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Abstract

Atmospheric aerosol impacts on local, regional, and global scale causing adverse effects on human health,

affecting visibility, and influencing the climate. For this reason, the scientific community is strongly interested in

the physical-chemical characterisation of aerosol and its emission sources. Thanks to technological improvements

in this field, high time resolution measurements and analyses have become increasingly important since processes

involved in aerosol emission, transformation and removal in the atmosphere are subject to short time scales

(in the order of one hour). The research presented in this PhD thesis mainly focuses on the implementation

of modelling and experimental approaches in order to expand the knowledge about properties of atmospheric

aerosol and its sources with high time resolution.

Main PhD activities are shortly summarised in the following:

• A source apportionment study was performed on a dataset with different time resolutions (24, 12, and

1 hour) collected in Milan (Italy) in 2016. This advanced multi-time resolution approach – implemented

through the Multilinear Engine algorithm – is still scarcely available in the literature, although it allows

to get rid of the limited chemical characterisation typical of high-time resolution data and the poor

temporal details of low-time resolution samples. In addition, as an original contribution, in this source

apportionment study chemical variables were joined to the aerosol absorption coefficient measured at

different wavelengths as input to the model. This original approach was proved effective in order to (1)

strengthen source identification; (2) retrieve source-dependent optical absorption parameters, i.e. source-

specific absorption Ångström exponents and mass absorption cross sections at different wavelengths, as

results of the model. It is noteworthy that, at the state of the art, in source apportionment models based

on optical absorption data (e.g. Aethalometer model) values for the absorption Ångström exponents are

fixed a priori by the modeller, thus carrying a large part of uncertainties in the model results. Results

from this activity are reported in [P4] [IO1] [IP1] [NO4].

• In the frame of the international collaborative project CARE (Carbonaceous Aerosol in Rome and Envi-

rons), a high time resolution (one and two hours) dataset collected in Rome (Italy) in 2017 was used as

input in an advanced receptor model. Different measurement techniques provided the optical (absorption

and scattering coefficients) and chemical characterisation (elements, elemental and organic carbon, non-

refractory components such as organic aerosol, nitrate, sulphate, ammonium) of atmospheric aerosol. In

particular, an ACSM (Aerosol Chemical Speciation Monitor) detected the organic aerosol (OA) fraction.

Results from the source apportionment analysis of this high time resolution dataset were a posteriori com-

pared to ACSM separation of the organic fraction in terms of HOA (hydrocarbon-like organic aerosol),

BBOA (biomass burning-like organic aerosol), and OOA (oxygenated organic aerosol) provided in a pre-

vious literature work. In this study, the original contribution consisted in analysing the whole dataset

with a multi-time resolution and a multi-variable approach, by the application of the Multilinear Engine

algorithm. This approach based on receptor modelling resulted to be effective in relating primary and

secondary OA contributions to their emission sources, highlighting the possibility to obtain a source-

dependent separation of the OOA fraction, which is typically associated in the literature to not-well

specified secondary processes. This is of particular interest for the receptor modelling community, since

the assessment of the origin of secondary compounds is one of the main limitations of this type of models.

Additionally, since in this study also the optical absorption coefficient retrieved at 7 wavelengths by an

Aethalometer was used as input to the model, the methodology proposed in [P4] was further tested on

a different site impacted by different sources. It allowed e.g. to retrieve optical absorption contribution

from mineral dust, besides the typical fossil fuel and biomass burning contributions retrieved by more

widespread models based on optical absorption data such as the Aethalometer model. Results from this
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activity can be found in [P2].

• Contribution to the INFN (National Institute of Nuclear Physics) experiment TRACCIA (Time Resolved

Aerosol Characterization Challenging Improvements and Ambitions), devoted to the realisation of the new

high time resolution sampler STRAS (Size and Time Resolved Aerosol Sampler), in collaboration with

other Italian research groups (INFN-Florence, INFN-Genoa, INFN-Lecce). The contribution of this PhD

activity was in the sampler design phase (e.g. sizing of the sampler characteristics to obtain the proper

cut-off diameter), and in the preliminary testing phase to verify the collection efficiency of the sampler.

Preliminary tests were performed both on field and in the atmospheric simulation chamber ChAMBRe

(Chamber for Aerosol Modelling and Bio-aerosol Research, partner of the H2020 EUROCHAMP2020

project and member of the Joint Research Unit ACTRIS-IT), where particles with certified dimensions

were injected to study STRAS experimental cut-off diameter. Details can be found in [NO1].

It is worth mentioning that during the PhD research, six months (from March to August 2019) were spent at

the EGAR (Environmental Geochemistry and Atmospheric Research) group of the Institute of Environmental

Assessment and Water Research of the Spanish National Council (IDAEA – CSIC) in Barcelona (Spain), with

a fellowship obtained within the Erasmus+ Traineeship programme. The aim was the collaboration with the

EGAR research group (in particular with Dr. Fulvio Amato) on receptor modelling approaches, on which Dr.

Amato can be considered one of the leading international experts. The shared expertise was useful in the source

apportionment analyses performed during my PhD activity (see e.g. [P2]), and a collaborative work on a high

time resolution dataset collected in different traffic sites in Barcelona has been started and it is still in progress.

Moreover, an application of the original approach first proposed in publication [P4] to data collected with daily

resolution is now under investigation in the frame of a collaboration with the Air Quality research group of the

Department of Engineering and Nuclear Science of the Instituto Superior Técnico of Lisbon (Portugal).

In addition to the above mentioned activities, collaboration to other works of the Environmental Physics re-

search group of the University of Milan was carried out. Examples are the study of aerosol optical absorption

properties by online and offline instrumentation, the analysis of size-segregated samples collected by impactors,

the assessment of aerosol residence time by means of radioactive tracers; some of them were carried out in the

frame of various national and international projects. Main results are reported in [P1] [P3] [V1] [S1] [S2] [IO2]

[IO3] [IO4] [IP2] [NO2] [NO3] [NO5].
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Introduction

Motivation

The abatement of pollutant emissions is one of the most important principles of the Thematic Strategy of Air

Pollution of the European Commission policy. Source apportionment (SA), i.e. identification and quantification

of pollution sources, is mandatory to implement Air Quality Directives and to establish mitigation strategies on

concentration levels of pollutants. The harmonisation of SA methods is the aim of the FAIRMODE (Forum for

Air quality Modeling) network chaired by the European Commission Joint Research center. Among atmospheric

components, aerosol is of particular interest due to its impact on environment, climate, and human health. Re-

ceptor modelling approaches based on factor analysis have been extensively used to perform SA of atmospheric

aerosol; this methodology has the advantage of exploiting information from real-world measurements, but one

of its main issues is that the origin of secondary compounds in the atmosphere is difficult to assess.

Routine sampling of atmospheric aerosol on filters is usually carried out with a time resolution of 24 hours, col-

lecting enough material to perform full aerosol chemical characterisation and quantify also aerosol components

with very low concentrations (e.g. trace elements). However aerosol emission, transformation, and removal pro-

cesses are related to shorter time scales (∼hour); reducing sampling duration was proved effective to improve

the ability of receptor models to resolve sources, and allow the identification of episodic sources that might not

negligibly impact on a short time interval. Over the last decades, the development of different instrumentations

with very high temporal resolution (down to one minute) has provided an increasing detailed chemical and

physical characterisation of atmospheric aerosol. From the experimental point of view, reliable instrumentation

is crucial for advancements in atmospheric aerosol studies.

Large and fully chemically characterised datasets contain valuable information to be exploited in SA studies.

However, the combination of heterogenoeus data obtained from different types of instrumentation to be used

as input to the receptor models is not straightforward, and it might be critical since it impacts on the output

of the modelling procedure. Advanced receptor models have been proposed in the literature, although they

are not commonly used yet. Aim of these advanced approaches is to make the most of available datasets, e.g.

exploiting fully chemically characterised low time resolution data together with high time resolution ones as

input to the model (this is the case of the multi-time resolution model implemented in this work).

At the state of the art, the majority of SA studies of atmospheric aerosol are based on dataset comprising only

chemical composition. Very few examples of successful applications using joint matrices, i.e. input datasets

containing also variables related to aerosol properties different from the chemical composition such as e.g. the

particle number size distribution, are available in the literature. Aerosol optical properties have a crucial role

in the Earth radiative budget and on visibility, and thanks to recent advancements in instrumentation, they

can be continuously measured with high time resolution; however, their combination with chemical composition

data in a joint matrix to retrieve additional information on emission sources is lacking at present.

In this thesis, experimental and modelling approaches were developed and optimised in order to improve the

knowledge on atmospheric aerosol and its emission sources. A new high time resolution sampler was char-

acterised, and datasets comprising chemical and light absorption properties of aerosol provided by different

instrumentations were explored, in order to gain new insights on aerosol sources and to advance in the formu-

lation of new modelling approaches.
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Thesis overview

In Chapter 1 a brief introduction about atmospheric aerosol is outlined, in particular regarding its main emission

sources and properties such as size, chemical composition, and light absorption.

Chapter 2 thoroughly describes the principles of receptor modelling, starting from its basic bilinear formulation.

The chapter is then focused on the Positive Matrix Factorization (PMF) and in particular on the Multilinear

Engine (ME-2) program, that is used in this thesis. ME-2 was developed in the late 1990s to solve general

multilinear problems, and this feature can be exploited to implement advanced receptor modelling approaches

through scripts. Theoretical generalisation to multilinear problems is given, and the rotational indeterminacy

of factor analysis is discussed. The possibility to add a priori information in the source apportionment analysis,

and the different methods for uncertainty estimation in the modelled solution are explored, since these two

features will be exploited in the case-studies developed in this thesis and reported in Chapter 3. An overview of

the general modelling procedure with PMF is then provided, concerning preliminary checks on data robustness,

data preparation for model input, ME-2 script preparation, basic evaluation and interpretation of the modelled

solution. In Sect. 2.6 advanced receptor modelling approaches are treated, and equations at the basis of the

advanced multi-time resolution model - that is the one used in this thesis - are reported together with specific

details about additional procedures for input data and ME-2 script preparation. Finally, the state of the art

on the task of modelling joint matrices, i.e. input datasets containing also variables different from the chemical

composition, is discussed.

Chapter 3 reports the implementation and application of the advanced receptor modelling approaches developed

in this thesis. Results of two case-studies are presented: one from a measurement campaign performed during

summertime and wintertime 2016 in Milan, and the other carried out during February 2017 in Rome in the

frame of the CARE (Carbonaceous Aerosol in Rome and Environs) international project. Input datasets consist

in aerosol chemical composition data measured with different time resolutions and different instrumentations,

and joint with aerosol light absorption data at different wavelengths.

Chapter 4 focuses on the development and characterisation of the new high time resolution atmospheric aerosol

sampler STRAS (Size and Time Resolved Aerosol Sampler), that was carried out in the frame of the INFN

(National Institute of Nuclear Physics) experiment TRACCIA (Time Resolved Aerosol Characterization Chal-

lenging Improvements and Ambitions) in collaboration with other Italian research groups. STRAS development

and main experimental results from its preliminary characterisation in the atmospheric simulation chamber

ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research) are presented. Theoretical background

about sampler design is reported in Appendix A.
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Chapter 1

Atmospheric aerosol: basic properties

Atmospheric aerosol (in the following also referred to as particulate matter, PM) is the polydisperse ensemble

of solid and liquid particles suspended in the atmosphere; they are supposed to maintain their physical-chemical

properties long enough to be observed and measured. Literature studies about atmospheric aerosol have in-

creased enormously over the past decades [1] due to evidence of its impact on local, regional, and global scale

on environment, climate, and human health. In particular [2]:

• aerosol particles influence visibility and radiative forcing of the climate system through direct effects, i.e.

by scattering and absorption of light, and indirect effects on clouds and precipitation resulting from aerosol

activity as cloud condensation nuclei (CCN) or ice nuclei (IN);

• besides air quality, PM has an impact on soil and water through dry (i.e. convective transport, diffusion,

and adhesion) and wet (i.e. precipitation) deposition processes; moreover, aerosol particles can threaten

cultural heritage;

• aerosol particles can catalyse chemical reactions in the atmosphere, and play a role in heterogeneous

chemical reactions;

• epidemiological studies have shown correlation between PM and severe health effects including enhanced

mortality, cardiovascular, respiratory, and allergic diseases. Very small particles are suspected to be

particularly hazardous since they can penetrate the membranes of the respiratory tract, enter the blood

circulation, and be transported in other parts of the body. Moreover, particles play an important role in

the spreading of pathogens such as viruses and bacteria.

Atmospheric aerosol is a very complex system, since it is generated by a variety of sources and it is characterised

by heterogeneous chemical composition, size, and shape; moreover, its properties are highly variable from a

spatial and temporal point of view, and strongly interconnected (Fig. 1.1).

Figure 1.1: Overview of interconnection and feedback between atmospheric aerosol sources, composition, properties,

interactions and transformation, and climate and health effects. Figure modified from [2].
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Processes involved in aerosol emission, transformation and removal take place on short time scales, of the

order of the hour; for this reason, high time resolution measurement and physical-chemical characterisation

are primarily important to study in detail particle properties. In this research frame, it is thus mandatory to

develop experimental and modelling methodologies aiming at identifying main sources and their impact in the

atmosphere.

1.1 Size

Particle size is one of the most important physical quantity in aerosol science, since the laws governing particle

behaviour in the atmosphere depends on it [3]. Atmospheric particles are characterised by different size and

shape, typically dependent on the formation mechanism. In general, particles emitted by natural sources

(e.g. biogenic emissions) have a variety of shapes and large size, while particles originated from anthropogenic

emissions such as combustion processes at high temperature, have more regular shape and smaller size (some

examples are reported in Fig. 1.2).

Figure 1.2: Morphology of various aerosol particles. Figure adapted from [4].

In aerosol science, theories are often developed in the approximation of spherical particles; the use of “equiv-

alent diameters” enables to consider also particles with different shape and density. An equivalent diameter is

the diameter of a spherical particle that is characterised by the same value of a particular physical property

as that of an irregular particle [3] e.g. the aerodynamic diameter dae is the equivalent diameter of a spherical

particle with unit density (1 g cm−3) and the same inertial properties (i.e. the same terminal velocity, see Sect.

A.1 in the Appendix) of the real particle.

In the atmosphere particles are polydisperse, with size spanning over different orders of magnitude (from few

nm to tens of µm); for this reason, it is necessary to characterise their size distribution from a statistical point

of view. Atmospheric size distribution can be empirically represented by the sum of log-normal distributions

(also called modes in the literature). A log-normal distribution is defined as:

dN

dlndp
=

N√
2πlnσg

exp[−1

2
(
lndp − ln ¯dpg

lnσg
)2] (1.1)

where N is the total number of particles for cm3, dp is the particle diameter, dpg is the geometric mean diameter,

and σg is the geometric standard deviation. This expression gives the number of particles having diameters

lying between lndp and lndp + dlndp. Another example is the size distribution by volume (V ), that can be

calculated starting from the size distribution by number, considering that (in the approximation of spherical

particles):
dV

dlndp
=

dN

dlndp

π

6
d3p (1.2)

In Fig. 1.3, a comparison between size distribution by number and by volume is reported. As can be

seen, atmospheric aerosol size distribution can be characterised by a structure with four main modes (and two

sub-modes) [5]:
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• Nucleation mode (' 0.001 − ' 0.01µm): particles in this size range are freshly emitted and produced

in situ from the gas phase by nucleation. Their diffusion is mainly due to Brownian motion, and their

removal consists in coagulation into larger particles;

• Aitken mode (' 0.01 − ' 0.1µm): particles are mainly produced by high temperature combustion

processes, and after coagulation of smaller particles. Diffusion is mainly due to Brownian motion, and

coagulation into larger particles is still an important mechanism;

• Accumulation mode (' 0.1 − ' 2µm): particles have different origin, as they can result from primary

emissions, condensation, and coagulation. They have the highest residence time in the atmosphere, since

neither Brownian motion nor turbulent diffusion nor gravitational settling are particularly efficient in this

size range. Their removal is mainly due to wet deposition. The accumulation mode might consist of two

overlapping submodes: the condensation mode and the droplet mode;

• Coarse mode (' 2 − ' 50µm): particles have usually (primary) natural origin and are produced by

mechanical processes (e.g. erosion). Their diffusion is usually negligible, and their removal is mainly due

to gravitational settling.

Figure 1.3: Example of particle size distribution by number and volume. Dashed lines refer to individual modes, solid

lines to their sum. Figure from [6].

1.2 Chemical composition and sources

Aerosol chemical composition is strongly influenced by emission sources. Particles can be directly emitted in

the atmosphere (these are referred to as primary aerosol), or formed in the atmosphere through gas-to-particle

conversion processes (these are called secondary aerosol) [5]. Emission sources can be classified as natural

sources and anthropogenic sources; in the following, the most relevant atmospheric aerosol sources on a global

scale are described (the following description is based on [1] [7] and references therein).

Among natural sources:

• Marine aerosol. Aerosol deriving from marine environment accounts for a large fraction of primary natural

aerosol. Primary marine aerosol is generated by bubble bursting from breaking waves, and by the action

of surface wind (in fact its production depends on wind speed). Marine aerosol generally contributes to

the coarse aerosol fraction, but smaller particles are also present; while large particles likely deposit close

to the production site, small particles (in the range 0.1 - 1 µm, also called ”film drops”) can have a long

atmospheric lifetime and they can be transported over large distances. Marine aerosol is of interest also

because of its direct (through scattering) and indirect (acting as cloud condensation nuclei - CCN - and

ice nuclei - IN) impact on the atmospheric radiative budget.
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Table 1.1: Main constituents of bulk sea water composition. Table adapted from [5].

Species Percentage by weight

Cl 55.04

Na 30.61

SO2−
4 7.68

Mg 3.69

Ca 1.16

K 1.1

Br 0.19

C (noncarbonate) 3.5 ·10−3 - 8.7 ·10−3

Marine aerosol is formed mainly by Na and Cl, with minor contributions from SO2−
4 , Mg, Ca, and K

(Table 1.1). Part of the Cl in the fine particles of NaCl can transform into gaseous phase due to reactions

with sulphuric acid (in gaseous or aqueous phase) and nitric acid (in gaseous phase):

NaCl(s) +HNO3(g)→ HCl(g) +NaNO3(s)

2NaCl(s) +H2SO4(g + aq)→ 2HCl(g) +Na2SO4(s)

These atmospheric transformations lead to chloride deficit in the particulate phase, and they might de-

crease the atmospheric Cl/Na ratio respect to the composition of bulk sea water. Apart from sea salt,

marine aerosol comprises also organic components mostly originated from degradation of marine organisms

and plants. Two different processes for the generation of organic components in the atmosphere have been

proposed: (1) incorporation of organic matter into primary marine aerosol produced by breaking waves;

(2) gas-phase oxidation (by e.g. ·OH and ozone) of volatile organic compounds such as e.g. dimethyl

sulphide (DMS). DMS is emitted by phytoplankton activity and is considered one of the most significant

precursors of atmospheric sulphate in oceanic regions.

• Mineral dust. ”Mineral dust” is used here to denote the fraction of airborne aerosol deriving from the

soil and consisting of inorganic material [8]. The aerosol mineral fraction (or crustal fraction) is mainly

generated by the action of wind on Earth’s surface. On a global scale, main emission sources are deserts

(the largest source of mineral dust in the atmosphere is the Sahara), but any type of soil can be a

potential source. Factors influencing dust emission are soil surface (i.e. texture and roughness), soil

moisture, vegetation cover, and meteorological parameters such as wind speed and precipitation. Mineral

dust aerosol impacts the climate through direct (mineral dust particles scatter light, although some of their

iron compounds absorb visible radiation) and indirect (action as CCN and IN) effects. In general, these

particles are mainly constituted by calcite, quartz, dolomite, clays (especially kaolinite and illite), feldspar

and smaller amounts of calcium sulphate and iron oxides such as e.g. hematite (elements associated to

these compounds are Si, Al, K, Na, Ca, Fe, and trace elements such as Ti, Ba, Sr, Rb, Li, Zr); anyway, the

chemical composition strongly depends on soil characteristics. Even if most of the mineral dust aerosol is

expected in the coarse fraction, it has been estimated that between 7% and 20% of mineral dust particles

have a diameter lower than 1 µm; in particular, particles in the size range 0.1 - 5 µm are characterised

by long atmospheric residence time, with the possibility to be transported for hundreds of kilometers. In

the Mediterranean region, Saharan dust transport is responsible for exceedances of PM10 daily limit (e.g

it was estimated that more than 70% of exceedances at rural background sites in Spain are due to dust

outbreaks).

• Biogenic emissions. Vegetation and some types of microorganisms contribute to primary and secondary

biogenic emissions. Primary biogenic aerosol (PBA) is characterised by diameters up to 100 µm including

pollen, fern spores, and fungal spores; particles with diameters smaller than 10 µm comprise small frag-

ments and excretions from plants, animals, bacteria, viruses, carbohydrates, proteins, waxes, etc.. Typical

size range for some PBA is 0.05 – 0.15 µm for viruses, 0.1 – 4 µm for bacteria, 0.5 – 15 µm for fungal

spores, and 10 - 30 µm for pollen. Examples of PBA tracers are mannitol and arabitol. PBA may also
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act as CCN and IN, and they can be vectors for the trasmission of plant, animal, and human diseases.

In addition, volatile organic compounds (e.g. isoprene and terpene) emitted by the biosphere may act as

precursors of secondary organic aerosol.

• Volcanic eruptions. Volcanic emissions contribute to tropospheric and stratospheric concentration increase

of greenhouse gases, sulphur, and aerosol, possibly causing acid rain and affecting the climate, air traffic,

and public health. Main gaseous emissions are H2O, CO2, SO2, and HCl, but emissions are difficult

to predict since they depend on the eruption characteristics. Volcanic emissions comprise primary and

secondary aerosol; the latter is e.g. sulphate resulting from SO2 oxidation. Variable concentration of Al,

Si, S, Cl, K, Ca, Ti, Mn, Fe, Cu, and Zn are part of the chemical composition of particles originated by

volcanic eruptions. The size interval of particles released by volcanic plumes is very large, but volcanic

ashes generally fall in the range 1 – 10 µm. During strong eruptions aerosols may reach the stratosphere,

where average residence time is 1-2 years, and strongly impact the climate worldwide; when injection

impacts only the troposphere, the atmospheric average residence time is about 1 week.

Among anthropogenic sources:

• Traffic. Especially in urban areas and densely populated regions, transport-related aerosol is one of the

main sources of primary and secondary anthropogenic emissions. Traffic emissions can be divided in

exhaust, i.e. tailpipe emissions, and non-exhaust, i.e. from vehicle brake wear, tyre wear, road surface

abrasion and resuspension. Although the correct assessment of the different contributions to non-exhaust

emissions in the atmosphere is still an open issue, in the literature they are estimated to contribute in

total as much as exhaust emissions. Opposite to exhaust emissions, non-exhaust ones have not been

subject to regulation policies up to now. Exhaust particles result from fossil fuels combustion, and are

mainly constituted by carbonaceous compounds; among them, black carbon (BC) is the most efficient

absorber of visible light. Non-exhaust particles are enriched in metals, mineral elements, and contain less

carbonaceous material. For example, elements found in brake and tyre wear are Cu, Fe, Ba, Cr, Mn,

Zn, Sr, Cd, Mo, Sb. Road dust resuspension also contributes to non-exhaust emissions, especially during

winter months in Northern Europe where sand and salt are used to avoid pavement freezing. Non-exhaust

particles are generally in the coarse fraction, but particles smaller than 1 µm were also found in emissions

from brake and tyre wear.

It is noteworthy that traffic is a relevant source of nitrogen oxides that act as precursors e.g. of nitrate in

aerosol particles. Air traffic and maritime traffic are also contributors to aerosol loading in the atmosphere;

for example ship emissions - besides their contribution to secondary sulphate formation - can be traced

by products of oil combustion (e.g. V and Ni).

• Biomass burning. Biomass burning is both a natural (wildfires) and anthropogenic (agricultural burning,

domestic heating) source of atmospheric aerosol, and its emissions strongly depend on combustion condi-

tions. Main aerosol components are carbonaceous compounds (mainly organic carbon, OC, and in smaller

amounts elemental carbon, EC), trace of various inorganic compounds originating by dust and ashes,

e.g. soluble salts of potassium, ammonium, sulphate, and nitrate. Other compounds are formed from

the pyrolisis of cellulose, such as levoglucosan. A fraction of organic aerosol emitted by biomass burning,

i.e. Brown Carbon (BrC), can efficiently absorb light in the visible and ultraviolet spectra. Household

stoves for domestic heating account for an important fraction of atmospheric biomass burning emissions;

factors influencing this type of emission are stove design, operating conditions, combustion conditions,

wood characteristics (e.g. more sophisticated stoves release less aerosol mass respect to fireplaces, but

with a higher percentage of elemental carbon and inorganic compounds). Most of the particles produced

during biomass burning are in the accumulation mode.

• Industrial activities and combustions. Industrial activities emitting primary aerosol or precursors of sec-

ondary aerosol in the atmosphere are highly variable; emissions strongly depend on the production process,

the technology, and the materials used. For example, steelworks are important emitters of metal pollutants

such as Fe, Zn, and Mn. Energy production worldwide is also still dependent on fossil fuels combustion;

e.g. coal burning mainly emits sulphur, carbon, chloride, and metals. Residential coal combustion is

currently a serious problem especially in developing countries, due to the emission of toxic components

such as polycyclic aromatic hydrocarbons (PAHs).
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Secondary aerosol forms after emission of precursors, i.e. SO2, NOx, NH3, and volatile organic compounds

(VOCs), by both natural and anthropogenic sources. Main sources of SO2 and NOx are sulphur-containing fuel

and fossil fuels combustion occurring at high temperature. The production of ammonium nitrate depends on

the availability of NH3, which is mainly emitted by agricultural activities (e.g. fertilisation processes). NH3

emission reduction has been proposed as a measure to control the formation of secondary inorganic aerosol

(SIA); on the other side, the formation of secondary organic aerosol (SOA) is still poorly understood in terms of

anthropogenic and biogenic precursors and formation processes. As a result, although SOA generally accounts

for a relevant fraction of total organic aerosol concentration in the atmosphere, its source attribution is still an

open issue [1].

1.3 Light absorption

Interaction between aerosol and radiation has been thoroughly studied, and the complete theoretical background

can be found in [3] [5] [9]. To the purpose of this thesis work, theory of aerosol light absorption will be briefly

outlined in the following [10].

Aerosol light extinction, i.e. the removal of light from a beam, is caused by both aerosol scattering, i.e.

redistribution of light into different directions, and aerosol absorption, i.e. conversion of light into thermal

energy. To study interaction of a spherical particle with radiation, the size parameter x is introduced:

x =
2πr

λ
(1.3)

where r is the particle radius and λ is the radiation wavelength. Particle light scattering and absorption

properties are defined through the complex refractive index m:

m = n− ik (1.4)

where n and k are respectively the real and imaginary part of the refractive index. All particles scatter light,

but particles with an imaginary part k almost equal to zero (i.e. k < 10−5 [11]) do not absorb light significantly.

Absorption by an individual particle can be characterised through the absorption cross section σap (common

unit: m2) and the absorption efficiency Qap, that is the (adimensional) ratio between absorption and geometric

(σgeo) cross sections:

Qap =
σap
σgeo

(for spherical particles σgeo = πr2) (1.5)

For an ensemble of Ntot particles in a volume V, the absorption coefficient bap (common unit: Mm−1) can be

defined as the sum of the absorption cross section σap,i of each particle i, divided by the volume:

bap =

∑Ntot

i=1 σap,i
V

(1.6)

For identical particles, Eq. (1.6) can be written as bap = N · σap, where N is the particle number density

N = Ntot

V .

The single scattering albedo ω of an individual particle is the ratio between the scattering cross section σsp and

the extinction cross section σep, that is σep = σap+σsp. For an ensemble of particles, the scattering, absorption,

and extinction coefficients (bsp, bap, and bep, respectively) are taken into account:

ω =
bsp
bep

=
bsp

bsp + bap
(1.7)

ω ranges from 0 for completely absorbing (or black) particles to 1 for completely scattering (or white) particles.

