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Abstract 
Obesity is defined by the World Health Organization as a condition of abnormal or excessive 
accumulation of body fat that presents a risk to health. This disease can lead to an increase in 
associated morbidities for many chronic diseases such as type 2 diabetes, hypertension, 
coronary artery disease, dyslipidemia, stroke, osteoarthritis, and even certain forms of cancer, 
with a subsequent increase in mortality rate. The relative contribution of either genetic or the 
environment in obesity onset and co-morbidities development is not yet completely defined, 
and RNA biology might play a central role in elucidating new targetable pathways. The aim of 
this research was the characterization of the transcriptional differences present in the 
sottocutaneous adipose tissue of obese and obese with type 2 diabetes subjects. Moreover, the 
work focused on the role of the non-coding part of the genome in disease development, as these 
molecules are becoming more and more relevant for their function in physiological processes 
and disease mechanisms. To this aim, RNA-sequencing was performed on sottocutaneous 
adipose tissue obtained from 5 healthy normal weight females, 5 obese females, and 5 obese 
females with type 2 diabetes. Three experimental conditions were subsequently analyzed: the 
differences occurring between obese and healthy subjects, the differences occurring between 
obese with type 2 diabetes and healthy subjects, and moreover the differences occurring 
between obese with type 2 diabetes and obese subjects. For each condition, a global 
bioinformatics characterization of the differentially expressed RNAs and the pathways in which 
they are involved was performed. These analyses extensively characterized the differentially 
expressed RNAs, highlighting their localization, interaction, and transcriptional regulation. 
Gene ontology analysis highlighted the gene-specific molecular functions and biological 
processes involved, and the most significant pathways in which the differentially expressed 
RNAs are involved were identified. Moreover, disease-related databases were interrogated and 
a screening of the gene relations with immunological, oncogenic and metabolic diseases were 
characterized.  

Moreover, a special attention was given to non-coding RNAs, whose prevalence increases when 
switching from a “pure” obesogenic condition to a comorbidity with diabetes. Specifically, 
whilst non-coding genes are 6.43% of the differentially expressed RNAs in obese subjects, this 
percentage increases to up to 32.43% in diabetic subjects, and when considering the molecular 
underlining responsible for the additional diabetic phenotype (diabetic vs. obese), more than 
50% of the differentially expressed RNAs are non-coding RNAs. This highlights how the non-
coding epigenome could be of crucial relevance in the development of specific comorbidities, 
highlighting the possibility of new markers and targets for future therapeutic intervention and 
prevention. Lastly, functional experiments were performed on long-non coding RNAs 
deregulated in sottocutaneous adipose tissue from obese subjects, and results highlight how 
these are highly expressed in differentiated adipocytes, and predominantly regulated by 
adipogenesis transcription factors such as PPARg, C/EBPa, C/EBPb and C/EBPd. The results 
clearly highlight the role of the non-coding component in the development of the diabetic co-
morbidity, and the investigation of this molecules could be of crucial relevance in understanding 
a new disease-mechanism never before analyzed, and even highlight why certain patients 
present a higher risk for diabetes development, paving the way for early intervention and 
precision medicine strategies.    



 

   

Riassunto 
L’obesità è definita dall’Organizzazione Mondiale della Sanità come una condizione di 
accumulo di grasso corporeo anormale o eccessivo che può presentare un rischio per la salute. 
Questa malattia può portare all’insorgenza di comorbidità associate quali il diabete di tipo 2, 
l’ipertensione, malattie cardiovascolari, dislipidemia, infarto, artrite e anche alcuni tipi di 
cancro, con un conseguente aumento della mortalità. Il contributo relativo di fattori genetici o 
dell’ambiente nell’insorgenza dell’obesità non è ancora chiaramente definito, e gli RNA 
regolatori potrebbero avere una funzione fondamentale nell’identificazione di nuovi 
meccanismi di malattia. Lo scopo di questo lavoro è la caratterizzazione delle differenze 
trascrizionali presenti nel tessuto adiposo sottocutaneo di pazienti obesi e obesi con diabete di 
tipo 2. Il lavoro si è inoltre focalizzato sull’analisi del ruolo del genoma non codificante nello 
sviluppo della malattia, per la loro rilevanza in numerosi processi fisiologici e patologici.  

A questo scopo è stato effettuato il sequenziamento dell’RNA presente nel tessuto adiposo 
sottocutaneo di 5 donne normopeso, 5 donne obese e 5 donne obese con diabete di tipo 2. Tre 
condizioni sperimentali sono state analizzate: le differenze presenti tra le donne obese e le 
normopeso, quelle tra le donne obese con il diabete di tipo 2 e le normopeso e quelle tra le 
donne obese con diabete di tipo 2 e le donne obese senza questa comorbidità. Per ogni 
condizione è stata effettuata un’analisi bioinformatica globale. Questa analisi ha previsto una 
caratterizzazione estensiva dei trascritti differenzialmente espressi, indicandone la loro 
localizzazione, interazione e regolazione trascrizionale. L’analisi di ontologia genica ha 
permesso di identificare le funzioni molecolari specifiche e i processi biologici in cui essi sono 
coinvolti, insieme ai loro processi di appartenenza. Sono stati consultati inoltre specifici 
database contenenti informazioni su numerose malattie, in modo da identificare l’implicazione 
dei trascritti in malattie immunologiche, oncologiche e metaboliche. Un’attenzione particolare 
è stata posta sul ruolo degli RNA non codificanti, la cui presenza aumenta significativamente 
passando da una condizione di obesità “pura” a quella di un’obesità associata alla compresenza 
di diabete di tipo 2. I trascritti differenzialmente espressi non codificanti sono il 6,43% dei 
deregolati nella condizione di obesità versus normopeso, il 32,43% nei soggetti diabetici versus 
normopeso e addirittura più del 50% nell’analisi di soggetti obesi diabetici versus obesi. Questo 
dimostra come il genoma non codificante potrebbe essere di importanza fondamentale 
nell’insorgenza di specifiche comorbidità e potrebbe rappresentare un bersaglio per futuri 
interventi terapeutici e di prevenzione. In questo lavoro sono stati svolti esperimenti funzionali 
in modo da caratterizzare il ruolo di alcuni RNA non codificanti “a catena lunga” (long non-
coding RNAs) nell’obesità, e i risultati hanno dimostrato come questi sono espressi negli 
adipociti e strettamente regolati da fattori trascrizionali implicati nell’adipogenesi quali PPARg, 
C/EBPa, C/EBPb e C/EBPd.  

I risultati dimostrano chiaramente il ruolo della componente non codificante del genoma nello 
sviluppo della comorbidità diabetica e un’analisi futura di queste molecole potrebbe essere di 
cruciale rilevanza nella comprensione di nuovi meccanismi di malattia mai prima caratterizzati. 
I risultati potrebbero inoltre spiegare perché alcune classi di pazienti obesi hanno un rischio 
maggiore di sviluppo di comorbidità specifiche, aprendo le porte a possibili strategie 
terapeutiche preventive e di medicina di precisione. 
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1. Introduction  
1.1. Introduction to obesity 

Obesity is defined as abnormal or excessive fat accumulation, presenting a risk to health (WHO 
2020a). The most recent report of the World Health Organization (WHO) shows how the 
worldwide prevalence of obesity nearly tripled between 1975 and 2016, with over 650 million 
adults being clinically defined as obese (WHO 2020a). This trend is due to increase even more, 
as in 2018 more than 40 million children under the age of 5 years were overweight and obese, 
with studies showing that 70% of obese adolescents will maintain their obese condition as 
adults, with a significant impact on their physical and psychological health (WHO 2020a, 
Maclaren et al. 2007, Ogden et al. 2010). Based on these data and multiple epidemiological 
evidence linking obesity with a range of physical and psychosocial health conditions, it is 
possible to describe obesity as a public health crisis that severely impairs the health and quality 
of life of people and furthermore considerably adds to national health-care budgets (Seidell and 
Halberstadt 2015). Indeed, obesity contributes to increased morbidity and mortality as it is 
associated to many chronic diseases such as type 2 diabetes (T2D), hypertension, dyslipidemia, 
coronary artery disease, stroke, osteoarthritis and even certain forms of cancer (Haslam, Sattar, 
and Lean 2006, Lawrence and Kopelman 2004, WHO 2020a). The emerging link between 
obesity and multiple cancer types is gaining more and more relevance in recent years 
(Avgerinos et al. 2019, Kompella and Vasquez 2019, Ungefroren et al. 2015). Specifically, the 
burden of cancer attributable to obesity, expressed as population attributable fraction, is 11.9% 
in men and 13.1% in women (Avgerinos et al. 2019). It is fundamental to characterize the 
molecular underlining of this process, as they could highlight new mechanisms leading to 
increased susceptibility to cancer. Indeed, one recent research work, authored by me and 
collaborators, demonstrates how human Adipose Derived Stem Cells (hADSCs) obtained from 
breast cancer microenvironment present impaired Peroxisome Proliferator-Activated Receptor 
(PPARγ) activation and a subsequent inhibition of differentiation (Rey et al. 2019). 

The parameter used to measure obesity and classify its different levels of severity is the Body 
Mass Index (BMI), defined as a person’s weight (in kilograms) divided by the square of his or 
her height (in meters). A person with a BMI of 30 or more is generally considered obese, whilst 
a person with a BMI equal to or more than 25 is considered overweight (WHO 2020a). The 
BMI is sufficient for most clinical screening and surveillance purposes as high BMI predicts 
future morbidity and death. Some research, however, suggests that other measures of body fat, 
such as skinfold thicknesses, bioelectrical impedance analysis, underwater weighing, and dual 
energy x-ray absorption, are more accurate than BMI (Duren et al. 2008).  

It is possible to try and counteract obesity through a regulation of body weight. Indeed, this is 
controlled by several complex regulatory systems that respond to internal metabolic and 
hormonal signals, hedonic properties of food, internal forces of valuation and self-control, and 
social factors (Bessesen 2011). Each of these steps can be controlled and thus lead to an 
alteration in body weight. Typically, obesity is the result of excessive food energy intake, lack 
of physical activity and genetic susceptibility, although in a few cases it can be a secondary 
consequence of endocrine disorders, medications, sleep deprivation or psychiatric diseases 
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(Figure 1) (Hossain, Kawar, and El Nahas 2007, Tsai and Bessesen 2019, van der Klaauw and 
Farooqi 2015).  

