecting Hopes with Reality, ArXiv e-prints (2014) [1412.4671].

[21] U. Seljak, Extracting Primordial Non-Gaussianity without Cosmic Variance, Physical Review Letters
102 (2009) 021302 [0807.1770].

[22] P. McDonald and U. Seljak, How to evade the sample variance limit on measurements of redshift-space
distortions, J. Cosmology Astropart. Phys. 10 (2009) 007 [0810.0323].

[23] N. Hamaus, U. Seljak and V. Desjacques, Optimal constraints on local primordial non-Gaussianity
from the two-point statistics of large-scale structure, Phys. Rev. D 84 (2011) 083509 [1104.2321].

[24] E. Castorina, Y. Feng, U. Seljak and F. Villaescusa-Navarro, Primordial non-Gaussianities and zero
bias tracers of the Large Scale Structure, ArXiv e-prints (2018) [1803.11539].

[25] A. J. Ross, W. J. Percival, A. Carnero, G.-b. Zhao, M. Manera, A. Raccanelli et al., The clustering of
galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: constraints on primordial
non-Gaussianity, MNRAS 428 (2013) 1116 [1208.1491].

[26] T. Giannantonio, A. J. Ross, W. J. Percival, R. Crittenden, D. Bacher, M. Kilbinger et al., Improved
primordial non-Gaussianity constraints from measurements of galaxy clustering and the integrated
Sachs-Wolfe effect, Phys. Rev. D 89 (2014) 023511 [1303.1349].

[27] B. Leistedt, H. V. Peiris and N. Roth, Constraints on Primordial Non-Gaussianity from 800 000
Photometric Quasars, Physical Review Letters 113 (2014) 221301 [1405.4315].

[28] S. Ho, N. Agarwal, A. D. Myers, R. Lyons, A. Disbrow, H.-J. Seo et al., Sloan Digital Sky Survey III
photometric quasar clustering: probing the initial conditions of the Universe, J. Cosmology Astropart.
Phys. 5 (2015) 040 [1311.2597].

[29] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard et al., Nine-year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, ApJS 208
(2013) 20 [1212.5225].

[30] D. Karagiannis, T. Shanks and N. P. Ross, Search for primordial non-Gaussianity in the quasars of
SDSS-III BOSS DR9, MNRAS 441 (2014) 486 [1310.6716].

[31] A. J. Ross, W. J. Percival, A. G. Sánchez, L. Samushia, S. Ho, E. Kazin et al., The clustering of
galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics,
MNRAS 424 (2012) 564 [1203.6499].

[32] A. R. Pullen and C. M. Hirata, Systematic Effects in Large-Scale Angular Power Spectra of
Photometric Quasars and Implications for Constraining Primordial Non-Gaussianity, PASP 125
(2013) 705 [1212.4500].

[33] B. Leistedt, H. V. Peiris, D. J. Mortlock, A. Benoit-Lévy and A. Pontzen, Estimating the large-scale
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SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the
growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2,
MNRAS 477 (2018) 1639 [1801.03062].

[46] D. Wang, G.-B. Zhao, Y. Wang, W. J. Percival, R. Ruggeri, F. Zhu et al., The clustering of the
SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon
Acoustic Oscillations measurements in Fourier-space with optimal redshift weights, MNRAS 477
(2018) 1528 [1801.03077].

[47] E.-M. Mueller, W. J. Percival and R. Ruggeri, Optimising primordial non-Gaussianity measurements
from galaxy surveys, ArXiv e-prints (2017) [1702.05088].

[48] H. A. Feldman, N. Kaiser and J. A. Peacock, Power-spectrum analysis of three-dimensional redshift
surveys, ApJ 426 (1994) 23 [astro-ph/9304022].

[49] B. Abolfathi, D. S. Aguado, G. Aguilar, C. Allende Prieto, A. Almeida, T. Tasnim Ananna et al., The
Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended
Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory
Galactic Evolution Experiment, ApJS 235 (2018) 42 [1707.09322].