Power law relations can be used to express the wavelength dependence of aerosol optical properties such as

scattering, absorption, or ω. For example, for the absorption coefficient bap yields:

bap(λ1)

bap(λ2)
=

(
λ1
λ2

)−α
(1.8)

where α is the absorption Ångström exponent. In the literature, α values are used to derive information about

the type of absorbing aerosol; atmospheric aerosol absorbing electromagnetic radiation in the ultraviolet (UV)
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and visible region is constituted by black carbon, brown carbon, and mineral dust.

Black carbon

BC is defined as carbonaceous material characterised by a significant non-zero imaginary part k of the complex

refractive index (see Eq. (1.4)) that is wavelength independent over visible and near-visible spectral regions

(k ' 0.79). The constant value of k results in an absorption coefficient bap that is inversely proportional to

the wavelength - i.e. α in Eq. (1.8) is equal to 1 - in the case of small BC particles in the Rayleigh regime

(i.e. when in Eq. (1.3) x << 1). These particles tend to agglomerate into a fractal-like morphology, and the

connection of this morphology to optical properties is not straightforward. BC is formed during incomplete

combustion of gaseous hydrocarbons in high-temperature combustion. In the literature, carbonaceous material

that partially corresponds to the BC fraction can be indicated with other names depending on the analytical

technique considered; for example, elemental carbon (EC) is operationally quantified through thermo-optical

methods exploiting its thermally refractory nature (instead of its absorption optical properties as for BC).

Brown carbon

BrC is defined as light-absorbing carbonaceous material with an imaginary part k of the complex refractive

index (see Eq. (1.4)) that increases towards shorter visible and UV wavelengths, resulting in an α value in

Eq. (1.8) higher than 1. BrC is a fraction of the organic carbon, and its quantitative impact on radiative

forcing is still characterised by high uncertainty due to gaps to be filled about its origin, chemical composition,

optical properties, and mixing state. Optical properties of BrC may be related to water-soluble organic carbon

compounds and humic-like substances (HULIS). Initial observations of BrC were linked to its origin during

biomass burning, but more recent studies have suggested also other sources and formation processes such as

e.g. secondary organic aerosol formation processes.

Mineral dust

Detailed description of the mineral dust source has been already given in Sect. 1.2. On a global scale, mineral

dust aerosol is associated to heavy loading but it is less efficient in aerosol light absorption respect to BC. Min-

eral dust morphology is generally non-spherical and not-well characterised, making calculations of its optical

properties more challenging. Among major components of mineral dust, hematite (Fe2O3) was found to have

the largest absorption at UV and visible wavelenghts. In the literature, α values associated to mineral dust are

usually higher than 2 (see e.g. [12] and references therein), i.e. higher than for BC but in the same range as

BrC.
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Chapter 2

Modelling methodologies: source

apportionment of atmospheric aerosol

2.1 Introduction

The abatement of pollution in the atmosphere is one of the target of the European Union policy [13]. Source

apportionment (SA) refers to the identification and quantification of emission sources that impact atmospheric

concentrations of pollutants; this practice is mandatory to develop strategies with the aim of reducing at-

mospheric pollutants levels. Focusing on atmospheric aerosol, in the literature SA studies can be performed

through two main approaches: source-oriented models (SMs) and receptor-oriented models (RMs).

Briefly, SMs are air quality models based on data from emission inventories, meteorological fields and at-

mospheric concentrations at the boundary of the considered modelled area [14]. Among them, some of the

most used are the Eulerian chemistry-transport models (CTMs), that require as input an extensive dataset

(e.g. 3D meteorological data, 3D emission data) to be able to simulate both primary and secondary PM in

the atmosphere. One feature of SMs is the possibility to theoretically predict air quality changes in relation to

emission changes; anyway, results from these models are clearly limited by the formulation of the CTM used

and by the quality of input data in terms of emission inventories and meteorological fields.

This thesis focuses on RMs: these models need as input concentrations of different PM components, with

the advantage of exploiting information on pollutants from real-world measurements. This chapter deals with

basic theory of RMs and specifically with the Positive Matrix Factorization (PMF) model, comprehending the

investigation of advanced applications.

2.2 Receptor modelling

Receptor models (RMs) are based on the principle of mass conservation between the emission source and the

receptor site (i.e. the location where measurements were taken), and the input data are constituted by atmo-

spheric concentrations of different aerosol chemical species in different samples. The mathematical formulation

of RMs is based on factor analysis and it can be introduced as a bilinear problem: the input data matrix X

(matrix elements xij) is decomposed in the product of the two factor matrices F (matrix elements fkj) and

G (matrix elements gik), related to factors chemical profiles and factors temporal contribution, respectively;

factors can be subsequently interpreted as the main sources impacting the investigated area (factor-to-source

assignment will be explored in Sect. 2.5.4). The basic general equation to be solved is the following:

xij =

P∑
k=1

gikfkj + eij (2.1)

where the indices i, j, and k indicate the sample, the species, and the factor, respectively; P is the total number

of factors; the matrix E (matrix elements eij) is composed of the residuals, i.e. the difference between measured

and modelled values. Graphical matrix notation for Eq. (2.1) is reported in Fig. 2.1. As it will be outlined in

the following, also measurement uncertainties are needed as input and they play an eminent role in the search

for the model solution.
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e21 e22 … … e2m
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… … … … …
… … … … …
en1 en2 … … enm

Residuals of 
Variable 2

Figure 2.1: Matrix formulation of the bilinear problem in Eq. (2.1). Pedix n represents the total number of samples,

m the total number of variables, P the total number of factors.

All RMs rely on some main assumptions:

• factors chemical profiles do not vary significantly over time;

• factors are independent of each other (not collinear);

• chemical species do not chemically react during the transport from the source to the receptor site;

• measurements uncertainties are random, uncorrelated, and normally distributed.

The validity of these assumptions depends largely on the input dataset; RMs can generally tolerate some

reasonable deviations, considering that larger deviations from these assumptions may increase uncertainties in

model estimations [15]. One of the most critical issues of RMs is that the formation of secondary compounds in

the atmosphere cannot be taken into account, so that the estimation of their origin in terms of sources is still

difficult to assess through this methodology alone. Equation (2.1) is solved differently depending on the available

a priori information regarding the sources of the investigated area; from this point of view, the Chemical Mass

Balance (CMB) model and the multivariate models can be considered somehow opposite approaches (Fig. 2.2).

Receptor models

𝑥"# = %𝑔"'	𝑓'# + 𝑒"#

,

'-.

Multivariate receptor models
• P is unknown
• fkj are unknown
• multiple samples (i = 1,…,n)

are required

CMB model
• P is known
• fkj are known
• solution on a sample by 

sample basis

Knowledge required about pollution sources
prior to receptor modelling

Figure 2.2: Two main receptor modelling approaches used to solve Eq. (2.1) (figure modified from [16] and [17]). The

input data matrix X (matrix elements xij) is decomposed in the product of the two factor matrices F (matrix elements

fkj) and G (matrix elements gik), related to factors chemical profiles and factors temporal contribution, respectively; the

matrix E (matrix elements eij) is composed of the residuals, i.e. the difference between measured and modelled values.

The indices i, j, and k indicate the sample, the species, and the factor, respectively; P is the total number of factors; n

represents the total number of samples.

The CMB model assumes a complete knowledge about the nature of emission sources and their chemical

characteristics: in Eq. (2.1) the factor matrix elements fkj are a priori known and fixed, so that the factor
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matrix elements gik can be retrieved solving the equation on a sample by sample basis [18]. This approach

involves the further approximation that source profiles remain the same between the emitter and the receptor.

On the other side, in multivariate models gik and fkj in Eq. (2.1) are both unknown and they have to

be derived from the application of the model exploiting internal correlations and relationships between input

concentration data [16]. In the past, different multivariate methods have been proposed in the literature [18];

this thesis is focused on the application of the widely used Positive Matrix Factorization (PMF) in the custom

version by Paatero [19].

2.3 Positive Matrix Factorization (PMF)

The Positive Matrix Factorization (PMF) model solves the factor analytic problem in Eq. (2.1) through a

weighted least squares fit (WLSF) method [20] [21]. Any WLSF relies on the minimisation of a sum of squared

expressions multiplied by a weight:

θ = minθ
∑
l

wl(xl − yl(θ))2 (2.2)

where θ represents the parameter(s) to be estimated and respect to which the minimum minθ is calculated; l is

an index used for enumeration; wl values represent the weights; xl values represent the observations; yl values

represent the fitted values predicted by the physical model y. The best possibile estimation (i.e. minimum

variance respect to true values) for θ is obtained when the weight wl = (std.dev(xl))
−2, where std.dev(xl) is

the standard deviation of the measured quantity xl. For PMF, referring to the nomenclature of Eq. (2.1):

• θ = {G, F}

• xl = xij

• yl(θ) =
∑P
k=1 gikfkj

• wl = (σij)
−2

where the elements σij of the matrix σ are estimations of the standard deviations of xij , and they are given as

input data together with xij . Instructions for the best assessment of this matrix will be outlined in Sect. 2.5.2.

Substituting in Eq. (2.2), the “object function” Q to be minimised can be defined as:

Q =
∑
i

∑
j

(
xij −

∑P
k=1 gikfkj
σij

)2

=
∑
i

∑
j

(
eij
σij

)2

(2.3)

PMF performs this minimisation under the constraint that elements of G and F are non-negative [22]:

gik ≥ 0, fkj ≥ 0 (2.4)

in order to take into account the physical observation that negative concentrations from emission sources are

not possible.

The task can be solved iteratively starting from pseudorandom values {G0,F0} for matrices G and F, even

if its solution is not straightforward since two different non-linear terms are present: inequalities (Eq. (2.4)) and

products of unknown in the residual matrix E (Eq. (2.3)). The object function Q may show local minima; in

general, algorithms that can be implemented for PMF are able to find a minimum of Q, but they do not indicate

if it is a local or global one. To overcome this issue, the model can be run with different sets of {G0,F0} in

order to be reasonably sure that the lowest computed Q value corresponds to the global minimum.

Originally, the algorithm PMF2 was developed to solve specifically bilinear PMF problems, starting from a

generalisation of the traditional Alternating Least Squares (ALS) algorithm (with both factors G and F changed

together) and exploiting the Gauss-Newton approach to omit second order terms in the residual. The Gauss-

Newton scheme was then solved by Cholesky decomposition and back-substitution; non-negativity of gik and

fkj was achieved through logarithmic penalty functions [22] [23]. As a further step, in the late 1990s a more

flexible algorithm was developed to solve general multilinear problems: the Multilinear Engine.
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2.4 Multilinear Engine (ME-2 program)

The Multilinear Engine program ME-2 [19] [24] was developed to solve general multilinear and quasi-multilinear

problems; before giving insights into the program, basic definitions are given.

In multilinear problems, the mathematical expression to model the data is assumed to be linear for each

group of variables, i.e. the expression for each data value can be written as sums of products of a number

of unknown variables. The expression is homogeneous, which means that each product consists of the same

number of variables (this is not the case for quasi-multilinear models). The mathematical expression in Eq.

(2.1) can be considered the simplest and most common multilinear model; as we have already mentioned in

Sect. 2.2, the model is called “bilinear” because the unknown variables are divided in two groups (factors G

and F). If the number of groups of unknowns is three, the model is “trilinear”; if it is unspecified, the model

is generally called “multilinear”. In source apportionment studies of atmospheric aerosol, deviations from a

bilinear problem may appear due to particular characteristics of the input dataset. For example, data values

might consist of concentrations of different chemical species, measured at different times and in different size

fractions, and we might be interested in retrieving information about source chemical profiles, temporal patterns

and also contributions in each size fraction.

The general form of a multilinear problem is the following:

xm =

Km∑
k=1

∏
n∈Imk

fn + em (2.5)

where:

• m enumerates the equations to be solved; it identifies data to be fitted by the model. E.g. for the

particular case of a bilinear problem in Eq. (2.1), m = (ij )

• xm represents the data to be fitted; considering the application to receptor modelling, data correspond to

concentration values

• k enumerates the products; e.g. for Eq. (2.1), and in general for receptor models, k identifies the factors

• Km is an integer that indicates the total number of products for each equation; for Eq. (2.1), and in

general for receptor models, all Km equal P, the total number of factors

• fn is the collection of all the unknown factor elements in the model; e.g. for Eq. (2.1), gik and fkj

• Imk are the index sets to define all the products in each equation; e.g. in Eq. (2.1) Imk are the P sets

{ik,kj} obtained considering k = 1, 2, ..., P for each equation

• em represents the residuals between xm and modelled data.

Starting from the WLSF method in Eq. (2.2) applied to the model in Eq. (2.5), the definition of the object

function Q to be minimised in this case is the following:

Q =
∑
m

(
xm −

∑Km

k=1

∏
n∈Imk

fn

σm

)2

=
∑
m

(
em
σm

)2

(2.6)

where σm are the uncertainties connected to each equation of the model, and they are given by the user as

input data together with xm; more practical information about uncertainties will be given in Sect. 2.5.2.

It is known that a trivial scaling indeterminacy is present in the solution of all multilinear models, i.e. the

model can be rescaled by a value r 6= 0. Considering as an example the bilinear case in Eq. (2.1), we can define

the rescaled product ḡikf̄kj = (rgik)(fkj/r) = gikfkj that produces the same modelled outputs of the original

model. The risk of runaway scales of factors is present, i.e. values of G increasing without limit and values of F

converging toward zero, and viceversa. Factor scale indeterminacy may be removed by including in the model

a special a priori information about norms of columns of factor matrices; for the bilinear model, the common

practice in ME-2 is the normalisation of columns of the G matrix (even if different examples are present in

the literature [23]). In fact, when considering environmental data, elements in the columns of G (representing

temporal patterns) vary less than a factor of 100, while elements in the rows of F may vary by six orders of
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magnitude [25]. Thus, normalisation on F might cause problems in the algorithm since it might be based only

on the few largest values of the matrix, ignoring smaller values. Anyway, this is not a restriction from the point

of view of the user, since desired renormalisation can always be performed a posteriori.

The general formulation in Eq. (2.5) is at the basis of the ME-2 program. This equation is used to model

atmospheric concentration data, but also a priori information (e.g. a known ratio between concentrations of two

species in the chemical profile of a source) can be introduced in ME-2 exploiting the same structure; equations

related to a priori information are called “auxiliary equations” while equations related to data values are called

“main equations” [19]. Expliciting the contribution of auxiliary equations in the object function Q, Eq. (2.6)

becomes:

Q =
∑
m

(
em
σm

)2

+
∑
v

(
rv
sv

)2

= Qmain +Qaux (2.7)

where v specifies the subscript for auxiliary equations, rv represent the residuals of auxiliary equations, and sv
denote the “softness” of auxiliary equations [25]. sv are chosen by the user in order to give the desired weight

to the auxiliary information and to indicate the acceptable tolerance to satisfy it [19]. Since normalisation

of columns of factor matrices is always required in order to avoid factor scale indeterminacy (see previous

discussion), in pratical cases Qaux is always higher than zero in the minimisation process.

The possibility to introduce additional a priori information as a target to be accomplished in the model is one

of the main features of ME-2 respect to PMF2; this and other features will be better investigated in Sects. 2.4.1

and 2.4.2.

The flexibility of ME-2 allows more advanced users to set up new kinds of models by implementing ME-2

scripts. The program is controlled by an initialization file or .ini file, written in a special-purpose script language

[26]; the .ini file is the interface between the user and the underlying ME-2, no graphical interface is supported

(neither as output). The .ini file constitutes the first part of ME-2, containing the instructions written by the

user; the second part computes the solution to the problem specified by the user.

The approach used by PMF2 algorithm (see the end of Sect. 2.3) to find the solution was not the best choice

to solve general multilinear problems that might be extremely large. ME-2 solves the PMF problem applying

the conjugate grandient algorithm, that exploits properties of the Jacobian matrix of multilinear models; non-

negativity of factor elements is achieved by inverse preconditioning. More insights about the conjugate grandient

algorithm are given in [19].

One widespread, freely available and ready-to-use application of ME-2 is the EPA (Environmental Protection

Agency) PMF 5.0 [27]. In this application, the solution of a bilinear problem is implemented, and the user has

to give parameters specification through the EPA PMF 5.0 graphical user interface; then, ME-2 solves the

problem minimising the object function Q (Eq. (2.7)). In addition, output from ME-2 are formatted by EPA

PMF 5.0 to facilitate the interpretation by the user.

This thesis will mainly focus on the implementation and optimisation of advanced receptor modelling ap-

proaches, starting from script files, implementing them and exploiting the flexibility of ME-2.

2.4.1 Rotational ambiguity and implementation of a priori information

Receptor models are based on factor analysis. Factor analytic problems are ill-posed, which means that the

problem can be solved, but it does not produce a unique solution due to “rotational indeterminacy” [25] [28].

To better understand this statement, the following discussion will be focused on the particular case of a bilinear

model, but the generalisation to multilinear problems is straightforward. Let’s consider the system of equations

(2.1) in a matrix notation:

X = GF + E (2.8)

As already discussed in Sect. 2.3, {G, F} are determined minimising the object function Q under non-negativity

constraints on factor elements. The factor matrices {G, F} can be transformed into another pair {Ḡ, F̄}
corresponding to the same Q value of {G, F}. In the literature, it is traditionally said that {G, F} can be

“rotated” into {Ḡ, F̄}, even if the real procedure is not a rotation but a linear transformation. Considering a

nonsingular square matrix T and its inverse as T−1 (TT−1 = I, where I is the identity matrix), the following

transformation can be written:

X = GF + E = GTT−1F + E = ḠF̄ + E (2.9)
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This rotation can be accepted only if non-negativity constraints on factor elements are still satisfied. Sometimes

non-negativity constraints are enough not to allow rotations; in this case, the solution is unique. It is well

known that rotational ambiguity is not present if a sufficient number of elements of G or F are zeroes [28]. In

all other cases, the domain of possible solutions should be explored in order to evaluate if one solution appears

more plausible than others from a physical point of view.

The formal definition in Eq. (2.9) is a “pure” rotation, but it does not take into account the flexibility of

factors, so that in real situations “approximate” or “distorted” rotations are performed. In distorted rotations

the product of factor matrices change, and consequently the Q value changes; these changes in factors are

acceptable as long as the Q value does not increase too much. Unfortunately, there is not a fixed rule about

the acceptable increase in the Q value: generally speaking, increases in the Q value of thousands appear

questionable, of hundreds may be acceptable, of a few tens may be acceptable without question [25].

Evaluation of the plausibility of a solution is performed exploiting available a priori information. Concep-

tually (without giving details about the ME-2 script language here), a priori information can be introduced in

the ME-2 script as follows [25]:

1. Setting some factor elements equal to given fixed values, both zero or non-zero values. In the script, the

user declares that a certain factor element should not vary; thus, it retains its initial fixed value during

the WLSF procedure and it is handled as a constant, not as a variable.

2. Setting individual lower and/or upper limits (inequality constraints) for some factor elements. By default,

all factor elements have lower limits equal to zero; in the script, these limits are accessible and they can

be modified with small negative values or as needed. Also upper limits can be specified in a similar way.

3. Pulling some factor elements toward specific target values; this is done introducing “pulling equations” in

the model. Pulling equations contribute to the Qaux in Eq. (2.7), with rv corresponding to the difference

between the considered factor elements and their target values. Pulling equations have an advantage over

points (1) and (2): if the Q value increases too much when the pulled factor element reaches its target

value, this can be considered an indication of the fact that the constraint is incompatible with the model.

4. Pulling functions of factor elements (e.g. a ratio of factor elements) toward specific target values. Also in

this case a pulling equation is introduced in the model (see point (3)), but rv in Eq. (2.7) corresponds to

the difference between known relationships of factor elements and their target values.

A practical case of a priori information about relationships of factor elements (point (4)) is a known ratio

between the concentration of two species in a specific source as singled out in the chemical profile (factor F).

For example, fk2

fk3
= t, where k indicate the specific source, 2 and 3 represent two different species, and t is the

numerical value of the ratio; it can be e.g. the stoichiometric ratio between sulphate and ammonium, or the

ratio between Cl and Na when fresh marine air masses impact over the investigated area. This expression must

be introduced as a pulling equation, giving a contribution to Qaux:

0 = fk2 − tfk3 + rv (2.10)

Qaux,v =

(
rv
sv

)2

=

(
0− (fk2 − tfk3)

sv

)2

Another example of a priori information that can be introduced in the model is a balance between different

factor elements, e.g. a mass balance. In this case, each factor makes sense from a physical point of view if the

measured mass concentration introduced as an input variable in the model is equal or larger than the sum of

concentrations of individual chemical species:

0 =
∑
j

cjfkj + rv (2.11)

where cj are numerical coefficients: for the mass cmass = +1; for species different from the mass cj = −1 (more

insights about the use of cj can be found in [25]). In this case the inequality (the mass is larger than the sum

of species) can be implemented, so that negative values of the residual rv are allowed, which means that the

equation do not contribute to Q if the residual rv is negative:

Qaux,v =

(
rv
sv

)2

if rv > 0 (2.12)

Qaux,v = 0 if rv ≤ 0
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Obviously, before the introduction of a mass balance equation in the model, it is necessary to check if the

measured data values fulfill the condition; if individual samples do not obey the balance, one should not expect

something different from the computed factors. In general, to control the impact of a priori information in the

model, it is better to introduce them one at a time.

2.4.2 Methods to estimate uncertainty in the solution

In PMF modelling, uncertainty analysis of the solution aims at estimating a range of plausible values around

computed factor elements [29]. There are three main causes of uncertainty in PMF solutions:

• random errors in input data values;

• rotational ambiguity;

• modelling errors.

Random errors in input data values are intrinsically associated with the measurement process, even when no

systematic bias is present. Uncertainty due to rotational ambiguity is peculiar of all factor analytic models;

rotational ambiguity has been extensively treated in Sect. 2.4.1. Modelling errors arise because the model is

always a simplification of the real world; modelling errors take into account e.g. variation of source chemical

profiles with time, incorrectly estimated input data uncertainties, correlated (i.e. systematic or non-random)

errors in input data values, incorrectly specified total number of factors P. The relative importance of the

three types of uncertainty mainly depends on the size of the dataset. As the size of the dataset increases,

the significance of random errors decreases due to the law of large numbers, and the significance of rotational

ambiguity decreases too since the number of zeroes in the factors often increases. Opposite, modelling errors

are associated to non-random disturbances that are not subject to the law of large numbers, thus their relative

importance can be assumed to be the highest for large datasets. Anyway, large datasets usually contain much

more information respect to small datasets and this feature can enhance the model performance.

Three uncertainty estimation methods can be implemented in ME-2 scripts (they are already available in

EPA PMF 5.0): bootstrap analysis (BS), dQ-controlled displacement of factor elements (DISP), and bootstrap

enhanced with displacement (BS-DISP) [29] [30].

Bootstrap analysis (BS): BS is a typical statistical method to estimate uncertainty. It is based on per-

turbation of the original dataset in order to produce a “perturbed dataset” that is subsequently analysed

through PMF modelling as the original one; this is done for a certain number of runs (e.g. 100). BS can be im-

plemented in ME-2 in three steps: re-sampling, re-weighting, and random rotational pulling [23]. Re-sampling

and re-weighting deal with the perturbation of the original dataset: re-sampling is performed generating ran-

dom weights for each main equation (2.5) in order to consider only equations with a positive weight; during

re-weighting, previously calculated positive weights are used to change the uncertainties associated to the main

equations. The perturbed dataset becomes the input for new PMF runs, and the perturbed solution is subject

to random rotational pulling: randomly chosen G elements are pulled up or down, as an attempt to take into

account rotational ambiguity in BS analyses. Different BS types can be implemented, considering different ways

of generating weights and different input data treatment for the perturbed analysis. For example, in the EPA

PMF 5.0 three main modalities are defined and controlled by the ME-2 script variable bsmode:

• bsmode = 11 : traditional and default BS. Positive and negative random weights are generated, and all

the three steps (re-sampling, re-weighting and random rotational pulling) are perfomed.

• bsmode = 14 : no weights are generated and all main equations are taken into account, but 50% of the

original dataset is substituted by modelled values (which means residuals = 0), and the remaining 50% is

substituted by (2 · original values - modelled values) (which means residuals = 2 · original residuals).

• bsmode = 15 : two positive weights are generated, one lower than 1 and one higher than 1, and associated

to the main equations. Since generated weights are all positive, no re-sampling is performed (just re-

weighting and random rotational pulling are applied). It is supposed to be statistically equivalent to

bsmode=11, because the distribution of weights is implemented in order to share the same properties in

terms of expected value and variance.
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Figure 2.3: Example of a box plot resuming outputs from a bootstrap analysis; statistics for the chemical profile of a

factor identified as traffic are reported. Figure modified from [31].

Variations in the perturbated source chemical profiles (factor F) can be used to estimate the uncertainty in the

original solution (Fig. 2.3).

Through the comparison of factors contributions (factor G) between the original and the perturbed solu-

tion, the perturbed factor is assigned to the original one with which it has the highest correlation, above a

user-specific threshold (e.g. Pearson correlation coefficient r > 0.60 is considered as default in EPA PMF 5.0).

If no correlation coefficient is above the threshold, the factor is classified as “unmapped”; any factor with a

percentage of unmapped cases of approximately 80% or above (i.e. 80% or less mapping) should be better

investigated [27].

BS can be perfomed to obtain reliable estimation of uncertainty due to random errors in input data; it is

not specifically designed to explore rotational ambiguity, even if some rotational uncertainty is catched in the

procedure. Re-sampling may lead to the omission of some or all zero values in the factors, thus giving an

overestimation of the variation in the solution if the zero values were reliable; to reduce the impact of these

“too much” perturbed solutions, percentiles of the obtained distribution of results can be used for error limits

(e.g. 5th and 95th percentiles). This is one of the reason why bsmode=15 was developed besides traditional

bsmode=11: all main equations are considered in bsmode=15, and this might lead to more stable replications.

Regarding modelling errors, it is not known how well BS captures them.

Displacement analysis (DISP): Starting from the original solution, DISP repeatedly fits the model so

that each variable in factor F in turn is perturbed (or “displaced”) from its original fitted value; in this way,

uncertainty estimates for individual variables of F are obtained. Displacement of each variable is extended until

the object function Q increases by a maximum allowed change dQmax; this extension is interpreted as the upper

or lower interval estimate of the considered variable. DISP captures the uncertainty caused by random errors

in input data, but underestimation of uncertainty in the solution might appear if data errors are correlated or if

they are underestimated in the original dataset; on the other hand, overestimation of uncertainty in the solution

might appear if data errors are overestimated in the original dataset (e.g. for species that were downweighted
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in the original PMF analysis, uncertainties estimated by this methodology are known to be too large). Occa-

sionally, DISP causes a significant (tens or hundreds) decrease of Q : it means that the original solution was not

a global minimum. In this case, it is necessary to solve the original model again, using more random starts to

find the global minimum; then, the DISP analysis can be performed another time. DISP is also able to catch

uncertainty from rotational ambiguity, but it is not known how well it captures modelling errors.

Bootstrap enhanced with displacement analysis (BS-DISP): BS-DISP is a combination of bootstrap

and displacement analyses: the original dataset is perturbed through re-sampling and re-weighting (no random

rotational pulling is performed in this case), and then each variable in factor F in turn is displaced. This process

may be viewed as follows: BS gives a perturbed solution, then the DISP analysis determines an approximation

for the rotationally accessible space around that perturbed solution. Taken together, they represent both the

random uncertainty and the rotational uncertainty for the modelled solution. As for the BS analysis alone,

re-sampling at the beginning of the BS-DISP procedure may lead to the omission of some or all zero values in

the factors, thus giving an overestimation of the variation in the solution if zero values were reliable; percentiles

of the obtained distribution of results can be used for error limits (e.g. 5th and 95th percentiles). As for the

DISP analysis alone, decrease of the Q value respect to the original one may occur; in this case, it is sug-

gested to reject the resample corresponding to the decrease in Q. The overall BS-DISP analysis remains valid,

though currently there is no way to a priori quantify the number of allowed rejections. BS-DISP results are more

robust than DISP ones, since the displacement phase of BS-DISP does not displace as strongly as DISP by itself.

