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Abstract. Fluctuations with wavelengths larger than the volume of a galaxy survey affect
the measurement of the galaxy power spectrum within the survey itself. In the presence of
local Primordial Non-Gaussianities (PNG), in addition to super-sample matter density and
tidal fluctuations, the large-scale gravitational potential also induces a modulation of the
observed power spectrum. In this work we investigate this modulation by computing for
the first time the response of the redshift-space galaxy power spectrum to the presence of
a long wavelength gravitational potential, fully accounting for the stochastic contributions.
For biased tracers new response functions arise due to couplings between the small-scale
fluctuations in the density, velocity and gravitational fields, the latter through scale depen-
dent bias operators, and the large-scale gravitational potential. We study the impact of the
super-sample modes on the measurement of the amplitude of the primordial bispectrum of
the local-shape, f loc

NL, accounting for modulations of both the signal and the covariance of the
galaxy power spectrum by the long modes. Considering DESI-like survey specifications, we
show that in most cases super-sample modes cause little or no degradation of the constraints,
and could actually reduce the errorbars on f loc

NL by (10–30)%, if external information on the
bias parameters is available.
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1 Introduction

Statistical homogeneity and isotropy of the cosmological fields are two key assumptions in
cosmology. They imply that the two-point correlation function, and in general any n-point
function, is statistically invariant under translation and rotation. However, observational
effects can break these assumptions. A well known example is the redshift-space distortions
(RSD), i.e. the contribution to the measured redshift of an object due to its peculiar ve-
locity [1], which partially breaks isotropy. In particular since homogeneity and isotropy are
properties of the statistical correlators of the fields and not of fields themselves, they will
hold only if we can take the proper ensemble average over the full observable Universe.

In practice, in galaxy surveys we only observe a finite volume of our past light-cone, and
we cannot determine a priori whether the super-survey modes (fluctuations larger than the
volume of a given survey) correspond to the mean cosmological value or if they take a non
zero finite value. This fact per se does not automatically imply that the measured n-point
functions do not correspond to the cosmological averages. It is also essential that the fields
evolve non-linearly and structure form. Only in this case, the small-scale modes inside the
survey can couple to the long-wavelength mode of the size of the survey or larger.

The effect of the isotropic part of the long modes on the power spectrum has been
studied extensively [2–17]. For instance, it can be used to measure the bias of dark matter
halos or of the Lyman-alpha forest [18–22]. Recently, the effects of the tidal part of the
super-sample mode has also been investigated [23–29]. It has been shown that in redshift-
space both the mean and the tidal part of the long modes contribute to further breaking
rotational invariance, causing shifts in the inferred cosmological parameters [26]. Due to their
stochastic nature, super-sample modes have been traditionally considered as an additional
source of noise in the covariance matrix of the power spectrum and bispectrum [2, 4, 30–32],
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hence the name Super-Sample Covariance (SSC). Alternatively one can consider long modes
as extra signal [12] and marginalize over their amplitude.

In a Universe with Gaussian initial conditions (ICs), the response of the power spectrum
depends only on the mean density and tidal super-sample modes. But the Gaussianity of the
ICs is an assumption of the baseline cosmological model, the breaking thereof could point
towards new physics in the very early Universe. The simplest models of inflation with only
one degree of freedom, i.e. the inflaton, with a canonical kinetic term and starting from a
Bunch-Davies vacuum state, predict a nearly Gaussian distribution of primordial fluctuations.
Stringent constraints on, or detection of PNG would allow distinguishing between different
inflation models generating the seed of the observed structure [33]. The next generation of
CMB experiments [34, 35] and galaxy surveys [36–40], as well as potential intensity mapping
surveys with various spectral lines [41–43] offer promising possibilities of constraining several
shapes of PNG, beyond the current best constraints by Planck satellite [44]. Among various
shapes, the local PNG is of particular interest, both theoretically and also because of its ob-
servational prospect. This type of PNG can be phenomenologically parameterized by adding
a quadratic contribution to the primordial gravitational field φ = ϕG + f loc

NL(ϕ2
G −

〈
ϕ2
G

〉
),

with ϕG being a Gaussian field and f loc
NL the amplitude of the non Gaussian contribution.

In single-field models of inflation, the primordial bispectrum of the local-shape is expected
to be nearly zero, independent of the details of the model [45, 46]. Therefore, a detection
of local PNG is considered a smoking gun of multi-field models of inflation. In addition to
imprints on the 3-point statistics of the LSS [47–50], local PNG also leave a unique imprint
on the 2-point statistics of biased tracers on large scales [51–54]. This signature, referred
to as scale-dependent bias has been used to constrain local PNG from current generation of
galaxy surveys [55–57]. While the errorbars, σ(f loc

NL) ' 25, are still larger than the ones from
CMB data σ(f loc

NL) ' 5, they are expected to dramatically improve for the upcoming galaxy
surveys [57–59]. Taking advantage of cosmic variance cancellations techniques can play an
important role in reaching the target sensitivity of σ(f loc

NL) ≤ 1, using measurements of galaxy
power spectrum only [60–62].

