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1 Introduction

In recent years, mathematical results in homogenous space dynamics have been leading to
striking results in number theory, (see for example [22–24]). In a series of papers [1–5], we
have proved that fruitful interactions arise also between homogenous space dynamics and
string theory. This research lines lead to results both in string theory [1, 2, 4], and in the
mathematics of the automorphic forms and of unipotent flows in homogenous spaces [3, 5].

In a well known paper, Kutasov and Seiberg [32] have shown that in backgrounds with
no tachyons, closed string spectra exhibit a global UV asymptotic Fermi-Bose degeneracy.
They dubbed this global cancelation among bosonic and fermionic degrees of freedom
as Asymptotic Supersymmetry. This UV property of closed string spectra is related by
modularity to infrared finiteness of the one-loop amplitude. At genus one level, it indicates
allowed deviations from supersymmetry on a stable vacuum. It was remarked in [2] that this
UV property of (one-loop) stable closed string vacua is related to mathematical theorems
on uniform distribution of long horocycles in the modular surface SLSLSL(2,Z)\SLSLSL(2,R).

It is the purpose of this paper to extend the original one-loop (genus one) analysis
of [32] to all genera in closed string perturbation theory. We achieve this goal by using
certain mathematical theorems on the dynamics of multidimensional unipotent flows, we
have recently obtained in [5]. Once applied to genus g closed string amplitudes, those
results translate into relatively simple operations at a diagrammatic level. They correspond
to suitable cuts of a Riemann surface handle(s). This allows to rewrite a genus g vacuum
amplitude with g handles as a sum of genus (g − 1) two-point functions. Uniformization
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results in [5] instruct to sum over all physical string states flowing through the (g − 1)
amplitude two-external legs, (figure 8). The sum over physical states is regulated by an
ultraviolet cutoff Λ, and uniform distribution theorem, (Theorem 2 in [5]), ensures that
the original vacuum amplitude is recovered in the Λ→∞ limit. Moreover, for large Λ one
has that the error term is under control [5]. Interestingly, the error estimate is intimately
related to the non trivial zeros of the Riemann zeta function, and a result for this quantity
would prove or disprove the Riemann hypothesis [4, 5].

In [5] was proved, (Theorem 1), that the unipotent average of the string integrand au-
tomorphic function is a modular invariant function under the genus (g−1) modular group.
This is a crucial property, in order to be able to apply iteratively the uniform distribution
theorem. In a diagrammatic language this corresponds to cutting handles in a closed string
vacuum amplitude, and transmute each handle into a pair of external legs. In this way, one
is able to reduce a genus g vacuum amplitude into a sum over tree-level amplitudes with 2g
external legs, (see again figure 8). Infrared finiteness of the genus g vacuum amplitude is
then translated in constraints involving ultraviolet cancelations among 2g-point tree level
amplitudes. This is the way closed strings can elude SUSY on stable vacua. In a sense our
results provide the completion at all genera of the condition of Asymptotic Supersymmetry,
obtained at one-loop level in [32], (see also [11] for related work).

2 Genus one: uniform distribution of long horocycles viz cutting the

torus handle

The one-loop torus amplitude is given by the following modular integral

A1 =
∫
D1

dwdv v−
d
2
−1Str

(
e2πiw(L0−L̄0)e−πv(L0+L̄0)

)
, (2.1)

where τ = w + iv, is the worldsheet torus modulus, w ∈ R, v > 0. As we shall see, this
notation for the real and imaginary parts of τ reflects Iwasawa coordinatization of the
genus g = 1 upper complex plane H1. In (2.1) d is the number of non compact space-time
directions, the supertrace assigns a minus sign to fermionic closed string states, L0 and L̄0

are the zero modes of the Virasoro operators, and the integral is performed on a modular
domain D1 ∼ SL(2,Z)\H1, with H1 the upper complex plane.