For further details, please refer to [29] where important recommendations about how to document uncertainty

estimations for PMF modelling are reported.

2.5 General modelling procedure for source apportionment with PMF

2.5.1 Preliminary checks

Preliminary knowledge about the study area is necessary in order to define a clear methodological framework,

i.e. to define the objectives of the modelling analysis and to plan the experimental work. Different pieces

of information can be retrieved, studying e.g. previous source apportionment studies, local measurements

of atmospheric concentrations of pollutants available in the literature, prevailing local wind directions, the

geography as well as the topography of the area in order to understand source-receptor relationships [13].

Multivariate techniques such as PMF work properly with large number of samples as input. Suggestions

about a reliable number of samples can be found in the literature [13], but in general the minimum number of

samples cannot be established a priori, as it depends on the amount of information contained in the dataset:

there should be enough samples to catch the variability of sources, including samples where contributions from

some sources are absent or negligible.

The chemical species to be included in the analysis should be selected on the basis of work objectives, site

characteristics, and expected sources, taking into account available resources. For modelling purposes, increasing

the number of species may help to reduce collinearity problems and to potentially resolve a higher number of

sources. Another consideration regards the inclusion of chemically redundant species, e.g. sulphur and sulphate;

usually, literature studies include only one of them, in order to avoid double counting of sulphur atoms [32].

In general, if two species are proportional to each other - as it should be if all sulphur is present as sulphate,

with a stoichiometric ratio equal to 3 - then it does not matter which one is used as input in the analysis [13]

(Fig. 2.4). Other common examples of double counting between elemental and ionic species are e.g. Na and

Na+, K and K+, Ca and Ca2+, Mg and Mg2+, Cl and Cl−. In the literature, soluble potassium K+ is a better

indicator of biomass burning emissions respect to K, thus a good choice might be the inclusion as input data of

K+ and of insoluble K (= K - K+). Redundant species can be compared in the phase preceding the modelling

analysis, in order to check measurements carried out through different analytical techniques and to introduce

the most reliable variables in the model. In this phase, ionic balance between measured atmospheric positive

and negative ions might be checked, and a preliminary mass closure study based only on PM composition might

be performed to have a rough idea about the impact of possible sources [33].

Anyway, introduction of redundant species is not a priori harmful for the analysis but it should be taken into

account at a later stage, e.g. retaining only one of the two species to verify the mass closure for each factor.

21



0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000

SO
42-

[n
g 

m
-3
]

S [ng m-3]

slope: 2.68 (± 0.13)
intercept: -198 (± 82) ng m-3

r: 0.98

Figure 2.4: Example of comparison between sulphate (SO2−
4 , y axis) and sulphur (S, x axis) concentrations measured

on different samples during summer and winter 2016 in Milan (Italy). The slight difference (of the order of 10%) respect

to the expected stoichiometric coefficient 3 can be ascribed to the use of different analytical techniques.

Since one of the main purposes of receptor modelling applications is to apportion PM mass, its measurement

should be considered. PM mass can be taken into account in the modelling procedure through two general

approaches. The first is to include PM mass as an input species; in this case, the model will apportion PM mass

to each factor as it apportions the other species. In the literature, it has been suggested that the uncertainties

of PM mass concentrations should be substantially increased (e.g. set at four times their values [34]) to decrease

the weight in the model fit. PM mass might be also considered an example of double counting, because all other

aerosol components concentrations are comprised in PM mass [32]. The second method of apportioning total

PM mass is through an external regression of the factor contributions (factor G) obtained from the modelling

procedure onto the PM mass measurements, as in the following equation:

PMi =

P∑
k=1

gikak (2.13)

where PMi is the total PM mass from sample i, and ak is the regression coefficient for factor k resulting from

regressing the factor contributions gik on PMi. This method assumes that gik are error free, that is clearly not

true; the advantage is that negative values of ak can be considered an indication that too many factors were

specified in the PMF modelling, and that the analysis should be performed with fewer factors [13].

2.5.2 Data preparation

In source apportionment studies of atmospheric aerosol through PMF, typical input data are:

• xij (elements of matrix X): concentrations of different chemical species (denoted by subscript j ) in different

samples (denoted by subscript i). xm will be also used, referring to the general nomenclature of Sect. 2.4.

• σij (elements of matrix σ): estimations of the standard deviations of xij . The general nomenclature σm
will be also used.

Occasionally, other variables have been used in the literature (e.g. gaseous species, meteorological parameters),

which will be better investigated in Sect. 2.6.2. As it will be further discussed, σij are associated to experimental

uncertainties uij because uij are typically used as a starting point to estimate σij , but the two quantities do not

necessarily have to coincide. To distinguish them, in the following the different nomenclature will be maintained.

Signal-to-noise ratio (S/N). A statistical parameter to be evaluated for each species before its insertion

in the model is the signal-to-noise ratio (S/N), which indicates if variability in the measurements is real or due

to the noise associated to the data [27]. The signal related to the data can be approximated by the difference

between concentration xij and uncertainty uij , since in general concentrations are constituted by the sum of
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signal and noise. When xij is equal to or lower than uij , the datum is considered to have no signal. Referring

to n as the total number of samples, S/N is defined as:

(S/N)j =
1

n

∑
i

dij (2.14)

where : dij =
xij − uij
uij

if xij > uij

dij = 0 if xij ≤ uij

For example, species with concentrations always below their uncertainty have S/N equal to 0; species with

concentrations that are twice the uncertainty values have S/N equal to 1. Species can be categorised as “bad” if

S/N ratio is less than 0.5; “weak” if S/N ratio is between 0.5 and 1; “strong” if S/N ratio is higher than 1 [27],

even if a slightly larger limit might be considered, e.g. S/N higher than 1.2 [35]. Even a small overweighting

(i.e. too small uncertainty respect to the true error value) of weak and bad variables can be harmful for the

analysis and should be generally avoided; anyway, it can be considered acceptable if such variables can represent

markers for sporadic sources (see e.g. [36]). For weak variables, it is recommended a routine downweight of

uncertainties by a factor of 2 or 3; bad variables should be omitted from the analysis or, if not desirable, they

should be strongly downweighted by a factor from 5 to 10 [37].

Missing data and data below minimum detection limit (MDL). MDL denotes the lowest concentration

level that can be determined to be statistically significant from an analytical blank [38]. Missing data might

be present in the dataset, e.g. due to technical problems in the instrumentation, in the analytical technique,

or due to filter contaminations. For both missing and below MDL data, it is not straightforward to define a

concentration value to be inserted in the model, but they are associated to different pieces of information that

can be exploited.

Missing data. Empty entries in input corresponding to missing data are allowed by the ME-2 program. In

this case the equation contains no terms and it is ignored, i.e. it is not used to retrieve the modelled value.

The variable missdatlim in ME-2 script controls settings for missing data: all entries that are below the value

of missdatlim are ignored. For example if -999 denotes missing data, missdatlim can be imposed equal to -990.

Empty entries might create problems with advanced receptor modelling approaches which seem to be more

sensitive to missing data [39] and they cannot be introduced as input in EPA PMF 5.0. To deal with missing

data in the model, different approaches are present in the literature: (1) eliminate samples with missing data,

generally applied when key or several species are missing; (2) eliminate species with missing data, typically

used when a large percentage of species observations are missing (e.g. higher than 50% [13]); (3) set a value

with large associated uncertainty. Among the various approaches reported in the literature [32], Polissar et al.

[40] proposed a method dealing with what is mentioned in point (3). It considers the geometric mean between

concentrations of the chemical components in the dataset, with associated uncertainties usually equal to four

times the concentration values estimated; other similar methods consider the use of mean or median values (in

some cases seasonally averaged).

Below minimum detection limit (MDL) data. Species containing too many concentration values below MDL

(e.g. higher than 50% [13]) can be neglected in the analysis. When this is not the case, data below MDL can

be introduced in the model according to Polissar et al. [40] (as for this thesis work), where they are replaced

with MDL
2 and the associated uncertainty with MDL

2 + MDL
3 , where MDL corresponds to the arithmetic mean

between the MDL values for the considered species; sometimes, the value 5
6MDL is used in the literature in-

stead of MDL
2 + MDL

3 for the associated uncertainty. Other recommended literature approaches replace data

below MDL with statistically intensive method (e.g. Kaplan-Meier, Maximum Likelihood Estimation, Robust

Regression on Order Statistics [41]) or consider “uncensored” values, i.e. negative or below MDL values given

as output from analytical methods. The aim of all these procedures is to avoid the introduction of biases in the

analysis, that may result in the creation of artificial factors (called “ghost factors”) when substitution proce-

dures are not carefully checked. A special treatment of uncertainties has been developed for data below MDL,

exploiting in the ME-2 .ini file the errormodel code em=-16, that will be better explored in the following.

Setting the standard deviations σm. Standard deviations of the main equations are an important link

between the factor analytic model and the physical reality, and they should be used to “communicate” to the

model various kinds of information. For example, high uncertainties can be associated to missing and below
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MDL data; influence of outliers (i.e. very large values) can be controlled increasing their standard deviations

in the model respect to their experimental uncertainties (see next paragraph). In general, what should be kept

in mind is that standard deviations σm act as weights for input variables xm in the minimisation process (see

Sect. 2.3): some of the variables might be less important than others, so that one can subjectively increase

the associated uncertainties (i.e. decrease the associated weight) in the model for such variables. Influence of

similar procedures over the solution should always be carefully checked, since loosing the objectiveness of the

analysis is a real risk; anyway, increasing the uncertainty of an irrelevant variable is less drastic than omitting it

from the analysis or not measuring it at all [21]. Setting uncertainties should be perfomed before the modelling

phase, and then these uncertainties can be further treated through ME-2. The error model function is used to

specify how the final uncertainties to be used are set, and it is identified with the variable em in the .ini file.

Together with em, three parameters C1, C2, and C3 have to be defined. C1 is usually identified with the input

uncertainty given by the user, while C2 and C3 are used to introduce extra modelling uncertainties. Different

error model codes are defined (an exaustive list - also for auxiliary equations - is given in [24] [26]), but the

generally suggested one for environmental data is em = -14:

σm = C1 + C2
√
max(|xm|, |ym|) + C3 ·max(|xm|, |ym|) (2.15)

where ym denotes the values fitted by the model.

em = -15 is used for missing data (empty entries). em = -16 do not consider any contribution to Q if the

fitted value ym is below the data value xm (i.e. residual em is positive); this error model can be used when xm
corresponds to a below MDL datum. em = -17 is the opposite of -16: no contribution to Q is considered if the

fitted value ym exceeds the data value xm (i.e. residual em is negative).

Robust mode and outliers. Outliers can be defined as large atypical values respect to the average be-

haviour of data. Outliers can arise due to e.g. contaminations or errors in the analyses, a local source visible

only occasionally (e.g. fireworks), higher impact of one source during a specific episode (e.g. plumes, that are

undiluted transported from the source to the receptor) [22]. When needed, influence of these data on solutions

can be diminished by the user increasing their standard deviations, both a priori or a posteriori after the fitting

procedure, through the identification of data values corresponding to high scaled residuals (that are defined as
em
σm

, see Sect. 2.5.3) [21]. Handling of outliers can also be performed through the ME-2 algorithm using the

robust mode, that is controlled by the special variable robust in the .ini file. When robust=1 the robust mode

is active (otherwise, robust=0) and uncertainties of input data for which the absolute value of scaled residuals
em
σm

is higher than a fixed parameter, are increased. The parameters that can be fixed are posoutdist for positive

scaled residuals and negoutdist for negative ones, and they are usually imposed equal to 4 [32]. In this case, the

object function Q to be minimised is defined as:

Qrobust =
∑
m

(
em

hm · σm

)2

(2.16)

where : hm = 1 if | em
σm
| ≤ α

hm = | em
σm
| · 1

α
if | em

σm
| > α

considering posoutdist=negoutdist=α (but the generalisation for different values of posoutdist and negoutdist is

straightforward).

Other relevant parameters in ME-2 script. The preparation of a ready-made ME-2 script requires the

initialisation of other relevant special parameters respect to what already considered in the previous paragraphs.

n1 : the number of samples (number of rows of matrix X).

n2 : the number of input variables, i.e. the number of chemical species (number of columns of matrix X).

np: the total number of factors P. A major consideration in searching for the solution is to find the best

number of factors to fit the dataset, and different np values should be considered in different analysis. Evaluation

of the best number of factors is based on statistical and physical considerations (which are better investigated

in Sect. 2.5.3 and 2.5.4).

contrun: a constant used to identify the starting values {G0,F0} for the analysis:

... =0 pseudorandom values are considered; this type of analysis is called “base run”.
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... =1 the analysis starts from previously computed results (from a base run); this type of analysis is

called “continuation run”. This modality can be used to introduce a priori information through the

implementation of auxiliary equations.

... =2 the analysis starts from previously computed results while also some special procedures are specified,

e.g. estimation of uncertainties in a previously computed solution.

numtasks: the number of runs of the model to be performed. Different runs are always suggested when

contrun=0 (i.e. when the model starts from different pseudorandom values), in order to find the global minimum

of the object function Q. At least 20 random starts should be computed [27] [42], but also higher numbers can

be found in the literature. When contrun 6= 0, different criteria are used (e.g. for uncertainty estimation with

bootstrap analysis, 100 runs are suggested).

numoldsol : a number used when results from previously computed analysis are considered (i.e. with con-

trun=1 or 2). For example, if we want to perform a continuation run starting from the third random start of

the base run, numoldsol=3.

seed1 : the initial value used to generate pseudorandom starting values {G0,F0} of factors matrices. When

several starts are computed (numtasks>1), then seed1 varies in the script automatically so that the same result

is not computed again and again.

alowlim and blowlim: the low limits for factor matrices. For example, alowlim represents the low limit for

the factor G of temporal contribution (identified by AA in the .ini file) and it might be imposed slightly negative

(as in the EPA PMF 5.0); in this way, true rotations can be accepted even in the presence of a large number of

zero values [30].

2.5.3 Basic evaluation of the solution

The total number of factors P is a fundamental parameter to model the reality; choosing a representative value

for this parameter is an essential part of the professional skills of the modeller [42]. This choice is influenced

by preliminary evaluation of the study area, physical and chemical properties of real-world data, statistical and

physical evaluation of the modelled solutions. Even the final purpose of the modelling procedure influences the

final choice of P : for example, P might be smaller if the aim is to better determine the strongest sources at a

receptor site, and larger if also weaker or episodic sources are of interest.

The optimum number of factors should not be evaluated through comparison between the obtained Q value and

the theoretical Q value (that can be calculated considering the degrees of freedom of the problem). In fact, the

former strongly depends on the assumed standard deviations of data values. A suggested way to exploit Q as

an indicator of the reliability of the chosen P, is to use differences in obtained Q values [42]. When the number

of factors P is increased by one, then the number of free parameters in the model increases approximately by

(n+m), where n is the total number of samples and m the total number of input variables; an increase of the

number of free parameters corresponds to a similar decrease of the Q value. If the increase of P by one is

deemed useful, the decrease of Q should be significantly higher than (n+m). More specific criteria to evaluate

how much the decrease of Q is significant cannot be given, because it is mainly dependent on the statistical

properties of residuals for the specific considered problem.

After the fitting procedure, evaluation of the goodness of the solution should start from checking if criteria

for convergence have been satisfied over different runs of the model. In ME-2 script, the special variable giving

information about convergence is endingnow : a value of 4 indicate that convergence has been achieved, while

other values might indicate different problems during the procedure. After this check, one model run is chosen

(the run corresponding to the global minimum of the object function Q is chosen in the standard procedure)

and further inspected as the final solution.

The first method to assess the goodness of the fit is the inspection of the distribution of the scaled residuals
em
σm

for each variable. When scaled residuals are within certain limits (usually the range [-3,+3] is considered [27])

and normally distributed, the variable can be considered well-modelled. Distributions of scaled residuals with

too large spread might indicate that the variable is not well-modelled or that uncertainties for the considered

variable are too low. Distributions concentrated near zero might indicate that uncertainties are too high (i.e.

high σm leads to too small em
σm

) [32], but also that they are too small and a unique factor - i.e. a factor where

only the considered variable has a significantly non-zero value - appeared in the analysis. Anyway, not all unique

factors are physically meaningless and due to noise [21]. Information gained from scaled residuals can also be

used as a diagnostic tool for adjusting species uncertainties in subsequent runs of the model [32], even if this
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type of procedures should always be performed with caution and clearly reported. Examples of distribution of

scaled residuals are reported in Fig. 2.5.
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Figure 2.5: Example of distribution of scaled residuals em
σm

for two variables: silicon (Si) and iron (Fe). Figure modified

from [31].

A more detailed assessment of the fit can be done by comparing all modelled variables with measured

ones. Correlations (with statistics such as the correlation coefficient r and slope) and differences in temporal

patterns between predicted and input variables should be evaluated, to identify problematic variables or not

fitted episodes present in the data (e.g. high dust concentrations due to episodic Sahara dust advections).

Examples are reported in Fig. 2.6.
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Figure 2.6: Examples of comparison between model reconstruction and measurements during February 2017 in Rome

(Italy). On the left, linear regression between modelled (y axis) and measured manganese (x axis). On the right, temporal

patterns of modelled and measured potassium; vertical lines show midnight for each day of February 2017.

When mass is available, sum of all chemical species for each factor should be lower than the mass apportioned

to the factor itself; this can be verified both when the mass is used as an input variable and when the mass is

apportioned a posteriori through a multilinear regression. In the latter case, negative contributions to the mass

of some factors are a good indication that too many factors have been considered in the modelling procedure

[32].

Introduction of a priori information in the obtained solution (see Sect. 2.4.1) allows the evaluation of the

compatibility of model results with the physical reality. Methods to estimate uncertainty in the solution (see

Sect. 2.4.2) can be used to evaluate the reproducibility and stability of the solution itself.

2.5.4 Interpretation of the solution

Factor-to-source assignment. Assignment of identities to the P factors should be based on different strate-

gies. An initial qualitative step might consist in the identification of the main tracers for each factor. Tracers

can be defined as those variables that are present with a high percentage in the considered factor, and they can

be associated to specific sources on the basis of available information, e.g. previous literature studies at the

same site or in similar locations [16] or targeted samplings nearby the source to get experimental profiles about

it. Another parameter than can be used to identify the main tracers is the Explained Variation for factor F

(EVF), which is another way to measure the contribution of each chemical species in each factor [43] [44]. EVF
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for the chemical species j in the factor h is defined as (similar equations yields for factor G):

EVhj =

∑
i
|gihfhj |
σij∑

i(
∑P

k=1 |gikfkj |+|eij |
σij

)
if h = 1, ..., P (2.17)

UEVhj =

∑
i
|eij |
σij∑

i(
∑P

k=1 |gikfkj |+|eij |
σij

)
if h = P + 1

where the indices i indicate the samples, k the factors, and UEVF for factor P+1 represents the unexplained

residuals. For example, a source with relatively high EVF values for Al and Si might be associated to a crustal

origin. The unexplained residuals give information on the goodness of the reconstruction of each variable,

which can be considered an advantage of EVF over the percentage species. An example of comparison between

percentage species and EVF for a factor identified as mineral dust is reported in Fig. 2.7.
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Figure 2.7: Example of use of the percentage species and explained variation for factor F (EVF) for the identification

of main tracers.

Another common strategy is to search the literature for works containing measured source profiles with

characteristics similar to the ones obtained from the analysis (factor F). Databases of source profiles such as

SPECIATE [45] [46] and SPECIEUROPE [47] are also available for such comparisons, and the DeltaSA tool [48]

was developed to assist in source identification. Typical ratios between chemical species in the obtained factor

profiles can help in the identification. For example, literature ratios between Na, Mg, and Cl from measurements

of bulk seawater composition [5] might help in the assignment of a factor with similar ratios as a marine source,

even if atmospheric transformations and enrichments can partially modify these values. Local source sampling

can be perfomed (e.g. sampling of local road dust [49]) because sampled sources should resemble PMF profiles

more strongly than the ones obtained in other locations.

Temporal patterns exhibited by source contributions (factor G) can help in the factor-to-source assignment.

For example, seasonality is expected from sources such as biomass burning, which likely shows largest contribu-

tions during cold winter months, or secondary sulphate, because photochemical activity is typically high during

the summer. Differences in weekdays and weekends can be examined as well, since some sources like vehicular

traffic are generally expected to be more active during week days due to working activities. If input data are

characterised with high time resolution, more detailed information can be obtained exploiting for example av-

erage diurnal cycles (Fig. 2.8).

Auxiliary analyses. Ancillary measurements of meteorological parameters, such as wind speed and wind

direction, might help in associating factors with specific directions or areas from which emissions likely origi-

nate. Local wind pattern can be analysed, also in conjunction with atmospheric concentrations of main tracers

or with results from the modelling analysis. For example, the Conditional Probability Function (CPF) [50] is

very useful for showing which wind directions are dominated by high concentrations. Techniques to analyse

back trajectories of air masses can be useful to identify sources related to long-range transport episodes; some

examples are the Potential Source Contribution Function (PSCF) or the Concentration Weighted Trajectory

(CWT) [41] [51].
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Correlation of factor temporal contributions (factor G) with time series of external tracers can be used in

source identification [13], exploiting also gaseous species (e.g. different literature works consider CO as a reliable

tracer for traffic vehicular emissions).
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Figure 2.8: Example of differences in the average diurnal cycles for the traffic exhaust source during working days and

weekends. Averages are calculated over normalised factor G (arbitrary unit).

2.6 Advanced receptor modelling approaches

2.6.1 Multi-time resolution model

In traditional receptor modelling approaches, input data have to be introduced at the same time resolution;

if data with different time resolutions are present, high time resolution data are usually averaged on the time

scale of the low time resolution ones. This practice can lead to a significant loss of information, since high

time resolution data contain very detailed information about temporal patterns, with the possibility to retrieve

episodic sources; unluckily, they usually lack of a complete chemical characterisation and they are often collected

over intensive campaigns only. In contrast, low time resolution data can be completely speciated from a chemical

point of view and they can be routinely collected over long periods of time, giving additional and complementary

information respect to high time resolution data.

The multi-time resolution receptor model was developed exploiting the flexibility of ME-2, in order to use

each data value in its original time schedule [39] [52]. To this aim, the basic main equation (2.1) has to be

modified to take into account different time resolutions of samples:

xsj =
1

ts2 − ts1 + 1

P∑
k=1

fkj

ts2∑
i=ts1

gikηjm + esj (2.18)

where the indices s, j, and k indicate the sample, the species, and the factor, respectively; P is the total

number of factors; ts1 and ts2 are the start and end times for the sth sample in time units (i.e. the shortest

sampling interval in the considered dataset); i represents one of the time units of the sth sample. ηjm are called

“adjustment factors”: they are introduced because some chemical species might be replicated with different

time resolutions and measured with different analytical methods (represented by the subscript m). When η

is close to unity, species concentration measured by different analytical techniques can be considered in good

agreement; non-replicated species have adjustment factors set to unity by default.

As can be deduced from Eq. (2.18), factors temporal contributions gik have the temporal resolution of one time

unit, i.e. the shortest sampling interval in the dataset considered. This feature can lead to physical unrealistic

time variation in those factors mainly characterised by few or no species measured with high time resolution;

for this reason, a regularisation equation is introduced:

g(i+1)k − gik = 0 + εi (2.19)

where εi represent the residuals of this equation. The problem is solved minimising the object function Q in

Eq. (2.7), where Qaux comprises contributions from the regularisation equation too.
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At the state of the art, source apportionment studies carried out by the multi-time resolution model are

still scarce in the literature. Nevertheless, the few available studies have already tested and applied the model

in different ways: in combination with ancillary analyses based on wind direction [39]; using datasets with very

different time resolutions (30 minutes and 24 hours) [52]; exploiting synthetic datasets and sensitivity analyses

to examine how profile variations, measurement errors, and source collinearities affect the model performance

[53]; using a composite dataset including volatile organic compounds and particulate species [54]; implementing

the possibility to add a priori information and using model results to apportion risk in the exposed population

[55]; implementing the bootstrap technique to evaluate solution uncertainties [56]; exploiting measurements

from online aerosol mass spectrometers [57] [58].

The general modelling procedure outlined in Sect. 2.5 is valid also when data aim to be analysed through

advanced receptor modelling approaches. Some differences may arise in the preparation of input variables and

ME-2 script. Basic ME-2 script for the multi-time model can be found at

https://datalystica.com/userdata/filemanager/data/ME2 engine.zip or

https://www.psi.ch/sites/default/files/import/lac/ModelSoFiEN/ME2 engine.zip.

In the following, details about data preparation for the multi-time resolution model are given; the paragraph

can be considered complementary to Sect. 2.5.2.

Data preparation

Missing data. Attention must be paid when missing data have to be introduced in the multi-time resolution

model; in fact, the model appeared to be more sensitive to missing data than the traditional PMF since its

first applications. Imputation of missing data as empty entries or as treated according to Polissar et al. [40],

might give large artifact peaks in factors where a key variable is missing. For this reason, a different approach

is proposed in the literature [39]: xsj for missing data is obtained through linear interpolation; the associated

uncertainty σsj is calculated as k · xsj , where k is a coefficient whose values is between 0.75 and 5. k values are

chosen depending on the total range of concentrations of the input variable j considered.

Time units. Information about the time interval of each sample must be given as input, since samples with

different time resolutions are introduced. This piece of information is implemented in the multi-time model

through the “time units”. A time unit is defined as the shortest sampling interval in the considered dataset;

e.g. if both hourly and daily samples are present, a time unit corresponds to one hour. Example of an input

data file for the joint analysis of hourly and daily samples is given in Fig. 2.9; information on time units for

each sample are given from column 6 to 8. The column labelled as “Length” contains the time interval of

each sample in terms of time units: for hourly samples, Lenght=1; for daily samples, Length=24. “Begin” and

“End” correspond respectively to ts1 and ts2 in Eq. (2.18), i.e. the start and end time units of each sample.

Time units are assigned starting from the oldest sample (in Fig. 2.9, the daily sample starting at 20/06/2016

h9) in ascending order. It is noteworthy that the total number of samples is generally different from the total

number of time units.

Adjustment factors. Adjustment factors (ηjm in Eq. (2.18)) are introduced in the modelling procedure

because some chemical species might be replicated with different time resolutions and measured with different

analytical methods. They can be implemented in the .ini file and defined as free factor elements (freefact in

the script language), i.e. elements to be determined in the iteration, like factors G (identified by AA in the

script) and F (identified by BB). In this case, a consistency check between ηjm values calculated by the model

and differences in experimental data characterised by high and low time resolution should always be performed

a posteriori. An alternative method consists in the homogenisation of data prior to their use as input in the

analysis.

Other relevant parameters in multi-time script. Relevant script parameters that are characteristic of the

multi-time model are given in the following:

n1 : total number of time units (this value corresponds to the number of rows of factor G).

ns: total number of samples (number of rows of matrix X).

n2 : total number of input variables (number of columns of matrix X).

np: total number of factors P.