 
Figure 1: Contribution of the environment and genetics to obesity development. Created with BioRender.com. 

All these factors that can influence body weight regulation ultimately act by a chronic 
modification of the energy balance equation:  

Energy stored = energy intake - energy lost in feces and urine - energy expenditure 

Even a slight imbalance between energy intake and energy expenditure may lead to severe 
obesity: an excess of energy intake by 5% every day can result in a gain of 5 kg fat mass over 
one year, and to morbid obesity over several years (Jéquier 2002). 

Consequently to this, canonical approaches to counteract obesity involve decreasing energy 
intake by choosing a suitable diet and increasing the energy expenditure with exercise, but these 
two approaches alone are not always sufficient (Wyatt 2013) (Figure 2). It is important to stress 
that also a moderate weight loss (-5-10% of initial weight) should be encouraged because of 
proven health benefits and clinical complications improvement induced by a negative energy 
balance. Combinatory approaches involve high-intensity counselling, and, as the psychological 
and neurological component can be relevant in this disease, neuromodulation and 
neurofeedback treatments are also starting to be employed (Tronieri et al. 2019, Dalton, 
Campbell, and Schmidt 2017). To this day, the most commonly used anti-obesity medications 
are phentermine, orlistat, topiramate, lorcaserin, naltrexone, liraglutide and various medicinal 
plants (Saunders et al. 2018, Park et al. 2016). Medications approved for chronic weight 
management could help patients improve the diet plan adhesion sustaining long term weight 
loss but, even in this case, they do not lead to a long-term resolution of the disease. The 
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discovery of monogenic forms of the disease and of several disease-causing pathways (e.g. the 
leptin (LEP)-melanocortin axis, the opioid system, Glucagon-like peptide-1 system, and 
Fibroblast growth factor 21/ Fibroblast growth factor Receptor 1c/b-Klotho axis) is leading to 
the development of new drug candidates which can avoid previous issues and directly target 
the obesity-causing molecule of choice (Jackson et al. 2015). Other innovative therapies involve 
microbiome replacement/supplementation and non-surgical devices (Jackson et al. 2015). For 
adult patients with severe obesity and complications, bariatric surgery should be encouraged 
and in adolescents should be performed (Beamish and Reinehr 2017, Childerhose et al. 2017, 
Thenappan and Nadler 2019, Beamish, Johansson, and Olbers 2015). This surgical approach is 
now endorsed by many international societies of experts to be an effective treatment for weight 
loss, which also offers significant improvement in associated co-morbidities, especially T2D 
(Ryan and Kahan 2018, Durrer Schutz et al. 2019, Stefater et al. 2012). 

 
Figure 2: Strategies for therapeutic intervention in obesity. Created with BioRender.com. 

At a tissue level, obesity is characterized by the accumulation of adipose tissue that expands 
due to an increase in adipose size (hypertrophy) and number (hyperplasia) and imbalances in 
adipogenesis (the process through which stem cells mature into adipocytes) can also lead to 
increased obesity and may represent a new promising therapeutic strategy in the treatment of 
the disease (Ghaben and Scherer 2019, Tseng, Cypess, and Kahn 2010). 

1.1.1. Childhood obesity 

Childhood obesity is a global problem, and since the 1980s the worldwide prevalence of 
childhood overweight and obesity has increased by 47%, both in developing and developed 
countries (Bleich et al. 2018, Ng et al. 2014). In children under 5 years of age obesity is defined 
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as weight-for-height 3 standard deviations (SD) above the WHO Child Growth Standards 
reference median. For children aged 5–19 years, obesity is defined as BMI-for-age 2 SD above 
the WHO Growth Standards reference median (WHO 2020b). Indeed, the WHO reports that in 
2018 an estimated 40 million children under the age of 5 were classified as overweight or obese, 
and over 340 million children and adolescents aged 5-19 were overweight or obese in 2016 
(WHO 2020a). As previously mentioned, many reports identify childhood obesity as a risk 
factor of obesity problems in adults, and there is thus a need for early intervention in order to 
modify this trend (Haidar and Cosman 2011). Interestingly, pediatric obesity could be 
influenced as early as in the “first 1000 days of life”, as within this defined time frame, three 
main steps of human dietary development can be identified: (1) the prenatal period; (2) breast 
vs. formula feeding; and (3) complementary diet (Mameli, Mazzantini, and Zuccotti 2016). In 
this time frame, nutrition, the microbiome and the epigenome can strongly influence the child’s 
development and future health. Indeed, maternal nutrition through over/undernutrition, vitamin 
D status, dietary methyl donors, and food pollutants, along with neonatal and infant nutrition 
(human or formula milk, prebiotics and probiotics) can deeply influence the child’s growth. 
When considering the epigenome, the human genome and environmental factors could be of 
relevance in the child’s future development, whilst microbiome alterations refer to maternal 
microbiota, antenatal and post-natal antibiotic exposure, and urban or rural environment (Indrio 
et al. 2017) 

Childhood obesity is associated with comorbidities that were previously considered to be 
"adult" diseases, such as T2D, hypertension, non-alcoholic fatty liver disease, obstructive sleep 
apnea, and dyslipidemia (Kumar and Kelly 2017). Also in the case of childhood obesity, there 
is a need for new therapeutic strategies (Kumar and Kelly 2017). Different therapies will depend 
on the age of the child, the severity of obesity, and the presence of obesity-related 
comorbidities. Lifestyle interventions resulted in limited effects in severe obese children, and 
there is reduced information on the efficacy and safety of medications for weight loss in 
children (Kumar and Kelly 2017). The most invasive approach would be bariatric surgery, 
possible in adolescents, but again there is limited data on the long-time effect of this therapy 
(Kumar and Kelly 2017). New innovative approaches need to be considered, and the 
development of patient-specific therapies aimed at disrupting specifically altered cellular 
pathways could be of great interest. Indeed, although the adipogenesis process is now mostly 
elucidated, the differences in this process between obese and healthy subjects are far from 
characterized.  

 1.1.2. Etiology 

Obesity is typically caused by excess energy consumption relative to energy expenditure, but 
the etiology of obesity is highly complex and includes genetic, physiologic, environmental, 
psychological, social, economic, and even political factors that interact in various degrees to 
promote the development of obesity (Wright and Aronne 2012). Amongst the environmental 
and social factors, causative for obesity are rising incomes, increasing urban populations, diets 
high in fats and simple sugars, and a shift toward less physically demanding jobs. Indeed, a lack 
in physical activity is promoted by automated transport, labor-saving technology in the home 
and workplace, television, and computer games, which can be very influential in the 
development of the disease at a young age (Kenney and Gortmaker 2017). Even so, 



Introduction 

  5 

environmental factors are not the only causes of obesity, and a focus on genetic, epigenetic and 
metabolic factors controlling this disease is needed. 

1.1.3. Genetics 

There is now mounting evidence of genetic causes of obesity. Genome Wide Association 
Studies have allowed the identification of novel mutations and polymorphisms which can be 
associated to BMI, waist circumference, and waist-to-hip ratio (Singh, Kumar, and Mahalingam 
2017). To date, more than 97 loci related to complex obesity that account for approximately 
2.7% of BMI,  waist circumference, and waist-to-hip ratio variations have been identified 
(Singh, Kumar, and Mahalingam 2017).   

It is possible to classify obesity in 
syndromic (associated with pre-
existing conditions) and non-
syndromic (mono-genic or 
polygenic forms of obesity) (Figure 
3). Specifically, syndromic obesity 
is obesity occurring in the clinical 
context of a broad range of 
associated clinical phenotypes, 
characterized by one or more 
features including developmental 
delay, dysmorphic traits, and/or 
congenital malformations and 
unusual behaviors such as increased energy intake. In the syndromic category it is possible to 
identify those syndromes due to chromosomal rearrangements, such as uniparental disomy (e.g. 
Prader-Willi Syndrome), Wilms tumor, aniridia, genitourinary anomalies and mental 
retardation Syndrome (WAGR), SIM BHLH Transcription Factor 1 (Sim-1) and those due to 
pleiotropic causes (Bardet-Biedl Syndrome, Cohen Syndrome, Fragile X syndrome, also 
associated with developmental delays) (Farooqi and O’Rahilly 2016). The non-syndromic 
forms of obesity include monogenic and polygenic forms of the diseases (Farooqi and O'Rahilly 
2004). Monogenic forms of obesity are caused by single-point mutations in specific genes. 
These forms are rare, severe and typically occur in childhood (Farooqi and O'Rahilly 2004). 
They typically occur in genes implicated in energy homeostasis and adipogenesis, along with 
the neural signaling implicated in appetite and satiety regulation (Singh, Kumar, and 
Mahalingam 2017). Genes more frequently implicated are: POMC, NPY, LEP, LEPR, MC3R, 
MC4R, FTO, PC1. The most common non-syndromic obesity is associated with MC4R gene 
mutations with a prevalence, in the general population, of 1-5 : 10 000. Mutation carriers 
display severe early-onset obesity, hyperphagia and numerous endocrine complications. 
Polygenic obesity implicates multiple genes affected in the same individual, rendering its study 
significantly more complex. Even so, it is possible to implicate families of genes thought to be 
causative for the diseases, and these are: the b-adrenergic receptor family, uncoupling proteins 
and SLC6A14 (Singh, Kumar, and Mahalingam 2017).  

Figure 3: Genetic Basis of Obesity. Created with BioRender.com. 
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Even considering all these evidence, it is not possible to conclude that obesity can be caused 
either by the genes or the environment. Indeed, behavior and genes are different levels of the 
same causal framework. Moreover, epigenetic aspects need to be considered as they are crucial 
regulators in the translation of environment stimuli on gene expression regulation. “Classic” 
epigenetic mechanisms include dysregulation of known imprinted genes (also called “genomic 
imprinting”) and epigenetic mosaicism, a widespread phenomenon documented in many 
organisms, that may account for differences in body weight and fat accumulation (Stöger 2008, 
Loh et al. 2019, Allum and Grundberg 2020). In recent years, the role of RNA is changed and 
its relevance in the regulation of biologic processes is now reconsidered since up to 90% of the 
genome is transcribed and not translated into a protein. Among the epigenetic modulators there 
are also long non-coding RNAs (lncRNAs). These transcripts are poorly conserved, frequently 
unstable, and/or sometimes present in few copies, and new biological roles have emerged for 
some lncRNAs. The non-coding transcriptome is becoming more and more relevant also in the 
field of adipogenesis, fat mass expansion and obesity and in this context lncRNAs are emerging 
as new potential candidate targets for therapeutic development as well as comorbidities 
regulators (Salem et al. 2019, Landrier, Derghal, and Mounien 2019, Arcinas et al. 2019).  