In this paper we study the effect of the super-sample gravitational potential on the
galaxy power spectrum. This type of long-short modes correlation is present only if the
ICs are non Gaussian. By focusing on the local case, our work expands on refs. [63, 64] by
considering redshift-space distortions and accounting for the correlation between the small-
scale tidal fields and the super-sample gravitational potential.

The rest of the paper is organized as follows. In the rest of this section, we first set up
the notation and outline the survey specifications we use. Next, in section 2 we present the
calculation of the response of the galaxy power spectrum to the presence of super-sample
modes in real-space, and extend the computation to redshift-space in section 3. We then
discuss the implication of our results for determination of f loc

NL from data using Fisher matrix
approach in section 4, and present the summary and future outlook in section 5.

1.1 Notation

In a survey of volume Vs and typical size Ls ' V
1/3
s , the main observable is the product of

the underlying galaxy density field, δg(x), with the survey window function, W (x),

δ̂g(x, z) = δg(x, z)W (x) . (1.1)

In this work variables with a (̂) indicate quantities estimated/measured within the survey.
Over the full, but still finite, volume Vs, the mean value of the dark matter overdensity field
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doesn’t have to be zero, i.e. the cosmological mean, but it is instead given by

∆0 =

∫
d3p

(2π)3
δ(p, z)W (−p) , (1.2)

where δ(p, z) and W (−p) are the Fourier Transform of the density field and window function
respectively. Note that we have drop the explicit redshift dependence of the long modes.
When no confusion arises we will use the same symbol for a variable and its Fourier Transform.
We are also interested in the mean tidal field in the survey τij ,

τij =

∫
d3p

(2π)3

(
pipj −

1

3
δKij

)
δ(p, z)W (−p) (1.3)

and more precisely in its projection along a certain direction n̂. We follow [26] and define
the isotropic (L = 0) and tidal part (L = 2) of the long wavelength modes as

∆L(n̂) =

∫
d3p

(2π)3
δ(p, z)W (−p)LL(n̂ · p̂) , (1.4)

where LL are Legendre polynomials.
For simplicity, in this work we assume the window function is spherically symmetric and

normalized to unity, e.g. a spherical top-hat, such that the variance of the long mode reads

σ2
L =

1

2L+ 1

∫
dk

2π2
k2P (k, z)W 2(k) , (1.5)

in terms of the linear dark matter power spectrum P (k, z). The mean value of the DM density
and tidal fields in the survey volume, ∆L, is thus a number drawn from a Gaussian with mean
zero and variance σ2

L. The same arguments apply to estimate the value of the long wavelength
gravitational potential φ0, with P (k, z) replaced by Pφ(k) = P (k, z)M−2(k, z), with

M(k, z) ≡ 2c2k2T (k)D(z)

3ΩmH2
0

, (1.6)

where T (k) is the linear transfer function, c is the speed of light, D(z) is the linear growth
factor normalized to (1 + z)−1 in the matter-dominated era, Ωm is the matter density pa-
rameter at z = 0, and H0 is the present-day Hubble parameter. To compute the variance of
φ0 defined as

σφ =

∫
dk

2π2
k2Pφ(k)W 2(k) , (1.7)

we need to impose a cut-off at low-k, which we choose to be the present day horizon.1 A more
rigorous treatment of super sample modes should also include relativistic contributions to
galaxy clustering and their possible correlation with the long wavelength fields. Of particular
interest would be to study any additional IR dependence, or lack thereof, of the final result
due to relativistic corrections. A full calculation of the observed galaxy power spectrum
including relativstic corrections is beyond the scope of this work, but we notice that recent
work indicates a possible cancellation of IR sensitivity of two-point statistics [65, 66]. In this
work we assume a Planck+BAO fiducial cosmology [67].

1We checked that changing the IR cutoff to the present day Hubble scale H−1
0 does not qualitatively change

any of the results.
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1.2 Survey specification and fiducial galaxy biases

In this work we consider two galaxy samples to show the effects of the super-sample modes,
one at z ' 1 with linear bias of b1 = 1.35, and the other at z = 2.5 with linear bias of b1 = 4.
Loosely speaking they could be identified with the ELG and QSO sample of DESI [58]. The
value of the shot-noise for the two sample is N [(h−1 Mpc)3] = {3×103, 105}, for the low- and
high-z sample respectively. Other important parameters in computing the Fisher forecast are

the volume of the survey, Vs, which sets the largest available scale kmin = 2π/V
(1/3)
s , and the

largest wavenumber included in the analysis kmax. For Vs we take the volume corresponding to
roughly the entire ELG or QSO sample, VELG ' (3.5h−1 Gpc)3 and VQSO ' (5.5h−1 Gpc)3.
We will show results for different choices of kmax.

