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Abstract
Purpose Severity of white matter lesion (WML) is typically evaluated on magnetic resonance images (MRI), yet the more
accessible, faster, and less expensive method is computed tomography (CT). Our objective was to study whether WML can
be automatically segmented from CT images using a convolutional neural network (CNN). The second aim was to compare CT
segmentation with MRI segmentation.
Methods The brain images from the Helsinki University Hospital clinical image archive were systematically screened to make
CT-MRI image pairs. Selection criteria for the study were that both CT and MRI images were acquired within 6 weeks. In total,
147 image pairs were included. We used CNN to segment WML from CT images. Training and testing of CNN for CT was
performed using 10-fold cross-validation, and the segmentation results were compared with the corresponding segmentations
from MRI.
Results A Pearson correlation of 0.94 was obtained between the automatic WML volumes of MRI and CT segmentations. The
average Dice similarity index validating the overlap between CT and FLAIR segmentations was 0.68 for the Fazekas 3 group.
Conclusion CNN-based segmentation of CT images may provide a means to evaluate the severity of WML and establish a link
between CT WML patterns and the current standard MRI-based visual rating scale.
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Introduction

White matter lesions (WML) are a surrogate for cerebral small
vessel disease (SVD), which is the major cause of accumulat-
ing vascular burden in aging populations. Severe WML in
stroke patients are associated with a risk of complications after
thrombolysis [1] and poor prognosis after carotid endarterec-
tomy [2]. Other well-documented consequences of severe
WML are cognitive impairment, gait disturbances, depres-
sion, urine incontinence, and the eventual loss of indepen-
dence and risk for permanent institutionalization [3, 4].

The most common method for grading WML extent has
been the Fazekas visual rating scale developed for MRI [5, 6].
It was preceded by several proposals for CT-based visual rat-
ing scales by the authors Gorter [7], Blennow et al. [8], van
Swieten et al. [9], andWahlund et al. [10] which have not been
widely adopted in clinical practice [6, 11].

Computer-aided image analysis and machine learning
methods are increasingly used in medicine. They enable auto-
mated and quantitative analyses of large image databases and
help to develop tools that complement the manual visual as-
sessment. Advances in machine learning, especially in the
field of deep learning, have improved the ability to identify,
quantify, and classify patterns in medical images [11].

Deep learning methods, in particular convolutional neural
networks (CNNs), have become the state-of-the-art methods
for medical image analysis tasks. Modern central processing
units (CPUs) and graphics processing units (GPUs) are pow-
erful enough to process large amount of data with advanced
learning algorithms [12]. CNNs take a large number of train-
ing samples as an input and build a model with a vast number
of parameters that will predict the output based on the training
examples. CNNs use convolution operation to learn the fea-
tures such as edges, patterns, and colors from the input images
[13]. They have been applied in several image processing
tasks such as image segmentation [14] and image classifica-
tion [15]. Recently, CNNs have also been applied to medical
image analysis [16, 17].

In this study, the objective was to study if the WML can be
automatically segmented from CT images using CNN. The
aim was also to compare CT segmentation with MRI
segmentation.

Methods

Participants and design

Brain images from the Helsinki University Hospital clinical
image archive were systemically screened by qualified
healthcare professionals from January 2014 to December
2016 to make CT-MRI image pairs. The images were from
the Helsinki University Hospital, and from five area hospitals

in the Helsinki region. MRIs were acquired with Siemens and
Philips scanners, and CT scanners included Siemens and GE
devices.

Thirteen FLAIR images were sagittal 3D images with in-
plane resolution 0.45–0.47 mm and slice thickness 0.9–
1.2 mm. The remaining 136 images were 2D axial images
with in-plane resolution 0.43–0.98 mm and slice thickness
4.0–5.0 mm. The in-plane resolution of CT images was
0.41–1.0 mm, and the slice thickness was 1.0–5.0 mm.

Selection criteria for the study were that both CT and MRI
images were acquired and the time interval between CT and
MRI imaging was less than 6 weeks. Images with tumors,
cortical infarcts, hematomas (except microbleeds), and multi-
ple sclerosis lesions and contusions were excluded. The im-
ages were divided into three Fazekas groups (Fazekas 0–1 =
no to mild WML, Fazekas 2 = moderate WML, Fazekas 3 =
severe WML) according to radiologists’ evaluation of the
MRI image. The evaluation was made both by general radiol-
ogists and neuroradiologists. In total, 147 image pairs were
included in the study (Table 1).

Ethical review for retrospective analysis of imaging data
collected prospectively as part of routine clinical care is not
required at our institution. The analysis of image pairs was
anonymized and no clinical data was handled in connection
to this analysis.

Automated image analysis

The analysis pipeline is presented in Fig. 1. The pre-
processing steps included skull-stripping, coarse spatial nor-
malization, and coarse intensity normalization of the images.
The skull-stripping (brain extraction) of the MRI FLAIR im-
ages was performed using the cNeuro® cMRI image quanti-
fication tool (Combinostics Ltd., Tampere, Finland). Spatial
normalization was performed by registering the binary brain
mask to the corresponding brain mask of a mean anatomical
template image using 9-degree of freedom affine registration.
A CT image was registered with the FLAIR image using rigid
registration by maximizing the normalized mutual informa-
tion. Finally, the intensities were normalized by z-scoring
within the brain mask.