XXX : matrix with dimensions ns× n2. In the script, it is calculated multiplying each element xsj of the input

data matrix X (identified with XX in the .ini file) with the corresponding time interval of the sth sample. Con-

sidering Eq. (2.18), XXX contains the product xsj · (ts2 − ts1 + 1). In the script XXX is defined as maindata,

i.e. it is the matrix used as target in the main equation.
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Datestart: Time Dateend: Time Tzone Begin Length End Na Na_std Mg Mg_std Al Al_std Si Si_std
11/07/16 10.00.00 11/07/16 11.00.00 EST 434 1 434 76 14 84 12 243 27 992 94
11/07/16 11.00.00 11/07/16 12.00.00 EST 435 1 435 66 13 78 12 247 27 1023 95
11/07/16 12.00.00 11/07/16 13.00.00 EST 436 1 436 80 14 78 12 296 31 1145 102
11/07/16 13.00.00 11/07/16 14.00.00 EST 437 1 437 70 13 83 12 302 33 1192 113
11/07/16 14.00.00 11/07/16 15.00.00 EST 438 1 438 62 13 78 12 298 31 1167 107
11/07/16 15.00.00 11/07/16 16.00.00 EST 439 1 439 85 15 82 13 306 34 1130 106
11/07/16 16.00.00 11/07/16 17.00.00 EST 440 1 440 88 15 67 11 295 32 1042 97

20/06/16 09.00.00 21/06/16 09.00.00 EST 1 24 24 11 19 4 6 107 11 394 29
21/06/16 09.00.00 22/06/16 09.00.00 EST 25 24 48 11 19 48 49 181 16 740 54
22/06/16 09.00.00 23/06/16 09.00.00 EST 49 24 72 11 19 53 51 248 21 1045 75
23/06/16 09.00.00 24/06/16 09.00.00 EST 73 24 96 11 19 82 61 321 26 1273 91
24/06/16 09.00.00 25/06/16 09.00.00 EST 97 24 120 46 35 128 76 515 40 1793 127
25/06/16 09.00.00 26/06/16 09.00.00 EST 121 24 144 11 19 68 54 344 27 1112 80
26/06/16 09.00.00 27/06/16 09.00.00 EST 145 24 168 23 28 45 47 219 19 670 49

…

… …

… …

…

…

…

Figure 2.9: Example of an input data file for the joint analysis of hourly and daily samples; this structure is the

one needed for the basic multi-time ME-2 script. The first five columns are used for the identification of the sample;

information about time units are given from column 6 to 8. Concentrations and associated uncertainties of input variables

are then reported (in ng m−3).

AAA: matrix with dimensions ns×np. Considering Eq. (2.18), AAA contains
∑ts2
i=ts1

gik and in the script it is

defined as a sefact, i.e. it is calculated through a sub-expression. Sub-expressions are expressions of constant

factors, and/or free factors (as in this case), and/or other sefact.

Smoothcols: name of the subroutine (i.e. a function that is already defined in the library) through which Eq.

(2.19) is implemented in the model.

In this thesis work, the multi-time model implemented by the research group of Environmental Physics of

the University of Milan [56] was used as a basis for the modelling procedure. Respect to the basic script, the

model was expanded in order to allow the imposition of constraints on modelled factors, and to perform a

bootstrap analysis to estimate solution uncertainties.

2.6.2 Modelling joint matrices

The term “joint matrices” is here used to denote input datasets adding variables different from the aerosol chem-

ical composition to the usual dataset comprising the aerosol chemical components. In the literature, examples

are joint analyses with gaseous species (such as volatile organic compounds) or with variables characterised by

different dimensional units (e.g. particle chemical concentrations in µg m−3 and number size distributions in

particle number m−3). At the state of the art, the most general discussion about the task of modelling variables

with different dimensional units is given by Paatero through the open access review of an article in the journal

Atmospheric Chemistry and Physics Discussions [59]. In that comment, it is stated that the problem has not

been studied in depth in the literature so far, and the discussion about it is usually based on a widespread

misunderstanding, as it will be outlined in the following.

Based on the nomenclature given in the review [59], joint matrices can be represented as [X Z], where Z

indicates the matrix containing variables with different dimensional units respect to X, which contains aerosol

chemical composition. [X Z] indicate the input data matrix in Eq. (2.8).

In contrast to what generally believed, analyses of matrices with different dimensional units are not a priori

harmed by these differences; anyway, attention must be paid to the normalisation of factors in order to preserve

the quantitative nature of the model. It is important to scale factors so that the average of each column of G

is normalised to unity. In this way, elements gik of G are pure numbers and elements fkj of F represent the

average contribution of source k to variable j, carrying the same dimensional units of variable j in the input

data matrix [X Z]. Contributions of aerosol species over the total mass can be retrieved “off-line”, considering

30



only the part of the input matrix related to the aerosol chemical composition.

A parameter defined to model joint matrices is the “total weight”. The total weight is defined for both matrices

X and Z as:

total weight(X) =
∑
i,j

(
xij
σij

)2

(2.20)

total weight(Z) =
∑
i,j

(
zij
σij

)2

This parameter can be used to evaluate the weights of the matrices in the modelling process: if X and Z are

equally important but have different sizes, all σij for the larger matrix should be increased, so that total weight

of X and Z become approximately equal. This implies a deviation from the general principle of determining

standard deviations σij . In general, the matrix with the highest total weight will “drive the model”.

Analyses of joint matrices often lead to disappointing results when some factors only (or mainly) fit variables

of X while other factors only (or mainly) fit variables of Z; this result is worthless when the aim is to relate

all the variables to the same emission sources. Anyway, it must be stressed that these failures must not be

ascribed to the different dimensional units of the two matrices. Success of this modelling approach depends

e.g. on the validity and rotational ambiguity of models computed separately for X and for Z, and on the total

weight assigned to X and Z.

At the state of the art, one of the most widespread examples of a joint matrix characterised by different

dimensional units is the combination of aerosol chemical composition and number size distribution. The as-

sumption of constant profiles at the basis of receptor models (see Sect. 2.2) implies that the size distribution

of particles emitted from a source does not vary significantly with time, and that measured number concentra-

tions have a linear relationship with number and mass contributions from all sources [60] [61]. Combination

of number size distribution and chemical composition data into a joint multivariate analysis allows to obtain

source characteristics in both size distributions and chemical composition simultaneously (see Fig. 2.10).

Figure 2.10: Example of a source profile that can be obtained from a joint analysis of size distribution and chemical

composition (in this case, of both particles and gases). Figure adapted from [60].

It is not trivial to derive meaningful results from the analysis of joint matrices; for this reason, sometimes

number size distribution and particle chemical composition are modelled separately and results from the mod-

elling process are compared at a later stage [62] [63] [64]. A comparison between separate and joint analyses

is reported in [65]. A new approach proposed in [66] attempts to exploit modelling results (factor G) obtained

from the analysis of aerosol chemical composition as input to the joint analysis with number size distribution.

Incorporation of variables different from the particle chemical composition can be useful to reduce the

rotational ambiguity of the solution. Meteorological parameters, especially wind direction and wind speed,

represent valuable additional information in receptor modelling but these data cannot be used as dependent

variables (i.e. as part of a joint matrix) because their relation with observed concentrations is far from linear.

The “Expanded” model was developed to allow the introduction of independent variables [67] [68] [69] [70]

[71]; this different modelling approach will not be investigated in this thesis. Examples of other independent

variables considered in the literature are e.g. days of the week, seasons, and Radon concentrations [72] (in a

less recent work [73], Radon concentrations were also tested as input variable in a joint matrix).
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Chapter 3

Modelling applications

3.1 Introduction

In this chapter, implementation and application of advanced receptor modelling approaches reported in Chapter

2 are presented. During experimental campaigns data are usually collected with different time resolutions by

different instrumentations, in order to completely characterise aerosol physical-chemical properties. The main

aim of this PhD thesis was the implementation of a unified approach for the analysis of this type of data.

Data measured with different time resolutions were introduced as input to an advanced model, which is still

scarcely used in the literature. In Sect. 3.2 a new methodology is proposed to exploit aerosol optical absorption

data together with more traditional chemical composition measurements in receptor modelling. Results from

this approach gave insights on absorption optical properties of aerosol sources, overcoming the main limitations

of optical source apportionment methods (i.e. the fixed number of sources and a priori values for source-specific

absorption Ångström exponent). In Sect. 3.3 a further investigation concerns the identification of primary

and secondary organic contributions apportioned to the different emission sources - which is very challenging

although being paramount in aerosol science - exploiting an original approach to data analysis based on receptor

modelling. This approach gave promising results with a view to identifying the origin of secondary aerosol, which

is an open issue for receptor models due to the hypotheses of the models themselves. Results of the case-studies

presented here are reported in papers [31] and [74].

3.2 Exploiting multi-wavelength aerosol light absorption coefficients in receptor

modelling

In this work, the multi-time resolution receptor model for source apportionment (see Sect. 2.6.1) implemented

by the research group of Environmental Physics of the University of Milan [56] was used as a basis for the

modelling process. Input data with different time resolutions (24 hours, 12 hours, and 1 hour) were organised

in a joint matrix (see Sect. 2.6.2) consisting of aerosol chemical composition data (in ng m−3) and multi-

wavelength aerosol light absorption coefficient bap (in Mm−1). Besides the traditional source apportionment,

the impact of different sources on bap was estimated. First of all, this piece of information allowed a more robust

identification of sources; moreover, this approach led to the assessment of source-dependent mass absorption

cross section (MAC) and absorption Ångström exponent (α) values as a result of the model, without any a priori

assumption. It is worth noting that currently in source apportionment models based on optical absorption data

- e.g. the Aethalometer model [75], or the multi-wavelength absorption analyzer (MWAA) model [76] [77] -

values for α related to fossil fuel emissions and biomass burning are fixed by the modeller, thus carrying a large

part of the uncertainties in the model results as also reported by literature works (see e.g. [78] [79]).

3.2.1 Site description and aerosol sampling

Two measurement campaigns were performed during summertime (June – July) and wintertime (November

– December) 2016 in Milan (Italy). Milan is the largest city (more than 1 million inhabitants, doubled by

commuters everyday) of the Po Valley, a very well-known hotspot pollution area in Europe due to both large

emissions from a variety of sources (i.e. traffic, industry, domestic heating, energy production plants, and
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agriculture) and low atmospheric dispersion conditions [80] [81] [82] [83] [84]. The sampling site is representative

of the urban background and it is situated at about 10 m above the ground, on the roof of the Physics Department

of the University of Milan, less than 4 km from the city centre [85]. It is important to note that during the

sampling campaigns, a large building site was active next to the monitoring station.

Aerosol sampling was carried out using instrumentation with different time resolutions. Low time resolution

PM10 data, with sampling durations of 24 and 12 hours during summertime (20 June – 22 July 2016) and

wintertime (21 November – 22 December 2016), respectively, were collected in parallel on PTFE (Whatman,

47mm diameter) and pre-fired (700◦C, 1h) quartz-fibre (Pall, 2500QAO-UP, 47mm diameter) filters. Low-

volume samplers with EPA PM10 inlet operating at 1 m3h−1 were used. High time resolution data were

collected during shorter periods (11 – 18 July and 21 – 28 November 2016) by a streaker sampler [86]. Briefly,

the streaker sampler collects the fine and coarse PM fractions (particles with aerodynamic diameter dae < 2.5

µm, and 2.5 < dae < 10 µm, respectively; see Sect. 1.1 for dae definition) with hourly resolution. Particles with

dae > 10 µm impact on the first stage and are discarded, while the coarse fraction deposits on the second stage

consisting of a Kapton foil; finally, the fine fraction is collected on a polycarbonate filter. The two collecting

supports are kept in rotation with an angular speed of about 1.8◦h−1 to produce a circular continuous deposit

on both stages. The streaker sampler operates at 1 l min−1.

Meteorological data were available at a monitoring station belonging to the regional environmental agency

(ARPA Lombardia) which is less than 1 km away.

3.2.2 PM mass concentration and chemical characterisation

PM10 mass concentration was measured on PTFE filters by a gravimetric technique. Weighing was performed

by an analytical balance (Mettler, model UMT5, 1 µg sensitivity) after a 24 hours conditioning period in an

air-controlled room as for temperature (20 ± 1◦C) and relative humidity (50 ± 3 %). These filters were then

analysed by energy dispersive X-ray fluorescence (ED-XRF) analysis to obtain the elemental composition. In

this work, the ED-XRF spectrometer ED2000 by Oxford Instruments was used; it is equipped with a Coolidge

tube with an Ag anode, and a solid-state Si(Li) detector. MicromatterTM standard reference samples were

used to retrieve the sensitivity curve for the quantitative analysis. Spectra deconvolution was performed with

the software WinQxas (software developed by International Atomic Energy Agency). More details about the

set-up can be found elsewhere (see e.g. [87]). For most elements and samples, concentrations were characterised

by relative uncertainties in the range 7% – 20% (higher uncertainties for elements with concentrations next

to MDLs) and minimum detection limits of 0.9 – 30 ng m−3 (depending on the element) with the above-

mentioned sampling conditions. All the analyses on PTFE filters were performed at the Department of Physics

of the University of Milan.

Quartz-fibre filters were analysed at the Department of Chemistry of the University of Milan. For each

quartz-fibre filter, one punch (1.5 cm2) was extracted by sonication (1 hour) using 5mL ultrapure Milli-Q

water and levoglucosan and inorganic anions concentrations were quantified. Levoglucosan concentration was

determined by high-performance anion exchange chromatography coupled with pulsed amperometric detection

(HPAEC-PAD) [88] only in winter samples. Indeed, as already pointed out by other studies at the same sam-

pling site [89] and routinely assessed at monitoring stations in Milan by the regional environmental agency

(private communication), levoglucosan concentrations during summertime are lower than the MDLs (i.e. about

6 ng m−3), due to both lower emissions (no influence of residential heating and negligible impact from other

sources) and higher OH levels in the atmosphere depleting molecular marker concentrations [90] [91]. Uncer-

tainties on levoglucosan concentration were about 11%. The quantification of the main water-soluble inorganic

anions (SO2−
4 and NO−3 ) was performed by ion chromatography (IC) [92]; MDLs were 25 ng m−3 and 50 ng m−3

with summertime and wintertime sampling conditions, respectively, and uncertainties were about 10%. Unfor-

tunately, due to technical problems, no data on ammonium were available.

Another punch (1.0 cm2) of each quartz-fibre filter was analysed by thermal optical transmittance analysis

(TOT, Sunset Inc., NIOSH-870 protocol) [93] in order to assess OC and EC concentrations. MDLs were 75

ng m−3 and 150 ng m−3 with summertime and wintertime sampling conditions, respectively, and uncertainties

were in the range 10% – 15%.

Hourly elemental composition was assessed by particle-induced X-ray emission (PIXE) technique at the 3

MV Tandetron accelerator of INFN-LABEC laboratory (Sesto Fiorentino, Florence, Italy), where an external

beam facility is dedicated to measurements of atmospheric aerosol. A properly collimated proton beam is ex-

tracted from vacuum to air through a thin extraction window, and samples are scanned in steps corresponding
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to 1 hour aerosol deposit. During the analysis the charge is measured by integrating the beam current on

a graphite Faraday cup positioned just behind the sample. To obtain efficient simultaneous detection of all

elements, different Silicon Drift Detectors (SDDs) optimised for low and medium–high X-ray energies are used.

MicromatterTM standard reference samples were used to obtain the calibration curve for the quantitative anal-

ysis. PIXE spectra were fitted using the software GUPIXWIN [94]. More details about the experimental set-up

can be found elsewhere (see e.g. [95] [96]). As low time resolution PM10 samples were also available, fine and

coarse elemental concentrations determined by PIXE analysis were added up to obtain PM10 concentrations

with hourly resolution. PM10 hourly concentrations for most elements and samples were characterised by rela-

tive uncertainties in the range 10% – 30% (higher uncertainties for elements near MDLs) and MDLs ranged from

a minimum of 0.1 ng m−3 to a maximum of 15 ng m−3 (higher MDLs typically detected for Z<20 elements).

3.2.3 Aerosol light absorption coefficients measurements

The aerosol light absorption coefficient (bap) at four wavelengths λs = 405 nm, 532 nm, 635 nm, and 780 nm,

was measured on both low and high time resolution samples with the in-house polar photometer PP UniMI,

which is described in detail in Vecchi et al. [97] and Bernardoni et al. [98]. Briefly, a laser beam impinges

perpendicularly on the filter so that it hits the particle layer first. Light scattered at angles from 0◦ to 173◦

(with steps of about 0.4◦) is continuously collected by a photodiode located on a rotating arm whose centre of

rotation coincides with the centre of the sample. The angular distributions of light transmitted and scattered

by the blank and by the sampled filter are used to calculate integrals of the light scattered in the forward and

in the backward hemispheres. Finally, a radiative transfer model is applied in order to retrieve bap from these

quantities. The radiative transfer model here considered was firstly developed by Hänel [99] and it is analogous

to the one implemented in the Multi-Angle Absorption Phomoter (MAAP) [100]. It is based on two steps: the

“adding method” takes into account interactions (such as multiple scattering effects) between particles deposited

on the filter and the filter itself; the “two stream approximation” [101] is used to describe radiative processes

in the particles layer.

Low time resolution optical measurements were performed on PTFE filters since their physical characteristics

can be considered more similar to polycarbonate filters used by the streaker sampler. Moreover, previous works

reported a bias on bap measured by instrumentation using fibre filters ([102] [103] [104] and references therein).

Vecchi et al. [97] found that bap at 635 nm was up to 40% higher when measured on a quartz-fibre filter

compared to parallel samples collected on PTFE. This effect was ascribed to sampling artefacts due to organics

in aerosol samples collected in Milan.

As for high time resolution samples, bap was measured only in the fine fraction collected on polycarbonate

filters since absorption of the Kapton foil on which the coarse fraction was collected did not allow bap assessment.

Anyway, bap values in PM2.5 and PM10 were expected to be fairly comparable, as aerosol absorption in the

atmosphere is mostly due to particles in the fine fraction at heavily polluted urban sites like Milan. To verify

this assumption, high time resolution bap data in PM2.5 were averaged over the timescale of low time resolution

bap in PM10 and compared (Fig. 3.1); the agreement was good, between 11% and 13% depending on the λ,

except for bap at λ = 405 nm for which bap values in PM10 were significantly higher (27%) but with most data

(83%) within experimental uncertainties. To take into account this difference, bap data at λ = 405 nm were

homogenised before using them in the model, following the criterion used for chemical species (further details

about the homogenisation procedure can be found in Sect. 3.2.5).

Uncertainties on bap were quantified in 15% and MDL was in the range 1 – 10 Mm−1 depending on sampling

duration and wavelength [97] [98]. The pre-treatment procedure for experimental uncertainties and MDLs

was the same used for chemical variables in order to create suitable input matrices required by the multi-

time resolution model. Optical system stability was checked during the measurement session, evaluating the

reproducibility of the measurement on a blank test filter. Laser stability was also checked at least twice a day

and the recorded intensities were used to normalise blank and sampled filter analysis.
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Figure 3.1: Comparison between low time resolution (12 and 24 hours) and average on the same time period of high time

resolution (originally 1 hour) aerosol absorption coefficient at different wavelenghts measured by the polar photometer

PP UniMI. Low time resolution measurements were performed on PM10 collected on PTFE filters, while high time

resolution ones were performed on PM2.5 collected on polycarbonate filters.

3.2.4 Concentration values

Basic statistics on mass and chemical species concentrations at different time resolutions are given in Table 3.1.

Table 3.1: Basic statistics (mean, median, 10th percentile, 90th percentile) on mass and chemical species concentrations

at different time resolutions. Note that high time resolution samples were collected during shorter periods (about two

weeks) respect to low time resolution ones (about two months). NA represents Not Available data [31].

Low time resolution samples High time resolution samples

µg m−3 mean median 10thperc 90thperc mean median 10thperc 90thperc

PM10 mass 38.4 30.9 16.2 76.6 NA NA NA NA

EC 1.39 1.18 0.54 2.63 NA NA NA NA

OC 8.1 6.2 3.4 14.7 NA NA NA NA

NO−3 5.19 2.63 0.71 13.9 NA NA NA NA

SO2−
4 2.95 2.55 0.89 5.56 NA NA NA NA

Levoglucosan 0.68 0.63 0.33 1.15 NA NA NA NA

ng m−3 mean median 10thperc 90thperc mean median 10thperc 90thperc

Na 89 70 27 165 89 60 21 196

Mg 59 59 24 94 44 40 20 73

Al 178 161 78 287 111 91 38 218

Si 700 635 331 1104 413 340 146 737

S 1320 1004 411 2908 696 630 167 1246

K 467 349 198 871 318 257 80 611

Ca 912 954 418 1475 512 420 211 948

Cr 10 9 4 15 7 7 4 11

Mn 14 12 5 24 8 7 4 13

Fe 1120 940 577 2040 794 692 335 1363

Cu 45 36 21 92 34 29 12 63

Zn 90 83 35 148 66 56 16 133

Pb 24 17 10 50 20 13 6 35

Most variables showed higher mean and median concentrations during the winter campaign, when atmo-

spheric stability conditions influenced the monitoring site; exceptions were Al, Si and Ca, which had lower
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median concentrations (as detected in low time resolution samples). This was expected as they are typical trac-

ers of soil dust resuspension [16] that can be more relevant during summertime due to drier soil conditions and

stronger atmospheric turbulence. Moreover, the good correlation between these elements - Al vs. Si: R2 = 0.94

(see Fig. 3.2) and Ca vs. Si: R2 = 0.78 - suggested their common origin.
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Figure 3.2: Linear regression between Al and Si concentrations. Note that high time resolution samples were collected

during shorter periods (about two weeks) respect to low time resolution ones (about two months).

Potassium showed the clearest seasonal behaviour in concentration values going from 284 ng m−3 (10th–90th

percentile: 151–344 ng m−3) to 660 ng m−3 (10th–90th percentile: 349–982 ng m−3) in summer and winter,

respectively, in low time resolution samples. K is an ambiguous tracer, since it is emitted by a variety of sources,

among which there are crustal resuspension and biomass burning. In our dataset, wintertime K values showed

a good correlation with levoglucosan concentrations (R2 = 0.71), suggesting the impact of biomass burning as

levoglucosan is a well-known tracer for biomass burning emissions in winter samples [105]. Also looking at the

K-to-Si ratio (where Si was taken as a soil dust marker), significant seasonal differences came out (Fig. 3.3); it

was 0.35± 0.15 in high time resolution summer samples and 2.0± 2.2 in winter ones, to be compared with the

much more stable Al-to-Si ratio (i.e. 0.26± 0.04 and 0.28± 0.09 in summer and winter, respectively) indicating

a soil-related origin (Al-to-Si ratio equal to 0.3 is reported e.g. by [106] for earth crust composition).
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Figure 3.3: Temporal patterns of Si and K concentrations during summer and winter campaign.

Among the elements typically associated with anthropogenic sources, Fe and Cu showed a good correlation

(e.g. R2 = 0.72 on hourly resolution samples) as well as Cu and EC (Cu vs. EC: R2 = 0.84, on low time

resolution data); in addition, the diurnal pattern of Fe and Cu showed traffic rush hours peaks (07:00–09:00

LT and around 19:00 LT) as shown in Fig. 3.4. These results were suggestive of a common source; in the

literature these aerosol chemical components are reported as tracers for vehicular emissions. In particular, EC

is associated to exhaust emissions from tailpipe, while Fe and Cu to non-exhaust emissions as reported e.g. in

[16] [107].
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Figure 3.4: Diurnal profile of Fe and Cu concentrations [31].

Diurnal mean temporal patterns for bap at different wavelengths (retrieved from hourly resolved data) are

displayed in Fig. 3.5.

5
10
15
20
25
30

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

b a
p

[M
m

-1
]

Hour of the day

405nm 532nm 635nm 780nm

Figure 3.5: Diurnal profile of the aerosol absorption coefficient bap measured at different wavelengths [31].

3.2.5 Modelling a joint matrix with the multi-time resolution model

Input data

Concentrations of replicated species with different time resolutions were pre-homogenised and then inserted into

the input matrix X, instead of using adjustment factors in the model (see Sect. 2.6.1 for more information about

adjustment factors). Concentration data with longer sampling intervals (24 and 12 hours in this work) were

considered to be the benchmark, since analytical techniques usually show a better accuracy on concentration

values far from MDLs (i.e. samples collected on longer time intervals) [39] [52].

Variables were then classified as weak and strong according to the signal-to-noise ratio (S/N) criterion (see

Sect. 2.5.2). For hourly data, only strong variables (S/N > 1.2) were considered; for low time resolution data,

weak variables such as Na, Mg, and Cr (with S/N equal to about 0.8) being strong variables in hourly samples

were also included, although with associated uncertainties comparable to concentration values in order to avoid

the exclusion of too many data. Indeed, excluding these low time resolution variables from the analysis gave

rise to artificial high values in the time contribution matrix G for sources traced by these species (in this case

it was an issue for aged sea salt traced by Na and Mg); this oddity has been already reported in the literature

[39].

Ranges of experimental uncertainties and MDLs are reported in Sect. 3.2.2 and 3.2.3 for chemical and

optical absorption analyses, respectively. Variables with more than 20% of the concentration data below MDL

values were omitted from the analysis [52]. Uncertainties and data below MDL were pre-treated according to

Polissar et al. [40] (for further details see Sect. 2.5.2). In general, missing concentration values were estimated

by linear interpolation of the measured data and their uncertainties were assumed to be 3 times this estimated

value [39] [52]. As for summertime levoglucosan data (always below MDLs), the approach was to include them
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as below MDL data and not as missing data following Zhou et al. [39], who underlined that the multi-time

resolution model is more sensitive to missing values than the original PMF model.

In order to avoid double counting, in this study S was chosen as the input variable instead of SO2−
4 as it

was determined on both low time and high time resolution samples (by XRF and PIXE analysis, respectively

[108]). However, SO2−
4 and S concentrations showed a high correlation (correlation coefficient R = 0.98) and

the Deming regression gave a slope of 2.68±0.13 (sulphate vs. sulphur) with an intercept of −198±82 ng m−3,

i.e. compatible with zero within 3 standard deviations. The slight difference (of the order of 10%) between the

estimated slope and the SO2−
4 -to-S stoichiometric coefficient (i.e. 3) can be ascribed to either a small fraction

of insoluble sulphate or to the use of different analytical techniques.

As already mentioned in Sect. 2.5.1, PM10 mass concentrations were included in the model with uncertainties

set at 4 times their values in order to lower their weight in the analysis. In the end, 22 low time resolution

variables (PM10 mass, Na, Mg, Al, Si, S, K, Ca, Cr, Mn, Fe, Cu, Zn, Pb, EC, OC, levoglucosan, NO−3 , bap 405

nm, bap 532 nm, bap 635 nm, bap 780 nm) and 17 hourly variables (Na, Mg, Al, Si, S, K, Ca, Cr, Mn, Fe, Cu,

Zn, Pb, bap 405 nm, bap 532 nm, bap 635 nm, bap 780 nm) were considered.

The input matrix X consisted of 386 samples and the total number of time units (see Sect. 2.6.1 for the

definition of time unit in the multi-time model) was 1117. The analysis was performed in the robust mode; the

lower limit for G contribution was set to -0.2 [30] and the error model em=-14 was used for the main equation

with C1 = input error, C2 = 0.0, and C3 = 0.1 (see Sect. 2.5.2) for both chemical and optical absorption data.

Sensitivity tests on the uncertainty of absorption data were performed starting from a minimum experimental

uncertainty of 10%. Lower uncertainties were considered not physically meaningful from an experimental point

of view. ME-2 analyses performed with 10% experimental uncertainty on absorption data gave very similar

results to the base-case solution that will be presented in the following, with no differences in mass apportion-

ment and a maximum variation in the concentrations of chemical and optical absorption profiles (matrix F) of

7% when considering significant variables in each profile (i.e. explained variation for matrix F EVF - see Sect.

2.5.4 for EVF definition - higher or near 0.30). In contrast, considering an experimental uncertainty of 20% on

absorption data, the solution significantly differed from the base-case one and showed less physical meaning (e.g.

a couple of factors got mixed, or an additional unique factor appeared giving a null mass contribution). Thus,

the estimated relative experimental uncertainty of 15% was here considered appropriate for optical variables.

Base-case solution

Different solutions (from 5 to 10 factors) were explored; after 30 convergent runs, the eight-factor base-case

solution corresponding to the lowest Q value (2086.88) was firstly selected (Fig. 3.6). It is important to note

that the model was run using all variables (chemical + optical). A lower or higher number of factors caused

ambiguous chemical profiles and the physical interpretation suggested clearly mixed sources for a lower number

of factors or unique factors in case of more factors (i.e. Pb for nine factors); moreover, inconsistent mass closure

was detected by increasing the number of factors (e.g. the sum of species contribution was up to 25% higher

than the mass for the 10-factor solution). In the eight-factor base-case solution, the mass was well reconstructed

by the model (R2 = 0.98), with a slope of 0.98± 0.02 and a negligible intercept (0.51± 0.89 µg m−3).

The factor-to-source assignment was based on both EVF values – which are typically higher for chemical

tracers [43] [44] – and the physical consistency of factor chemical profiles. In the chosen solution, the unexplained

variation was lower than 0.25 for all variables. The uncertainty-scaled residuals (see Sect. 2.5.3 for the definition)

showed a random distribution of negative and positive values in the ±3 range, with a Gaussian shape for most

of the variables (Fig. 3.7).