Let us also outline the choices of the values of the galaxy biases that we use throughout
the paper, both in computing the response functions and in the Fisher forecasts. For the
second-order in density bias b2, we use the fitting formula presented in ref. [21] to relate
it to the linear bias b1, while for the second-order tidal bias bs2 we take the co-evolution
prediction bs2 = −2/7(b − 1). We use the peak-background-split to fix the fiducial value of
the non-Gaussian biases (see [68] for a review)

bφ = 2δc(b1 − 1) , bφδ = 2[δc(b2 + 13/21(b1 − 1))− b1 + 1] . (1.8)

2 Responses in real-space

In the presence of local-shape primordial non-Gaussianity, in addition to matter density field
and tidal tensor, the galaxy over-density also depends on gravitational potential. Expanding
in terms of renormalized operators, the galaxy overdensity up to second order in perturbation
theory is given by [69–72]

δg(x, z) = b1δ(x, z) +
1

2
b2δ

2(x, z) + bs2s
2(x, z)

+ f loc
NL[bφφ(q, z) + bφδδ(x, z)φ(q, z)]

+ ε(x) + εδ(x)δ(x) + f loc
NLεφ(x)φ(q, z) , (2.1)

where we have only kept the terms linear in f loc
NL and neglected the contributions from higher-

order derivative operators. To avoid clutter we have dropped the explicit redshift-dependence
of the bias parameters. Here φ is the primordial gravitational potential, and q = x −Ψ(q)
is the Lagrangian coordinate, which at leading order is related to the linear density field by
δL = −∇Ψ. The second order field s2 corresponds to the traceless part of the shear field and
is defined as

s2(x, z) =

∫
d3k

(2π)3
eik·x

∫
d3q

(2π)3

([
q · (k− q)

|q||k− q|

]2

− 1

3

)
δ(q)δ(k− q) . (2.2)

We include stochastic terms in the last line eq. (2.1), which we assume to be of Poisson origin.
They will play the role of the noise in the Fisher analysis.

The linear galaxy power spectrum according to this bias model reads

Pg(k, z) =
[
b21 + 2f loc

NLb1bφM−1(k, z)
]
P (k, z) +N , (2.3)
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where N ≡ 〈 εε 〉 = 1/n̄ is the Poissonian shot-noise, and we have only kept terms linear in
f loc

NL. The measured power spectrum P̂g(k) in a survey of finite volume Vs, however, is the
average of the galaxy fluctuations for a fixed realization of the long modes; therefore, it does
not necessarily correspond to the cosmological average power spectrum Pg(k). The power
spectrum of short-scale modes within the survey volume in the presence of super-survey
modes can be schematically written as

P̂g(k, z) ≡
〈
δg(k, z)δ

∗
g(k
′, z)

〉′
∆0,φ0

= Pg(k, z) +R∆0(k, z)∆0 +Rφ(k, z)φ0 , (2.4)

where the primed correlator indicates the fact that the factor of (2π)3δD(k + k′) is stripped
off, and the functions R∆0 and Rφ are called response functions. Notice the long wavelenghts
modes ∆0 and φ0 are in configuration space, while the galaxy perturbations are in Fourier
space. The modulation of the measured power spectrum by the long wavelength modes can
be seen as an extra term in the power spectrum covariance, hence the name super-sample
variance. At the same time we can think of it as extra signal, with the amplitude of ∆0 and
φ0 the two new free parameters one has to marginalize over when constraining cosmological
parameters.

We can compute the response functions from the squeezed limit of the bispectrum
Bg(p,k1,k2, z), where one mode is much longer than the other two, p� k1 ' k2 = k [9, 13,
15, 73]. This configuration captures the correlation between one large-scale mode and two
small-scale ones that we are interested in. One then has to average over the angular part of
the super-sample mode p̂ since it is unknown. The angle-averaged squeezed-limit of galaxy
bispectrum is related to response functions as∫

dΩp̂

4π
Bsq
g (p,k1,k2,z)≡ lim

p�k1,k2

∫
dΩp̂

4π
Bg(p,k1,k2,z)

= b1R∆0(k,z)P (p,z)+
[
b1Rφ(k,z)+f loc

NLbφR∆0(k,z)
]
Pφδ(p,z) . (2.5)

The explicit expression of the galaxy bispectrum at tree level, which we use to derive the
response functions, and includes the contributions from primordial non-Gaussianity and grav-
itational evolution is given in appendix A. More details on the derivation can be found in
refs. [26, 64, 74].

The response function R∆0 originates from the coupling between the large-scale density
field and the small-scale modes, either in density or gravitational potential. It contains a
Gaussian piece, due to nonlinear evolution, and a non-Gaussian one of primordial origin,

R∆0(k, z) =

[
47

21
b21 + 2b1b2 −

b21
3

d logP

d log k

]
P (k, z) +

b1
n̄

+ f loc
NL

[
26

21
b1bφ + 2b1bφδ + 2b2bφ −

2

3
b1bφ

(
d logP

d log k
− d logM

d log k

)]
Pφδ(k, z)

≡ RG
∆0

(k, z) + f loc
NLR

NG
∆0

(k, z) . (2.6)