1.2. LncRNAs in obesity and metabolic diseases  

As both obesity and other metabolic diseases cannot be clearly defined by genetics or the 
environment, new players are coming into question when considering possible pathogenic 
mechanisms. In this framework, the role of the epigenome, with a specific focus on lncRNAs, 
could prove of fundamental importance.  

1.2.1. LncRNAs: definition and principal functions 

It is now established knowledge that only 1-2% of the human genome codes for proteins 
(Mattick 2009, Ponting, Oliver, and Reik 2009, Consortium 2012). For this reason, RNAs can 
be classified for their coding potential in coding RNAs (transcripts that will subsequently be 
translated into proteins) and non-coding RNAs (ncRNAs), that do not code for a polypeptide 
and whose function is still to be fully understood especially in modulating gene expression 
(Mattick 2009, Ponting, Oliver, and Reik 2009, Consortium 2012). The non-coding part of the 
genome (ranging from 70 up to 90% of the total RNAs) was initially classified as “junk DNA”, 
but it is now clear that this definition could not be farther from the true, as the non-coding 
transcriptome has gained a significant relevance in both health and disease (Maass, Luft, and 
Bähring 2014, Ponting, Oliver, and Reik 2009, Wang and Chang 2011, Nagano and Fraser 
2011, Wu et al. 2013, Batista and Chang 2013, Lekka and Hall 2018). Amongst the ncRNAs, 
it is possible to distinguish two subclasses: small ncRNAs, molecules smaller than 200bp, and 
lncRNAs, defined as ncRNA molecules longer than 200bp. Small ncRNAs include:  small 
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), and piwi-
interacting RNAs. LncRNAs include rRNA (ribosomal RNA), long intergenic ncRNAs 
(lincRNAs) and Natural Antisense Transcripts (NATs) (St Laurent, Wahlestedt, and Kapranov 
2015). LncRNAs can also arise from other DNA sequences such as introns, or regulatory 
elements such as enhancers (St Laurent, Wahlestedt, and Kapranov 2015). Finally, some of 
them are transcribed from intergenic regions that do not overlap any other known coding gene 
having their own promoters (St Laurent, Wahlestedt, and Kapranov 2015). Most of them are 
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RNA polymerase II transcribed so they are similar in structure to protein coding transcripts, 
possibly presenting cap structures and poly A tails (Zhang, Wang, et al. 2019). After their 
synthesis, biogenesis and processing, lncRNAs can localize both in the cytoplasm and in the 
nucleus, depending on their subsequent function (Zhang, Wang, et al. 2019).  

LncRNAs can mediate transcriptional regulation in different ways. Indeed these molecules can 
modulate gene expression at multiple levels, ranging from chromatin re-arrangements, through 
transcriptional regulation or even translational modulation (Yao, Wang, and Chen 2019). 
Multiple evidence suggests that they can operate through distinct modes, including working as 
signals, scaffolds for protein-protein interactions, molecular decoys, and guides to target 
elements in the genome or transcriptome (Wang and Chang 2011). A primary gene expression 
regulation takes place in the nucleus, where they can influence chromatin remodeling and 
interfere with gene transcription (Vance and Ponting 2014). To this end lncRNAs act close to 
their sites of synthesis regulating the expression of nearby genes on the same chromosome, or 
target protein coding genes located on different or homologues chromosomes (Vance and 
Ponting 2014). At this level, lncRNAs act associating with chromatin in multiple ways. Indeed, 
single-stranded lncRNAs directly interact with complementary double-stranded DNA target 
sequences through hydrogen bonding to form a RNA-DNA-DNA triplex structure, thus being 
indirectly recruited to the genome through RNA-Protein-DNA interaction or matching with 
RNA sequences at their transcribed loci (Vance and Ponting 2014). Consequently, chromatin 
conformation changes are required to bring two distantly located loci into close spatial 
proximity and allow lncRNAs’ gene regulation.  

In the cytosol, lncRNAs influence gene expression through transcriptional regulation. They can 
interact with miRNAs binding sites acting as molecular decoys or sponges that sequester 
miRNAs away from other transcripts creating a network that exerts post-transcriptional 
regulation of gene expression (Zampetaki, Albrecht, and Steinhofel 2018). LncRNAs are also 
able to inhibit or promote gene expression at a translational level. They are also involved in 
various post-translational protein modifications such as phosphorylation, ubiquitination and 
acetylation, thereby regulating protein degradation or formation (Zhang, Wang, et al. 2019). It 
has been discovered that some cytoplasmic lncRNAs contain smaller open reading frames than 
the typical cutoff of at least 100 amino acids in eukaryotes, and these encode for micropeptides 
that have been shown to perform vital biological function such as cell division, transcription 
regulation and cell signaling (Hartford and Lal 2020). This high degree of complexity in gene 
expression regulation, and the number of still unknown mechanisms through which lncRNAs 
could act, indicates a clear need to further investigate these molecules, both in health and 
disease, as they could provide crucial new insights in cell biology representing promising 
targets for the development of innovative therapeutic strategies for multiple diseases.  

1.2.2. LncRNAs in adipogenesis 

The non-coding epigenome is known to play a regulatory role in many developmental contexts, 
including adipogenesis. In addition to miRNAs, numerous lncRNAs have been demonstrated 
to be involved in adipogenesis with subsequent implications for obesity and obesity-related 
complications in adults (Wei et al. 2016) and children (Liu, Ji, et al. 2018). As more and more 
studies in this field arise every year, there is a need to distinguish between the multiple functions 
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that the lncRNAs could have. Indeed, results are variable, and a full characterization of the role 
that lncRNAs play in obesity is far from being present. Numerous lncRNAs have been 
correlated with adipogenesis, showing a change in their expression levels at different stages of 
adipocytes differentiation, but a clear mechanism of action is lacking. In other cases, they have 
been found to regulate key players in adipogenesis (e.g. PPARγ), associate with adipogenesis-
implicated miRNAs and even be significantly deregulated in patients with obesity or murine 
models of obesity (Chen, Cui, et al. 2015, Sun et al. 2013).  

1.2.2.1. Role of lncRNAs in the regulation of early adipogenesis master regulators 

Adipogenesis is the process of adipocytes formation into fat-containing cells from stem cells or 
adipocyte precursors. It involves 2 phases: determination (considered an early stage) and 
terminal differentiation (late adipogenesis). It is a complex process finely tuned  at multiple 
levels by specific transcription factors (TFs) and protein regulators. Although the 
transcriptional cascade leading to intracellular lipid uptake (adipogenic differentiation) is well 
characterized, much remains to be discovered on the implications of lncRNAs on the multiple 
levels at which this cascade can be regulated. 

Early stages of adipogenesis are represented by a Mitotic Clonal Expansion phase (MCE) and 
by the expression of early regulators such as CCAAT-enhancer-binding proteins (C/EBP) 
C/EBPb and C/EBPd (Rosen and MacDougald 2006, Rosen, Eguchi, and Xu 2009, Tang, Otto, 
and Lane 2003). Amongst the lncRNAs able to influence this stage of adipogenesis, the lncRNA 
Steroid Receptor RNA Activator (SRA) was one of the first to be described (Xu et al. 2010). 
Its expression resulted 2-folds higher in differentiated murine 3T3-L1 adipocytes than pre-
adipocytes, but the lncRNA seems to also act in early phases of adipogenesis (Sheng et al. 
2018). Indeed, it can promote S-phase entry during the MCE phase of adipogenesis controlling 
cell cycle genes expression (e.g. decreasing the  expression of the cyclin-dependent kinase 
inhibitors cyclin-dependent kinase inhibitor 1 and Cyclin-dependent kinase inhibitor 1B, and 
increasing phosphorylation of Cyclin-dependent kinase 1) (Xu et al. 2010). Moreover, in the 
mouse ST2 mesenchymal cell line, SRA is implicated in the regulation of  p38 mitogen-
activated protein kinase/c-Jun N-terminal kinases phosphorylation inhibition, a crucial step in 
the early stages of adipogenesis, as well as in stimulating insulin receptor gene expression and 
downstream signaling (Liu, Xu, et al. 2014, Bost et al. 2005). The Obesity Related lncRNA, 
whose expression levels increases during adipogenesis, regulates the cell cycle through 
induction of expression of crucial marker genes such as Proliferating Cell Nuclear Antigen, 
cyclin B, cyclin D1 and cyclin E, allowing cells entry into the S phase during the MCE (Cai et 
al. 2019). Modulation of the cell cycle and thus early stages of adipogenesis can also occur 
through epigenetic modulation, and indeed the lncRNA slincRAD can interact with the DNA 
Methyl Transferase 1 in the S phase of the cell cycle, guiding it to the promoter of cell cycle-
related genes, facilitating the cells entry into the clonal expansion stage of differentiation (Yi 
et al. 2019). 

Through microarray study, a novel lncRNA, lncRNA-Adi, has been identified and found to be 
highly expressed in the MCE phase. It exerts its effects through the interaction with miR-449a, 
enhancing the expression of the miRNA target Cyclin-dependent kinase 6. This leads to an 
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increase in Cyclin-dependent kinase 6 translation and subsequent activation of the 
retinoblastoma protein - TF E2F1 pathway, involved in early adipogenesis (Chen et al. 2020).  

The genetic location of lncRNAs could be of crucial relevance in identifying their target genes. 
Three recently discovered lncRNAs, Gm15051, Tmem189, and Cebpd genomically locate 
respectively next to Hoxa1, C/EBPβ and C/EBPδ and their expression levels correlate, 
suggesting that each of them can positively influence the neighboring gene expression having 
the role of transcriptional regulators (You et al. 2015).  

1.2.2.2. Role of lncRNAs in the regulation of late adipogenesis master regulators 

As pre-adipocytes mature into adipocytes, C/EBPb and d target the promoters of C/EBPa  and 
PPARγ, master regulators of adipocytes terminal differentiation as they activate genes that are 
involved in insulin sensitivity, lipogenesis and lipolysis. Examples include genes encoding 
glucose transporter type 4 (GLUT4), fatty-acid-binding protein (FABP4), lipoprotein lipase, 
sn-1-acylglycerol-3-phosphate acyltransferase 2, perilipin (PLIN) and the well-known secreted 
adipokines,  adiponectin (ADIPOQ) and LEP (Rosen and MacDougald 2006, Rosen, Eguchi, 
and Xu 2009, Ghaben and Scherer 2019). 