On the subregion of D1, where v > 1, (see figure 1), the w coordinate is integrated
mod(1). This integration enforces the physical condition of level matching (L0−L̄0)|Φ〉 = 0,
which selects closed string physical states. The one-loop torus vacuum amplitude A1 in the
representation given in (2.1) receives contributions from non physical closed string states,
from the integration subregion where

√
3/2 < v < 1, (the shaded region in figure 1). Since

the integration region D1 does not touch the H1 boundary v → 0, the UV physical region
is not probed, and the vacuum amplitude is free from ultraviolet problems.

However, there is an alternative representation for the genus one vacuum amplitude
A1, which allows to probe the ultraviolet properties of the closed string spectrum. In this
representation, one can check that A1 receives contribution only from physical states. This
alternative description [2] follows by using ergodic properties of the horocycle flow [21,
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Figure 1. The torus modular surface in the upper complex plane. On the shaded integration
region below v = 1, non-physical closed string states do contribute to the one-loop vacuum energy.

25, 31], (figure 2). Ergodicity of the horocycle flow states that the modular image of the
horocycle Hα = R+ iα ⊂ H1, in the α→ 0 limit covers uniformly the modular domain D1.
This implies that for a continuous bounded modular function f = f(w, v) its horocycle
average 〈f〉Hα for α→ 0 tends to its average on the modular region 〈f〉D1

lim
α→0
〈f〉Hα = lim

v→0

∫ 1

0
dwf(w, v) =

1
V ol(D1)

∫
D1

dwdv v−2 f(w, v) = 〈f〉D1 , (2.2)

where V ol(D1) = π/3. Notice, that the l.h.s. is indeed the f average along Hv computed
with the H1 hyperbolic metric ds2 = v−2(dw2 + dv2).1

By applying the uniform distribution result (2.2) to the genus one torus amplitude
A1 (2.1), one finds

A1 = V ol(D1) lim
v→0

v1−d/2Str

(
e−πv(L0+L̄0)

∫
mod(1)

dw e2πiw(L0−L̄0)

)
. (2.3)

This latter quantity has an enumerative meaning related to the towers of massive closed
string excitations. In terms of effective numbers of closed string states reads

A1 = V ol(D1) lim
v→0

v1−d/2
∑
|Φ〉

(−)FΦd(Φ)e−πvm
2
Φ , (2.4)

1Equation (2.2) holds for every continuous bounded modular function f , however, in string theory, in

the absence of tachyons, generically one has to deal with modular functions of polynomial growth at infinity

(type II theories), or of exponential growth at infinity (Heterotic theories). In this latter case, the modular

invariant integrand function contains terms of exponential growth for v → ∞, which are removed by w

integration mod (1). This terms are dubbed as unphysical tachyons [32], since they correspond to tachyonic

states in the supertrace (2.1) that do not respect level matching. In the type II case, eq. (2.2) is proved to

hold [1, 3, 42], while in the heterotic case eq. (2.2) is expected to hold [1, 3] on physical grounds, although

this has not been actually proved, (see [3] for a discussion and some related mathematical results on this

problem).
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Figure 2. Modular images of horocycles of increasing length. In the upper complex plane the
horizontal line Hα := R + iα is called a horocycle, since it can be thought as a circle tangent to
infinity. Hα is modularly equivalent to a (infinite countable) family of circles, all tangent to the
real axis in rational points. It is interesting to map Hα in the standard fundamental domain and
observe the behavior of its modular image in the α → 0 limit. Due to the subgroup Γ∞ of the
modular group SL(2,Z) given by integral translations along the real axis, it is enough to map in the
modular domain the segment Γ∞\Hα = [−1/2, 1/2) + iα, with hyperbolic length 1/α. We refer to
this latter quantity as the length of the horocycle Hα. What happens to the modular image in the
standard modular domain of the horocycle in the increasing length limit α→ 0 can be observed in
figure. Left: modular image of the line y = 1

8 . Center: modular image of the line y = 1
100 . Right:

modular image of the line y = 1
400 . In all cases the modular domain is truncated up to a y ≤ 10.