Notice RNG
∆0

(k, z) contains only terms proportional to PNG bias parameters, i.e. they corre-

spond to couplings between ∆0 and the short wavelength φ. In other words RNG
∆0

(k, z) = 0 for
the response of the dark matter power spectrum to the long mode density field even for non
Gaussian initial conditions. The presence of a long mode changes both the expansion history
and the growth of dark matter fluctuations [10]. The terms proportional to P (k) or Pφδ are
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often called growth terms [12], and arise because positive (negative) amplitude of the long
modes enhances (reduces) the growth of structure. The terms proportional to derivatives of
power spectra instead show the effect of the long modes on the expansion history and are
usually called dilation terms [12]. The shot-noise term comes from the following contribution
of the stochastic operators to the bispectrum

Bsq(p,k1,k2, z) ⊃ b1
〈
δ(p, z)

[
ε(k1) +

1

2

∫
d3q

(2π)3
εδ(q)δ(k1 − q)

]
ε(k2)

〉
+ k1 ←→ k2

= b1 〈 εδε 〉 〈 δ(p, z)δ(k2, z) 〉+ k1 ←→ k2

= 2b1PεεδP (p, z) =
b21P (p, z)

n̄
. (2.7)

The other response function Rφ contains couplings between φ0 and the small-scales
fields; therefore, it is identically zero in the absence of PNG

Rφ(k, z) = 2f loc
NL

[(
2b21 + b1bφδ

)
P (k, z) +

bφ
2n̄

]
. (2.8)

The first term in the above equations comes from the primordial bispectrum and it would be
there even for dark matter, while the second one is present only for the biased tracers. The
response to φ0 contains only growth terms, since the response to f loc

NL is locally equivalent to
rescaling of the amplitude of the fluctuations [52].

In redshift surveys the galaxy overdensity is usually estimated by computing the mean
number of objects ˆ̄ng within the survey itself. The latter is also affected by the presence of
long wavelength galaxy fluctuations ∆g,

ˆ̄ng = n̄g(1 + ∆g) = n̄g

(
1 + b1∆0 + f loc

NLbφφ0

)
. (2.9)

Therefore, for a power spectrum normalized by ˆ̄n−2
g the response functions become

R∆0(k, z) −→ R∆0(k, z)− 2b1Pg(k, z) , Rφ(k, z) −→ Rφ(k, z)− 2f loc
NLbφPg(k, z) . (2.10)

Note that in the above equation, when computing Rφ, we drop the term proportional to f loc
NL

in Pg(k, z) since their contribution to Rφ would be quadratic in f loc
NL. In the literature the

response functions that include the piece arising from the normalization of the density field
are usually called the local ones, whereas the global ones do not have this extra term. If one
chooses instead to normalize the power spectrum by n̄−1

g , as usually done in galaxy survey
with the FKP estimator [32] to avoid biased estimates of the power spectrum, then the factor
of 2 in the second term in eq. (2.10) is dropped. For galaxy surveys the local responses are
the relevant ones, so we will stick to them in the rest of this work.

Before discussing the shape of the response functions, let use make two additional notes
regarding the shot-noise contributions. First, the factor of Pg(k, z) in the above equations
includes the shot noise contribution to the galaxy power spectrum. This term partially cancels
with the shot noise contribution to the squeezed limit of the bispectrum. The cancellation
will be exact for the FKP estimator. It is important to notice the cancellation holds only
for Poissonian shot-noise. Compared to previous work, our derivation of the shot noise
contribution to the super-sample signal using the squeezed limit of the bispectrum highlights
the physical difference between the normalization of the power spectrum and the terms in
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Figure 1. Real-space response functions for two different configurations: a DESI-ELG like on the
left, and a DESI-QSO like on the right.

eq. (2.7). Second, in eq. (2.8) and eq. (2.10) we see that the shot-noise induces new PNG
terms. One could be tempted to consider them as extra signal, but it is easy to see this
contribution just changes the value of the true shot-noise which is always marginalized over as
a free parameter. It is however important to keep noise terms in the super-sample signal in the
forecast analysis, discussed in section 4, as they increase the variance of the power spectrum.

Figure 1 shows the real-space response functions for low- and high-redshift samples for
a DESI-like survey described in section 1.2. We have set the value of f loc

NL = 1, assumed the
second-order bias b2 as a function of b1 according the fit presented in ref. [21], and set the value
of bs2 using the coevolution prediction [75, 76]. The effect of PNG on R∆ can be seen on large
scales where the difference between the blue and the dashed blue lines is manifest. This was
expected since the non-Gaussian part of the response to ∆0 is proportional to Pφδ � P (k)
at high-k. Both growth and dilation terms contribute to R∆, as one can notice from the
oscillations around the BAO scale. As discussed above the response Rφ, shown in red, does
not contain dilation terms, hence no large wiggles are present. Both responses are negative
because the dominant contribution is coming from the rescaling of the mean in eq. (2.10).