The resulting pre-processed images were used as inputs in
CNN segmentation. Two CNNmodels were created. (1) CNN
for MRI was developed using FLAIR segmentations from the

Table 1 Demographics of the dataset

Mean age SD age % females

All N = 147 71.2 9.7 55%

Fazekas 0–1 N = 50 65.7 11.5 58%

Fazekas 2 N = 48 73.4 7.1 56%

Fazekas 3 N = 49 74.7 7.2 51%
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LADIS study (Leukoaraiosis and Disability study) as training
data (560 FLAIR images with semi-manually segmented
WML). (2) CNN for CT was developed using MRI segmen-
tations from the MRI-CT pairs as training data.

MRI and CT images were segmented using CNN without
and with 10-fold cross-validation, respectively. The CT im-
ages were selected randomly so that 90% of the cases

established the training set, and the remaining 10% of the
cases established the test set. This was repeated ten times so
that each case was once used in a test set. The WML segmen-
tations of the FLAIR images were used as the ground truth
segmentations for training. To improve the robustness of the
segmentation, the 10-fold cross-validation was repeated ten
times so that ten separate segmentations were obtained for

Fig. 1 Flowchart of the analysis
(n = 147)
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each CT image. The CNN segmentation gives the probability
of the WML as an output. The final segmentation was gener-
ated by averaging the probabilities of the ten segmentations,
and thresholding the average probability using a value of 0.25.

CNN segmentations (both FLAIR and CT) were performed
using U-shaped CNN called uResNet [15]. In this study, we
used the network architecture proposed by Guerrero et al. [18]
that was originally developed for the segmentation of white
matter hyperintensities and stroke lesions from FLAIR im-
ages. This network, without any further modifications, was
implemented using Theano 0.9.0 (http://www.deeplearning.
net/software/theano/) deep learning Python (Python 2.7)
library. The CNN was trained using large image patches
(64 × 64). This allows the network to learn the high- and
low-level features from the input images. During the training,
CNN parameters were optimized so that the error between the
predicted segmentations and “ground truth” segmentations
was as small as possible.

Statistical analysis

The accuracy of the CTWML segmentations was validated by
comparing the segmentations to the corresponding segmenta-
tions from the FLAIR images. The accuracy of the CT seg-
mentations was evaluated by keeping the segmentation of
FLAIR images as a ground truth. The Dice overlap measures
that the ratio of voxels segmented asWML in both images and
the voxels segmented as WML in CT and in FLAIR:

Dice ¼ 2 X∩Yj j
Xj jþ Yj j, where |X| and |Y| are the WML volumes of

the CT and FLAIR segmentations, and |X∩ Y| is the volume
of voxels segmented as WML in both CT and FLAIR. In
addition, the accuracy of the segmentation was evaluated by
studying the volume of correctly and incorrectly segmented
voxels. The correlation of the volumes of CT and FLAIR
segmentations was evaluated by computing the Pearson cor-
relation. In addition, the Fazekas score was estimated from the

(a) (b)

Fig. 2 The accuracy of the segmentation of CT images. a The Dice
similarity index as a function of the WML volume. The distribution of
the WML volumes as a function of Fazekas score. b The volumes of

correctly and incorrectly segmented voxels in CT images as compared
with the segmentation of FLAIR images

(a) (b)
Fig. 3 The correlation of the volumes. a The correlation between theWML volumes segmented fromCTand FLAIR images. The correlation coefficient
was 0.94. b The Bland-Altman plot for the differences of CT and FLAIR segmentations
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WML volumes by searching the optimal thresholds for the
three Fazekas groups used (0–1, 2, and 3). These computa-
tions were performed using 10-fold cross-validation.

Results

The Dice similarity index validating the overlap between CT and
FLAIR segmentations is presented as the function of the WML
volume in Fig. 2a. As expected, the index values are low for small
WML volumes: the average Dice similarity index was 0.43 for
the whole dataset. However, the more WML there are, the higher
values are obtained: the average Dice similarity index value for
the Fazekas 3 group was 0.68. The volumes of correctly segment-
ed voxels, the voxels segmented as WML in CT but as back-
ground in FLAIR, and the voxels segmented as WML in
FLAIR but as background in CT are presented in Fig. 2b.
The correlation of the WML volumes of the CT and FLAIR

segmentations is shown in Fig. 3a. The volumes of the CT and
FLAIR segmentations are strongly correlated (correlation coeffi-
cient 0.94). Also, the slope of the curve fitted to the data is 0.96,
close to 1—i.e., the CT segmentation neither underestimates nor

overestimates the WML volume as compared with the FLAIR
segmentation, which can be seen also in the Bland-Altman plot
in Fig. 3b.
The distributions of the WML volumes for different Fazekas

groups for CT and FLAIR segmentations are shown in Fig. 4 a
and b, respectively. The Fazekas groups have clearly distinct dis-
tributions in both cases, and qualitatively, the CT and FLAIR
distributions are very similar. Table 2 presents the results for es-
timating the Fazekas scores from the WML volumes when com-
pared with the ground truth visual ratings. The score was correctly
estimated in 78% of cases from both CT and FLAIR images.
Figure 5 shows the example segmentations for the CT and

FLAIR images of patients from each Fazekas group. This shows
that especially when the WML volume is high, the CT segmen-
tation is able to produce corresponding results with the FLAIR
segmentation.