This step is critical for late adipocytes differentiation, and indeed numerous lncRNAs have been 
found to modulate specifically PPARγ (Figure 4). SRA also plays a role in this context, as it 
exerts its function via direct association with  the PPARγ protein, promoting its transcriptional 
activity (Sheng et al. 2018, Xu et al. 2010). Another mode of action through which lncRNAs 
can modulate PPARγ is through miRNAs sponging. This is the case of lncRNA IMFNCR 
(intramuscular fat-associated lncRNA), which has been found to promote intramuscular 
adipocyte differentiation sponging miR-128-3p and miR-27b-3p, which directly target PPARγ 
(Zhang, Li, et al. 2019). There can also be an indirect lncRNAs-miRNAs modulation of PPARγ, 
through other epigenetic modulators. The adipocyte differentiation-associated lncRNA 
(ADNCR) can sponge miR-204, whose target gene, Sirtuin 1 (SIRT1), is known to form a 
complex with modulators such as nuclear receptor co-repressor 1 (NCoR) and silencing 
mediator for retinoid or thyroid-hormone receptors (SMRT) to repress PPARγ activity (Li et 
al. 2016). An epigenetic modulation can happen at PPARγ’s promoter, in sites known as CpG 
islands that when methylated decrease the expression of the respective downstream genes. 
Indeed, the lncRNA Plnc1, transcribed 25 000 bp upstream of PPARγ2, can attenuate the 
methylation status of its promoter increasing subsequent transcription (Zhu et al. 2019). PPARγ 
can also be targeted at the end of specific signal-transduction pathways, as demonstrated for 
Signal Transducer and Activator of Transcription 3 (STAT3) gene  expression regulation 
(Wang et al. 2009). Specifically, adipogenesis is induced by the activation of STAT3, acting as 
a molecular switch. This effect was counteracted by PPARγ’s activation with the agonist 
troglitazone, suggesting that STAT3 can modulated adipogenic differentiation through a 
PPARγ upstream regulation (Wang et al. 2009). The nuclear lncRNA Plasmacytoma Variant 
Translocation 1 (PVT1) has been found to associate with STAT3, and indeed PVT1 has been 
found to correlate with increased expression of PPARγ, but also C/EBPa, FABP4, and genes 
related to fatty acid synthesis (Zhang et al. 2020). Well renowned lncRNAs, such as Nuclear 
Enriched Abundant Transcript 1 (NEAT1), widely implicated in numerous cancers, can also 
have a function in adipogenesis, and indeed NEAT1 has been found to modulate the splicing 
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of PPARγ, increasing the expression of the isoform 2 through Serine And Arginine Rich 
Splicing Factor 5 association (Cooper et al. 2014).  

 
Figure 4: LncRNAs can influence PPARγ transcription and activity at multiple levels. Specifically, lncRNAs can modulate 

directly PPARγ by inhibiting DNA methylation. They can also selectively induce a different PPARγ mRNA splicing or sponge 
specific miRNAs which would sequester and lead to degradation of PPARγ mRNA. They  directly bind to the PPARγ protein 
being able to inhibit its activity through upregulation of the PPARγ repressor complex. Lastly, PPARγ itself can induce the 

expression of specific lncRNAs. Created with biorender.com. 

PPARγ itself can regulate lncRNAs expression, such as AK079912, a lncRNA correlated to 
browning of white adipocytes, which presents three conserved PPARγ binding sites in its 
promoter region (Xiong et al. 2018). Other adipogenic genes can also induce lncRNAs 
expression, such as lnc-BATE’s induction by C/EBPa, C/EBPb and again, PPARγ. In this case, 
lnc-BATE is a specific regulator of brown adipogenesis through interaction with hnRNP-U 
(Alvarez-Dominguez et al. 2015).  

Modulation of late adipogenesis can occur though modulation of other key genes, as 
demonstrated for the knockdown of the lncRNA HOXA11 Antisense RNA resulting in the 
inhibition of adipocytes differentiation through a decrease of C/EBPa, 
diacylgycerolacyltransferase 2, cell death-inducing DFF45-like effector and PLIN, ultimately 
leading to the decreased lipid accumulation (Nuermaimaiti et al. 2018). On the other hand, the 
Tissue differentiation-Inducing Non-protein Coding RNA can form a feedback loop with miR-
31 and C/EBPa, leading to the upregulation of miR-31’s downstream target C/EBPa, thus 
promoting adipogenesis (Liu, Wang, et al. 2018). Also in this case, lncRNAs can bind to 
epigenetic regulators to promote adipogenesis through an upregulation of mature adipocytes-
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related genes, as does miR-31 host gene, which is able to promote the binding of H3K4me3 to 
FABP4’s promoter, increasing its expression (Huang et al. 2017). Similarly, the adipogenic 
differentiation induced ncRNA can recruit Mixed-Lineage Leukemia protein 3/4 histone 
methyl-transferase complexes increasing H3K4me3 and decreasing H3K27me3 histone 
modification in the C/EBPα locus during adipogenesis, leading to an increase in its expression 
(Xiao et al. 2015).  

A specific subclass of lncRNAs, defined as NATs, can modulate the expression of their 
respective sense gene altering processes in which they are involved. For example, PU.1AS can 
form a RNA-duplex with PU1, a molecule that inhibits adipogenesis, hindering its expression 
and subsequent protein expression. This indicates that PU.1AS promotes adipogenesis, and 
indeed its knockdown results in decreased expression of adipogenic modulators such as PPARγ, 
fatty acid synthase and ADIPOQ (Pang et al. 2013, Wei et al. 2015). Similarly, ADIPOQ 
antisense RNA (AdipoQ AS) can modulate ADIPOQ expression. Indeed, during adipogenesis, 
AdipoQ AS can shuttle from the nucleus to the cytoplasm and form a duplex with adiponectin’s 
mRNA, ultimately suppressing adiponectin’s translation and inhibiting adipogenesis (Cai et al. 
2018). Although not its NAT, lnc-leptin is directly correlated with LEP, as it is transcribed from 
an enhancer region upstream of LEP and their expression directly correlates. Lnc-leptin 
transcript seems to acts as a bridge to enhance the interaction between the Lep promoter and 
enhancer, although specific mechanistic details are yet to be clarified (Lo et al. 2018). 

The lncRNAs correlation with adipogenesis can also be negative, as some lncRNAs have been 
found to be decreased in adipogenesis. For example, overexpression of lnc-U90926 can inhibit 
lipid accumulation when overexpressed, whereas its inhibition leads to the increased expression 
of PPARγ2, FABP4, C/EBPa and ADIPOQ in murine 3T3-L1 pre-adipocytes (Chen, Liu, et 
al. 2017). This is the case for other lncRNAs, such as miR-221 host gene and lncRNA H19, 
whose inhibition increases adipocyte differentiation through an increase in the expression of 
adipogenic markers such as PPARγ, FABP4 and C/EBPa respectively in bovine adipocytes 
and in human Bone Marrow Mesenchymal Stem Cells (Li et al. 2019, Huang et al. 2016). 

As the function of most lncRNAs in adipogenesis is still being investigated, it is not surprising 
that some evidence might be controversial and that further studies might be needed to clarify 
specific lncRNAs functions in this process. This is the case of Maternally Expressed Gene 3 
(Meg3), a novel lncRNA which has been defined as both able to inhibit or promote adipogenesis 
(Li et al. 2017, Huang et al. 2019). Indeed, a first study reported that silencing of Meg3 
promoted adipogenesis through the overexpression of the adipogenesis-related miR-140-5p, as 
well as crucial adipogenesis master regulators such as PPARγ and C/EBPa, suggesting that 
when Meg3 is absent, adipogenesis is induced (Li et al. 2017). On the contrary, a second work 
described Meg3’s role in upregulating Dickkpof-3 through interaction with miR-217, 
ultimately leading to an upregulation of adipogenesis via the induction of expression of 
adipogenesis-related genes such as FABP4 (Huang et al. 2019). This might be due to a time-
specific effect of the lncRNA’s action, or the different cellular context (the first study was 
performed in human cells whereas the second in murine 3T3-L1 preadipocytes) and further 
studies will be needed to clarify Meg3’s mechanism of action. The Wnt/b-catenin signaling is 
also influenced by a novel nuclear lncRNA, AC092834.1. This lncRNA directly promoted an 
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increase in the expression of Dickkpof-1, which competitively binds to Low-density lipoprotein 
receptor-related protein 5 to degrade cytosolic β-catenin, ultimately leading to upregulation of 
adipogenic transcripts such as PPARγ, FAPB4 and C/EBPa (Fan et al. 2020). 

1.2.3. LncRNAs in obesity 

Specific studies correlate lncRNAs with the obese phenotype and obesogenic models. Amongst 
them, SRA has been demonstrated to be strictly associated with obesity, as it has been shown 
that  SRA -/- mice have a phenotype of resistance to high-fat diet induced obesity with 
decreased fat mass and an increased lean mass, a decreased expression of a subset of adipocyte 
marker genes in adipose tissues, reduced fatty liver and improved glucose tolerance (Liu, 
Sheng, et al. 2014).  

High-throughput techniques such as RNA-sequencing (RNA-seq) allowed the screening of the 
whole transcriptome in adipose tissue of patients with obesity versus lean ones, leading to the 
identification of novel lncRNAs involved in the disease. In one study, two lncRNAs termed 
adipocyte-specific metabolic related lncRNAs -1 and -2 were identified and found to regulate 
adipogenesis, lipid mobilization and ADIPOQ secretion (Gao et al. 2018). Another screening 
was performed in gluteal sottocutaneous adipose tissue (SAT) on healthy subjects, identifying 
120 adipose-derived lncRNAs (Zhang et al. 2018). Moreover, Lui Y et al, aiming to evaluate 
whether lncRNAs are involved also in childhood obesity, investigated the differential 
expression profile of lncRNAs in children with obesity compared with those that do not present 
the condition (Liu, Ji, et al. 2018). They identified  1268 differentially expressed lncRNAs 
involved in various biological processes, including the inflammatory response, lipid metabolic 
process, osteoclast differentiation and fatty acid metabolism. In particular, they indicated that 
lncRNA RP11-20G13.3, hub lncRNA in children with obesity, attenuated adipogenesis of 
preadipocytes (Liu, Ji, et al. 2018).  