3 Responses in redshift-space

The redshift-space response functions are also straightforward to calculate. The main differ-
ence with respect to the real-space calculation is that RSD break isotropy of space; therefore,
one expects a different response to the isotropic and shear part of the long modes. We start
from the expression for the second order galaxy overdensity field in redshift-space, δsg(k),

δsg(k, z) = δg(k, z) + fµ2
kθ(k, z)−

fµkk

2

∫
d3q

(2π)3

[
δg(q, z) + fµ2

qθ(q, z)
]

× (k− q) · n̂
|(k− q)|2

θ(k− q, z) + q←→ (k− q) , (3.1)

– 7 –
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where f is the linear growth rate, θ(k, z) is the divergence of the velocity field, and n̂ is the line
of sight (LOS) direction. We work in the plane parallel-limit and neglect wide angle/curved
sky corrections to the above formula [77–79]. In the presence of local-shape PNG, the galaxy
power spectrum at tree-level, including the linear RSD [1](Kaiser term), is given by

P sg (k, µ, z) =
[
(b1 + fµ2)2 + 2f loc

NL(b1 + fµ2)bφM−1(k, z)
]
P (k, z) +N . (3.2)

In the squeezed limit the bispectrum between one long-wavelength real space galaxy mode,
δg(p), and two redshift-space small-scales modes can be written in the following way

lim
p�k1,k2

Bs
g(p,k1,k2, z) = lim

p�k1,k2

〈
δg(p, z)δ

s
g(k1, z)δ

s
g(k2, z)

〉
=
∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)L`2(µp) , (3.3)

where µk = k̂ · n̂, ν ≡ k̂ · p̂ and µp ≡ p̂ · n̂.
Similar to the real-space computation, to compute the responses we just have to average

the squeezed bispectrum with the appropriate weight according to the definition of the long
modes in eq. (1.4),

(2`+ 1) lim
p�k1,k2

∫
dΩp̂

4π
Bg(p,k1,k2, z)L`(µp)

= (2`+ 1)

∫
dΩp̂

4π

∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)L`2(µp)L`(µp)

= (2`+ 1)

∫
dΩp̂

4π

∑
`1,`2

f`1,`2(p, k, µk, z)L`1(ν)
∑
L

(
`2 ` L
0 0 0

)2

(2L+ 1)LL(µp)

= (2`+ 1)
∑
`1,`2

f`1,`2(p, k, µk, z)

(
` `1 `2
0 0 0

)2

L`1(µk) , (3.4)

and finally read off the terms proportional to the power spectra of the super-sample modes
as in eq. (2.5). We schematically write

P̂ sg (k, µk, z) ≡
〈
δsg(k, z)δ

s,∗
g (k′, z)

〉′
∆0,∆2,φ0

= P sg (k, µk, z) +Rs∆0
(k, µk, z)∆0 +Rs∆2

(k, µk, z)∆2 +Rsφ(k, µk, z)φ0 , (3.5)

with the three response functions given by

Rs∆0
(k,µk,z) =P (k,z)

[
−1

3

dlogP

dlogk

(
fµ2

k+1
)(
b1+fµ2

k

)
2

+
1

21

(
b1+fµ2

k

)(
fµ2

k (42b1−7f+31)+7b1f+47b1+42b2+28f2µ4
k

)]
+f loc

NLPφδ(k,z)

[
2

3

(
dlogM
dlogk

−dlogP

dlogk

)
bφ
(
fµ2

k+1
)(
b1+fµ2

k

)
+

2

21

(
fµ2

k

(
bφ
(
14fµ2

k+5
)
+21bφδ

)
+b1bφ

(
7f
(
3µ2

k+1
)
+13

)
+21b2bφ+21b1bφδ

)]
+

(b1+f/3)

n̄
, (3.6)
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Rsφ(k,µk,z) = 2f loc
NL

{(
b1+fµ2

k

)[
fµ2

k (bφ+2)+bφδ+2b1
]
P (k,z)+

bφ
2n̄

}
, (3.7)

Rs∆2
(k,µk,z) =P (k,z)

[
2

21

(
b1+fµ2

k

)(
µ2
k (12b1+42bs2−f(7f+8))+7b1f−4b1−14bs2

+ 4f(7f+6)µ4
k

)
− 1

3

dlogP

dlogk

(
(2f+3)µ2

k−1
)(
b1+fµ2

k

)
2

]
+f loc

NLPφδ(k,z)

[
4

21
bφ
(
µ2
k (6b1+21bs2−4f)+7b1f−2b1−7bs2 +2f(7f+6)µ4

k

)
+

2

3

(
dlogM
dlogk

−dlogP

dlogk

)
bφ
(
(2f+3)µ2

k−1
)(
b1+fµ2

k

)]
+

2

3n̄
f . (3.8)

As expected, for the local PNG there is no response to the tidal part of the long wavelength
gravitational potential. For f loc

NL = 0 our expressions agree with ref. [26].2 The normalization
of the density fluctuations also shifts the redshift-space response functions,

Rs∆0
→ Rs∆0

− 2(b1 + f/3)Pg(k, µk, z) ,

Rsφ → Rsφ − 2f loc
NLbφPg(k, µk, z) ,

Rs∆2
→ Rs∆2

− 4/3fPg(k, µk, z) . (3.9)

Analogous to the real space calculation the shot-noise contribution to the squeezed limit
bispectrum is partially canceled by the change in the mean number density.