The modular image of a line y = α tends to become dense in the modular domain as the horizontal
line gets close to the real axis, (α→ 0 limit). Indeed, in the α→ 0 limit the modular image of the
horocycle y = α tends to uniformly cover the modular domain [31].

where the sum is restricted to closed string physical states |Φ〉, (L0−L̄0)|Φ〉 = 0. Fermionic
states are counted with a minus sign, and d(Φ) is the number of physical polarizations of
|Φ〉 of mass mΦ. At a diagrammatical level, the above form suggests that one can cut the
torus handle, and obtain an equivalent representation of the genus one vacuum amplitude
as a sum of tree level two-points amplitudes restricted to physical closed string states, (this
is illustrated in figure 3).
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Figure 3. The uniform distribution theorem applied to the one-loop vacuum amplitude (on the
left), gives an ultraviolet representation for this vacuum amplitude in terms of a sum over physical
states of tree level (sphere) two-points amplitudes. Diagrammatically this relation prescribes to cut
the torus handle thus creating a sphere with two marking points. Uniform distribution theorem
instructs to sum over physical closed string states through the two marked points.

One-loop vacuum stability, (absence of closed string tachyons), corresponds to the
finiteness of the vacuum amplitude A1. This implies via eq. (2.4) a constraint on the allowed
deviation from supersymmetry of one-loop stable closed string vacua. Convergence of the
series of tree-level two-point functions in (2.4) requires an overall Fermi-Bose degeneracy
of the string spectrum. Let us notice the role of the v > 0 coordinate, (the imaginary
part of the torus modulus τ), as a ultraviolet cutoff Λuv = 1/v for the mass of the states
contributing to eq. (2.4). Equality in eq. (2.4) holds in the ultraviolet limit v → 0, however
one can also consider this relation for small v > 0. It turns out that the error term is under
control, and it goes to zero polynomially in the v → 0 limit. A remarkable fact is that the
vanishing rate in the error estimate is intimately connected to the Riemann hypothesis.
This was discovered for modular functions f = f(w, v) of rapid decay by Zagier [41]:∫ 1

0
dwf(w, v) ∼ 1

V ol(D1)

∫
D
dwdv v−2 f(w, v) +O(v1−Θ

2 ) v → 0, (2.5)

where Θ is the superior of the real part of the non trivial zeros of the Riemann zeta
function, (Θ = 1

2 if and only if the Riemann hypothesis is true, while so far one can prove
that 1

2 ≤ Θ < 1). The asymptotic (2.5) implies that an independent result on the error
term would prove (or disprove) the Riemann hypothesis. The above relation has been
proved to hold also for modular functions of polynomial growth for v → ∞, appearing in
type II string theory [1, 3]. Eq. (2.5) is expected to hold also from certain arguments in
heterotic strings [1, 3], although it is an open challenge to prove it in this latter case [3].

In one-loop vacua, above considerations lead to an interesting relation between ultra-
violet behavior of closed string spectra and the Riemann hypothesis [1]. This is given by
the following asymptotic:

Λd/2−1
uv

∑
|Φ〉

(−)FΦd(Φ)e−πm
2
Φ/Λ

2
uv ∼ A1

V ol(D1)
+O(ΛΘ−1

uv ) Λuv →∞,
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which implies that differences between bosonic and fermionic degrees of freedom oscillate
with the frequencies given by imaginary parts of the non trivial zeros of the Riemann zeta
function [1]. Moreover, asymptotic supersymmetry is maximal if and only if the Riemann
hypothesis is true [1].

It is now worth to explain the Iwasawa decomposition origin of the two coordinates
w and v in τ = w + iv. The upper complex plane H1 is isomorphic to the Lie coset

H1 ∼ Sp(2,R)/SO(2,R). Given a matrix

(
a b

c d

)
in this coset, the bijective map is given by

τ = (ai+ b)(ci+ d)−1. (2.6)

The Iwasawa decomposition allows to write a symplectic matrix g ∈ Sp(2,R) as

g =

(
1 w
0 1

)(
v1/2 0

0 v−1/2

)(
cosϑ sinϑ
− sinϑ cosϑ

)
w ∈ R, v > 0, ϑmod(2π), (2.7)

From the isomorphism H1 ∼ Sp(2,R)/SO(2,R) given by the map in (2.6), one thus
finds τ = w + iv. Therefore, the horocycle flow along the w coordinate uplifted in the ho-
mogenous space Sp(2,R)/SO(2,R) is generated by unipotent elements, given by the upper
triangular matrix of the Iwasawa decomposition (2.7). On the other hand, v corresponds
to the coordinate of the abelian part in the Iwasawa decomposition (2.7).