The same has been done in mice, where brown and white adipocytes, preadipocytes, and 
cultured adipocytes were screened leading to the identification of 175 different lncRNAs that 
are specifically regulated during adipogenesis (Sun et al. 2013). Similarly, inguinal white 
adipose tissue has been screened in obese mice compared to wild type ones, identifying 46 
differentially expressed lncRNAs (Cai et al. 2019). Moreover, lncRNAs such as PVT1 and 
Plnc1 were found to be upregulated in obese mice (Zhang et al. 2020, Zhu et al. 2019).  

From an anatomical point of view, lncRNAs expression can differ in different fat  depots, as it 
is for HOX transcript antisense RNA (HOTAIR) which has been demonstrated to be highly 
expressed in gluteal-femoral fat. Interestingly the mechanical stimulation of this area induces 
exosomal secretion of HOTAIR, which then circulates in the bloodstream resulting in higher 
serum expression in subjects with obesity and a sedentary lifestyle (Lu et al. 2017). Again, gene 
expression screening can help find differences also in different adipose depots, as shown by 
another study reporting differences in the lncRNAs expression profiles of brown versus white 
adipose tissue, identifying respectively 735 up-regulated and 877 down-regulated lncRNAs 
(Chen, Cui, et al. 2015). Indeed, the differential lncRNAs regulation in brown adipose tissue 
was also proven by lnc-Blnc1 induction of thermogenic gene expression through the interaction 
with EBF TF 2, a TF that controls brown and beige adipocyte morphology (Mi et al. 2017). 
Lastly, a recent work screened the lncRNAs expression in rat livers with hypertriglyceridemia 
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and identified the upregulation of a novel lncRNA: lnc19959.2. The knockdown of lnc19959.2 
resulted in triglycerides lowering effects in vitro and in vivo both and mechanistic studies 
revealed that lnc19959.2 upregulated Apolipoprotein A4 expression via ubiquitinated 
transcription inhibitor factor Transcriptional activator protein Pur-beta, while its specific 
interaction with Heterogeneous Nuclear Ribonucleoprotein A2/B1 was able to down-regulate 
the expression of Carnitine Palmitoyltransferase 1A, Transmembrane 7 Superfamily Member 
2, and Glycerol-3-Phosphate Acyltransferase, Mitochondrial (Wang et al. 2020). 

1.2.4. LncRNAs in T2D 

At all ages, the risk of T2D rises with increasing body fat. The prevalence of T2D is three to 
seven times higher in those who are affected by obesity than in normal weight (NW) adults. It 
is also 20 times more likely in those with a BMI greater than 35 kg/m2. Specifically, T2D is an 
adult onset, non- insulin-dependent type of diabetes and is strictly linked to obesity (Raut and 
Khullar 2018). In recent years, an increased incidence of T2D among youth is also reported, 
with obesity and family history of T2D generally present (Pulgaron and Delamater 2014). Also, 
in this case, lncRNAs could be crucial players in disease onset and progression. 

Indeed, lncRNAs can be both up- and down-regulated during disease progression in different 
cell types (Figure 5). Expression profiles of lncRNAs in Peripheral Blood Mononuclear Cells 
(PBMCs) from patients with T2D highlighted how several lncRNAs were significantly 
increased compared to controls, and these included HOTAIR, MEG3, LET, MALAT1, MIAT, 
CDKN2BAS1/ANRIL, XIST, PANDA, GAS5, Linc-p21, ENST00000550337.1, PLUTO, and 
NBR2 (Sathishkumar et al. 2018). The lncRNAs ANRIL and MALAT1 were found increased 
in the serum of patients with T2D (Zhang and Wang 2019, Liu et al. 2019), and the same was 
true for NONRATT021972, which also correlated with increased blood glucose and 
neuropathic pain (Yu et al. 2017). Interestingly, LncRNA-p3134 is highly expressed in serum 
exosomes of patients with T2D as studies found that it is secreted by islet β-cells (Ruan et al. 
2018). Moreover, the lncRNA H19 was found upregulated in plasma of patients with T2D 
(Fawzy et al. 2020) and the lncRNA KCNQ1OT1 was upregulated in T2D islets (Morán et al. 
2012). Evidence can also be obtained from murine models of the disease, as is the case of 
E330013P06, which was found upregulated firstly in macrophages of diet-induced insulin-
resistant T2D mice and subsequently also found upregulated in monocytes from patients with 
T2D (Reddy et al. 2014).  

Interestingly, many lncRNAs have also been reported to be downregulated in patients with 
T2D. When considering PBMCs screening studies, results showed that multiple lncRNAs were 
found downregulated. These include LINC00523, LINC00994 (Mansoori et al. 2018), LY86-
AS1, HCG27_201 (Saeidi et al. 2018), THRIL and SALRNA1 (Sathishkumar et al. 2018). 
Moreover, studies showed that levels of GAS5 lncRNA were decreased both in serum and in 
plasma of patients with T2D (Carter et al. 2015, Fawzy et al. 2020). Lastly, the lncRNA HI-
LNC45 was found downregulated in T2D islets (Morán et al. 2012).  
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Figure 5: Summary of lncRNAs upregulated or downregulated in specific tissues of T2D patients. Created with 

biorender.com. 

Indeed, lncRNAs can modulate the cellular activity of pancreatic β cells. LncRNA-p3134 seems 
to act as a new signaling molecule that maintains β-cell mass and enhances insulin synthesis 
and secretion and indeed it has been seen that lncRNA-p3134 can contribute to reverse the 
insufficient insulin secretion in T2D (Ruan et al. 2018). Moreover, the lncRNA β-cell long 
intergenic noncoding RNA (βlinc1) can coordinate the regulation of neighboring islet-specific 
TFs and it is in fact necessary for the specification and function of insulin-producing β cells. In 
particular, in adult mice it has been shown that deletion of βlinc1 leads to a defective islet 
development and disruption of glucose homeostasis (Arnes et al. 2016). In pediatric age, Liu Y 
et al. reported that several lncRNAs involved in regulation of glucose metabolic process and 
insulin resistance, such as RP11-559N14.5, RP11-363E7.4, RP11-707P17.1, were significantly 
up or down regulated in children with obesity compared to controls, even in the absence of 
diabetes (Liu, Ji, et al. 2018). Considering that hyperglycemia and T2D develop when the 
pancreas cannot match the increased insulin demands resulting from insulin resistance, 
lncRNAs could play a crucial role in the onset of the disease.  
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2. Aim of the Study  
Obesity is defined as abnormal or excessive fat accumulation, presenting a risk to health. The 
most recent report of the WHO shows how the worldwide prevalence of obesity nearly tripled 
between 1975 and 2016, with over 650 million adults being clinically defined as obese. This 
trend is due to increase even more, as in 2018 more than 40 million children under the age of 5 
years were overweight and obese, with studies showing that 70% of obese adolescents will 
maintain their obese condition as adults, with a significant impact on their physical and 
physiological health. Based on these data and multiple epidemiological evidence linking 
obesity with a range of physical and psychosocial health conditions, it is possible to describe 
obesity as a public health crisis that severely impairs the health and quality of life of people and 
furthermore considerably adds to national health-care budgets. Indeed, obesity contributes to 
increased morbidity and mortality as it is associated to many chronic diseases such as T2D, 
hypertension, dyslipidemia, coronary artery disease, stroke, osteoarthritis and certain forms of 
cancer.  

The first aim of this research work is the identification of transcriptional differences present in 
SAT from normal weight, obese and diabetic subjects. Indeed, the identification of deregulated 
transcripts could lead to the investigation of new disease-changing mechanisms and possible 
targetable pathways. Moreover, the analysis of the transcriptional differences highlighted in 
diabetic obese versus obese subjects could highlight which targets are responsible for the 
development of the diabetic co-morbidity. Through numerous bioinformatics tools and 
database analyses, the deregulated targets will be investigated for their possible function, 
ontology, and disease implication.  

The second aim of this work is the identification and characterization of ncRNAs deregulated 
in SAT from NW, obese and diabetic subjects. The identified lncRNAs will be characterized 
with bioinformatic tools, and their specific role in adipogenesis will be assessed in vitro.  
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3. Materials and Methods 
3.1. Adult human adipose tissue collection, isolation and differentiation 

The present study is in accordance with the Declaration of Helsinki and it was approved by the 
Ethical Committee of IRCCS Istituto Auxologico Italiano (Ethical Committee approval code 
#19C723_2017). The study was conducted in collaboration with Dr. Raffaella Cancello from 
IRCCS Istituto Auxologico Italiano and Prof Simona Bertoli from  IRCCS Istituto Auxologico 
Italiano and University of Milan. A signed informed consent was obtained from each enrolled 
patient for tissue sampling. Biopsies of SAT were collected from a total of 15 subjects: 5 healthy 
NW females (age 37 ± 6.7 years, BMI 24.3 ± 0.9 kg/m2), 5 obese females (age 41 ± 12.5 years, 
BMI 38.2 ± 4.6 kg/m2), and 5 obese females with T2D (age 54.6 ± 14.9 years, BMI 38.1 ± 11.8 
kg/m2).  

Surgical biopsies of whole abdominal SAT were collected pre-operatively from obese female 
patients during bariatric surgery procedures and from NW women before aesthetic plastic 
surgery or abdominal surgery for non-inflammatory diseases. Each collected biopsy was 
weighed and stored in 1 ml of DMEM (Invitrogen Corporation, Jefferson City, MO) 
supplemented with 2.5% Bovine Serum Albumin (Sigma, St. Louis, MO) per gram of collected 
tissue. The biopsy was immediately transferred to the laboratory and processed. A fragment of 
the whole adipose tissue biopsy was immediately frozen in liquid nitrogen for RNA extraction 
(see below), another fragment was formalin-fixed and the remaining material was digested with 
1 mg/ml collagenase type 2 (Sigma, St. Louis, MO) for at least 1 h at 37°C under shaking. The 
digested tissue was then filtered through a sterile gauze and a nylon filter (BD Bioscience 1 
Becton Drive Franklin Lakes, NJ). The SVF cells were isolated by centrifugation and then 
treated with a buffer containing 154 mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA for lysis 
of red blood cells. Stroma-Vascular Fraction cells were plated and cultured in a medium 
containing a 1:1 mixture of Ham's F12/DMEM (Invitrogen Corporation, Jefferson City, MO) 
supplemented with 10% Fetal Bovine Serum (FBS, Sigma, St. Louis, MO) until confluence. At 
confluence, cells were differentiated into mature adipocytes using AdipoStemPro (Invitrogen) 
for 10 days. Intracellular triglyceride accumulation levels were assessed by AdipoRed staining, 
according to the manufacturer protocol (Lonza, Milan, Italy). 