The redshift-space response functions are shown in figure 2 for the same two galaxy
samples of figure 1. The upper panel shows the responses for µ = 0 and the lower one for
µ = 1. As first noted in [26], the µ = 0 responses do not reduce to the real space ones, as we
have already performed an angular average to define them. The real-space responses can be
recovered in the limit of f → 0. It is worth noticing that in redshift-space the large-scale tidal
field couples with PNG bias parameters, i.e. Rs∆,2 contains terms proportional to f loc

NL. In
general the response functions are increasing function of µk. It is straightforward to project
the two-dimensional power spectrum into multipoles P`(k) but the final expressions are not
very illuminating, so we don’t show them here.

4 Super-sample modes and constraints on local PNG

Our next goal is to assess the impact of marginalization over the amplitude of the super-
sample modes on f loc

NL constraints. We use a Fisher Matrix approach for this purpose, as-
suming a fiducial value of f loc

NL = 0. We focus on redshift-space, but results for real space
are very similar. The free parameters are θ ≡ {b1, b2, bs2 , N, f loc

NL,∆0,∆2}, where N is the
amplitude of the Poissonian shot noise term in the power spectrum. We do not include φ0

as a free parameter since it always enters multiplied by f loc
NL and would therefore make the

Fisher matrix singular for f loc
NL = 0. As we will see later the fiducial value of φ0 affects the

results in some cases, therefore we present the constraint on f loc
NL for different values of φ0 in

the range [−5σφ, 5σφ]. The value of ∆fid
L will change accordingly in the range [−5σL, 5σL],

but it has basically no impact on the PNG constraints. In a real data analysis f loc
NL can take

any value, therefore φ0 could be easily introduced as a free parameter. Since φ0 is strongly
correlated with ∆0, a strong prior on the former from an external data set (like CMB) can
alleviate the degeneracy between fNL and φ0.

2Notice that ref. [26] define the responses in terms of d logP/d log k ≡ d log k3P (k, z)/d log k.
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Figure 2. Redshift-space response functions for two different configurations: a DESI-ELG like on
the left, and a DESI-QSO like on the right. The angle with respect to the LOS is set such that µ = 0
in the top plots and µ = 1 in the bottom plots.

A few points are in order regarding the choices of the varied parameters, the priors
and the fiducial values. While we use the fit in ref. [21] to set the fiducial value of b2, it is
important to stress that for QSO samples the values of b2 could be very different than the fit
to mass selected halos used for the fit. Furthermore, the non-Gaussian bias parameters could
deviate from the simple peak-background split prediction shown above [52]. The shot-noise
contribution to response function should also be considered as an independent free parameter
since it comes from the squeezed limit of the bispectrum, see eq. (2.7). It is however very
degenerate with the shot-noise in the galaxy power spectrum, and we will therefore use only
a single stochastic free parameter N . Finally, when fitting the data from galaxy surveys to
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constrain PNG, it is a common practice to keep the shape of the power spectrum fixed, i.e.
the cosmological parameters are given and one marginalizes only over galaxy bias parameters
and shot noise. We shall do the same here, which implies a prior on ∆L will likely be available.
We will show results with and without a prior on the long modes.3 When super-sample modes
are included, we also need to set the fiducial values of ∆L, for which we take ±{1, 3, 5}-σ
values. In order to reduce the noise in the inversion of the Fisher matrix we impose very
mild prior on b2 and bs2 such that σ(b2)/b2 = σ(bs2)/bs2 = 5.

The Fisher matrix is defined as [80]

Fαβ =
∑

`1,`2,i,j

∂P̂ sg,`1(ki)

∂θα
[C`1`2(ki, kj)]

−1
∂P̂ sg,`2(kj)

∂θβ
(4.1)

where the sum runs over the multipoles of the power spectrum `1, `2 = 0, 2, 4, 6 and the
binned value of the wavenumber ki, kj . The binned covariance of the power spectrum mul-
tipoles C`1`2(ki, kj) for our fiducial value of f loc

NL = 0 has been computed in [26] and it
contains a diagonal piece due to cosmic variance, and diagonal and off-diagonal entries due
to super-sample variance (see also [32]). We work at sufficiently small k that the trispectrum
contribution to the covariance can be safely ignored [81]. For the results presented in the
next sections the SSC does not play any significant role.