3 Genus two: uniformization of unipotent flows viz cutting the ampli-

tude handle(s)

In this section we illustrate in some details the genus g = 2 case, while higher genera are
discussed in the next sections. The moduli space of genus-two compact Riemann surfaces
M2 is isomorphic to Sp(4,Z)\H2. H2 is the genus two Siegel half space, given by complex
symmetric two by two matrices τ , with positive definite imaginary part. H2 is isomorphic
to Sp(4,R)/(SO(4,R) ∩ Sp(4,R)), the symplectic matrices over the orthosymplectic ones.

By Iwasawa decomposition, each element m of the above coset can be written as
m = UA, where U is a unipotent matrix and A is a abelian matrix, (we refer to our
works [4, 5] for notations and proofs [5] used throughout the rest of this paper).

One finds for the genus-two period matrix τ(2)

τ(2) =

(
w1 + i(v1 + u2v2) w2 + iuv2

w2 + iuv2 w3 + iv2

)
. (3.1)

Thus a genus-two Riemann surface degenerates into two genus-one Riemann surfaces
when both the off-diagonal unipotent moduli u and w2 go to zero, (figure 4)

τ(2) =

(
w1 + i(v1 + u2v2) w2 + iuv2

w2 + iuv2 w3 + iv2

)
→

(
w1 + iv1 0

0 w3 + iv2

)
=

(
τ1 0
0 τ3

)
. (3.2)
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Figure 4. In the Iwasawa parametrization of the genus two Siegel half-space H2, the degenerating
limit is realized by sending to zero off-diagonal unipotent moduli [5].

Figure 5. Uniformization theorem, (Theorem 2 in [5]), allows to cut an handle of a genus-two
vacuum amplitude, with the prescription of summing over physical states flowing through the two
marked points.

A genus-two closed string amplitude is given by a modular integral

A2 =
∫
D2

dµ2 f2(τ(2)),

with D2 ∼ Sp(4,Z)\H2 is a fundamental region of the genus-two modular group Γ2 ∼
Sp(4,Z). Uniform distribution theorem, (Theorem 2 in [5]), allows to rewrite the genus-
two modular integral as the integral over the corank-one component of the H2 boundary
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Figure 6. By applying twice the uniform distribution theorem for unipotent flows, one can write
the genus two vacuum amplitude as a sum of three level four points amplitudes. This implies that
on a stable vacuum, two-loop infrared finiteness is translated into a constraint on the asymptotic
ultraviolet behavior of tree-level four-points closed string amplitudes.

of the following f2 unipotent average

A2 =
V ol(D2)
2V ol(D1)

lim
v1→0

∫
D1

dµ1

∫
mod(1)

dw1

∫
dw2 duf2(τ(2)). (3.3)

On the other hand, Theorem 1 in [5], ensures the following unipotent average function,
defined on H1 × R>0

f1(τ3, v1) =
∫
mod(1)

dw1

∫
dw2 duf2, (3.4)

to be invariant under SL(2,Z) modular transformations on τ3

τ(2) =

(
τ1 τ2

τ2 τ3

)
, τ1 ∈ H1, τ3 ∈ H1.

From the degenerate limit (3.2), and the discussion on the genus-one case in sec-
tion 2, one sees that integration mod(1) along the coordinate w1 together with the limit
v1 → 0 in (3.3), diagrammatically correspond to the situation displayed in figure 5. This
unipotent flow representation corresponds to cutting one handle of the genus-two vacuum
amplitude and replacing it by two external legs, (figure 5). This operation generates a
genus-one amplitude with two external legs. Uniformization theorem [5] gives prescription
of summing over all physical external states |Φ〉. Therefore, infrared finiteness at genus-two
order, |A2| < ∞, through eq. (3.3) corresponds to finiteness of the one-loop correction to
the asymptotic Fermi-Bose degeneracy condition, described in section 2. Thus, we have
shown that ergodicity results of unipotent flows [5] lead to the one-loop correction to the
asymptotic supersymmetry constraint, obtained in [32].