3.2. SAT RNA extraction 

Approximately 500 mg of frozen SAT was homogenized in RLT buffer (Qiagen). RNA from 
SAT was extracted using the RNeasy Mini Kit (Qiagen) according to the manufacturer protocol 
and samples were then treated with the RNase-Free DNase Set (Qiagen). Concentration and 
quality of the extracted RNA were determined by the NanoDropH ND-1000 spectrophotometer 
(NanoDrop Technologies, USA) and RNA integrity verified by gel-electrophoresis. PLIN, 
FABP4, LEP and ADIPOQ gene expression levels were assessed starting from 10 ng of 
complementary DNA (cDNA) using TaqMan probes (assay on demand, Applied Biosystems). 
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3.3. RNA-Seq and bioinformatic data analysis 

3.3.1. Library preparation 

RNA-seq libraries were prepared with the CORALL Total RNA-Seq Library Prep Kit 
(Lexogen) using 150 ng total RNAs from 5 healthy females, 5 obese females and 5 obese 
females with T2D. The RiboCop rRNA Depletion Kit (Lexogen) was used to remove rRNA, 
as this makes up more than 80% of total cellular RNA, and as it was not the research focus its 
presence could greatly reduce the useful transcript coverage in the following sequencing step. 
Briefly, a double-stranded cDNA library was prepared via random priming and reverse 
transcription. After purification of the generated fragmented cDNA, sequencing adapters were 
ligated to both ends of the fragments and the library were amplified via Polymerase Chain 
Reaction (PCR). The quality of sequencing libraries were assessed with the D1000 ScreenTape 
Assay using the 4200 TapeStation System (Agilent) and quantified with Qubit™ dsDNA HS 
Assay Kit (Invitrogen). 

3.3.2. Library sequencing 

Libraries were sequenced in paired-end with the Illumina NextSeq 550 sequencer. The 
sequencing step relies on the NGS technologies which relies on an in vitro cloning step (clonal 
amplification) to amplify each fragmented cDNA molecule in a cell-free system. The Illumina 
Genome Analyzer performs a so-called bridge PCR amplification, in which the adapter linked, 
single-stranded cDNA fragments are first immobilized on a glass slide by oligonucleotide 
hybridization in a bridging way, followed by clonal PCR amplification. Clonal amplification 
resulted in a population of identical templates, each of which was subjected to the following 
sequencing reaction. This process generated raw reads representing the sequence of each 
fragment. The more a transcript is abundant, the more reads it will generate. 

3.3.3. Differential expression analysis  

The raw reads were used as starting material of the computational biology analysis. Raw data 
were examined for high quality scores for base calls, guanine-cytosine content matching the 
expected distribution, the over representation of particularly short sequence motifs, and an 
unexpectedly high read duplication rate (Conesa et al. 2016). Transcripts were then aligned to 
the human reference genome. Reads that align equally well to multiple locations must be 
identified and either removed, aligned to one of the possible locations, or aligned to the most 
probable location. FastQ files were generated via llumina bcl2fastq2 (Version 2.17.1.14 - 
https://support.illumina.com/downloads/bcl2fastq- conversion-software-v2-20.html) starting 
from raw sequencing reads produced by Illumina NextSeq sequencer. Quality of individual 
sequences were evaluated using FastQC software after adapter trimming with cutadapt 
software. Lastly, short reads generated by RNA-seq were aligned to the reference genome. To 
do that, gene and transcript intensities were computed using STAR/RSEM software using 
Gencode Release 27 (GRCh38) as a reference, using the “strandness forward” option. The 
STAR software package enables highly accurate and ultra-fast alignment of RNA-seq reads to 
a reference genome. STAR can align spliced sequences of any length with moderate error rates 
providing scalability for emerging sequencing technologies. STAR generates output files that 
can be used for many downstream analyses such as transcript/gene expression quantification, 
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differential gene expression, novel isoform reconstruction, signal visualization, and so forth 
(Dobin and Gingeras 2016). Transcript abundance was obtained using the BlueBee® Genomics 
Platform (Lexogen).  

In this work, differential expression analysis was performed using the R package DESeq2, 
selected because of its superior performance in identifying isoforms differential expression. 
Genes were analyzed according to Fold Change (FC), i.e the ratio of a gene expression between 
conditions, and to False Discovery Rate (FDR), that measures the proportion of false 
discoveries among a set of hypothesis tests called significant (Chen, Robinson, and Storey 
2019). The FDR is often employed to determine significance thresholds and quantify the overall 
error rate when testing a large number of hypotheses simultaneously (Chen, Robinson, and 
Storey 2019). In particular, genes showing |log2FC| ≥ 1 and an FDR ≤ 0.1 were considered as 
differentially expressed. This choice was motivated by the decision to maximize the sensitivity 
of this analysis, in order to perform a massive screening and identify candidate genes to be 
validated with a wider sample population with real-time analysis. 

3.3.4. Pathways analysis  

Gene enrichment analysis was performed on coding genes. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis (http://www.genome.ad.jp/kegg) and WikiPathways 
analysis (https://www.wikipathways.org/index.php/WikiPathways) of differentially expressed 
coding genes via enrichR web tool was performed. Moreover, Gene Ontology (GO) analysis 
for biological processes, cellular components and molecular function was executed. 

3.3.5. Visualization of RNA-Seq results with R software 

3.3.5.1. Heatmap 

Heatmap was obtained using the heatmap.2 function from the R ggplots package. The data was 
displayed in a grid where each row represents a gene and each column represents a sample. The 
color and intensity of the boxes was used to represent changes (not the absolute values) of gene 
expression. 

3.3.5.2. Principal Component Analysis (PCA) plot 

The PCA plot was obtained using the prcomp function from the R ggplots package. It allowed 
the identification of  groups of samples that were similar and identify which variables make one 
group different from another.  

3.3.5.3. Volcano plot 

Volcano plot is a type of scatterplot that shows statistical significance (P value) versus 
magnitude of change (FC). In this work the volcano plot was obtained through the R 
EnhancedVolcano package, omitting genes with counts <20. 

3.3.5.4. Dotplot 

The enriched pathways were displayed with the dot plot graph. In this work the dot plot was 
obtained using ggplot R package. Specifically, the y axis represents the name of the pathways 
whereas the x axis indicates the Gene Ratio or Rich factor, meaning the ratio of differentially 
expressed gene numbers annotated in that particular pathway term to all genes annotated in that 
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particular pathway term. The greater the Rich factor is, the greater the degree of pathway 
enrichment is. The dot size represents the number of differentially expressed genes present in 
the particular pathway and the color indicates the adjusted p value (meaning the p valued 
modified taking into account the FDR). 

3.3.5.5. GOChord plot 

GO terms were displayed by using the GOPlot R package. The relationship between GO terms 
and genes was displayed through the GOChord plot. Thanks to this particular method of 
visualization it is possible to better understand the relationship between genes and terms. On 
the right the GO term for the category were considered, whereas on the left the corresponding 
genes ordered according to log2FC were reported. Segments connected each term to the 
respective involved gene. 

3.3.6. Visualization of RNA-Seq results with Cytoscape 

The Cytoscape software was used for other representations of functional enrichment, allowing 
visualization of gene clustering and specific biological annotations (Shannon et al. 2003). 

3.3.6.1. NDEx  

The NDEx plugin allows gene annotation pertaining to specific biological conditions (Pratt et 
al. 2015). Specifically, in this work it allowed to group the differentially expressed genes 
according to their tissue expression (each gene was linked to all the tissues were it was 
annotated as expressed), their subcellular localization (each gene was linked to all the 
organelles were it was annotated as expressed) and their prognosis in specific cancer types (each 
gene was linked to all the cancer types, with a different color of the link indicating either a 
favorable or unfavorable prognosis). 

3.3.6.2. ClueGO  

The ClueGO plug-in allows the visualization of non-redundant biological terms for large 
clusters of genes in a functionally grouped network (Bindea et al. 2009). In this work, the list 
of deregulated genes was uploaded and the results for GO Cellular Component, GO Molecular 
Function, GO Biological Process, GO Immune System Processes, KEGG, WikiPathways, 
Reactome and ClinVar were visualized. From the ontology sources used, the terms with p<0.05 
were selected. The related terms which share similar associated genes can be fused to reduce 
redundancy. The ClueGO network is created with kappa statistics and reflects the relationships 
between the terms based on the similarity of their associated genes. The network was 
summarized in a pie chart highlighting all the relevant terms. 

3.3.6.3. BiNGO  

The BiNGO plugin was used to determine which GO categories are statistically overrepresented 
in the set of differentially expressed genes. BiNGO maps the predominant functional themes of 
a given gene set on the GO hierarchy, and outputs this mapping as a Cytoscape graph (Maere, 
Heymans, and Kuiper 2005).  
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3.3.6.4. DisGeNET  

The DisGeNET plugin allows to visualize, query and analyze a network representation of the 
gene, and variant-disease associations in DisGeNET using the current version (7.0) of the 
DisGeNET data. DisGeNET is a discovery platform that integrates human gene and variant-
disease associations from various expert curated databases and the scientific literature, and 
includes Mendelian, rare, complex and environmental diseases, as well as abnormal phenotypes 
and traits (Piñero et al. 2020). In this work, DisGeNET was used to correlate the deregulated 
gene sets with immune system diseases, cancers, obesity, diabetes, and nutritional and 
metabolic associated diseases. 

3.3.6.5. iRegulon  

The iRegulon plug in allows the identification of TFs binding sites in a provided gene set (Janky 
et al. 2014). The iRegulon plugin allows the identification of regulons using motif and track 
discovery in an existing network or in a set of co-regulated genes. Motif discovery can be 
performed in proximal and distal sequences, across ten vertebrate genomes, using nearly 10 
thousand candidate motifs (position weight matrices). In this work, the iRegulon plugin was 
used to identify TFs binding sites in the deregulated genes, grouping together those under a 
common regulator.  