Discussion

Our study suggests that the severity of WML can be estimated
from CT images, using automated image analysis methods, with
results very similar to those using the Fazekas scale for MRI
images. These methods provide means for volumetric assessment
of the burden of WML as an alternative to visual scaling. There
was a high correlation of 0.94 obtained between the automatic
WML volumes of MRI and CT segmentations. The ratings pro-
duced automatically both from CT and MRI were equal to visual
ratings in 78% of the cases.
Previously, an automated method for quantifying CT cerebral

WML has been under evaluation in a multicenter validation study
in the UK [19]. The automated WML volume correlation at MR
imaging was 0.85 and at CT imaging 0.71 when compared with
expert-delineated WML volumes. The study sample in UK was
acute ischemic stroke cases.
In general, the constraint of utilizing CT instead of MRI is the

impaired detection of small lesions including punctate and early
confluent changes. However, CT seems to be sufficient when

(a) (b)
Fig. 4 The distribution of the WML volumes as a function of Fazekas score a for CT and b for FLAIR segmentations

Table 2 Confusion matrix of the estimated Fazekas scores based on the
automatic WML volumes using CT (share of correct estimates = 0.78)
and FLAIR (share of correct estimates = 0.78)

CT Automatic score

0–1 2 3

Visual score 0–1 43 7 0

2 12 28 8

3 0 5 44

FLAIR Automatic score

0–1 2 3

Visual score 0–1 37 13 0

2 7 37 4

3 0 9 40
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using a multi-detector CT with coronal and sagittal reformats
[20]. CT is also often used in dementia imaging in clinical practice
[21]. Among acute stroke patients, non-contrast CT is the most
common initial imaging modality in clinical practice [22]. From
the clinical point of view, detecting moderate and severe WML is
more relevant than detecting early phase WML (pre-mild or
mild), because acute clinical complications and risks are associ-
ated with moderate and severe WML [1, 4, 23]. Early phase
WML is more relevant in younger age groups participating in
follow-up and in intervention studies. In this setting, the patients
are more likely to undergo MRI.
We used the automated FLAIR WML segmentations from the

LADIS cohort as the ground truth segmentations when training
the CNN model and validating the CT segmentation results. Our
previous cross-validated study [24] has shown that the CNN-
based WML segmentation on MRIs produces very similar results
when compared with the semi-manual segmentation (correlation
0.99, average Dice similarity index 0.72). This suggests that the
MRI-based CNNWML segmentation can be used as ground truth
in training CT CNN models and can also be used in validation.
A relatively small dataset is a limitation in this study, and a

totally independent validation set is needed in future studies. It
is possible that our findings are in some extent obscured by the
presence of lacunes, but probably this influence is of minor im-
portance because lacunes have a distinct morphology that does
not confuse with WML. Microbleeds were not regarded because
they are invisible on CT. In the present study, patients with con-
comitant lesions like cortical infarcts or tumor edema were ex-
cluded, which is a limitation. In future studies, such combined
lesions could be evaluated with deep learning requiring a larger
training set with good representation of different lesion types.
Also, the lack of clinical data is a limitation in our study.
The strength of our study is that the images were unselected. The

patients were not exclusively stroke patients nor other neurological
patients. The CT and MRI equipment as well as the imaging pa-
rameters varied. Therefore, the results and the models are more

likely to generalize to other datasets. While this will likely increase
variability in segmentation results, we consider that the scanner
differences and different scan parameters (such as different kV or
double energy) do not affect the results as far as the analysis is
restricted to moderate or severe WML. The influence of different
variables on variance could be analyzed in future studies.
Automated volumetric rating could direct radiologists towards

a uniform evaluation of WML and might increase clinician’s
alertness for WML and its influences on treatment and out-
comes. Automated rating enables a variety of analyses in co-
horts of stroke patients and other neurological patients and stud-
ies can be cross-evaluated worldwide. In the future, it will be
interesting to study the correlation with clinical data to see if CT
segmentation leads to similar results in terms of clinical corre-
lation when compared with MRI segmentation. Although the
present study suggests a clinical solution, the method is still
not all-inclusive and thus calls for further research, for example,
for segmentation in Fazekas grades 1 and 2. More uniform im-
aging parameters will likely aid in achieving this goal.
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prospectively as part of routine clinical care is not required at our
institution.
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