However, there is another incarnation of the genus-two vacuum amplitude, in terms
of a sum of tree-level four-point functions, (figure 6). This is obtained by applying the
uniformization theorem for unipotent flows on the SL(2,Z)-invariant function f1 in eq. (3.4):

A2 =
V ol(D2)

2
lim
v1→0

lim
v2→0

∫
mod(1)

dw3

∫
mod(1)

dw1

∫
dw2duf2(τ(2)). (3.5)
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Diagrammatically, eq. (3.5) corresponds to transmute the original genu-two vacuum
amplitude in a double sum of tree level four-point functions, extended to physical closed
string states, (figure 6). Level matching for external states flowing in the external legs
follow by integration mod(1), along the diagonal unipotent coordinates w1 and w3 in the
period matrix (3.1). On the other hand, abelian coordinates v1 and v2 act as ultraviolet
cutoffs for the masses of the external states.

One can also write an asymptotic expression for A2 when v1 and v2 are both small.
As in the genus one case described in section 2, the error term turns out to be remarkably
connected to the Riemann hypothesis [4, 5]:

A2∼v1→0
v2→0

V ol(D2)
2

∫
mod(1)

dw3

∫
mod(1)

dw1

∫
dw2duf2(τ(2)) +O(v

2−Θ
2

1 ) +O(v
1−Θ

2
2 ).

Θ is the superior of the real part of the non trivial zeros of the Riemann zeta function,
(Θ = 1/2 if and only if the Riemann hypothesis is true).

4 Uniformizations for closed amplitudes at genus g = 1, 2, 3, and moduli

of punctured Riemann surfaces.

Uniformization results [5] concern integrals of automorphic forms on the moduli space of
genus g principally polarized abelian varieties (ppav) Ag. Every point in Ag describes a
g-dimensional torus which can be embedded in a projective space (abelian variety), with
principal polarization. The moduli space of genus g compact Riemann surfaces Mg is
isomorphic to Ag for g = 1, 2, 3, while for genus g ≥ 4, Mg is a subvariety fully contained
in Ag of (complex) codimension dim(Ag)− dim(Mg) = 1

2(g − 2)(g − 3).
Uniformization results for modular integrals of automorphic forms on Ag [5], when

applied to closed string vacuum amplitudes connect a genus g vacuum amplitude to sums
of lower genera scattering amplitudes. Diagrammatically, one transmutes a handle in
the Riemann surface into a pair of marked points. For each cut handle, the amplitude
genus g is lowered by a unit, while two external legs are added to the amplitude. For the
moduli space of genus g compact Riemann surfaces with n marked points Mg,n, one has
dim(M0,n) = n − 3 (Riemann sphere with n marked points), dim(M1,n) = n (torus with
n marked points), dim(Mg,n) = 3g − 3 + n, g ≥ 2.

For the genus one-amplitude (torus) discussed in section 2, the uniform distribution
of long horocycles theorem reduces this amplitude in a sum of sphere amplitudes with two
marked points, (figure 3). In the original torus modulus τ = w + iv, integration mod(1)
of the unipotent Iwasawa coordinate w forces level matching for the external closed string
states flowing through the two marked points. The abelian Iwasawa coordinate v provides a
UV cutoff Λ = 1/v for their masses. There are no extra moduli besides w and v, consistently
with the absence of moduli for Riemann spheres with two marked points, dim(M0,2) = 0.