4.1 High-z, high bias sample

The error on f loc
NL as a function of kmax, after marginalizing over the bias parameters and the

amplitude of the long modes, is presented in figure 3. The standard case is shown in blue,
and as widely known it exhibits a very weak dependence on the smallest scale included in
the analysis [82]. If we include a prior on b1, yielding a 40% better measurement of linear
bias compared to the error at kmax = 0.2 hMpc−1, the constraint on f loc

NL also improves by
approximately 10% at kmax = 0.2 hMpc−1 (shown in red line). Such a prior could arise from
cross-correlation with other probes, e.g. the CMB, other LSS tracers, or from the analysis
of the bispectrum. The impact of marginalizing over the values of the long modes without
assuming any prior on their values is shown as the orange line. For the orange line, the
constraint is almost independent of the fiducial value ∆0, ∆2 and the value of φ0. Therefore,
we only plot the 1-σ case for their fiducial value. The error on PNG is larger than the
standard analysis, especially for low values of kmax . 0.1 hMpc−1. For kmax ' 0.2 hMpc−1

the degradation in the errorbar is less than a 10%. Including a 3-σ prior on the amplitude of
the long modes results in the cyan line, which overlaps almost perfectly with the blue line.
This is good news as we expect to be able to put strong theoretical priors on the value of the
long wavelength modes.

The most interesting case is when we put a prior on both b1 and the amplitude of the
long modes. The constraints on f loc

NL with both priors are shown with green lines. In this
scenario σ(f loc

NL) depends on the fiducial value of φ0. This is easy to understand by noting that

∂P̂g/∂f
loc
NL contains terms proportional to the value of the long modes. In particular since

Rφ(k, z) is negative (see figure 2) positive values of φ0 reduce the response of the galaxy
power spectrum to PNG, while negative values enhances it. This was not manifest for the
cyan and orange line, when the marginalized constraint was dominated by the degeneracy
between b1 and f loc

NL.

3The strength of the prior is irrelevant for the final error on f loc
NL .
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Figure 3. The error on f locNL in the high-z sample for different analysis choices. The blue line shows
the standard case when no super-sample modes are considered. The red line presents the effect of
imposing a prior on b1. The impact of marginalizing over super-sample modes with or without a prior
is shown by the orange and cyan lines. The green lines correspond to difference fiducial values of the
large-scale gravitational potential φ0.

In the left panel the three green curves show the value of σ(f loc
NL) for negative fiducial

values of φ0. Continuous, dashed and dot-dashed lines correspond to φ0 = −{1, 3, 5}-σφ.
For large, therefore, more unlikely values of φ0 the constraint on f loc

NL can be up to 10% better
than the case without long modes, shown in red. As expected, lower but more likely values of
φ0 show diminishing returns. For positive values of φ0 there are no significant improvements
over the standard case by adding a prior on b1, as shown in the right panel. This could
potentially be a problem for multi-tracer analyses, as the benefits of a better measurement
of linear bias could be hampered by the presence of super-sample modes.

4.2 The low-z, low bias sample

The low-z sample covers less volume and has a lower value of b1, bφ and bφδ compared to the
high-z sample. We thus expect it to be less sensitive to local PNG. On the other hand, the
lower value of the shot-noise compared to the high-z sample implies that the super-sample
modes could contribute more to the total signal-to-noise of f loc

NL. Figure 4 shows the results
using the same color coding of figure 3. The standard case is shown in blue, and we find the
forecasted error on f loc

NL is ' 3 times worse than in the high-z sample. As before if we do not
include any prior on the amplitude of the long modes, the constraint slightly degrades (the
orange line), but even a very generous prior on ∆L results in the cyan line which basically
matches the blue one. It is important to notice that although the error on f loc

NL is comparable
between orange and the blue line, the linear bias b1 is measured three times worse when
super-sample modes are present. This is a because long wavelength modes mainly change
the amplitude of the galaxy power spectrum; therefore they are very degenerate with the
linear bias.
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Figure 4. Same as figure 3 but for the low-z sample.

It is thus interesting to see how imposing a prior on linear bias, which makes the
constraint on b1 similar with and without the long modes, could affect the constraint on
PNG. We then include a prior on b1 such that σ(b1) at kmax = 0.2 hMpc−1 becomes 40%
better than the standard case (the blue line), yielding the same measurement of linear bias
irrespective of the presence of the super sample fluctuations. In the absence of the long modes,
the constraint on f loc

NL, shown with a red line, improves by roughly 10% at the highest kmax.
When we include the super-sample modes, the improvement due to the prior on b1 varies
between (10–30)% for negative values of φ0, with the rarest negative 5σ fluctuation yielding
more than 30% better constraints on f loc

NL. This was possible due the low shot noise level of
the low-z sample. The picture is somewhat reversed for positive values of φ0, where we do not
find significant improvement over the standard case in the presence of super-sample signal.

5 Conclusions

In this paper we investigated the effect of super-survey modes on the galaxy power spectrum
in the presence of primordial non-Gaussianity. We extended previous work in real-space and
computed for the first time the response of the multipoles of the redshift-space power spec-
trum to the super-sample gravitational potential. We also clarified the role of the stochastic
terms in the bias expansion when computing such responses. Local-shape PNG generates
new couplings between the small-scale gravitational potential and the isotropic and tidal
part of the super-sample modes, as well as correlations between the large-scale gravitational
potential and the small-scale fluctuations. The former are specific to the biased tracer and
would be zero for dark matter, while the latter is generic outcome for all fields.