Using EVF and chemical profiles reported in Fig. 3.6, the eight factors were tentatively assigned to nitrate,

sulfate, resuspended dust, biomass burning, construction works, traffic, industry, and aged sea salt. In Table

3.2 absolute and relative average source contributions to PM10 mass are reported.

Although the above-mentioned base-case solution was a satisfactory representation of the main sources active

in the area (as reported in previous works [33] [85] [89] [109] [110] [111]), the chemical profile of some factors

was improved by exploring rotated solutions.
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Figure 3.6: (a) Chemical profiles of the 8-factor base-case solution (b) bap apportionment of the 8-factor base-case

solution. The blue bars represent the chemical profile (output of the matrix F normalised on mass), the green bars the

output values of the matrix F, and the black dots the EVF [31].
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Figure 3.7: Uncertainty-scaled residuals (residuals divided by input data uncertainties) of the 8-factor base case solution.

The x-axis represents the scaled residuals values, while the y-axis represents the frequencies [31].

Table 3.2: Absolute and relative average source contributions to PM10 mass in the 8-factor base case solution [31].

Factors Source contributions [µg m−3]

Nitrate 10.4 (31%)

Sulphate 6.2 (19%)

Resuspended dust 5.5 (16%)

Biomass burning 3.5 (11%)

Construction works 3.6 (11%)

Traffic 1.7 (5%)

Industry 1.1 (3%)

Aged sea salt 1.3 (4%)

Final constrained solution and bootstrap analysis

The multi-time resolution model implemented by the research group of Environmental Physics of the University

of Milan [56] allows the imposition of constraints on modelled factors in order to explore rotated solutions, and

to perform a bootstrap analysis to estimate solution uncertainties.
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The aged sea salt factor was investigated further, because typical diagnostic ratios such as Mg/Na and

Ca/Na (in bulk seawater equal to 0.12 and 0.04, respectively; see Table 1.1) were not well reproduced in the

base-case solution and the chemical profile was too much impacted by the presence of Fe compared to bulk

seawater composition. Therefore, the above-mentioned diagnostic ratios were here used as constraints and Fe

was maximally pulled down in the chemical profile. The effective increase in Q was about 61 units (Q =

2147), with a percentage increase of about 3%; as a rule of thumb, an increase in the Q value of a few tens is

generally considered acceptable [25]. It is noteworthy that the constrained solution led to an improvement in

the chemical profile of the aged sea salt, and negligible differences in all other relevant features of the solution

(i.e. EVF, residuals, mass reconstruction, source apportionment) were found compared to the base-case solution.

Therefore, the eight-factor constrained solution was considered the most physically reliable; results are presented

in Table 3.3 and Fig. 3.8 and discussed in detail in the following.

Table 3.3: Absolute and relative average source contributions to PM10 mass in the 8-factor constrained solution [31].

Factors Summer [µg m−3] Winter [µg m−3] Total [µg m−3]

Nitrate 3.6 (15%) 21.1 (44%) 10.2 (31%)

Sulphate 6.3 (26%) 8.1 (17%) 7.0 (21%)

Resuspended dust 4.6 (19%) 1.7 (4%) 3.5 (11%)

Biomass burning 0.32 (1%) 8.3 (17%) 3.3 (10%)

Construction works 5.9 (24%) 3.4 (7%) 4.9 (15%)

Traffic 1.4 (6%) 2.2 (5%) 1.7 (5%)

Industry 0.86 (4%) 1.2 (3%) 1.0 (3%)

Aged sea salt 1.4 (6%) 1.8 (4%) 1.6 (5%)

The factor interpreted as nitrate fully accounted for the explained variation of NO−3 . This factor contained

a significant fraction of nitrate in the chemical profile (39%) and all nitrate was present only in this factor. This

source was by far the most significant one at the investigated site, explaining about 31% of the PM10 mass

over the whole campaign (a similar estimate – 26%– was reported by Amato et al. [33] during the AIRUSE

campaign in Milan in 2013) increasing up to 44% during wintertime (comparable to the 37% reported by Vecchi

et al. [110]). Indeed, the Po Valley is well known for experiencing very high nitrate concentrations during

wintertime ([110] and references therein) because of large emissions of gaseous precursors related to urban

and industrial activities, residential heating, high ammonia levels due to agricultural field manure and poor

atmospheric dispersion conditions.

The factor associated with sulphate showed EVF = 0.47 for S and much lower EVF for all the other variables

in the factor. Considering the sulfur contribution in the chemical profile in terms of ammonium sulphate, the

relative contribution of sulphur components in the profile increased from 11% (S) up to 45% (ammonium

sulphate). The latter is the main sulphur compound detected in the Po Valley as reported in previous papers

(e.g. [112]) and was by far the highest contributor in the chemical profile. The other important contributor

was OC (19%), whose impact on PM mass increased up to 30% when reported as organic matter using 1.6 as

the organic carbon-to-organic matter conversion factor for this site [87]. Due to the secondary origin of the

aerosol associated with this factor, it was not surprising to also find a significant OC contribution; indeed,

aerosol chemical composition in Milan is impacted by highly oxygenated components due to aging processes

favoured by strong atmospheric stability [81] [110]. In this factor, EC contributed about 1%. Considering the

total EC concentration reconstructed by the model, the EC fraction related to the sulphate factor was about

6%. In contrast to sulphates, EC has a primary origin; however, its presence with a very similar percentage

(4%–5%) in a sulphate chemical profile was previously pointed out in Milan, indicating a more complex mixing

between primary and secondary sources [33], e.g. with sulphate condensation on primary emitted particles. The

sulphate factor accounted for 21% of the PM10 mass.

The factor identified as resuspended dust was mainly characterised by high EVF and contributions coming

from Al, Si and Mg, i.e. crustal elements. The Al/Si ratio was 0.31, very similar to the literature value for

average crustal composition [106]; the relatively high OC contribution in the chemical profile (15%) together

with the presence of EC (about 2.6%) was suggestive of a mixing with road dust [107]. This source explained

for about 11% of the PM10 mass.

The factor identified as biomass burning was characterised by high EVF for levoglucosan (0.98), a known
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Figure 3.8: (a) Chemical profiles of the eight-factor constrained solution; (b) bap apportionment of the eight-factor

constrained solution. The blue bars represent the chemical profile (output of the matrix F normalized on mass), the

green bars the output values of the matrix F for the optical absorption variables, and the black dots the EVF [31].
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tracer for this source as it is generated by cellulose pyrolysis; EVF higher than 0.3 was also found for K, OC,

and EC. In the source chemical profile, OC contributed 54%, EC 10%, levoglucosan 7%, and K 5%. The

average biomass burning contribution during this campaign was 10% (up to 17% in wintertime). Anticipating

the discussion presented in detail in the next paragraph, it is worth noting that the second largest contribution

to the aerosol absorption coefficient after traffic was detected in this factor.

The factor with high EVF (0.60) for Ca was associated with construction works, following literature works

([85] [89] [111] [113] [114] and references therein). Major contributors to the chemical profile were Ca (13%), OC

(26%), Fe, and Si (5% each). This factor accounted on average for 15% to PM10 mass. As already mentioned,

during the campaign a non-negligible contribution from this source was expected, due to the presence of a

building site nearby the monitoring location.

In the factor assigned to traffic (primary contribution), EVF larger than 0.3 characterised EC, Cu, Fe, Cr,

and Pb. The highest relative mass contributions in the chemical profile were given by OC (41%), EC (32%),

Fe (23%), and Cu (1%). The lack of relevant crustal elements such as Ca and Al in the chemical profile

suggested a negligible impact of road dust in this factor. As reported above, at our sampling site the road

dust contribution was very likely mixed to resuspended dust and further separation of these contributions was

not possible. This traffic (primary) contribution over the whole dataset accounted for 5% of the PM10 mass,

with a slightly lower absolute contribution in summer (see Table 3.3). This contribution is comparable to the

percentage (7%) reported by Amato et al. [33] for exhaust traffic emissions, but it is lower than our previous

estimates [89] [110], i.e. 15% in 2006 in PM10 and 12% in PM1 recorded in winter 2012. However, the current

estimate seems to still be reasonable when considering the efforts made in recent years to reduce vehicles exhaust

particle emissions and the fraction of secondary nitrate due to high nitrogen oxides and ammonia emissions in

the region [115], which has to be added to account for the overall traffic impact. Unfortunately, the non-linearity

of the emission-to-ambient concentration level relationship and the high uncertainties in emission inventories

still prevent a robust estimate of this secondary contribution to total traffic exhaust emissions. As shown in the

next paragraph, traffic is the largest contributor to the aerosol absorption coefficient, thus strengthening the

interpretation of this factor as a traffic emission source.

The industry factor showed high EVF for Zn (0.59) and the second highest EVF was related to Mn (0.13).

Previous studies at the same sampling site identified these elements as tracers for industrial emissions (e.g. [110]

and references therein). The chemical profile was enriched by heavy metals and, after traffic, it was the profile

with the highest share of Cr, Mn, Fe, Cu, Zn, and Pb (explaining about 8% of the total PM10 mass in the

profile). The industry contribution was not very high in the urban area of Milan, accounting for 3% on average.

The factor interpreted as aged sea salt was characterised by high EVF of Na (0.93) and this element was

– as a matter of fact – present only in this factor chemical profile. To check the physical consistency of this

assignment and considering that Milan is about 120 km away from the nearest sea coast, back-trajectories were

calculated through the NOAA HYSPLIT trajectory model [116] [117] [118], classified on the basis of the aged sea

salt concentration, and represented using R package Openair [51] [119] [120]. As an example, results from a very

short event (13 July 16:00–18:00 LT) singled out by the model and representing the highest sea salt contribution

during summer are reported in Fig. 3.9. Before and during the event, south-western air masses coming from

the Ligurian Sea were observed, while soon after the event, there was a rapid change in wind direction. High

wind speeds were recorded during the episode (4.8± 1.7 m s−1 with a maximum peak of 9.5 m s−1) compared

to the 1.9 ± 1.0 m s−1 average wind speed characterising the summer campaign. When marine air masses

are transported to polluted sites, sea salt particles show a Cl deficit due to reactions with sulphuric and nitric

acid (see Sect. 1.2) and the factor chemical profile is expected to be enriched in sulphate and nitrate. In

this work, nitrate was not present in the aged sea salt chemical profile; a very rough estimate [44] gave a

maximum expected contribution of 2% (about 82 ng m−3) of the total nitrate mass in the atmosphere that can

be considered negligible in terms of mass contribution of the sources. Temporal patterns of Cl concentrations

(not inserted in the multi-time resolution analysis as being a weak variable) during marine aerosol episodes were

exploited to further confirm the factor-to-source association. Cl concentration and aged sea salt pattern showed

an evident temporal coincidence in peak occurrence during the short summer event, thus supporting the source

identification; moreover, during this episode only the Cl coarse fraction increased (Fig. 3.10) and reached about

90% of the total PM10 Cl concentration. The Cl/Na ratio was 0.38± 0.05, consistent with an aging of marine

air masses during advection showing the typical Cl depletion.
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Figure 3.9: 72h Hysplit back-trajectories coloured by the aged sea salt concentration (in ng m−3) on July 13th, 2016
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Figure 3.10: Temporal patterns of aged sea salt source retrieved from the multi-time resolution model and Cl concen-

trations measured in atmosphere in the fine and coarse fractions [31].

Bootstrap analysis was performed to evaluate the uncertainties associated with source profiles. One-hundred

runs were carried out: factors were well mapped, with mapping always higher than 97% considering the Pearson

coefficient (Table 3.4). In Fig. 3.11 a high interquartile range is associated to variables that are not significant

for the considered factor (i.e. variables characterised by low EVF vaues), while main tracers for each source

showed a small interquartile range, supporting the goodness of the final solution.

Table 3.4: Mapping of factors on the eight-factor constrained solution considering the Pearson coefficient (F1: Nitrate,

F2: Sulphate, F3: Resuspended dust, F4: Biomass burning, F5: Construction works, F6: Traffic, F7: Industry, F8:

Aged sea salt).

F1 F2 F3 F4 F5 F6 F7 F8 Not explained

F1 99

F2 99

F3 99

F4 99

F5 97 2

F6 99

F7 99

F8 99
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Figure 3.11: Box plot of the bootstrap analysis on the eight-factor constrained solution (values expressed in ng m−3

for chemical variables and Mm−1 for optical absorption variables, on a logarithmic scale). The red dots represent the

output values of the solution of the model; the black lines the medians from the bootstrap analysis; the blue bars the

25th and 75th percentiles; the dotted lines the interval equal to 1.5 times the interquartile range; and the black dots the

outliers from this interval [31].
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Improving source apportionment making use of aerosol light absorption coefficients

First of all, the use of the light absorption coefficients measured at different wavelengths as input variables

in the multi-time resolution model strengthened the identification of sources, suggesting that they can be

exploited when specific chemical tracers are not available (e.g. levoglucosan for biomass burning). To prove

that, a separate source apportionment study was performed with EPA PMF 5.0 [27] using only hourly elemental

concentrations from samples collected by the streaker sampler and hourly bap at different wavelengths measured

by PP UniMI on the same filters as input variables. Streaker samples typically lack a complete chemical

characterisation; in particular, important chemical tracers such as levoglucosan and EC detected on filter

samples collected in parallel are not available. In this analysis, bap assessed at different wavelengths was proved

effective in identifying the biomass burning factor that explained a significant percentage (from 25% to 35%

depending on λ) of the bap itself (Fig. 3.12); without the optical variables, the factor-to-source assignment

would otherwise be based only on the presence of elemental potassium, although it is well known that K cannot

be considered an unambiguous tracer as it is emitted by a variety of sources (see e.g. [121] and references

therein). Furthermore, results showed that bap contribution was higher than 45% in the factor labelled as

traffic, highlighting the importance of exhaust emissions in a factor that would be differently characterised by

elements related to non-exhaust emissions (Cu, Fe, Cr).

In the following, results obtained from the introduction of the aerosol absorption coefficients at different

wavelenghts in the multi-time resolution model will be thoroughly outlined. The two factors identified as

biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere and showed

significant EVF values. At λ = 780 nm and λ = 405 nm, traffic contributions to bap were 55% and 42%,

respectively; at the same wavelengths biomass burning accounted for 20% and 36%, respectively. The EVF of

bap has the maximum value at λ = 405 nm for biomass burning (0.32) and at λ = 780 nm for traffic (0.49),

showing the tendency to decrease and increase with the wavelength, respectively.

The third contributor to aerosol absorption in the atmosphere was the sulphate factor, with a contribution

comparable to the biomass burning one at λ = 780 nm (about 20% of the total reconstructed bap at this

wavelength). The sulphate factor contained a small fraction of EC, as previously discussed (see previous

paragraph). This might be explained considering that non light-absorbing or weakly light-absorbing material

can form a coating able to enhance particle absorption [122] [123] within a few days after emission. Laboratory

experiments and simulations from in situ measurements highlighted absorption amplification for absorbing

particles coated with secondary organic aerosol [124] [125]. Particle aging is a significant process in the Po

Valley due to low atmospheric dispersion conditions and it might explain the relatively high contribution of

the sulphate factor to the absorption coefficient in respect to the other sources (apart from traffic and biomass

burning).

Among the remaining factors, resuspended dust was the main contributor at all wavelengths (between 3%

and 7% of the total reconstructed bap, depending on the wavelength), likely due to the role of iron minerals.

The other sources were less relevant in terms of EVF values and overall contributed less than 11%.

In contrast to the approach used in source apportionment models based on optical data like the widespread

Aethalometer model [75] and MWAA (Multi-Wavelength Absorption Analyzer) model [76] [77], it is noteworthy

that no a priori information about α values of the fossil fuel and biomass burning sources was introduced in the

multi-time resolution model and an estimate for these values was directly retrieved from the model. In order

to compare the multi-time resolution model and models based on optical absorption data, contributions due

to traffic and industry (i.e. emissions most likely connected to fossil fuel usage) were added up and labelled

as “fossil fuel emissions”. In accordance with the two-source approach used in the Aethalometer model, the

discussion about optical properties will be hereafter focused on the biomass burning and fossil fuel sources

considering that sulphate and resuspended dust factors were less significant also in terms of EVF for optical

absorption variables, ranging from 0.08 to 0.12 and from 0.03 to 0.06, respectively, depending on the wavelength.

In Fig. 3.13 the wavelength dependence of bap for the biomass burning and the fossil fuel profiles obtained

with the multitime resolution model is shown; as α values can show significant differences when calculated using

different pairs of λs [126], here we performed a fitting procedure considering bap ∝ λ−α. Results were αBB (α

biomass burning) = 1.83 and αFF (α fossil fuels) = 0.80; the range of variability of α values was estimated with

the bootstrap analysis obtaining 0.78–0.88 for αFF and 1.65–1.88 for αBB (as the 25th and 75th percentiles,

respectively).

Zotter et al. [78] reported a possible combination of αFF = 0.8 and αBB = 1.8 when EC concentration

from fossil fuel combustion (estimated with radiocarbon measurements) is between 40% and 85% of the total
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Figure 3.12: Source apportionment study performed with EPA PMF 5.0 on elemental concentrations and absorption

coefficients at four wavelengths, both measured on high-time resolution samples collected by streaker sampler [31].
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Figure 3.13: Aerosol absorptio coefficient (bap) dependence on the wavelength (λ) for biomass burning and fossil fuel

emissions [31].

EC concentration; in this work, the fraction of EC ascribed by the multi-time model to fossil fuel sources was

56%. The combination 0.9 and 1.68 for αFF and αBB , respectively, was also suggested when in the study there

is no or only limited additional information (e.g. from 14C measurements). From the wide range of possible

combinations reported in the literature it is clear that the assessment of αBC (assumed to be equal to αFF
in source apportionment models based on optical data) is still an issue, and both experimental and simulation

studies are in progress to reduce uncertainties and give a better evaluation of this key parameter.

The αFF value resulted in the range 0.8–1.1 typically reported in source apportionment studies based on

optical data ([77] [78] and references therein). Indeed, the sampling site was an urban background station

in Milan and our samples were hardly impacted by fresh traffic emissions. Considering the aged nature of

Milan aerosol, the average αFF was comparable to estimates for BC-coated particles reported in the literature

(approximately 0.6–1.3; see e.g. [127]) and obtained by both ambient measurement (e.g. [128] and references

therein) and numerical simulations (e.g. [127] [129] and references therein).

The αBB value retrieved by the model was very similar to values reported by Zotter et al. [78] and also

comparable to 1.86 found for biomass burning by Sandradewi et al. [75] and 1.8 obtained by Massabò et al.

[76], who also used independent 14C measurements for checking.

Results here reported also allow us to study the relationship between the absorption coefficient and the

mass of BC, i.e. the so-called mass absorption cross section (MAC), at different wavelengths. The MAC(λ) =

bap(λ)/BC relationship assumes that BC is the only light-absorbing species present; however, this assumption

is not always valid since the transport of mineral dust from desert areas and brown carbon can significantly

contribute to aerosol absorption. During our monitoring campaign, no contribution from Saharan dust was

observed; in contrast, biomass burning was proved to be an important source, so that BrC was certainly

a significant contributor [1], as also suggested by αBB = 1.83 in the biomass burning factor. The possible

overestimation of BC when total bap is ascribed to BC only is usually minimised by choosing a wavelength

longer than 600 nm, exploiting the spectral dependence of absorption from different aerosol compounds [130].

EC concentration retrieved from the chemical profiles (see Fig. 3.8) was used as a proxy for BC to estimate

a source-dependent bap-to-BC ratio. Results are represented in Fig. 3.14.
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Figure 3.14: bap-to-EC ratio dependence on wavelenght (λ) for biomass burning and fossil fuel emissions. Error bars

represent the 25th and 75th percentiles retrieved from the bootstrap analysis [31].
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It is noteworthy that here this ratio is intentionally not indicated as MAC, since overestimation of the BC

absorption especially at shorter wavelenghts might occur (see the previous discussion). BrC is expected to give

a small contribution in the fossil fuel source. Therefore, the best approximations for MAC(λ) values are likely

the bap-to-BC ratios observed in the fossil fuel source at our monitoring site; values of these ratios are reported

in Table 3.5.

Table 3.5: bap-to-EC ratios (in m2 g−1) for biomass burning and fossil fuel emission source assessed by the multi-time

resolution model. Results are retrieved considering bap and EC apportioned in each source; the 25th and 75th percentile

is estimated by the bootstrap analysis [31].

λ Biomass burning Fossil fuel

bap/EC 25th − 75thperc. bap/EC 25th − 75thperc.

405 nm 23.1 21.1 - 24.8 13.7 12.7 - 14.2

532 nm 14.3 13.2 - 16.0 10.2 9.6 - 10.4

635 nm 10.6 9.9 – 11.7 8.8 8.2 - 9.1

780 nm 6.4 6.0 – 7.3 8.6 7.6 - 8.9

For λ = 550 nm, Bond and Bergstrom [122] reported a MAC value of 7.5 ± 1.2m2 g−1 for uncoated fresh

emitted particles and MAC values in polluted regions ranging from 9 to 12 m2 g−1, attributable to absorption

enhancement due to particle coating. The MAC estimate obtained in this work from the multi-time resolution

model for λ = 532 nm is comparable to literature values reported above, thus confirming the importance of

aging processes in the atmosphere for the optical properties of particles. Ratios represented in Fig. 3.14 are

less comparable at λ = 405 nm (see also Table 3.5) due to the significant contribution of BrC to bap at this

wavelength in the biomass burning factor.

From the outputs of the modelling approach here proposed, the apportionment of the biomass burning and

fossil fuel contributions to bap at different wavelengths was also obtained (Table 3.6). As expected, the relative

contribution to the total reconstructed bap ascribed to the biomass burning factor decreased with increasing λ,

in contrast to the contribution from fossil fuel combustion which gave the highest contribution at λ = 780 nm;

in addition, the fossil fuels contribution prevailed at all wavelengths at the investigated site.

Table 3.6: Average contribution to total reconstructed bap for the biomass burning and fossil fuel factors; in parentheses

the 25th and 75th percentiles are reported [31].

λ Biomass burning Fossil fuel

405 nm 36% (31% – 36%) 45% (41% – 46%)

532 nm 29% (25% – 30%) 43% (39% – 44%)

635 nm 26% (23% – 27%) 45% (41% – 47%)

780 nm 20% (16% – 22%) 55% (48% – 55%)

3.3 Gaining knowledge on organics contribution through receptor modelling

This SA study was performed on data collected during February 2017 in Rome (Italy), in the frame of the CARE

(Carbonaceous Aerosol in Rome and Environs) experiment [131]. A complete chemical characterisation was

carried out by online and offline instrumentation, and the aerosol absorption coefficients bap(λ) at 7 wavelengths

were retrieved by an Aethalometer AE33 (Magee Scientific). All these variables (chemical + optical) were

organised in a joint matrix (see Sect. 2.6.2) following the approach proposed in Forello et al. [31], and used

as input to the multi-time resolution model (see Sect. 2.6.1). Thanks to the coupling of optical and chemical

variables as input to the receptor model, information such as the impact of a mineral dust transport episode

to the aerosol absorption in the atmosphere and estimates for the absorption Ångström exponent (α) of the

sources were retrieved in addition to the source apportionment.

Moreover, an original way to analyse results from different SA studies was implemented to relate primary

and secondary organic aerosol (OA) contributions to their emission sources, exploiting results from the source

apportionment study carried out in this PhD work [74]. Total OA concentration measured by ACSM (Aerosol
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Chemical Speciation Monitor) was apportioned to different sources by our receptor model, and afterwards

compared with HOA (hydrocarbon-like organic aerosol), BBOA (biomass burning-like organic aerosol), and

OOA (oxygenated organic aerosol) concentrations obtained from an independent source apportionment study

previously performed on ACSM data only [131]. Insights on OA contributions were thus retrieved and the

noteworthy result indicating that OOA apportionment made on ACSM data likely includes a secondary OA

contribution due to biomass burning was obtained.

3.3.1 Site description

The CARE (Carbonaceous Aerosol in Rome and Environs) measurement campaign was carried out in Rome

(Italy; latitude: 41.88◦, longitude: 12.49◦), in the middle of the Mediterranean sea, at an urban background site

from 1st to 28th February 2017. Besides contribution from local sources, due to its position and meteorological

conditions the site can be affected by air masses coming from the sea as Rome is about 30 km from the nearest

coast, and by long-range transport from the Sahara desert [132].

3.3.2 Online and offline measurements

Mass

Hourly PM2.5 mass concentration was reconstructed from particle number size distribution (PNSD) data mea-

sured combining a scanning mobility particle sizer and an aerodynamic particle sizer [133]. Size distributions

from these instruments were merged following the methodology reported in Khlystov et al. [134] and a size-

dependent effective particle density was used to obtain the mass (details on the mass retrieval procedure and

validation can be found in [131] and [135]).

Elemental composition

Hourly PM2.5 samples were collected by a streaker sampler [86]. Briefly, the streaker sampler collects with

hourly resolution aerosol particles in the coarse (PM10 - 2.5) and fine (PM2.5) fractions on an impaction stage

and a filter, respectively. For the aim of this campaign, only the fine fraction was analysed by Particle Induced

X-ray Emission (PIXE) technique to obtain the elemental composition. More details about the technique and

the set-up can be found e.g. in [95] and [96]. PIXE Minimum detection limits (MDLs) were in the range 1-10

ng m−3 (depending on the element) and average experimental uncertainties for different species ranged from

about 10% to about 40% (the latter refers to those elements measured with concentrations near MDL).

Non-refractory chemical components

Major non-refractory at 600◦C components in PM1 were measured by an Aerodyne Aerosol Chemical Specia-

tion Monitor (ACSM, see e.g. [136]) with a temporal resolution of 30 minutes. Shortly, in the ACSM particles

are focused inside the instrument by a system of aerodynamic lenses, then thermally vaporised, and finally

ionized by electron impact. Starting from the acquired mass spectrum, organic matter (OA), sulphate (SO2−
4 ),

ammonium (NH+
4 ), nitrate (NO−3 ), and chloride (Cl−) concentrations can be assessed. In a previous work

[131], from ACSM data three factors for OA were singled out: HOA (hydrocarbon-like organic aerosol), BBOA

(biomass burning-like organic aerosol), and OOA (oxygenated organic aerosol); as for the latter, it is generally

associated to secondary compounds in the literature. MDLs were estimated following Ng et al. [136] as 0.105

µg m−3, 0.201 µg m−3, 0.017 µg m−3, 0.008 µg m−3, and 0.008 µg m−3 for OA, NH+
4 , SO2−

4 , NO−3 , and Cl−,

respectively. Sensitivity tests using different ranges of trial uncertainties as input to the model were performed;

in the end, average uncertainties for ACSM measurements were set to 19% for OA, 36% for NH+
4 , 28% for

SO2−
4 , and 15% for NO−3 , in accordance with the reproducibility of relative uncertainties observed in ACSM

intercomparison exercises [137] [138].

Carbonaceous components

EC and OC concentrations with two hour resolution were obtained by a Sunset Field Thermal-Optical Analyser

(Sunset Laboratory Inc.). Briefly, this instrument collects particles on a quartz fibre filter; at the end of each

sampling period (105 minutes of sampling and 15 minutes of analysis) the collected sample is analysed with the

NIOSH-like temperature protocol [139]. The inlet was equipped with a cyclone with a cut point of 2.5 µm and

a denuder for organics. MDL was 0.240 µg m−3 for OC and EC concentrations. Average uncertainties used as
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input to the model were 15% and 10% for EC and OC concentrations, respectively.

Light absorption coefficients

Optical properties were retrieved by online instrumentation with a time resolution of 1 minute. The aerosol

absorption coefficient bap(λ) at 7 wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) was retrieved in PM10

by a dual-spot Aethalometer (AE33, Magee Scientific) [140] using the instrument specific mass absorption

cross-sections (MACs) [141] and the measured equivalent black carbon (eBC) concentration. bap(λ) values

are calculated by the AE33 internal software considering attenuation measurements corrected for loading (k

parameter) and multiple scattering (C factor) effects. It is noteworthy that recent literature studies (e.g.