For the genus-two vacuum amplitude discussed in section 3, uniformization results [5]
give two representations. One is given as a sum of genus-one amplitudes with two marked
points, (figure 5), while the other one is given in terms of a sum of genus-zero amplitudes
with four marked points, (figure 6). The first case is displayed in eq. (3.3), with integrated

– 9 –



J
H
E
P
0
5
(
2
0
1
1
)
1
2
4

Figure 7. Three different representations for a genus three closed string vacuum amplitude, that
follow from the uniformization theorems of unipotent flows [5].

moduli w1, w2, u and w3 + iv2 in the periods matrix τ(2), eq. (3.1). Integration on w1

mod(1) ensures level matching for the closed string states flowing through the two marked
points, while w3 + iv2 is the modulus related to the left over handle. w3 + iv2 together with
w2 and u consistently account for the number of moduli of tori with two marked points,
dim(M1,2) = 2, (complex dimension). For the second representation of A2, displayed in
eq. (3.5), the genus-two vacuum amplitude is given by a sum over genus-zero amplitudes
with four marked points. The two diagonal unipotent moduli w1 and w3 integrated mod(1)
ensure level matching for states flowing through the two pairs of marked points, (figure 6).
On the other hand, the off-diagonal unipotent moduli w2 and u consistently account for
the dimension of the moduli space of spheres with four marked points dim(M0,4) = 1.

At genus three, the periods matrix in Iwasawa parametrization of H3 is given by

τ(3) =

w11 + i(v1 + v2u
2
12 + v3u

2
13) w12 + i(v2u12 + v3u12u13) w13 + iv3u13

∗ w22 + i(v2 + v3u
2
23) w23 + iv3u23

∗ ∗ w33 + iv3


=

(
τ11 τ12

τ t12 τ22

)
, τ11 ∈ H1, τ22 ∈ H2.

where ∗ entries are given by symmetry. Uniformization theorems in [5] give three alternative
representations for the closed string vacuum amplitude A3, (figure 7)

By cutting one handle, one can write A3 as a sum of genus-two amplitudes with two
marked points, while by cutting two handles A3 is given by a sum of genus-one amplitudes
with four marked points. Finally, by cutting three handles A3 can be expressed as a sum
of genus-zero amplitudes with six marked points.

The representation in terms of genus-two amplitudes is given by

A3∼v1→0
V ol(D3)
2V ol(D2)

∫
D2

dµ2

∫
mod(1)

dw11

∫
dw12dw13du12du13f3(τ(3)).

– 10 –
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The diagonal unipotent modulus w11 integrated mod(1) enforces level matching for
the states flowing thorough the two marked points. The off-diagonal unipotent moduli
w12, w13, u12, u13, together with τ22 ∈ H2, (the periods matrix of the two-leftover handles),
account for the dimension of the moduli space of genus-two Riemann surfaces with two
marked points dim(M2,2) = 5.

The representation of A3 as a sum of genus-one amplitudes with four marked points is
given by

A3∼v1→0
v2→0

V ol(D3)
4V ol(D1)

∫
D1

dµ1

∫
mod(1)

dw11

∫
mod(1)

dw22

∫
dw12dw13dw23du12du13du23f3(τ(3)),

Diagonal unipotent moduli w11 and w22 integrated mod(1) select physical states
through the two pairs of marked points, (figure 8). Off-diagonal unipotent coordinates
w12, w13, w23, u12, u13, u23 and τ(1) ∈ H1 correctly account for the dimension of the moduli
space of tori with four marked points, dim(M1,4) = 4.

The representation of A3 as a sum of genus-zero amplitudes with six marked points is
given by

A3∼v1→0
v2→0
v3→0

V ol(D3)
8

∫
mod(1)

dw11

∫
mod(1)

dw22

∫
mod(1)

dw33

∫
dw12dw13dw23du12du13du23f3(τ(3)).

Diagonal unipotent moduli w11, w22, w33 integrated mod(1) select physical closed string
states through the three pairs of marked points (figure 7). Off-diagonal unipotent moduli
w12, w13, w23, u12, u13, u23 consistently account for the dimension of the moduli space of
spheres with six marked points, dim(M0,6) = 3.