We then forecasted the effect of super-sample modes on the determination of f loc
NL, in-

cluding their contribution to both the signal and the noise part of the covariance of the
redshift-space multipoles of the galaxy power spectrum. Focusing on two hypothetical galaxy
samples, one at low-z and one at high-z, we find that the addition of the long modes as new
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free parameters, without any prior, degrades σ(f loc
NL) by roughly 10% at high-k compared to

the standard Fisher forecast that neglects the super-sample effects. A mild prior on the long
wavelength fluctuations is able to recover the constraint in the standard scenario. We find
that although the error on f loc

NL is similar with and without long modes, the linear bias is
measured three times worse in the latter case. We therefore studied a scenario where a prior
on b1 makes the linear bias measured to a similar precision independently of the presence of
super-sample modes. In this case we find that negative values of the long wavelength gravi-
tational potential φ0 yields smaller σ(f loc

NL) compared to the φ0 ≥ 0 cosmology. For samples
with a high enough number density, like the DESI ELG sample, the improvement can be up
to 30% for large negative values of φ0. However, it is worth reminding that such values are
the most unlikely to be realized.

A number of simplifying assumptions have been made in this work, and they would have
to be addressed before application of our formalism to real data is possible. For instance
a varying LOS in curved sky analysis, more complicated window functions, or the so called
radial integral constraint [83]. We leave those to future work, but anticipate that they would
not lead to qualitative changes in the results presented in this paper.
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A Tree-level galaxy bispectrum

A.1 Real-space

Assuming statistical isotropy and using the bias expansion in eq. (2.1), the galaxy bispectrum
at tree-level can be written as

Bg(k1, k2, k3, z) = BG
g (k1, k2, k3, z) +BNG

g (k1, k2, k3, z), (A.1)

where the first contribution is induced by gravitational evolution and is given by

BG
g (k1,k2,k3) = 2b21

[
b1F2(k1,k2)+

b2
2

+bs2s
2(k1,k2)

]
P (k1,z)P (k2,z)+2 perms , (A.2)

while the second contribution is due to primordial non-Gaussianity and is given by [72]

BNG
g (k1,k2,k3,z) = b31B(k1,k2,k3,z)+f loc

NL

{
b21 bφ

[
k1

k2
M−1(k1,z)+

k2

k1
M−1(k2,z)

]
µ12

+2b1bφ
[
M−1(k1,z)+M−1(k2,z)

][
b1F2(k1,k2)+

b2
2

+bs2s
2(k1,k2)

]
+b21 bφδ

[
M−1(k1,z)+M−1(k2,z)

]}
P (k1,z)P (k2,z)+2 perms . (A.3)

Here, µ12 = k̂1.k̂2 is the angle between the two wavevectors k1 and k2, and F2 is the second-
order kernel in standard perturbation theory,

F2(k1,k2) =
5

7
+

1

2

(
k1

k2
+
k2

k1

)
µ12 +

2

7
µ2

12 , (A.4)
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and B is the linear matter bispectrum that is sourced by non-zero primordial bispectrum

B(k1, k2, k3, z) =M(k1, z)M(k2, z)M(k3, z)B
loc
φ (k1, k2, k3) , (A.5)

with

Bloc
φ (k1, k2, k3) = 2f loc

NL [Pφ(k1)Pφ(k2) + 2 perms] . (A.6)

A.2 Redshift-space

In redshift-space, the bispectrum depends on 5 variables, which we can choose to be three
sides of the triangles and two angles to define the position of the triangles with respect to the
line of sight. At tree-level in perturbation theory, and including primordial non-Gaussianity,
the bispectrum is given by

Bg(k1,k2,k3, z) = Z1(k1)Z1(k2)Z1(k2)B(k1, k2, k3)

+ {2Z1(k1)Z1(k2)Z2(k1,k2)P (k1, z)P (k2, z) + 2 perms} , (A.7)

where

Z1(k1) = b1 + fµ2
1 + f loc

NLbφM−1(k1, z) ,

Z2(k1,k2) =
b2
2

+ b1F2(k1,k2) + fµ2
3G2(k1,k2)

− fµ3k3

2

[
µ1

k1
Z1(k2) +

µ2

k2
Z1(k1)

]
+ bs2s

2(k1,k2)

+ bφf
loc
NL

[
k1

k2
M−1(k1, z) +

k2

k1
M−1(k2, z)

]
µ12

+ bφδf
loc
NL

[
M−1(k1, z) +M−1(k2, z)

]
, (A.8)

with µi = k̂i.n̂ being the angles between a given wavevector and line-of-sight direction, and
G2 is the second-order kernel of matter velocity contrast

G2(k1,k2) ≡ 3

7
+

1

2

(
k1

k2
+
k2

k1

)
µ12 +

4

7
µ2

12 . (A.9)

Note that in deriving the response functions, we only keep the terms linear in f loc
NL. Compared

to the similar expressions in ref. [37], we have an additional contribution to Z2 kernel, which
is due to the transformation of the gravitational potential φ from Lagrangian to Eulerian
coordinates.
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