[50] M. Biagetti, T. Lazeyras, T. Baldauf, V. Desjacques and F. Schmidt, Verifying the consistency
relation for the scale-dependent bias from local primordial non-Gaussianity, MNRAS 468 (2017) 3277
[1611.04901].

[51] B. A. Reid, L. Verde, K. Dolag, S. Matarrese and L. Moscardini, Non-Gaussian halo assembly bias, J.
Cosmology Astropart. Phys. 7 (2010) 013 [1004.1637].

[52] N. Kaiser, Clustering in real space and in redshift space, MNRAS 227 (1987) 1.

– 27 –

https://doi.org/10.1093/mnras/sty2655
https://arxiv.org/abs/1806.02789
https://doi.org/10.1093/mnrasl/slu036
https://arxiv.org/abs/1312.5154
https://arxiv.org/abs/1710.09465
https://doi.org/10.1093/mnras/stv964
https://arxiv.org/abs/1411.1424
https://doi.org/10.1093/mnras/stw1515
https://arxiv.org/abs/1604.01050
https://doi.org/10.1093/mnras/stw2422
https://arxiv.org/abs/1602.05195
https://doi.org/10.3847/0004-6256/151/2/44
https://doi.org/10.3847/0004-6256/151/2/44
https://arxiv.org/abs/1508.04473
https://arxiv.org/abs/1801.02891
https://arxiv.org/abs/1801.03038
https://doi.org/10.1093/mnras/stw3199
https://arxiv.org/abs/1607.03153
https://doi.org/10.1093/mnras/sty506
https://arxiv.org/abs/1801.03062
https://doi.org/10.1093/mnras/sty654
https://doi.org/10.1093/mnras/sty654
https://arxiv.org/abs/1801.03077
https://arxiv.org/abs/1702.05088
https://doi.org/10.1086/174036
https://arxiv.org/abs/astro-ph/9304022
https://doi.org/10.3847/1538-4365/aa9e8a
https://arxiv.org/abs/1707.09322
https://doi.org/10.1093/mnras/stx714
https://arxiv.org/abs/1611.04901
https://doi.org/10.1088/1475-7516/2010/07/013
https://doi.org/10.1088/1475-7516/2010/07/013
https://arxiv.org/abs/1004.1637
https://doi.org/10.1093/mnras/227.1.1


[53] M. Tegmark, How to measure CMB power spectra without losing information, Phys. Rev. D 55 (1997)
5895 [astro-ph/9611174].

[54] J. R. Bond, A. H. Jaffe and L. Knox, Radical Compression of Cosmic Microwave Background Data,
ApJ 533 (2000) 19 [astro-ph/9808264].

[55] M. Tegmark, Measuring Cosmological Parameters with Galaxy Surveys, Physical Review Letters 79
(1997) 3806 [astro-ph/9706198].

[56] M. Tegmark, A. N. Taylor and A. F. Heavens, Karhunen-Loève Eigenvalue Problems in Cosmology:
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[71] H. Gil-Maŕın, J. Guy, P. Zarrouk, E. Burtin, C.-H. Chuang, W. J. Percival et al., The clustering of the
SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth
rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2,
MNRAS 477 (2018) 1604 [1801.02689].
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[102] H. Gil-Maŕın, W. J. Percival, J. R. Brownstein, C.-H. Chuang, J. N. Grieb, S. Ho et al., The
clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Rsd measurement from the
los-dependent power spectrum of dr12 boss galaxies, MNRAS 460 (2016) 4188 [1509.06386].

[103] M. J. Wilson, J. A. Peacock, A. N. Taylor and S. de la Torre, Rapid modelling of the redshift-space
power spectrum multipoles for a masked density field, MNRAS 464 (2017) 3121 [1511.07799].

[104] E. Castorina and M. White, Beyond the plane-parallel approximation for redshift surveys, MNRAS
476 (2018) 4403 [1709.09730].

[105] E. Castorina and M. White, The Zeldovich approximation and wide-angle redshift-space distortions,
MNRAS (2018) [1803.08185].

[106] Z. Vlah, E. Castorina and M. White, The Gaussian streaming model and convolution Lagrangian
effective field theory, J. Cosmology Astropart. Phys. 12 (2016) 007 [1609.02908].
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