5 Uniformization at every genera: closed string hints for relevance of

unipotent flows for the Schottky problem

Uniformization results [5] concern integrals of Sp(2g,Z) automorphic forms on the moduli
space of genus g principally polarized abelian varieties Ag. The moduli space of genus
g compact Riemann surfaces Mg is isomorphic to Ag for g = 1, 2, 3. For genus g ≥ 4,
Mg is a subvariety fully contained in Ag, of (complex) codimension dim(Ag)−dim(Mg) =
1
2(g−2)(g−3). The embedding ofMg inAg is called the Schottky locus Sg, and the problem
of its complete characterization for every genus is still wide open, (see for example [27]).
Genus four is the first non-trivial case, and the Schottky locus S4 is a divisor in A4, (it is
of complex codimension one). In this case, S4 is fully characterized by the vanishing of a
16-degree polynomial in the theta nulls, (the Igusa form I4).

From a string theory diagrammatic perspective, it seems that nothing special occurs
at genus g = 4, or higher. This leads us to conjecture for the cutting-handles procedure to
hold at every genera

Ag,0 =
∑
|Φ〉

Ag−1,2 = · · · =
g∑
a=1

∑
|Φa〉

A0,2g(|Φ1〉, . . . |Φg〉),

– 11 –
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Figure 8. Uniformization relations for a vacuum amplitude of arbitrary genus.

where
Ag,2n =

∫
Mg,2n

dµg fg,n(|Φ1〉, . . . |Φn〉),

is the 2n-points genus g closed string amplitude with external states |Φ1〉, . . . |Φn〉 arranged
as in figure 8.

This suggests the interesting possibility that results in the dynamics of unipotent flows
may be used to treating modular integrals restricted to the Schottky locus Sg. This is
of interest for the still open problem of constructing closed string amplitudes of arbitrary
genus. Moreover, one may use unipotent flows to connect recently proposed genus three [8–
10], (and genus higher then three [8–10, 28–30, 34–36]), closed string amplitudes to the
genus-two expressions given in [14–19]. All the above possibilities are presently under
investigation [6, 7].

6 Summary and future directions

In this paper we have applied to string theory mathematical results on uniform distribu-
tion of unipotent flows we have recently proved [5]. We obtained conditions of perturbative
stability at all genera in non-supersymmetric closed string vacua, in terms of solely closed
string three-level diagrams. The key is provided by ergodic properties of unipotent flows,
which allow to study closed strings asymptotic UV properties, by probing boundary compo-
nents ofMg, (the genus g moduli space of compact Riemann surfaces). Diagrammatically,
unipotent flows asymptotics translate into prescriptions of cutting amplitudes handles,
while summing over physical states flowing through pairs of marked points. Remarkably,
those asymptotics have error estimates related to the Riemann hypothesis [4, 5].

Our analysis extends to all genera in perturbation theory, and generalizes previous
results at genus-one level [32], (see also [11]). It would be interesting to check whether
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our condition on ultraviolet perturbative stability of a closed string vacuum make contact
with stability conditions in closed string field theory. Moreover, our closed string theory
constraints may be of interest for higher spins theories, (see for example [26, 40]). We also
notice some formal similarities between our closed string cutting procedures and analytic
cuts procedures in quantum field theory [12]. It would be interesting to check whether
those analogies point to some deep relations. We also would like to mention that our
cutting techniques seem to suit for connecting loops vacuum closed string amplitudes to
the most general closed string tree-level amplitudes. This may be achieved by taking
appropriate limits for vertex operators on the punctured Riemann surface [39]. Progress in
this direction, would provide explicit expressions in type II A, type II B and Type 0 closed
string theories for genus two and genus three closed string amplitudes [39].

From the mathematical side, our diagrammatic prescriptions on closed string ampli-
tudes suggest a relevance of unipotent flows for the Schottky problem, and for the problem
of defining the superstring amplitude at arbitrary genera. These issues are presently under
investigation [6, 7], in two distinct directions. On the one hand, we would like to obtain
uniformization results for integrals of automorphic functions over the Schottky locus. Ex-
istence of such an interesting possibility is suggested diagrammatically by string theory [6].
On the other hand, by using uniformization result in [5], we would like to be able to connect
recently proposed genus g = 3, 4, 5 closed string amplitudes [8–10, 13, 20, 27, 29, 30, 33–
35, 35] to the genus two superstring amplitudes given in [14–19]. This would provide
consistency checks for the proposed genus g ≥ 3 superstring amplitudes [7].
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