[142]) evidenced that the fixed C factor equal to 1.57 typically used in AE33 can lead to a significant bap(λ)

overestimation. Therefore, in this work a C factor of 2.66 was used at all wavelengths, as previously estimated

by Valentini et al. [132] for the CARE campaign. MDLs were estimated in the range 0.36 – 0.92 Mm−1

depending on the wavelength and average experimental uncertainty on bap(λ) was 15% [143].

3.3.3 Implementation to the multi-time resolution model

The multi-time resolution model implemented by Crespi et al. [56] was used as a basis as it allows the estimation

of uncertainties by bootstrap analysis (see Sect. 2.4.2 for details about this method). In this work, a physical

constraint based on a mass balance equation was added and solved together with main equation (2.18) and

regularisation equation (2.19): in each factor, the sum of concentrations of the species must be equal or smaller

than the total mass concentration. The equation for each factor was introduced in the general form [25]:

0 =

N∑
j=1

cjfkj + rv (3.1)

where the index j represent the chemical species, N is the total number of chemical species, cj are numerical

coefficients set at cmass = +1 for mass while cj = -1 for species other than mass, fkj is an element of the matrix

F (i.e. chemical profiles), and rv represents the residual of this auxiliary equation. Since contributions from not

measured element oxides and water can be present, the equation was implemented in order to allow negative

values of the residual rv using the error model code em= -17 (see Sect. 2.5.2).

3.3.4 Source apportionment coupling online and offline measurements

Input data

One hour was chosen as the basic time unit in the model to study high time resolution changes in source

contributions. Since no replicated species were present in the dataset after input data selection (selection criteria

are explained hereafter), adjustment factors ηjm in the main equation (2.18) of the multi-time resolution model

were set to one (see Sect. 2.6.1 for more information about adjustment factors).

Mass concentrations were included in the model with uncertainties set at 4 times their values [50] in order to

reduce their relevance in the modelling process. All other variables were classified according to their signal-to-

noise ratio (S/N) (see Sect. 2.5.2). All strong variables (S/N ≥ 1.2) and only some weak variables (i.e. Ti, V,

Rb, and Pb) were used as input to the model. In the literature, Ti, V, Rb, and Pb are often indicated as tracers

of specific sources (Saharan dust advection for Ti, residual oil combustion for V, biomass burning for Rb, and

industry for Pb); for this reason, they were taken into account although strongly underweighted multiplying

their uncertainties by a factor 3.

Ranges of uncertainties and MDLs for measured variables have been already reported in Sect. 3.3.2; in the

input dataset, uncertainties and data below minimum detection limits were pre-treated according to Polissar

et al. [40]. Missing values were substituted by linear interpolation, with uncertainties set as three times the

interpolated concentration value. Among strong variables, Si showed a slightly higher percentage (26%) of

missing data due to blank filter contamination. Linear interpolation was not possible in this case, since missing

data were consecutive over time; therefore, in order to avoid artificial high values in modelled time contributions

as already reported in literature works [31] [39], missing values were substituted by the median value calculated

over the whole campaign, with uncertainties set at four times the median value. To avoid double counting

for sulphur/sulphate, organic aerosol/organic carbon, and chlorine/chloride the selection of input data was

performed as explained in the following.
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Atmospheric concentrations of SO2−
4 (measured online by ACSM) and S (measured offline by PIXE analysis

on streaker samples) display very similar temporal patterns. The linear regression shows a slope of 2.54 ±
0.02 (R2 = 0.89) (Fig. 3.15). The difference of about 15% from the sulphate-to-sulphur stoichiometric value

(equal to 3) is within average uncertainties (i.e. 12% for S and 28% for SO2−
4 ), and can be mainly ascribed to

different sampling and analytical techniques. In fact, the effect of different PM fractions collected by ACSM

and streaker sampler (PM1 and PM2.5, respectively) can be considered less relevant, since clear discrepancies

from the average ratio of the campaign are present only when S concentration is higher than about 1.1 µg m−3

as can be seen from Fig. 3.15 (17 over 619 samples, about 3% of data). The largest discrepancy is registered

on the 3rd of February, when there is a clear change in the SO2−
4 -to-S ratio (Fig. 3.16) and a polluted marine

air mass transport episode was detected [132]. In Fig. 3.16, it can be noted that the S peak corresponds to a

peak in Mg concentration, suggesting the presence of compounds (e.g. MgSO4) [144] that are not measured by

ACSM due to particle size and refractory properties. Tests performed using S or SO2−
4 as input to the model

did not give any significant change in the solution in terms of number of factors or source contributions. In

order to avoid double counting, SO2−
4 measured by ACSM was chosen as input variable, because sulphate is

very often in the form of ammonium sulphate and NH+
4 was measured by ACSM as well.
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Figure 3.15: Linear regression of atmospheric concentrations of SO2−
4 (measured online by ACSM) and S (measured

offline by PIXE analysis on streaker samples). Slope: 2.54 ± 0.02 (R2 = 0.89). Figure from [74].
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Figure 3.16: Temporal pattern of atmospheric concentrations of SO2−
4 , S and Mg on the 3rd of February 2017. Figure

from [74].

Atmospheric concentrations of organic aerosol OA (measured online by ACSM) and organic carbon OC

(measured online by Sunset Field Thermal-Optical Analyser) show very similar temporal patterns (Fig. 3.17).

The two-hour median value of OA-to-OC ratio is 1.3 (1.1 and 1.5 are the limits of the interquartile range) that

is lower than 1.6 used in previous literature studies performed in Rome [145] [146] [147]; also in this case it is

likely due to different sampling and analytical techniques. Finally, OA was selected as input variable since it

carries a larger fraction of the total mass.

As for Cl (measured by PIXE analysis) and Cl−(given by ACSM) concentrations, the former was used as

input variable to the model as it showed a much more reliable temporal pattern.

bap(λ) values measured at 7 wavelengths in PM10 were inserted in the model together with chemical variables

assessed in PM2.5 (and PM1 for ACSM data). The main issue in considering different size fractions for chemical

and optical variables was the presence of a desert dust transport episode [132] lasting less than two days (24th -
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Figure 3.17: Temporal pattern of atmospheric concentrations of organic aerosol OA (measured online by ACSM) and

organic carbon OC (measured online by Sunset Field Thermal-Optical Analyser) for February 2017. Vertical lines show

midnight for each day. Figure from [74].

25th February) during the CARE campaign. In this work, samples impacted by desert dust were included in the

input dataset in order to estimate optical absorption properties of the mineral dust source (see the following).

It is interesting to note that in the simulation chamber study by Caponi et al. [12], desert dust samples in the

PM10 and PM2.5 fractions showed very small differences in elemental composition and the absorption Ångström

exponent (α) of dust in that work did not seem to be related to differences in particle size. As for the MAC of

mineral dust, in Caponi et al. [12] it was defined considering the total mass concentration of dust and, opposite

to the α value, the MAC seemed to be dependent on particle size. For this reason, the MAC values at different

wavelenghts retrieved as a result of the model in this work for mineral dust have to be considered as an upper

limit.

Finally, 30 variables with 1-hour resolution (PM2.5 mass, Na, Mg, Al, Si, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni,

Cu, Zn, Br, Rb, Pb, OA, NH+
4 , SO2−

4 , NO−3 , bap(370 nm), bap(470 nm), bap(520 nm), bap(590 nm), bap(660

nm), bap(880 nm), and bap(950 nm)) and 2-hour EC concentrations were inserted as input data in the multi-time

resolution model. The input matrix X consisted of 916 samples distributed over 619 time units. The analysis

was performed in the robust mode (see Sect. 2.5.2). The error model em = -14 (see Sect. 2.5.2 for its definition)

was used for the main equation with C1 = input error, C2 = 0.0, and C3 = 0.1 for both chemical and optical

absorption data.

Base-case solution

Solutions from 5 to 10 factors were explored. In this analysis 30 convergent runs were obtained and a nine-

factor base case solution corresponding to the minimum Q value was selected. A lower or higher number of

factors gave mixing or artificial separation of sources, respectively, and a not satisfactory reconstruction of some

variables during aerosol transport episodes (e.g. marine aerosol advection). In the selected base-case solution,

all variables were well reconstructed by the model (R2 > 0.70) with the exception of V (R2 = 0.52) and Ni (R2

= 0.51), that were characterised by concentration values near MDLs. Uncertainty-scaled residuals (see Sect.

2.5.3) were randomly distributed in the ± 3 range and their distribution was mostly symmetrical.

The explained variation for matrix F (EVF) (see Sect. 2.5.4) was firstly exploited for factor-to-source

assignment; indeed, high EVF values are typically indicators for chemical species which are source tracers. The

unexplained variation for matrix F was lower than 0.15 for all variables. In Fig. 3.18, EVF and chemical

profiles for the base-case solution are reported. According to EVF, chemical profile, and temporal pattern, the

nine factors were tentatively assigned to biomass burning, nitrate and aged aerosol, traffic exhaust, sulphate,

mineral dust, marine aerosol, traffic non-exhaust, local source, and polluted marine aerosol (see also afterwards

for details on the factor-to-source assignment motivation).

In Table 3.7, average source contributions to atmospheric PM2.5 mass are reported both in absolute and

percentage values. Even if the base-case solution was largely satisfactory, constrained solutions were explored.
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Figure 3.18: (a) Chemical profiles and (b) bap apportionment of the nine-factor base-case solution. The blue bars

represent the chemical profile (output of the matrix F for chemical variables normalised on mass), the green bars the

output of the matrix F for optical absorption variables, and the black dots the EVF. Figure from [74].
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Table 3.7: Absolute and relative average source apportionment in the nine-factor base-case solution. Table adapted

from [74].

Factors - sources µg m−3 %

F1 - Biomass burning 5.1 29%

F2 - Nitrate and aged aerosol 4.7 27%

F3 - Traffic exhaust 2.9 17%

F4 - Sulphate 2.5 14%

F5 - Mineral dust 0.67 3.9%

F6 - Marine aerosol 0.66 3.8%

F7 - Traffic non-exhaust 0.37 2.1%

F8 - Local source 0.35 2.0%

F9 - Polluted marine aerosol 0.24 1.4%

Final constrained solution and bootstrap analysis

Constraints were applied to the factor interpreted as marine aerosol. Indeed, the marine aerosol factor in the

base-case solution was characterised by values of the typical diagnostic ratios Mg/Na and Cl/Na very similar to

literature ones for bulk sea salt emissions (see Table 1.1), suggesting advection of fresh marine aerosol. However,

contaminations appeared in the chemical profile due to EC, together with NH+
4 and NO−3 , which are often

found in chemical profiles of aged marine emissions. From source temporal patterns, it was noted that the

polluted marine aerosol episode was interrupted for a few hours by the advection of fresh marine aerosol; the

former was characterised also by ship emissions so that some mixing between the two chemical profiles can

be present. Therefore, in the constrained solution EC, NO−3 , and NH+
4 were pulled down maximally in the

chemical profile of marine aerosol (fresh); as a consequence, also bap at all wavelengths decreased in agreement

with the lack of light absorbing components in the profile. It is noteworthy that NO−3 contribution appeared

in the polluted marine aerosol chemical profile, as expected when compounds present in marine air masses

react with polluted air masses during the transport, leading also to chloride deficit (see Sect. 1.2). Constraints

led to an effective increase in Q of about 25 units with a 0.6% increase, which can be considered acceptable

[25]. The constrained solution improved the chemical profiles of factors impacted by sea salt, with negligible

differences in all other relevant features (i.e. EVF, residuals, source apportionment) respect to the base-case

one. Thus, the constrained solution was considered the most reliable one from a physical point of view; results

are presented in Fig. 3.19 and Fig. 3.20 and discussed in the following. The average apportionment during the

CARE experiment is reported in Table 3.8.

Table 3.8: Absolute and relative average source apportionment in the nine-factor constrained solution; in parentheses,

the 10th and 90th percentiles from the bootstrap analysis are reported. Table adapted from [74].

Factors - sources µg m−3 %

F1 - Biomass burning 5.5 (4.5 - 5.8) 32 (26 - 34)%

F2 - Nitrate and aged aerosol 4.4 (3.7 – 5.2) 25 (22 – 30)%

F3 - Traffic exhaust 2.8 (2.6 – 3.2) 16 (15 – 18)%

F4 - Sulphate 2.5 (2.1 – 2.8) 14 (12 – 16)%

F5 - Mineral dust 0.66 (0.57 – 0.71) 3.8 (3.3 – 4.1)%

F6 - Marine aerosol 0.63 (0.50 – 0.74) 3.6 (2.9 – 4.2)%

F7 - Traffic non-exhaust 0.38 (0.26 – 0.51) 2.2 (1.5 – 2.9)%

F8 - Local source 0.33 (0.25 – 0.63) 1.9 (1.4 – 3.7)%

F9 - Polluted marine aerosol 0.28 (0.20 – 0.81) 1.6 (1.1 – 4.6)%
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Figure 3.19: (a) Chemical profiles and (b) bap apportionment of the nine-factor constrained solution. The blue bars

represent the chemical profile (output of the matrix F for chemical variables normalised on mass), the green bars the

output of the matrix F for optical variables, and the black dots the EVF. Figure from [74].
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Figure 3.20: Hourly temporal patterns of the nine-factor constrained solution for February 2017. Vertical lines show

midnight in each day. Figure from [74].

Factor 1 was identified as biomass burning because it was characterised by high EVF for OA (0.57), Rb

(0.51), and K (0.54) [33] [148]. In the chemical profile, OA concentration contributed for 81% of the total mass

apportioned to the source; the second highest contribution was 13% given by NO−3 , followed by K (2.5%), EC

(1.7%), and SO2−
4 (1.3%). Rb was less relevant in terms of mass contribution (about 0.01%). The biomass

burning source gave a dominant contribution during the night, with highest values in the time interval 23:00 -

02:00 LT (temporal pattern in Fig. 3.20). Perrino et al. [149] already highlighted a similar temporal behaviour

in levoglucosan concentrations (tracer of biomass burning emissions) in wintertime in the city centre of Rome; it

was likely related to biomass burning products originated in the peri-urban area and then transported towards

the city centre. The biomass burning primary contribution to PM2.5 estimated in that work was in the range

7.2% – 23.3% during 2013 – 2016 winter months. In this work, the biomass burning source explained 32% of the

PM2.5 mass, a bit higher than the previous estimate as also aged organic aerosol contribution was accounted

for as explained in Sect. 3.3.5. Influence of aerosol ageing in a chemical profile of biomass burning from PMF

was already reported in the literature [150].

Factor 2 was related to a source called nitrate and aged aerosol. In fact, NO−3 and NH+
4 showed EVF of 0.65

and 0.44, respectively, and non negligible EVF values were also found for K, Zn, Rb, and OA. This observation

suggested that, as already found in factor 1, the chemical profile of factor 2 showed some mixed contributions

from biomass burning and nitrate. However, nitrate formation at urban sites is expected mainly from NOx

traffic emissions thus justifying the share of EC in the chemical profile (4.7% of the apportioned mass, higher

than in the biomass burning one) and the optical absorption contribution (see afterwards). The average mass

58



contribution of this factor was 25%.

Factor 3 was characterised by very high EVF (0.74) for EC and the only other significant chemical component

in terms of EVF was Fe (0.35). The mass contribution of this source was ascribed to two major contributors,

i.e. EC and OA accounting together for about 96% of the apportioned mass. The factor was thus identified

as traffic (exhaust emissions) and impacted, on average, for 16% to the PM2.5 mass. Peaks in concentration

values appeared in the evening approximately at 22:00 LT (Fig. 3.20 for the temporal pattern). Similar traffic

emission concentration patterns were previously observed in Rome, independently of the season, and they were

explained by boundary layer dynamics [151]. The observed modulation was also confirmed by the temporal

pattern of natural radioactivity due to Radon progeny detected in the atmosphere during the CARE campaign

(Fig. 3.21; more details in [131]); as well known, measurements of natural radionuclides can be used to trace

the temporal evolution of atmospheric dispersion in the boundary layer and to estimate the mixing layer height

(see e.g. [81] [152] and references therein). The traffic (exhaust) source is the main contributor to aerosol light

absorption in the atmosphere, confirming the factor-to-source assignment (see the following).
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Figure 3.21: Mean diurnal cycle of natural radioactivity during the CARE campaign. Figure from [74].

Factor 4 was assigned to sulphate, since SO2−
4 and NH+

4 showed high EVF. V and Ni were characterised

by EVF slightly higher than the other elements, suggesting some mixing with ship emissions. In terms of mass,

the most significant contribution in the chemical profile was given by OA (14%) after SO2−
4 and NH+

4 (63%

when added together). During the campaign, the average mass apportionment of this source was 14%.

Factor 5 was associated to the mineral dust source because of high EVF for Al (0.88), Ti (0.86), Si (0.82),

and Mg (0.34). These variables are all crustal elements and tracers for mineral dust; it is noteworthy that

the diagnostic ratios between these elements apportioned in the chemical profile are consistent with literature

values [33]. During the CARE campaign, a desert dust transport episode lasting less than two days (24th -

25th February) was clearly identified exploiting optical properties [132]. Even if the impact of desert dust was

dominant in this factor - with concentration values as high as 25 times the average over the whole campaign

(see Fig. 3.20) - the source retrieved by the model probably included minor contributions also from local soil

resuspension. The mass contribution of this source over the whole campaign was 3.8%, but during the mineral

dust advection it accounted for a relevant fraction (49% on average) of the PM2.5 mass concentration.

Factor 6 was identified as a marine aerosol source being characterised by EVF = 0.89 for Cl, with the

second highest EVF being 0.27 for Na. Typical diagnostic ratios for this source, i.e. Mg/Na and Cl/Na, were

respectively 0.13 and 1.9, very similar to what expected for bulk sea salt aerosol (0.12 and 1.8, respectively; see

Table 1.1). It is noteworthy that local atmospheric circulation in the area under investigation allows the inland

penetration of weak sea breezes, even if Rome is about 30 km from the nearest sea cost. This episodic source

contributed on average for about 3.6% of the total PM2.5 mass, up to 47% on average during the advection

episode (Fig. 3.20).

Factor 7 was assigned to traffic non-exhaust emissions (including road dust resuspension), since high EVF

were associated to main tracers for this source: Ca (0.57), Zn (0.38), Fe (0.34), Mn (0.42), and Cr (0.45) [107]

[153]. EVF for Cu was a bit lower (0.20), because this element was found with higher concentrations (11.8

ng m−3 compared to 2.5 ng m−3) in the chemical profile of a factor that was associated to local emissions (see

afterwards). Connection with traffic emissions was also confirmed by the presence of EC in the chemical profile

(14%), likely due to road dust resuspension. The average contribution of traffic non-exhaust emissions to PM2.5

over the CARE campaign was quite low (2.2%), as already found for the same fraction by e.g. [33].

Factor 8 showed a strong episodic character (see Fig. 3.20) and presented a high EVF for Cu (0.78) and Pb

(0.61). The high EC contribution in the chemical profile was likely associated to combustion emissions and the
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optical absorption profile of this factor (see afterwards) suggested an influence of fossil fuel combustion (α ' 1).

This is the first time that a similar factor has been detected in the urban area of Rome and – as far as we know -

it was not reported in previous literature works; therefore, this factor was tentatively assigned to local emissions

but further investigation is needed in the future to identify the specific source. The local feature of the source

is evidenced in Fig. 3.22 - realised using the Openair R package [51] [119] - which shows variation in source

contributions by wind speed and wind direction. The episodic and late evening contribution of this source (Fig.

3.20) is also likely influenced by boundary layer dynamics (Fig. 3.21). The average mass contribution of this

source was very low (1.9%).

1

0.5

Figure 3.22: Polar Plot for the local source. Figure from [74].

Factor 9 was associated with polluted marine aerosol. Indeed, main tracers of aged sea salt aerosol are Na

and Mg which showed EVF values of 0.67 and 0.34, respectively; moreover, EVF for V (0.41) and Ni (0.26)

were also of interest as they are elemental markers for heavy oil combustion here likely related to ship emissions,

as already highlighted for the CARE campaign [132]. Mg-to-Na ratio in the chemical profile was 0.14 (i.e. in

fair agreement with 0.12 reported in the literature) and the chemical profile did not contain Cl; opposite, the

chemical profile was clearly enriched in SO2−
4 and NO−3 , highlighting the ageing of sea salt aerosol (see Sect.

1.2). Moreover, the presence of EC in the profile suggested the influence of ship emissions and the contamination

due to air mass transport from the coast. The average mass contribution of this source was 1.6% at the receptor

site.

A bootstrap analysis with 100 convergent runs was performed to evaluate the uncertainties associated with

source profiles [56]; results are shown in Fig. 3.23. Main tracers of each source were characterised by small

interquartile ranges (blue bars, with values expressed in ng m−3 or Mm−1 on a logarithmic scale). Mapping of

factors was always 99%, supporting the goodness of the solution presented in this work.
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Figure 3.23: Box plot of the bootstrap analysis on the nine-factor constrained solution. The red dots represent the

output values of the solution, the black lines the medians from the bootstrap analysis, the blue bars the 25th and 75th

percentiles, the dotted lines the interval equal to 1.5 times the interquartile range, and the black dots the outliers from

this interval. Figure adapted from [74].
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Model results exploiting optical absorption variables

As already mentioned, the source apportionment of the light absorption coefficients bap at different wavelengths

(see Fig. 3.19) strengthens the identification of sources giving additional information about their contribution to

light absorption in the atmosphere. In addition, the multi-variable modelling approach introduced by Forello et

al. [31] allows the retrieval of relevant source-dependent optical parameters – such as the absorption Ångström

exponent and the mass absorption cross section - without any a-priori assumption. In Table 3.9 the bap ap-

portionment at different wavelengths is shown; traffic exhaust and local source emissions are added together to

consider total fossil fuel emissions.

Table 3.9: Average contribution to total bap reconstructed by the model at different wavelengths; in parentheses, the

10th and 90th percentiles are reported. Table adapted from [74].

370nm 470nm 520nm 590nm 660nm 880nm 950nm

Biomass burning 17 % 8.5 % 6.0 % 4.1 % 2.5 % 0 % 0 %

(14-18) (6.8-9.0) (4.9-6.4) (3.4-4.4) (2.0-2.7) (0-0) (0-0)

Nitrate and aged aerosol 12 % 9.2 % 8.5 % 8.1 % 7.8 % 7.1 % 6.9 %

(8.9-22) (5.9-19) (5.2-18) (4.6-18) (4.3-17) (3.6-17) (3.4-17)

Mineral dust 0.9 % 0.7 % 0.6 % 0.4 % 0.4 % 0.3 % 0.3 %

(0.8-1.1) (0.6-0.8) (0.5-0.6) (0.3-0.5) (0.2-0.4) (0.2-0.4) (0.2-0.4)

Fossil fuel 70 % 78 % 80 % 82 % 83 % 86 % 86 %

(62-73) (69-81) (71-83) (72-84) (73-86) (75-89) (76-89)

As expected, the relative contribution to the total reconstructed bap ascribed to the factors related to

biomass burning and mineral dust decreases with increasing λ, in contrast to the contribution from fossil fuel

combustion. The most significant contribution to bap at all wavelengths is given by the traffic exhaust emission

source (significant also in terms of EVF, ranging from 0.63 to 0.77 and increasing with increasing wavelength),

followed by the factor assigned to the local source. These two main contributors to optical absorption in the

atmosphere are related to fossil fuel combustion (traffic exhaust + local source emissions) as highlighted by the

value of the absorption Ångström exponent (α) that is 1.1 (1.0 - 1.1 as 10th - 90th percentile from the bootstrap

analysis); in fact, α values near 1 are typically associated to light absorption contribution dominated by fresh

BC emissions. In Fig. 3.24, the wavelength dependence of bap for fossil fuel emissions together with the other

sources is reported; the line corresponds to the data fitting considering bap ∝ λ−α.
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Figure 3.24: bap dependence on λ for (a) fossil fuels, (b) biomass burning, (c) nitrate and aged aerosol, and (d) mineral

dust. Figure from [74].
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Even if the other sources do not contribute as much as fossil fuel emissions to the light absorption in the

atmosphere, useful information can be retrieved considering source-dependent optical parameters.

The wavelength dependence of bap apportioned to the biomass burning source in Fig. 3.24 is characterised

by α value of 4.4 (4.4 - 4.5 as 10th - 90th percentile); it is higher than typical literature α values for biomass

burning (e.g. [75] and references therein) but the significant role played by BrC in this source can account for

it [154]. In the literature, BrC was already found in particles enriched in nitrate (that is the second highest

contributor in the source chemical profile, after OA) and poor in BC, with a BC-to-OA ratio below 0.05 ± 0.03

[155]; considering EC as a proxy for BC, the same ratio in the biomass burning chemical profile was 0.02.

The wavelength dependence of bap for the nitrate and aged aerosol source in Fig. 3.24 has α value of 2.1

(1.6 – 2.6 as 10th - 90th percentile from bootstrap analysis), consistent with a mixed contribution from both

BC and BrC.

Even if the mineral dust source is characterised by very low values of bap it has a clear wavelength dependence

(Fig. 3.24), in contrast to the other remaining sources giving negligible contributions to light absorption. For

this source, α is 2.9 (2.6 – 3.5 as 10th - 90th percentile), i.e. comprised in the typical range for desert dust

reported in the literature (e.g. [12] and references therein). This result is noteworthy because values for the

absorption Ångström exponent of mineral dust are still relatively scarce in the literature. Absolute bap values

apportioned to the mineral dust source are much lower (ranging from 0.9% to 0.3% of the total reconstructed

bap - depending on the wavelength - see Table 3.9) than the ones from fossil fuels combustion and biomass

burning; this result can be expected since the transport episode of mineral dust is very short (lasting less than

two days over the whole campaign). The picture is totally different when considering the time interval covering

the transport event (from 24th February 12:00 until 25th February 15:00 LT, estimated considering the temporal

pattern in Fig. 3.20); indeed, even if the dominant contribution is still given by fossil fuels combustion (from

59% to 75% of the total reconstructed bap, increasing with increasing wavelength), the mineral dust impact on

light absorption ranges from 25% at λ = 370 nm to 10% at λ = 950 nm.

Another relevant result from this modelling approach is the estimate of the ratio between bap(λ) and EC

- here considered as a proxy for BC concentrations - for each source. It is noteworthy that when BC is the

only absorbing component, bap(λ)-to-EC ratio provides the mass absorption cross-section of BC (MACBC) at

different wavelengths; this assumption can be considered valid for fossil fuel emissions (for which α = 1.1).

Calculations of bap(λ)/EC for biomass burning, fossil fuel, and nitrate and aged aerosol sources are reported in

Fig. 3.25 and Table 3.10. The average MAC value for BC – not related to the specific sources – was estimated

by Costabile et al. [131] during the same campaign as 8.7 m2g−1 at λ = 637 nm.
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Figure 3.25: bap-to-EC ratio dependence on λ for biomass burning, fossil fuels, and nitrate and aged aerosol. Error

bars represent the 10th and 90th percentiles from the bootstrap analysis. Figure from [74].

It is noteworthy the large difference at shorter wavelengths among the various sources, which is due to the

contribution of BrC. The difference respect to fossil fuels - where BC can be considered as the only absorbing

component - is clearly more significant for biomass burning, where BrC resulted to be dominant (α = 4.4), than

for nitrate and aged aerosol. For the latter, significant differences are present only at λ = 370 nm (α for this

source was 2.1) .