3.3.7. String Protein Interaction Network 

The protein interaction network was obtained using the STRING database (Szklarczyk et al. 
2019). This network view summarizes the network of predicted associations for a particular 
group of proteins, specifically the subset of deregulated genes. The network nodes are proteins. 
The edges represent the predicted functional associations. The combined score is computed by 
combining the probabilities from the different evidence channels and corrected for the 
probability of randomly observing an interaction. 

3.3.8. Visualization of ncRNAs features and interactors 

3.3.8.1. Coding and ncRNAs co-expression analysis 

Coding and ncRNAs co-expression analysis was performed using Weighted gene co-expression 
network analysis (WGCNA) R package (https://CRAN.R-project.org/package=WGCNA). 
WGCNA is a popular systems biology method used not only to construct gene networks but 
also to detect gene modules and identify the central players (e.g. hub genes) within modules (Li 
et al. 2018). Three conditions were investigated: obese female patients compared to healthy 
controls, obese diabetic patients compared to healthy controls and diabetic patients compared 
to obese patients. For each condition, coding and non-coding genes with a deregulation ≥1 in 
terms of |Log2FC| were subjected to this analysis. The soft thresholding power was chosen 
considering the criterion of approximate scale-free topology. Network nodes represent gene 
expression profiles, while undirected edges values are the pairwise correlations between gene 
expressions. Cytoscape software (http://www.cytoscape.org/) was used for network import and 
visualization. 
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3.3.8.2. Phylogenetic analysis 

Phylogenetic analysis was performed using Geneious software (Geneious version 2020.1 
created by Biomatters. Available from https://www.geneious.com). The transcript sequence 
was used as query to search the sequences with high similarity in databases using Megablast 
(Chen, Ye, et al. 2015). Sequences with high pairwise identity were chosen and used as input 
for multiple alignment. Multiple alignment was performed using Clustal Omega (Sievers and 
Higgins 2014). The final sequence alignment was used to perform phylogenetic analysis 
employing the distance-based neighbor-joining (NJ) method implemented in the PHYML 
program (Guindon et al. 2010). The genetic distance for NJ method was calculated through the 
Tamura-Nei model.  

3.3.8.3. RNA secondary structure prediction 

RNA secondary structure was predicted using the RNA Fold Web Server 
(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) based on Vienna RNA Fold 
(Lorenz et al. 2011) with default settings. The base pair probability of binding was used as color 
scale. 

3.3.8.4. Identification of TFs binding sites (CiiiDER) 

For identification of TFs binding sites in lncRNAs, the CiiiDER software was used (Gearing et 
al. 2019). CiiiDER can retrieve promoter sequences from a gene list or use FASTA format 
sequences and scan for TFs binding sites using supplied position frequency matrices. In this 
research work, the promoters of lncRNAs of interest were scanned with the CiiiDER software 
using the JASPAR2020 matrices. 

3.4. hADSCs  

3.4.1. hADSCs’ isolation 

Primary cell cultures from human adipose tissue samples were obtained from voluntary patients 
undergoing elective liposuction procedures under local anesthesia. The cells were isolated after 
directly plating the pellet without centrifugation in complete DMEM prepared with DMEM 
(Euro Clone) containing 1g/l D-glucose 10% heat-inactivated FBS supplemented with 
antibiotics at 37°C in a humidified, 5% CO2 incubator (HERAcell 150- Thermo electron, USA).  

All cell cultures were maintained at 37°C in humidified atmosphere containing 5% CO2. After 
2 weeks, the non-adherent fraction was removed and the adherent cells were cultured 
continuously, while the medium was changed every 3 days. Before seeding, cell samples were 
tested for viability by means of Trypan blue exclusion test. To prevent spontaneous 
differentiation, cells were maintained at a sub- confluent culture level; therefore, when cells 
reached 85% confluence, they were detached with 0.05% trypsin/EDTA solution, collected by 
centrifugation (1300 x g for 10’) and expanded in culture for subsequent passages. 

3.4.2. Culture of cryopreserved hADSCs 

hADSCs were cryopreserved with 10% of Dimethyl Sulfoxide, 10% DMEM and 80% FBS 
using a controlled-rate freezing container (CoolCell®). To recovery from cryopreservation, the 
vials containing the cells were placed into a 37°C water bath for few seconds. Thawed cells 
were then seeded on a plate in complete DMEM. 
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3.4.3. Adipogenic induction 

hADSCs were differentiated in adipogenic medium composed of DMEM High Glucose 
(Euroclone) supplemented with 10% Fetal Bovine Serum (GIBCO™), antibiotics (1% 
Penicillin/Streptomycin, 0.3% Amphotericin B) (Euroclone), 1% L-Glutamine (Euroclone), 1 
μmol/L dexamethasone (Sigma-Aldrich), 0.5 mM 3-isobutyl-1-methyl-xanthine (Sigma-
Aldrich), 10 μM insulin (Sigma-Aldrich) and 200 μM indomethacin (Sigma-Aldrich).  
Alternatively, hADSCs were also differentiated with standard adipogenic medium but with 
DMEM Low Glucose instead of High Glucose, or standard adipogenic medium supplemented 
with a 10% lipid mixture (Sigma-Aldrich) in order to mimic a high-fat diet. The medium was 
changed every 3 days. Adipogenic induction required 7 days (Kawaji et al. 2010, Carelli et al. 
2015, Rey et al. 2019). 

3.4.4. Pharmacological treatments 

PPARg was activated using the activator troglitazone (Galateanu et al. 2012, Hausman et al. 
2009). 1 μg/mL troglitazone (Sigma-Aldrich) was added to the standard culture medium for 7 
days, and medium was changed every 2 days. PPARg was inhibited with the selective PPARγ 
antagonist T0070907 (Sigma-Aldrich)(Lee et al. 2002). 1 μM of T0070907 was added to the 
standard culture medium for 7 days, and the medium was changed every 2 days (Rey et al. 
2019). 

3.4.5. Gene expression silencing 

RNA interference was used to suppress specific gene expression, thus mimicking loss-of-
function mutation and enabling in vitro and in vivo gene function analysis. For each 
transfection, a un-specific siRNA was used as negative control designed to have no known 
computationally derived target in the cells being transfected, and are thus commonly called a 
scrambled control. Briefly, two days before transfection, 6 000 cells/cm2 were plated in 
standard growth medium. On the day of transfection, the Lipofectamine® RNAiMAX Reagent 
and the siRNA agent were diluted in the appropriate volume of Opti-MEM® Medium in two 
separate eppendorfs. The  diluted siRNA was added to the diluted Lipofectamine® RNAiMAX 
Reagent (1:1 ratio) carefully avoiding contact with the plastic walls of the eppendorfs. Samples 
were incubated for <15 minutes at room temperature. Cells were washed in PBS and the 
medium was substituted with the appropriate composition lacking antibiotics. The siRNA-lipid 
complex was gently dropped in the wells containing the cells, which were then incubated for 
72h days at 37°C in a CO2 incubator.  

3.4.6 hADSCs RNA extraction 

Total RNA was isolated using TRIzol Reagent TM (Invitrogen) in accordance with 
manufacturer’s instructions. TRIzol Reagent TM maintains the integrity of the RNA while 
disrupting cells and dissolving cell components during sample homogenization. Briefly, 0.5 ml 
of TRIzol Reagent TM were added directly to the sample to be extracted and samples were 
incubated for 5 minutes to permit complete dissociation of the nucleoproteins complex. 0.1 ml 
of chloroform were then added and samples were then incubated for further 5 minutes and 
subsequently centrifuged for 15 minutes at 12,000×g at 4°C.  
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The mixture then separated into a lower pink phenol-chloroform organic phase (containing 
protein), an interphase (containing DNA), and a colorless upper aqueous phase (containing 
RNA). The aqueous phase containing the RNA was transferred to a new tube, and 0.25 mL of 
isopropanol were added. Samples were then incubated for 10 minutes and subsequently 
centrifuged for 10 minutes at 12,000 × g at 4°C. Total RNA precipitate formed a pellet at the 
bottom of the tube. The supernatant was then discarded and 0.5 mL of 75% ethanol was added. 
Samples were then centrifuged for 5 minutes at 7500 × g at 4°C. The supernatant was then 
discarded, samples were air dried for 5 minutes and the pellet was then resuspended in 21 μl of 
RNase-free water. RNA was then stored at -80°C.  

3.4.7. Reverse Transcription-PCR (RT-PCR)  

This technique is used to convert the RNA to cDNA. The kit iScriptTM Reverse Transcription 
Supermix for RT-qPCR (BioRad) was used following manufacturer’s instructions. The enzyme 
is the Reverse Transcriptase (4 µl) and 500 µg RNA was retrotranscribed in a final volume of 
20 µl. The RNA must be diluted in nuclease-free water to reach the desired final concentration. 
The complete reaction mix is incubated in a thermal cycler with a priming step (5 minutes at 
25°C), a reverse transcription step (20 minutes at 46°C) and a RT inactivation step (1 minute at 
95°C). cDNA samples can be stored at -20°C until further use. 

3.4.8. Real Time PCR 

Real time PCR, also known as quantitative PCR is a laboratory technique that quantifies the 
amplification of a targeted molecule in the template. Real Time PCR was performed with 
StepOnePlusTM Real Time PCR System (Thermo Fisher) using Sso SYBR Green Supermix 
(Bio-Rad). SYBR green is a fluorescent dye, and the relative fluorescence emission is directly 
proportioned to the amount of specific cDNA detected, as amplified with each specific primer. 
Each sample was analyzed in triplicate, using a no-template control (NTC) as control, in which 
water is added instead of cDNA.  

The reaction mix was composed of 5 μl of SsoAdvancedTM Universal SYBR Green Supermix, 
0.3 μl of Primer Forward (10 µM), 0.3 μl of Primer Reverse (10 µM), 3.4 μl of DNAse and 
RNAse free water, and 1µl of cDNA. Amplification conditions for 40 cycles were polymerase 
activation and DNA denaturation (95°C for 30 seconds), annealing (60°C for 30 seconds), 
extension (60°C for 30 seconds). Samples were analyzed with the 2-ΔΔCt method, where ΔΔCt 
= ΔCt sample – ΔCt reference (Livak and Schmittgen 2001). 