63



Table 3.10: Ratio between bap(λ) and EC for biomass burning, fossil fuel, and nitrate and aged aerosol sources; in

parentheses, the 10th and 90th percentiles are reported. Table adapted from [74].

bap/EC [m2g−1] 370nm 470nm 520nm 590nm 660nm 880nm 950nm

Biomass burning 81.9 29.5 17.8 10.4 5.4 0.0 0.0

(70.4-131.4) (25.5-47.4) (15.5-28.8) (9.1-17.0) (4.7-8.9) (0.0-0.0) (0.0-0.0)

Nitrate and aged 26.2 14.4 11.4 9.4 7.7 5.0 4.7

aerosol (21.7-33.8) (13.6-16.6) (11.0-12.3) (8.8-10.3) (6.9-8.6) (4.1-6.0) (3.8-5.7)

Fossil fuel 18.3 14.5 12.7 11.1 9.7 7.2 6.9

(17.6-18.6) (13.9-14.7) (12.2-12.9) (10.7-11.3) (9.3-9.9) (6.9-7.4) (6.6-7.0)

3.3.5 Comparison between ME-2 modelling and ACSM results on organics

In order to obtain more insights on the organic aerosol (OA) apportionment, results from the modelling approach

presented in this work coupling chemical and optical variables (ME-2all, in the following) were compared with an

independent source apportionment study previously performed [131] on OA measured by the ACSM (ME-2org,

in the following). Using the latter approach, three factors were recognised: HOA (hydrocarbon-like organic

aerosol), BBOA (biomass burning-like organic aerosol), and OOA (oxygenated organic aerosol); HOA and

BBOA (i.e. primary OA components) accounted for about 12% of the OA mass each, while OOA was the main

component accounting for the remaining apportioned mass fraction.

Results from the application of ME-2all showed that the main contributors to organic aerosol concentrations

in the atmosphere (see also Fig. 3.19) were biomass burning (accounting nearly for 58% of the total OA

concentrations reconstructed by the model), nitrate and aged aerosol (almost 24%), and traffic exhaust emissions

(almost 14%). As an original contribution of this work, in Figure 3.26 a comparison between temporal patterns

related to OA apportioned by ME-2all (hereafter referred to as OAbiomass burning, OAnitrate and aged aerosol,

OAtraffic exhaust) vs. BBOA, OOA, and HOA obtained by ME-2org is reported.
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Figure 3.26: Hourly temporal patterns of (a) HOA from ME-2org and OA apportioned to traffic exhaust by ME-2all,

(b) OOA from ME-2org and OA apportioned to nitrate and aged aerosol by ME-2all, (c) BBOA from ME-2org and OA

apportioned to biomass burning by ME-2all for February 2017. Vertical lines show midnight for each day. Figure from

[74].
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The first noteworthy result is that HOA and OAtraffic exhaust retrieved by the two different approaches are

similar in temporal patterns (R2 = 0.85) but – more importantly – fairly comparable in terms of absolute values

(within 10% difference on average) (Fig. 3.26).

Also OAnitrate and aged aerosol shows similar features to OOA (R2 = 0.74) in terms of temporal behaviour

thus confirming that secondary aerosol and ageing processes impact on the source identified by ME-2all as nitrate

and aged aerosol. Correlation between the fraction of semi-volatile OOA (SV-OOA) and NO−3 was already

observed in Rome [151], in agreement with other literature studies [156]. However, OAnitrate and aged aerosol
absolute values are much lower than OOA from ME-2org (Fig. 3.26), suggesting that part of the OOA is

apportioned to other sources by ME-2all.

The biomass burning source retrieved by ME-2all is characterised by a more complex mixture of organics

showing a significant correlation with both BBOA (R2 = 0.74) and OOA (R2 = 0.75) from ME-2org. However,

one relevant difference is related to BBOA absolute concentration values, which do not account for all the

OA apportioned by ME-2all to the biomass burning source. In addition, the decrease of BBOA concentration

values steeply reaches zero (typically during the time interval from 11 to 17 LT) while the OAbiomass burning
has higher concentration values (Fig. 3.26), especially during the period characterised by atmospheric stability

(from about 10/02 until 24/02, excluding 18/02 and 19/02).

The discrepancies in organic aerosol absolute values mentioned for the latter two cases are very interesting

and deserve a further discussion as they were never reported in previous works. Indeed, this observation

can be explained considering that a consistent part of the OOA – generically ascribed to aged aerosol in

literature works (see e.g. [156]) – is likely linked to the biomass burning source as shown by ME-2all results

and better described in the following. As can be seen in Fig. 3.27, the temporal pattern of the difference

between OAbiomass burning and BBOA is substantially overlapped with the difference between OOA from ME-

2org and OAnitrate and aged aerosol from ME-2all (in the following, OOA-OAnitrate and aged aerosol). Consistently,

adding the contribution from OOA-OAnitrate and aged aerosol to BBOA apportioned by ME-2org, the correlation

with the biomass burning source from ME-2all significantly increases (R2 = 0.92 vs. 0.74) and also absolute

concentration values are very similar, within 4% on average. Therefore, OOA-OAnitrate and aged aerosol can

be considered a rough minimum estimation of the biomass burning contribution to OOA and on average it

accounts for 60% of OOA concentrations, corresponding to 43% of total OA measured by ACSM. This is the

second noteworthy result of this work, as it represents an estimate of the secondary contribution to OA due

to biomass burning; therefore, it could be added to the 12% estimated as BBOA (typically associated only

to primary aerosol content), evidencing the eminent role of biomass burning (> 50%) - with its primary and

secondary contributions - in explaining the total OA measured during the CARE campaign.

In contrast to the other two sources, the chemical profile of traffic exhaust from ME-2all seems to be

constituted mainly by primary emissions since OAtraffic exhaust from ME-2all corresponds to HOA from ME-

2org: thus, OOA contributions related to secondary organic components can be considered negligible in this

source. Secondary organic compounds due to traffic emissions are likely mixed in the chemical profile of the

nitrate and aged aerosol source from ME-2all, so that minimum estimation of their contribution is not possible

in this case.
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Figure 3.27: Hourly temporal patterns of the difference between OA apportioned by ME-2all to the biomass burning

source and BBOA from ME-2org (OAbiomass burning – BBOA) and the difference between OOA from ME-2org and OA

in the nitrate and aged aerosol source from ME-2all (here denoted as OOA-OAn&aa) for February 2017. Vertical lines

show midnight for each day. Figure from [74].
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3.4 Brief description of my personal contribution

I contributed to the experimental work in the study described in 3.2 and reported in the publication [31]. In

particular, I was in charge of the high time resolution samplings using the streaker sampler. I fitted the spectra

resulting from PIXE analysis on streaker samples using the software GUPIXWIN; on these samples, I also

performed the measurements of the aerosol light absorption coefficients at four wavelengths using the in-house

polar photometer PP UniMI.

Moreover, I carried out all the source apportionment studies presented in this Chapter, starting from the

analysis and preparation of data with different time resolutions to be inserted into the model, including the

aerosol light absorption coefficients. The latter were never inserted in a modelling procedure before (at least

not in the same way); it is noteworthy that the results provided new insights for the aerosol science community

using optical source apportionment methods. I implemented the multi-time resolution model to be applied to

the final datasets and I performed the modelling analysis, including the final processing and evaluation of the

model outputs.

As for the study reported in Sect. 3.3 and in the publication [74], I proposed a new approach to make a joint

analysis using also ACSM outputs to retrieve new information on secondary contributions which are a known

issue when using receptor modelling approaches. Finally, I wrote the first draft of the papers.
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Chapter 4

Experimental methodologies and

applications: atmospheric aerosol

sampling

4.1 Brief description of my personal contribution

During my PhD, I took part in the INFN (National Institute of Nuclear Physics) experiment TRACCIA (Time

Resolved Aerosol Characterization Challenging Improvements and Ambitions), in collaboration with other Ital-

ian research groups (INFN-Florence, INFN-Genoa, and INFN-Lecce). This experiment is devoted to the de-

velopment, realisation, and characterisation of the new high time resolution sampler STRAS (Size and Time

Resolved Aerosol Sampler), with the aim of improving the performance and technical characteristics of streaker

sampler, which is now out of production.

In the literature, examples of high time (i.e. hourly) resolution samplers able to perfom size-segregated

collection of particles are e.g. streaker sampler [86], and DRUM sampler [157]. Samples produced by these

instruments are characterised by small deposit areas (e.g. about 1x8 mm2 for streaker sampler) and low aerosol

loads; because of these characteristics, the implementation of suitable techniques through dedicated set-up is

mandatory for sample analyses.

As a member of the research group of Milan, I collaborated to carry out calculations for the sampler cut-off

diameter (i.e. the value of the aerodynamic diameter for which particles are collected with an efficiency of

50% on the impaction stage) to be used in the new design, I personally performed the theoretical calculation

of collection efficiencies and experimental pressure drops needed to evaluate suitable filters, and I took part in

preliminary experimental tests both on field and in the atmospheric simulation chamber ChAMBRe.

In this chapter STRAS characterisation is outlined, together with main experimental results.

4.2 Development of a new aerosol sampler: STRAS

Many atmospheric aerosol samplers (including streaker sampler and STRAS) exploit the phenomenon of inertial

impact to separate particles with different dimensions. The basic scheme is the following: the sampled air passes

through a nozzle in which particles are accelerated, and the air flow is directed towards an obstacle (referred

to as impaction stage or impaction plate) at the end of the nozzle itself. Air flow streamlines undergo a sharp

deviation due to the presence of the impaction stage; particles with sufficient inertia collide with the impaction

stage, while the rest are able to follow the flow streamlines (Fig. 4.1). Theoretically, all particles characterised

by an aerodynamic diameter - see Sect. 1.1 for the definition - larger than a threshold value (called cut-off

diameter) are removed from the flow. A thorough description of the theory behind size-segregated aerosol

sampling and filtration can be found e.g. in [3] [5] [158] [159] [160] [161] [162] [163] and is also reported in

Appendix A.
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Figure 4.1: Basic scheme of the phenomenon of inertial impact. Figure modified from [3].

4.2.1 STRAS development and sizing

STRAS design

STRAS was developed aiming at improving streaker sampler performances; it is worth mentioning that the

streaker sampler, widely used by the research groups of Milan, Florence, and Genoa (see e.g. [86]) is now out

of production. STRAS was designed in order to obtain higher areal concentration of particle deposits (see the

following) and operate with PM10 EPA inlet at a flow rate of 16.7 l min−1 (i.e. 1 m3h−1) instead of 1 l min−1

as in the streaker sampler. For a robust and reliable particle sampling procedure, STRAS was integrated with

a customised sampling unit (DADO LAB SRL) for flow regulation within ± 1%; this implementation lead to a

stand-alone instrumentation for outdoor measurements (Fig. 4.2).

(a) (b)

(c)

Customised
sampling unit

STRAS

Figure 4.2: Configuration of STRAS integrated with the customised sampling unit (DADO LAB SRL). (a) STRAS is

inserted in the unit as during sampling; (b) a retractable arm allows to easily handle STRAS (e.g. for support change);

(c) the two rigidly coupled circular stages inside STRAS, consisting of the impaction stage (polypropilene foil) and the

filter.

STRAS final configuration consists of two rigidly coupled circular stages (with diameters of about 25 cm):

an impaction stage consisting in a polypropilene (PP) foil - typically coated with Apiezon to minimise particle

bouncing - to collect particles in the coarse fraction, i.e. with an aerodynamic diameter dae between 2.5 and 10
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µm, and a filter for the collection of the aerosol fine fraction, i.e. particles with dae < 2.5 µm (Fig. 4.2). The

type of filter currently selected for STRAS is NucleporeTM, the same used by the streaker sampler. Particles

are collected on the filter using a sucking orifice with a rectangular area of about 3x30 mm2, for the sampling

time of one hour (in case of high atmospheric aerosol concentrations, shorter sampling times or bigger deposit

areas - 4x30 mm2 or 5x30 mm2 - can be also set to avoid filter clogging and the occurrence of high pressure

drops); measurement of the deposit area on the PP foil is very critical due to difficulties in the correct estimate

of the actual area of the sample produced by the impaction process. After each sampling time, the two stages

are automatically moved to start a new sampling. In this way, 168 samplings can be automatically performed

on both supports, corresponding to one week of hourly samples.

Proper sampler design is mandatory to obtain chosen cut-off diameters and efficiency curves close to ideality.

STRAS design parameters are resumed in Table 4.1 and compared to literature guidelines, that are thoroughly

described in Sect. A.2 in the Appendix. For STRAS, cut-off at 10 µm is operated by the PM10 EPA inlet; the

separation between coarse and fine fraction at 2.5 µm is performed through a rectangular nozzle with dimensions

width x length (W xL) of 1.24 (± 0.01) x 12.33 (± 0.01) mm. The jet-to-plate distance (S, see Fig. 4.3) is 1.90

(± 0.01) mm, and the nozzle throath length (T, see Fig. 4.3) is 1.88 (± 0.01) mm.

Figure 4.3: Crucial dimensional parameters of inertial classifiers. Figure from [164].

Table 4.1: STRAS design parameters compared to literature guidelines. The propagation of uncertainties related to S,

W, T, and L was used to evaluate uncertainties reported in this Table.

S/W T/W L/W Rejet

STRAS 1.53 ± 0.01 1.52 ± 0.01 9.94 ± 0.08 3000 ± 2

Literature >1.5 1-2 ≥ 10 300-5000

Areal particulate matter concentration on filter

The dimension of the sucking orifice (3x30 mm2) was chosen in order to increase the areal concentration of PM

on the filter respect to streaker sampler; areal concentration is defined by dividing the total sampled PM mass

(Cair · Vsampled) by the sampling area:

Careal =
Cair · Vsampled

Area
=
Cair ·Q · t
Area

= Cair · t · vf (4.1)

where Q represents the volumetric flow, t the sampling time, and vf the air face velocity on the filter. Con-

sidering STRAS characteristics (Q = 16.7 l min−1 and Area = 3x30 mm2), we obtain vf ' 309 cm s−1 that

corresponds to an estimated theoretical increase of a factor of 1.9 in Careal on the filter respect to streaker sam-

pler. Experimental tests on Careal were performed through parallel sampling by streaker sampler and STRAS

with a deposit area of 5x30 mm2 during test configuration, that corresponds to an estimated increase of a factor

of 1.1 in Careal on the filter. Samples were subsequently analysed by PIXE technique in order to obtain the

elemental concentrations (see e.g. [96] for more details about PIXE analysis). Results for samples collected

on NucleporeTM filters (i.e. aerosol fine fraction) and on PP foils (i.e. aerosol coarse fraction) are reported

in Fig. 4.4. Average experimental differences in Careal on NucleporeTM filters are fully consistent with the

ones theoretically estimated above (a factor of ' 1.1). Average experimental differences in Careal on the PP
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foil are around a factor of 2.6, but a theoretical value for comparison was not reported in this work due to

the above-mentioned difficulties in the definition and measurement of areas of the samples produced by the

impaction process.

Besides Careal, vf is also connected to the pressure drop and collection efficiency of the filter (see Sect. A.3

in the Appendix for more details), and these parameters were also investigated during STRAS development.
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Figure 4.4: Comparison between areal concentration of different elements on samples collected by parallel sampling

of STRAS and streaker. Left: Results for the fine fraction collected on NucleporeTM filter; right: Results for the

coarse fraction collected on the impaction stage (polypropilene foil). Measurements related to different elements are

characterised by different colors and symbols, as reported in the legend.

Filter collection efficiency

The pressure drop on NucleporeTM filters depends on pore size, and bigger pore diameters are generally as-

sociated to smaller pressure drops; this can be advantageous especially when a high sampling flow rate (e.g.

16.7 l min−1 in the STRAS configuration, instead of 1 l min−1 of the streaker sampler) is considered, but at

the same time larger pores are also related to smaller collection efficiencies. As STRAS flow rate claims for

NucleporeTM filters with larger pores compared to streaker, the efficiency of filters with pore diameters of 0.4

µm and 0.8 µm were compared as explained in the following. Calculations are based on the theory reported

in Sect. A.3 in the Appendix and results are presented in Fig. 4.5. The filters considered for STRAS were

characterised by the same parameters - with the exception of the pore size - as reported in Table 4.2).
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Figure 4.5: Partial and overall theoretical efficiencies for NucleporeTM filters with pore diameters of 0.4 µm and 0.8

µm.
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Table 4.2: Parameters used in the theoretical calculation of collection efficiencies of NucleporeTM filters. Air viscosity

and mean free path were calculated at a temperature of 296.15 K and a pressure of 101.3 kPa.

Filter porosity P 0.15

Filter thickness L 9 µm

Face velocity vf 309 cm s−1

Particle density ρp 2.2 g cm−3

Air viscosity η 1.83 ·10−4g cm−1s−1

Mean free path λ 0.067 µm

The minimum collection efficiency is at about the same particle radius for both types of filters (' 11 nm

and 15 nm for filters with pore diameters of 0.8 µm and 0.4 µm, respectively) but with different values: ' 56%

for filters with pore size of 0.8 µm, and 80% for the ones with pore size of 0.4 µm. Considering typical aerosol

mass size distributions for Milan urban area [165], the differences between the total aerosol mass collected

in the two cases were estimated; the estimate was performed multiplying the atmospheric aerosol mass size

distribution by the collection efficiency. The total PM2.5 mass collected on filters with pore diameters of 0.8

µm was estimated to be 1% smaller than the one collected on filters with pore diameters of 0.4 µm; calculations

were also performed for e.g. sulphur - an element with most of the mass typically in the fine fraction - and the

difference in the PM2.5 mass was negligible, i.e. around 2%.

A field test was also performed in the city of Florence (unfortunately typical aerosol mass size distributions were

not available for theoretical calculations) mounting the two different types of filters on two streaker samplers

(since two STRAS samplers were not available yet) and analysing the samples by PIXE technique to obtain

the elemental concentrations. The difference in PM2.5 mass collected by the two samplers for elements such as

S, K, Ca, Fe, Cu, and Zn was always in the range 10-30% (two examples are reported in Fig. 4.6). Therefore,

different collecton efficiencies do not seem to be dominant on the difference in concentration values, since the

range 10-30% is very similar to the one obtained in the past during parallel samplings performed by streaker

samplers [166]; in that case, discrepancies were likely related to slight differences in the construction parameters

of the different samplers, giving not negligible variations in the overall results. In the end, NucleporeTM filters

with pore diameters of 0.8 µm were chosen for the final configuration of STRAS, and they will be considered

in the following.
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Figure 4.6: Comparison between concentrations of sulphur (left) and iron (right) on samples collected by two parallel

streaker samplers (STR1 and STR2). STR1 was equipped with a NucleporeTM filter with pore diameters of 0.4 µm;

STR2 with a NucleporeTM filter with pore diameters of 0.8 µm. Note the lower limit of the axes in the graph on the left.

Pressure drop on filter

The dependence of pressure drop of NucleporeTM filters on different face velocities vf was experimentally

tested. Tests were performed using an impactor prototype set to operate at 1 m3h−1 (i.e. 16.7 l min−1) and

equipped with an EPA PM10 inlet, simulating STRAS impaction stages but suitable for aerosol sampling on 47

mm NucleporeTM filters. Different face velocities were obtained gradually decreasing the filter sampling area

through the use of aluminum masks with different diameters (some examples are reported in Fig. 4.7). Pressure

drop was measured by a sensor placed downstream the filter; experimental pressure drops are reported in Table

4.3.
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Area = 3.14 cm2

(diameter = 20 mm)
Area = 2.01 cm2

(diameter = 16 mm)
Area = 1.13 cm2

(diameter = 12 mm)

Figure 4.7: Different NucleporeTM filter sampling areas obtained through the use of aluminum masks with different

diameters.

Table 4.3: Experimental relation between face velocity and pressure drop on NucleporeTM filters.

Sampling area Average flow Face velocity Pressure drop

cm2 l min−1 cm s−1 kPa (cmHg)

3.14 16.7 89 20 (15)

2.01 16.7 138 32 (24)

1.20 16.7 232 45 (34)

1.13 16.7 246 53 (40)

0.90 16.7 309 60 (45)

Values in Table 4.3 are in agreement with literature ones available for NucleporeTM filters, as shown in Fig.

4.8 and considering filter characteristics reported in Table 4.4 [167]. For the face velocity reached inside STRAS

during normal sampling (vf ' 309 cm s−1), the pressure drop on filter is around 60 kPa: this parameter was

taken into account in the choice of the pump to be used for sampling. In the end, the dry vacuum pump Becker

VT 4.8 was considered as the best choice in terms of performance and manageability. The possibility to use

other types of filter producing lower pressure drops - and, at the same time, suitable for subsequent analyses

such e.g. PIXE - is currently under investigation.

Figure 4.8: Experimental relation between face velocity and pressure drop for different types of membrane filters.

Figure from [167].

72



Table 4.4: Parameters for NucleporeTMfilters reported in Fig. 4.8. Table adapted from [167].

Nominal pore diameter Pore density Porosity Thickness

µm pores cm−2 % µm

0.6 3 · 107 8.4 10

0.8 (this work) 3 · 107 15 9

1 2 · 107 15.6 10

3 2 · 106 14.1 10

5 4 · 105 7.8 10

8 1 · 107 5 10

4.2.2 Preliminary field tests

Figure 4.9: Experimental set-up for preliminary field tests of STRAS.

Preliminary field samplings were performed to test STRAS flow conditions (Fig. 4.9), and the target flow rate

of 16.7 l min−1 was reached during STRAS sampling. In order to verify the shape of the aerosol deposit on both

the impaction stage (aerosol coarse fraction) and the filter (aerosol fine fraction), some icing sugar (expected

in the coarse fraction) was resuspended and a cigarette was smoked near the sampler to produce fine aerosol.

Examples of obtained samples are reported in Fig. 4.10.

Figure 4.10: Samples produced during preliminary field tests of STRAS. On the left, samples produced on the polypropi-

lene foil of the impaction stage (aerosol coarse fraction); on the right, samples produced on NucleporeTM filter (aerosol

fine fraction).

4.2.3 Preliminary tests in the atmospheric simulation chamber ChAMBRe

The atmospheric simulation chamber ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research)

was exploited to resuspend particles with known size in order to perform a preliminary characterisation of
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Figure 4.11: Experimental set-up for the preliminary characterisation of STRAS cut-off diameter in 2019. A very

similar configuration was used in 2018 too.

STRAS cut-off diameter. ChAMBRe is installed at the National Institute of Nuclear Physics in Genoa (INFN-

Genoa) and developed in collaboration with the Environmental Physics Laboratory at the Physics Department

of the University of Genoa. The chamber is a node of the EUROCHAMP-2020 consortium since 2017; a

detailed description and characterisation can be found in [168]. Briefly, ChAMBRe is made of stainless steel,

with a total volume of about 2.2 m3; it was designed to work at atmospheric pressure, even if a composite

pumping system allows to reach a vacuum level of about 5 · 10−2 mbar in about 15 minutes. Aerosol injection

can be performed through nebulisation, and particles lifetime inside the chamber varies from about 2 to 10

hours depending on their dimensions. After chamber cleaning, the background particle concentration is not

significant (0.5 particle cm−3 as measured by an Optical Particle Counter - OPC). Aerosol samplers can be

easily connected through flanges and maintained in operation for times depending on their flow rate and the

needs of the particular experiment.

STRAS sampling line was connected to ChAMBRe, as shown in Fig. 4.11. SiO2 particles (density ρp:

2.65 g cm−3) with known size (Corpuscolar Inc.) were diluted in milliQ water and the solution was mixed by

centrifugation. Unfortunately, particles used for these tests were found to be contaminated with Al and organic

components likely resulting from the mechanical production process (see e.g. Fig. 4.14 and the discussion in

the following); contamination was so high in SiO2 particles with geometric diameter dgeo ≥ 2.5 µm making

impossible the conversion from certified geometric diameters into aerodynamic diameters, so that only particles

with dgeo from 0.2 µm to 2 µm, corresponding to 0.33 - 3.3 µm as aerodynamic diameters dae (since dae =

dgeo
√

ρp
ρ0

, where ρ0 is the unit density), are considered in this work. SiO2 particles were chosen for these tests

because Si concentration on both the polypropilene (PP) foil (i.e. the impaction stage) and the NucleporeTM

filter can be easily assessed by PIXE analysis (see e.g. [96] for details about this technique). Future tests

of STRAS cut-off diameter exploiting different techniques with different types of particles (e.g. analysing

polystirene particle fluorescence by optical microscope) are currently under investigation.

To check STRAS cut-off diameter, two tests were performed in 2018 and 2019 at different steps of STRAS

development; anyway, the configuration of the experimental set-up was similar (Fig. 4.11) and main differences

are outlined in the following.

Particles were injected in the chamber one size at a time, through a Blaustein Atomiser (BLAM, single-jet

model, CH Technologies) at about 2 l min−1 in 2018, and through a Collison nebuliser (CH Technologies) at

4-5 l min−1 in 2019; an OPC was used to monitor particle concentration inside the chamber. When particle

concentration was around 10 µg m−3 or higher (in order to collect enough mass to allow detection by PIXE,
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considering a maximum sampling time of about 30 minutes), STRAS started the sampling at a flow rate of 16.7

l min−1. Technical problems in the test performed in 2018 did not allow to reach the target flow rate of 16.7

l min−1, since STRAS development was still at a preliminary stage; the flow rate was between 12.4 l min−1

and 14.4 l min−1 (see Table 4.5), and this issue will be taken into account in data analysis presented in the

following.

After each sampling, the chamber was cleaned by making the vacuum, and STRAS impaction stage and filter

were rotated in order to perform the new sampling on clean support areas; this rotation was performed manually

in the test carried out in 2018, while in 2019 a motor placed inside the sampler allowed the automatic change

of sampling area. The entire procedure of injection, sampling, and cleaning was repeated for each particle size.

For the characterisation of particles deposited on both the filter and the impaction stage, two different analy-

ses were performed: PIXE (Particle Induced X-ray Emission) analysis at the LABEC-INFN in Sesto Fiorentino

(Florence) [96] and SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy) at the

Chemistry Department of the University of Genoa [169]. For each particle size, at least one sample devoted to

SEM-EDS analysis was collected by STRAS with sampling times of few minutes to avoid overloading of particle

concentration on the surface; opposite, a longer sampling time (about 30 min) was carried out to deal with

PIXE minimum detection limit.

The first step was the evaluation of the homogeneity of sample spots on the impaction stage (see Fig. 4.10 for

an example of particle deposit on the PP foil). Samples were irradiated in different points by PIXE technique,

and Si concentration level was stable; an example is reported in Fig. 4.12.
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Figure 4.12: Si concentration in different points of a sample collected on the impaction stage (polypropilene foil); A

and G are points outside the visible spot.

The experimental collection efficiency on the impaction stage was evaluated dividing the concentration of Si

obtained by PIXE technique on the PP foil (Siimp) by the total one collected on both the impaction stage and

the NucleporeTM filter (Sifilter):

Collection efficiency (%) =
Siimp

Siimp + Sifilter
· 100 (4.2)

Results of these preliminary tests are reported in Table 4.5 and in Fig. 4.13. Figure 4.13 shows also the

calculated STRAS cut-off diameter corresponding to a flow rate of 16.7 l min−1 instead of 14.2-14.4 l min−1.

This estimation was made according to the following equation (see Sect. A.2 in the Appendix for more details

about its derivation):

d50 =

√
9ηW

Uρ0Cc

√
Stk50 (4.3)

where d50 is the cut-off diameter; W is the nozzle width; U is the mean air velocity at the exit of the nozzle,

corresponding to Q
LW where Q is the volumetric flow through the nozzle and L is the second dimension (length)

of the nozzle; η indicates the fluid viscosity; Cc the slip correction factor; ρ0 the particle unit density;
√
Stk50

is set to 0.77 [3].

From these analyses, STRAS aerodynamic cut-off diameter was estimated to be around 2.8 µm for tests

done in 2018, and around 3.3 µm for the ones performed in 2019. Anyway, these results are still preliminary

since more tests with certified particle diameters larger than 2 µm should be performed in order to obtain a
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reliable collection efficiency curve. Since no commercial SiO2 particles with these characteristics are available,

and issues related to particle properties were highlighted especially by the SEM-EDS analysis (see the discussion

in the following), future tests will exploit different types of particles such as fluorescent polystirene particles,

and different techniques for their analysis e.g. optical microscopy. Unfortunately, these tests have been delayed

due to the long lock-down period caused by the COVID-19 pandemic.

Table 4.5: Preliminary results from the experimental tests on STRAS cut-off diameter carried out in 2018 and 2019.

In 2019, two samplings were performed for some particle diameters (equal to or bigger than dgeo = 0.7 µm); the average

is reported in Fig. 4.13. An uncertainty of about 10% is associated to each concentration value reported in this Table.

dgeom dae STRAS flow rate Siimp Sifilter Collection efficiency

µm µm l min−1 µg m−3 µg m−3 %

2018 0.6 1.0 13.0 1.6 110.2 1.4

0.8 1.3 13.4 1.4 86.1 1.6

1.0 1.6 12.4 1.8 99.4 1.8

1.5 2.4 14.4 11.4 38.6 23

2.0 3.3 14.2 18.2 11.3 62

2019 0.2 0.3 16.7 0.103 68.3 0.15

0.5 0.8 16.7 0.117 47.2 0.25

0.6 1.0 16.7 0.186 38.5 0.48

0.7 1.1 16.7 0.085 40.0 0.21

0.7 1.1 16.7 0.116 38.3 0.30

0.8 1.3 16.7 0.63 76.7 0.81

0.8 1.3 16.7 0.55 72.7 0.75

0.9 1.5 16.7 0.84 75.9 1.1

0.9 1.5 16.7 0.66 67.8 0.96

1.0 1.6 16.7 0.89 56.6 1.5

1.0 1.6 16.7 1.24 62.1 2.0

1.5 2.4 16.7 9.9 31.6 24

1.5 2.4 16.7 7.6 26.3 22

2.0 3.3 16.7 16.4 15.0 52

2.0 3.3 16.7 9.9 12.6 44
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Figure 4.13: Preliminary collection efficiency of STRAS calculated with Eq. (4.2) for tests performed in 2018 and

2019. Error bars represent the propagation of uncertainties due to PIXE analysis on the impaction stage and the filter.
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SEM-EDS analyses were performed only on samples collected during the tests in 2018 (analyses on samples

collected during tests in 2019 will be carried out as soon as possible). These analyses pointed out problems

likely related to the production phase of SiO2 particles, such as Al contaminations (confirmed also by PIXE

technique) and particles with notable differences as for size and composition respect to the ones declared by

the producer (see e.g. Fig. 4.14). Anyway, information complementary to the one obtained by PIXE analysis

could be derived in some cases. For example, the majority of SiO2 particles with declared dgeo = 1.0 µm

(dae = 1.6 µm) were collected on the NucleporeTM filter, in contrast to what happened for SiO2 particles with

declared dgeo = 2.0 µm (dae = 3.3 µm) that were mainly present on the PP foil. Images with examples of

measurements, and comparison between the NucleporeTM filter and the PP foil are reported in Fig. 4.15 and

Fig. 4.16, respectively.

As already said, these analyses are still preliminary and they highlighted the need to consider alterna-

tive methods for a complete characterisation of STRAS cut-off diameter, even if the latter was found to be

qualitatively around the expected values of 2-3 µm.

(A)

Al contamination

SiO2

(B)

Organic particle

Figure 4.14: Example of images obtained by SEM-EDS analysis on (A) a NucleporeTM filter and (B) a polypropilene

foil. The sample in (A) corresponds to the collection of SiO2 particles with declared dgeo = 0.8 µm (dae = 1.3 µm); actual

particle dimension is around 0.98 µm, and Al contamination is visible. The sample in (B) corresponds to the collection

of SiO2 particles with declared dgeo = 2.5 µm (dae = 4.1 µm); particles have a dgeo of 2.2 µm and are constituted of

organic material instead of Si.

(A) (B)

Figure 4.15: Example of images obtained by SEM-EDS analysis on a NucleporeTM filter for the sample corresponding

to the collection of SiO2 particles with declared dgeo = 1.0 µm (dae = 1.6 µm). (A) Particles appear to be collected

homogeneously on the NucleporeTM filter; (B) particles size is in agreement with the one declared by the producer.
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(A) (B)

Figure 4.16: Example of images obtained by SEM-EDS analysis on (A) a NucleporeTM filter and (B) a polypropilene

foil, for the sample corresponding to the collection of SiO2 particles with declared dgeo = 2.0 µm (dae = 3.3 µm). Note

that different scales are used for the two images, and the presence of the Apiezon coating on the polypropilene foil.
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Conclusions and perspectives

In this thesis, experimental and modelling approaches were developed and optimised in order to improve the

knowledge on atmospheric aerosol and its emission sources. Atmospheric aerosol causes adverse effects on human

health, impacts on environment, visibility, and climate; for these reasons, source identification and quantifica-

tion is mandatory to establish mitigation strategies on atmospheric aerosol concentration.

This thesis work provides contribution to the state of the art of atmospheric aerosol science and research,

through develpoment in both modelling and experimental methods. Major advancements addressed in this

PhD thesis are reported and briefly described hereafter:

• In the last few years, part of the aerosol science community has focused on the study of optical properties

of aerosol due to its crucial role in the Earth radiative budget and on visibility. Optical source apportion-

ment methods (e.g. the Aethalometer model) have been developed and implemented in order to retrieve

the contribution of different sources to the light absorption in the atmosphere; this piece of information

can be very useful for formulating strategies for pollution abatement in order to improve air quality and

face climate challenges. Assumptions at the basis of these modelling approaches, i.e. number of sources

(two) and values for source-specific absorption Ångström exponent (α) fixed by the modeller, limit their

applicability and cause large part of the uncertainty in the model results. On the other hand, at the state

of the art receptor modelling approaches - which are increasingly used in source apportionment studies -

are mostly based only on chemical composition data.

In this PhD thesis, an original approach was proposed in order to exploit aerosol light absorption proper-

ties in receptor models. Aerosol chemical composition data collected during 2016 in Milan were coupled

with the aerosol light absorption coefficient measured at different wavelengths, and used together as input

to receptor modelling. This approach was successfully applied to experimental data with different time

resolutions, exploiting the detailed chemical speciation at low time resolution and the temporal informa-

tion given by high time resolution samples as input to the multi-time resolution model. Results on the

light absorption characteristics of sources allowed to overcome the main issues related to the application of

the Aethalometer model, leading to: (1) a more robust identification of sources themselves, which in this

case are no more limited to only two sources (fossil fuels combustion and biomass burning); (2) estimation

of source-related α values and mass absorption cross sections at different wavelengths without any a priori

assumption. Besides the traditional source apportionment analysis, the impact of different sources on the

aerosol light absorption in the atmosphere was thus assessed, providing hints for abatement measures to

be implemented in the future. In particular, at the investigated site secondary compounds constituted the

highest contribution in terms of PM10 mass (52% on average), while the two factors identified as biomass

burning and traffic were found to be the most significant contributors to aerosol light absorption in the

atmosphere.

Furthermore, it is important to remark that the original approach here described can be used in source

apportionment studies using any suitable dataset, not necessarily with multi-time resolution; an applica-

tion to data collected with daily resolution is now under investigation in the frame of a collaboration with

the Air Quality research group of the Department of Engineering and Nuclear Science of the Instituto

Superior Técnico of Lisbon (Portugal).

• The assessment of the origin of secondary aerosol is an open issue for receptor modelling due to the un-

derlying hypotheses of the models. Secondary aerosol comprises both inorganic (SIA) and organic (SOA)

components; in particular, production mechanisms of SOA are not completely understood in compar-

ison e.g. to the formation of secondary sulphate and nitrate (stemming from gaseous precursors SO2
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and NOx). For Chemical Transport Models the estimation of organic aerosol (OA) and in particular

of SOA is still challenging since dynamic processes in which low-volatility material evaporates, oxidises,

and recondenses over time, are not fully understood yet thus limitating the modelling performances. In

the last decades, advancements in aerosol mass spectrometry techniques have given new insights on the

atmospheric OA fraction. Mass spectra have been exploited in receptor modelling and data collected at

a large number of sites showed that the Oxygenated Organic Aerosol (OOA) factor, which is generally

associated to secondary contributions in the literature, is dominant.

In this PhD work, a fully chemically characterised and high time resolved dataset was used to test an

original approach to data analysis (results obtained by ME-2 application) aiming at relating primary and

secondary OA contributions to their emission sources. Data were collected with high time resolution

during February 2017 in Rome, in the frame of the CARE (Carbonaceous Aerosol in Rome and Envi-

rons) international project. A complete chemical characterisation to assess inorganic and organic aerosol

contributions was carried out, and aerosol light absorption coefficients bap(λ) at seven wavelenghts in the

range 370-950 nm were retrieved by an Aethalometer AE33. Total OA concentration was measured by

an ACSM (Aerosol Chemical Speciation Monitor), apportioned by our ME-2 receptor model, and after-

wards compared with HOA (Hydrocarbon-like Organic Aerosol), BBOA (Biomass Burning-like Organic

Aerosol), and OOA concentrations obtained as results from an independent source apportionment study

previously performed. Additional information on OA contributions were thus obtained, e.g. indicating

that (1) the contribution of OA assigned by ME-2 to the traffic exhaust source was fully comparable to

HOA assessed by ACSM data analysis; (2) the OOA apportionment made on ACSM data likely includes

a secondary contribution due to biomass burning emissions corresponding to 43% of total OA, that is

dominant respect to the primary one (12%). It is important to remark that this result is of particular

interest for the receptor modelling community, since identification of emission sources of secondary aerosol

is still an open issue for this type of models.

In addition, the joint use of chemical and light absorption data allowed to perform a further test on the

approach previously described in a case-study impacted by episodic sources, such as e.g. a transport

of mineral dust that gave not negligible contribution to aerosol absorption in the atmosphere during a

short time interval (impacting on bap(λ) apportionment from 25% to 10%, decreasing with increasing

wavelength).

• Routine sampling of atmospheric aerosol on filters is carried out with a time resolution of 24 hours, in

order to collect enough material to perform full aerosol chemical characterisation. However aerosol emis-

sion, transformation, and removal processes are related to shorter time scales (∼hour); reducing sampling

duration was proved effective to improve the ability of receptor models to resolve sources, and allow the

identification of episodic sources that might not negligibly impact on a short time interval. The availabil-

ity of reliable and well characterised instrumentation has a crucial role for advancements in atmospheric

aerosol science, and high time resolution measurements are needed to study in detail properties of atmo-

spheric aerosol and its emission sources.

In this PhD thesis, a contribution to the development and characterisation of the new high time resolution

aerosol sampler STRAS (Size and Time Resolved Aerosol Sampler) was given in the frame of the INFN

(National Institute of Nuclear Physics) experiment TRACCIA (Time Resolved Aerosol Characterization

Challenging Improvements and Ambitions) in collaboration with other Italian research groups. Main

efforts of this PhD thesis concerned contributions to sampler design and experimental sampler characteri-

sation in the atmospheric simulation chamber ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol

Research). In order to investigate STRAS cut-off diameter, SiO2 particles with known size were injected

in ChAMBRe and sampled; then, PIXE (Particle Induced X-ray Emission) and SEM-EDS (Scanning

Electron Microscopy - Energy Dispersive X-Ray Spectroscopy) analyses were performed on collected sam-

ples to derive information about STRAS collection efficiency. Preliminary tests showed that the cut-off

diameter is qualitatively around the expected range of 2-3 µm.

In perspective, main contributions from this PhD thesis pave the way to fully explore the potential of receptor

models and to implement analyses able to integrate data which are usually considered separately. STRAS has

the chance to become a sampler of interest for the aerosol science community, replacing the streaker sampler

that has been used in many international campaigns.



Appendix A

A.1 Physical principles for size-segregated aerosol sampling

Equations for air motion can be derived from the application of the Newton’s second law to an incompressible

elementary air volume, and considering the continuity equation in order to ensure mass conservation. In this

way, the Navier-Stokes equations for incompressible fluids (i.e. with div ~u = 0) are obtained [164]:

ρ
D~u

Dt
= −grad p+ η∇2~u (A.1)

where ρ is the fluid density, ~u is the fluid velocity, p indicates the pressure, and η is the fluid viscosity. The

mathematical D-operator represents the material derivative. In Eq. (A.1), inertial forces (left side of the

equation) are balanced by pressure gradient forces and viscous shearing forces (first and second term on the

right side, respectively).

Fluid dynamic problems are solved considering dimensionless quantities through the introduction of variables

that are characteristic of the physical problem under investigation. For example, we can introduce the variables

U and L, that are the characteristic velocity and length of the problem here of interest, respectively; in the

study of the air flow in a nozzle, U and L represent the fluid velocity in the nozzle, and the nozzle dimension,

respectively. We can define the dimensionless quantities:

~u′ =
~u

U
; p′ =

p

ρU2
; t′ =

tU

L
; ~x′ =

~x

L
(A.2)

to be substituted in Eq. (A.1):

D~u′

Dt′
= −grad p′ + 1

Re
∇′2~u′ (A.3)

where Re represents the dimensionless Reynolds number, defined as:

Re =
ρUL

η
(A.4)

Re is one of the fundamental dimensionless numbers in fluid dynamics; it allows the evaluation of the flow

regime, since it is related to the ratio between inertial and viscous forces:

Re ≡ inertialforces

viscousforces
∝
ρu∂u∂x
η ∂

2u
∂x2

∝
ρU

2

L

η UL2

=
ρUL

η
(A.5)

Besides Re of the fluid flow, the Reynolds number can be also defined for the motion of a particle in a fluid

(see Fig. A.1): Rep = ρV d
η , where ρ is the fluid density, V is the relative velocity between the particle and the

fluid, d is the particle diameter, and η is the fluid viscosity. When Rep is lower than 1, the Stokes regime yields;

motion of atmospheric particles in the air is generally characterised by small Rep (see Tab. A.1), because of

small particle dimensions and low velocities [3] [5].
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Table A.1: Reynolds number for spherical particles falling in the air at their terminal velocities at T=298 K and p=1

atm. Table adapted from [5].

Diameter [µm] Rep

0.1 7 · 10−9

1 2.8 · 10−6

10 2.5 · 10−3

20 0.02

60 0.4

100 2

300 20

Figure A.1: Basic scheme of the flow around a sphere for different particle Reynolds numbers. (a) Rep = 0.1, laminar

flow; (b) Rep ' 2, turbolent flow; (c) Rep ' 250, turbolent flow. Figure from [3].

In the Stokes regime, the drag force on the particle can be approximated by the Stokes law:

Fdrag = 3πηV d (A.6)

where η is the fluid viscosity, V is the relative velocity between the particle and the fluid, and d is the particle

diameter. Equation (A.6) is obtained solving the Navier-Stokes equations assuming that inertial forces are

negligible compared to viscous forces; at Rep = 1, this assumption leads to a drag force predicted by the Stokes

law that is 13% lower than the real one. To account for terms related to viscosity, an empirical drag coefficient

can be taken into account in the equation (see [3] [5] for more details). Other approximations present in Eq.

(A.6) are that the fluid is incompressible, the particle is a rigid sphere, no other particles or obstacles are present

nearby, and the velocity of the fluid on the particle surface is zero. The latter assumption is not satisfied by

small particles with dimensions (d) comparable to the mean free path (λ) of the molecules of the fluid (Fig.

A.2); e.g. for air at T=298 K and p=1 atm, λ ' 0.065 µm [5] . The fundamental dimensionless number relating

particle dimensions and fluid mean free path is the Knudsen number:

Kn =
2λ

d
(A.7)

The Stokes law in Eq. (A.6) is valid in the limit Kn → 0, and it is not applicable to high Kn values; in the

latter case, the real drag force is smaller than the one predicted by the Stokes law. To account for this effect,

the slip correction Cunningham factor Cc(Kn) is introduced:

Fdrag =
3πηV d

Cc(Kn)
(A.8)

Cc(Kn) can be estimated through an empirical equation obtained by experimental measurements of slip [3]:

Cc = 1 +
Kn

2
[2.34 + 1.05 · exp(−0.39

2

Kn
)] (A.9)
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Figure A.2: Basic scheme of the interaction between the particle and the fluid in which it is suspended. (a) Kn→ 0,

continuum regime; (b) Kn→∞, free molecule (kinetic) regime; (c) Kn ' 1, Transition regime. Figure from [5].

Examples of slip correction factor calculations are reported in Table A.2.

Table A.2: Slip correction factor Cc for spherical particles in air at T=298 K and p=1 atm. Table adapted from [5].

Diameter [µm] Cc

0.001 216

0.002 108

0.005 43.6

0.01 22.2

0.02 11.4

0.05 4.95

0.1 2.85

0.2 1.865

0.5 1.326

1.0 1.164

2.0 1.082

5.0 1.032

10.0 1.016

20.0 1.008

50.0 1.003

100.0 1.0016

The drag force has to be considered in the equation for the motion of a particle in a fluid; in three dimensions:

m
d~V (t)

dt
= ~Fext + ~Fdrag (A.10)

where ~V (t) is the three-dimensional relative velocity between the particle and the fluid as a function of time, m

is the particle mass, and ~Fext is the resulting from external forces. If the only external force is the gravity force
~Fg and we assume that it has the same direction of ~Fdrag, the problem can be treated as an unidimensional

one. In this case, Eq. (A.10) in the Stokes regime can be written as:

m
dV

dt
= Fg − Fdrag = mg − 3πηV d

Cc
(A.11)

where g is the acceleration of gravity. Dividing Eq. (A.11) by m, that can be expressed as the product of

particle density ρp and volume (m = ρp · 43π(d2 )3), the equation becomes:

dV

dt
+
V (t)

τ
− g = 0 (A.12)
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where τ =
ρpd

2Cc

18η (or τ =
ρ0d

2
aeCc

18η if the aerodynamic diameter dae is considered in place of d) has the units of

a time. Solution to Eq. (A.12) (with the initial condition V (0) = 0) is:

V (t) = τg[1− exp(− t
τ

)] (A.13)

For t → ∞ particle velocity reaches its limit value, called terminal velocity; τ is called relaxation time. From

an experimental point of view, particles reach their terminal velocities when t ' 3τ as it corresponds to 95%

of its velocity limit value. This time interval is very short: at T=298 K and p=1 atm, it is less than 1 ms for

particles with an aerodynamic diameter dae < 10 µm.

Equation (A.10) can be also solved considering ~Fext as negligible, and V (0) = V0. The solution in this case

is:

V (t) = V0 exp(−
t

τ
) (A.14)

and can be integrated over time to obtain x(t); the limit of x(t) for t → ∞ gives the stopping distance S =

V0 τ . This quantity is important to study the motion of particles in curved flow streamlines, e.g. when the

flow encounters an obstacle. After calculation of the fluid flow near the obstacle, particle trajectories can be

determined (it is noteworthy that only very simple geometries can be resolved analitically). To study this type

of problems, the dimensionless Stokes number is introduced: it is defined as the ratio between the stopping

distance S and a dimension that is characteristic of the obstacle Dobs:

Stk =
S

Dobs
=

V0τ

Dobs
=
V0ρ0d

2
aeCc

18ηDobs
(A.15)

As can be seen from Eq. (A.15), Stk represents the ratio of the particle relaxation time over the time Dobs

V0

necessary to overcome the obstacle. Particles characterised by Stk >> 1 will continue their rectilinear motion;

opposite, if Stk << 1 the particle will follow flow streamlines (Fig. A.3).

The Stokes number is a fundamental parameter to characterise aerosol samplers that exploit the phenomenon

of inertial impact to collect particles; these samplers can be also called inertial classifiers or impactors.

Figure A.3: Basic scheme of the effect of the Stokes number (Stk) on particle trajectories in the fluid flow. Figure from

[164].

A.2 Inertial classifiers

The basic scheme of inertial classifiers (or impactors, in the following) consists in a nozzle to accelerate particles,

and in an impaction stage on which - theoretically - all particles having an aerodynamic diameter larger than

a threshold value are collected. Multistage impactors are constituted by more than one impaction stage in

sequence.

From an experimental point of view, the typical dependance of particle collection efficiency on particle aerody-

namic diameter (dae) is shown in Fig. A.4; sometimes,
√
Stk is equivalently used instead of dae (since they are

related according to Eq. (A.15)). For the characterisation of inertial classifiers, it is important to define the

characteristic dimension Dobs (see Eq. (A.15)), that is related in this case to nozzle characteristics. Nozzles can
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Figure A.4: Typical particles collection efficiency curve. Figure adapted from [3].

be circular or rectangular; Dobs is represented by the nozzle radius and the nozzle halfwidth for round impactors

and rectangular impactors, respectively [158]. Equation (A.15) can be written as:

Stk =
Uρ0d

2
aeCc

9ηW
(A.1)

where W = 2 · Dobs; U is the mean air velocity at the exit of the nozzle, corresponding to Q
π(W

2 )2
for round

impactors, and to Q
LW for rectangular impactors where Q is the volumetric flow through the nozzle and L is

the second dimension (length) of the rectangular impactor. η indicates the fluid viscosity, Cc the slip correction

factor (see the empirical definition in Eq. (A.9)), dae the particle aerodynamic diameter, and ρ0 the particle

unit density.

d50 (also called ECD, i.e. effective cut-off diameter) is the impactor cut-off diameter, defined as the value of

dae for which particles are collected with an efficiency of 50% on the impaction stage (e.g. d50 = 2 µm in Fig.

A.4). The critical parameter
√
Stk50 is the value of

√
Stk corresponding to d50 (e.g.

√
Stk50 = 0.49 in Fig.

A.4); for impactors meeting recommended design criteria (see afterwards for more details), literature values for

this parameter are 0.49 and 0.77 for round and rectangular impactors, respectively [3]. Starting from Eq. (A.1),

the relation between d50 and
√
Stk50 can be made explicit:

d50 =

√
9ηW

Uρ0Cc

√
Stk50 (A.2)

Inertial impactors have been extensively studied from both a theoretical and an experimental point of view, with

comparable results [158]. Construction parameters of impactors must satisfy specific design criteria, obtained in

the literature through numerical solutions of the Navier-Stokes equations for the determination of the flow field,

and subsequent numerical integration of particle trajectories. The use of theoretical guidelines has led to the

construction of impactors that present experimental collection efficiency curves very close to ideality. Design

criteria are discussed in the following, and resumed in Table A.3. The most important parameters for the sizing

of inertial classifiers are (see Fig. A.5):

• the ratio between the nozzle throat length (T ) and the nozzle dimension (W ): T
W ;

• the ratio between the jet-to-plate distance (S ) and the nozzle dimension (W ): S
W ;

• the Reynolds number of the flow Rejet, defined as ρUW
η for round impactors and 2ρUW

η for rectangular

impactors (with ρ representing the air density) [159].

Moreover, for rectangular impactors:

• the ratio between the length of the nozzle (L) and the nozzle width (W ): L
W
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Figure A.5: Crucial dimensional parameters of inertial classifiers. Figure from [164].

T
W ratio has a small influence on cut-off characteristics, especially when the impactor presents a tapered or

conical inlet section, as shown in Fig. A.5. In this case, particles have enough time to adjust their motion to the

fluid velocity in the nozzle throat, and particle losses due to sharp inlet entrance can be minimised. Moreover,
T
W ratio must be small enough in order to avoid the development of a parabolic velocity profile in the flow at

the exit of the nozzle. The general criterion is T
W ≥ 1 [159] and T

W < 5; in the literature, the conservative

suggested range is 1 < T
W < 2 [164].

Small variations in the S
W ratio might impact on the

√
Stk50 value, as can be noted from Fig. A.6.

√
Stk50

values are quite constant for S
W > 0.5 and S

W > 1 for round and rectangular impactors, respectively; for values

outside this range, small variations in the S
W ratio cause significant variations in

√
Stk50 (and consequently in

d50, see Eq. (A.2)). Therefore, suggested conservative values are S
W > 1 and S

W > 1.5 for round and rectangular

impactors, respectively. The upper limit of the S
W ratio is not clear, but values as high as 10 can be found in

the literature.

The value of Rejet has an influence especially in the sharpness of the collection efficiency curve (Fig. A.7).

In order to have negligible impact on
√
Stk50 values, the range suggested in the literature for Rejet is 500-3000

for both round and rectangular impactors.

Finally, for rectangular impactors L
W ≥ 10 is suggested [164].

Table A.3: Literature guidelines on construction parameters for impactor design.

Impactor S/W T/W L/W Rejet

round >1 1-2 300-5000

rectangular >1.5 1-2 ≥ 10 300-5000

Figure A.6: Example of theoretical impactor efficiency curves for rectangular and round impactors showing the effect

of S/W ratio. Figure from [158].
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Figure A.7: Example of theoretical impactor efficiency curves for rectangular and round impactors showing the effect

of the parameter Rejet. Figure from [158].

A.3 Physical principles of aerosol filtration: collection efficiency

Streaker sampler and STRAS exploit aerosol filtration to collect particles that do not previously deposit on an

impaction stage. Filter types can be divided in depth filters (e.g. quartz fibre filters) and membrane filters such

as NucleporeTM (see e.g. [170] for more detailed information about filters); the latters are considered in this

work.

The theory of particle collection efficiency of NucleporeTM filters was developed in the 1960-1970s ([160]

[161] [171] [172] and references therein). This type of filters can be parametrised through a physical model

for which filters are constituted by parallel capillaries; in this way, filter parameters (pore size, filter thickness,

and porosity i.e. ratio of open space over the total filter volume), particle parameters (size and density), and

filtration conditions (e.g. the air face velocity on the filter) can be used for the calculation of particle collection

efficiency. Particle collection by NucleporeTM filters can be described as the combination of different processes:

(1) inertial impact on the filter surface, (2) interception at the pore opening, (3) Brownian diffusion to the pore

walls, and (4) Brownian diffusion to the filter surface [162]. For very low Reynolds number (this is not the case

of STRAS configuration), impaction and interception can be modellised together [171]. In the following, all

equations are based on the more recent work of Ogura et al. [163], where slight modifications to the 1960-1970s

theory were introduced in order to take into account the Cunningham slip correction factor (Cc, see Eq. (A.9)).

The collection efficiency due to impaction (EI) can be calculated as:

EI =
2εi

1 + ζ
− (

εi
1 + ζ

)2, where εi = 2Stk
√
ζ + 2Stk2ζexp(− 1

Stk
√
ζ

)− 2Stk2ζ (A.1)

ζ =

√
P

1−
√
P

Stk =
2ρpr

2
pvfCc

9ηr0

Stk is the Stokes number, P is the filter porosity, ρp is the particle density, rp is the particle radius, vf is

the air face velocity on the filter, η is the fluid viscosity, and r0 is the pore radius (which is considered as the

characteristic dimension for the problem under investigation).

The collection efficiency due to interception (ER) can be obtained as:

ER =
4N2

R

1 + 4NG
(1 + 2

NG
NR

), with NR =Nr(1−
Nr
2

) (A.2)

NG =Ng(1 +
Ng
2

)

Nr ≤1

where Nr = rp/r0, Ng is the slip parameter defined as Ng = 1.126 · λ/r0, where λ is the air mean free path.

When Nr > 1, ER is equal to 1.
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The collection efficiency due to diffusion to the pore walls (EW ) can be calculated as:

EW =2.56N
2/3
D − 1.2ND − 0.177N

4/3
D , with ND < 0.01, or (A.3)

EW =1− 0.81904 · exp(−3.6568ND)− 0.09752 · exp(−22.3045ND)

− 0.03248 · exp(−56.95ND)− 0.0157 · exp(−107.6ND), with ND > 0.01

ND is the coefficient of diffusive collection ND =
LDpP

r20vf
, where L is the filter thickness, Dp is the particle

diffusion coefficient, and the other quantities have been already defined above.

The collection efficiency due to diffusion to the filter surface (EDS) can be retrieved as:

EDS = 1− exp{ −α1D
2/3
n

1 + (α1/α2)D
7/15
n

}, with α1 = 4.57− 6.46P + 4.59P 2 (A.4)

α2 = 4.5

Dn is the normalised particle diffusion coefficient
Dp

D0vf
, where D0 is the hypothetical radius of the cylindrical flow

approaching a pore that is introduced for modelling purposes (see Fig. A.8); D0 is related to the filter porosity

since P = (
πr20
πD2

0
). The fitting parameters α1 and α2 in Eq. (A.4) are valid within the limits 0.05 ≤ P ≤ 0.64

(that is the case of NucleporeTM filters that will be likely used in STRAS).

The overall collection efficiency is:

EO = 1− (1− EI)(1− ER)(1− EW )(1− EDS) (A.5)

Figure A.8: Basic scheme of the axisymmetric cylindrical flow approaching a pore of NucleporeTM filter. D0 represents

the flow radius, r0 the pore radius, and V0 the face velocity. Figure modified from [163].
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