Primers were designed using human gene sequences available from NCBI 
(www.ncbi.nlm.nih.gov/nucleotide), and selected using NCBI’s Primer- BLAST tool at the 
exon junctions’ level to optimize amplification from RNA templates and avoiding nonspecific 
amplification products. Primers were designed to have a sequence of about 20 bp and perform 
a PCR product size of maximum 250 bp. 18S and GAPDH were used as housekeeping genes, 
as these are stably expressed across different cellular phenotypes. The specific genes 
amplification was thus normalized on the respective expression of the housekeeping gene, in 
order to ensure that the detected variability was indeed due to a differential expression.  
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Primer used are shown in Table 1: 
Table 1: List of Primers used 

Primer Name Primer Sequence 
GAPDH-FW CTTTTGCGTCGCCAG 
GAPDH-REV TTGATGGCAACAATATCCAC 
18S-FW AGTACGCACGGGCCGGTACAGTGAACTGCG 
18S-REV CGGGTTGGTTTTGATCTGATAAATGCACGC 
SMIM25-FW CCTTCCTTCTGCCTCCACTG 
SMIM25-REV TTGCTGTGGACTGATGTGGG 
COL4A2-AS2-FW CTCTCAGGTCATGCCCATCC 
COL4A2-AS2-REV CTGAGTCCTGTGCACGTCTT 
COL4A2-FW CAGGCCTGTATGGCGAGATT 
COL4A2-REV CCCCGATGTCACCGAAATCA 
CTEPHA1-FW CAGCTGCAACTTTGACGCAT 
CTEPHA1-REV CAAAGGGCCCCCATCAATCT 
RPS21-AS-FW TCTGCCATCCCATGTTTCAC 
RPS21-AS-REV TCTAGCACTACGACAAACGC 
RPS21-FW TCACAGGCAGGTTTAATGGC 
RPS21-REV TGACTCACCCATCCTACGAATG 
PPARg-FW CAAGAGTACCAAAGTGCAATCAAAGTGGAG 
PPARg-REV GTTCTCCGGAAGAAACCCTTGCATCCTTCA 
FABP4-FW CTGGGCCAGGAATTTGACGA 
FABP4-REV ACCAGGACACCCCCATCTAA 
C/EBPa-FW GGAGCAAATCGTGCCTTGTC 
C/EBPa-REV CTTCTCTCATGGGGGTCTGC 
C/EBPb-FW GGGAGCCCGTCGGTAATTTT 
C/EBPb-REV CATGTGCGGTTGGTTTGGAC 
C/EBPd-FW TGGGACATAGGAGCGCAAAG 
C/EBPd-REV ACACGTTTAGCTTCTCTCGCA 

 

3.4.9. Statistical analysis for in vitro experiments 

Statistics was evaluated using GraphPad Prism 8.0a version (GraphPad Software Inc, La Jolla, 
USA). When two conditions were analyzed, Student’s unpaired t test was used. When three or 
more conditions were analyzed, one-way ANOVA was used followed by Tukey’s post-test. For 
all in vitro experiments, data are reported as mean ± Standard Error Mean (SEM). The level of 
statistical significance was set at p=0.05. 
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4. Results 
4.1. Isolation and characterization of SAT from NW, Obese and T2D patients 

The principal aim of this research work was the identification of transcriptional differences 
present in SAT from NW, obese and diabetic subjects. The SAT tissue highly differs in obese 
subjects versus lean ones, appearing to be hypertrophic when compared to SAT from lean 
subjects (Figure 6a). Moreover, Figure 6b shows how the tissue presents an inflammatory 
component (flogosis, top panels) and is highly fibrotic (lower panels). In vitro differentiation 
of SAT and Visceral Adipose Tissue (VAT) was performed and the adipocytes stained with 
AdipoRed, and results show the most efficient differentiation in SAT from obese subjects, 
followed by SAT from obese subjects with diabetes and ultimately a less efficient 
differentiation in lean subjects (Figure 6c). Moreover, the expression of PLIN, FABP4, LEP 
and ADIPOQ was assessed in SAT and VAT from obese and obese patients with diabetes. 
These markers are highly expressed in the SAT, with PLIN and ADIPOQ’s expression being 
slightly higher in diabetic subjects (Figure 6d). 

 
Figure 6: (a) Histological analysis of SAT tissue in lean and obese subjects. Scale bar 100µm (b)  Histological acquisition of 
SAT from obese subjects shows a highly flogotic and fibrotic tissue (c) In vitro differentiation of SAT and VAT and adipocytes 

staining with AdipoRed. (d) RNA expression of PLIN, FABP4, LEP and ADIPOQ in SAT and VAT from obese and obese 
patients with diabetes.  
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4.1.1. Clinical characteristics of screened subjects 

The clinical characteristics of the 15 Females whose SAT was used for RNA-seq are reported 
in Table 2, analyzed with Tukey-Kramer Multiple comparisons test. 
Table 2: Clinical characteristics of screened subjects 

 NW  
N=5 

Obese Patients 
N=5 

T2D Obese Patients 
N=5 p value (p) 

Age, years 37±6.7 41±12.5 54.6±14.9 ns 
Weight , Kg 64.6±7.7 102±12.3* 102.4±31.6* *p=0.017 vs NW 
Height , cm 162.8±7.8 164.4±4.6 164.2±52.9 ns 

BMI,  Kg/m2 24.3±0.9 38.2±4.6* 38.1±11.8* *p=0.016 vs NW 
 

4.2. Transcriptional characterization from SAT of Healthy, Obese and T2D patients 

One of the main focuses of this research was the transcriptional characterization of SAT 
obtained from 5 healthy NW females (NW), 5 obese females (OBF), and 5 obese females with 
T2D (OBT2D). The aim was to characterize the differences in the transcriptome of these 
patients, and to do so, RNA-seq technologies was used and three experimental conditions were 
analyzed: the differences occurring between OBF and NW, the differences occurring between 
OBT2D and NW, and moreover the differences occurring between OBT2D and OBF. The 
quality of the RNA-seq experiment was firstly assessed. After sequencing, it is important to 
evaluate the clusters formation through the cluster density, which indicates the number of 
clusters formed per mm2 and should fall within 170K/mm2-200K/mm2, and the clusters passing 
filter, an indication of signal purity from each cluster which should be >80%. In this analysis, 
the cluster density was 174K/mm2, whereas the cluster passing filter was 90.4%, indicating that 
the raw data obtained was in line with the expected values required for subsequent analyses. 
Table 3 reports the number of raw reads obtained for each sample.  

Table 3: Number of raw reads obtained for each sample. 
Category Raw reads 

NW1 13 752 422 
NW2 15 050 528 
NW3 13 266 542 
NW4 58 309 280 
NW5 16 620 389 
OBF1 15 848 430 
OBF2 12 943 781 
OBF3 19 063 202 
OBF4 17 319 231 
OBF5 13 239 222 

OBT2D1 15 613 467 
OBT2D2 18 224 278 
OBT2D3 14 557 877 
OBT2D4 15 286 804 
OBT2D5 12 553 629 
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Table 4 reports the number and relative % of mapped reads obtained after alignment of raw 
sequences with the reference genome. The high number of uniquely mapped reads indicates a 
successful alignment.  

Table 4: Number and relative % of mapped reads obtained after alignment of raw sequences with the reference genome. 

Sample Uniquely mapped Mapped to 
multiple loci 

Mapped to 
too many 

loci 

Unmapped: 
too short 

Unmapped: 
other 

NW1 11473544 (83.4%) 985245 
(7.2%) 

8112 
(0.1%) 

1282771 
(9.3%) 2750 (0.0%) 

NW2 12408995 (82.4%) 1058145 
(7.0%) 

6636 
(0.0%) 

1573743 
(10.5%) 3009 (0.0%) 

NW3 11782503 (88.8%) 662257 
(5.0%) 

6470 
(0.0%) 

812656 
(6.1%) 2656 (0.0%) 

NW4 50742827 (87%) 2974477 
(5.1%) 

51391 
(0.1%) 

4493955 
(7.7%) 

46630 
(0.1%) 

NW5 14085422 (84.7%) 1193487 
(7.2%) 

44280 
(0.3%) 

1267265 
(7.6%) 

29935 
(0.2%) 

OBF1 13758992  (86.8%) 1003312 
(6.3%) 

47672 
(0.3%) 

998818 
(6.3%) 

39636 
(0.3%) 

OBF2 11462047 (88.6%) 
578220 
(4.5%) 

4453 
(0.0%) 

896470 
(6.9%) 2591 (0.0%) 

OBF3 16205258 (85%) 1343711 
(7.0%) 

53216 
(0.3%) 

1430500 
(7.5%) 

30517 
(0.2%) 

OBF4 15059598 (87%) 1027932 
(5.9%) 

8071 
(0.0%) 

1220164 
(7.0%) 3466 (0.0%) 

OBF5 10889211 (82.2%) 738989 
(5.6%) 

7538 
(0.1%) 

1599515 
(12.1%) 

3969 (0.0%) 

OBT2D1 12814208 (82.1%) 1296440 
(8.3%) 

14434 
(0.1%) 

1483700 
(9.5%) 4685 (0.0%) 

OBT2D2 15641892 (85.8%) 1152298 
(6.3%) 

13930 
(0.1%) 

1408868 
(7.7%) 7290 (0.0%) 

OBT2D3 12241157 (84.1%) 784349 
(5.4%) 

7258 
(0.0%) 

1523656 
(10.5%) 

1457 (0.0%) 

OBT2D4 13022570 (85.2%) 1045164 
(6.8%) 

6364 
(0.0%) 

1209651 
(7.9%) 3055 (0.0%) 

OBT2D5 9420441 (75%) 2062397 
(16.4%) 

9939 
(0.1%) 

1058341 
(8.4%) 2511 (0.0%) 

 

When filtering for transcripts with >20 reads, 30327 total variables were identified, 18674 of 
which were coding genes and 11653 of which were non-coding transcripts. 



Results 

  28 

4.2.1. Transcriptional characterization of SAT of OBF vs. NW 

The first experimental condition analyzed was that concerning the transcriptional changes 
occurring between OBF and NW. In this case, a full characterization of the expression profile, 
along with the identification of deregulated pathways and disease-implication, was performed. 

4.2.1.1. Expression profiles of SAT of OBF vs. NW  

After RNA-Seq analysis, genes were analyzed according to FC, i.e. the ratio of a gene 
expression between obese and control samples, and to FDR, that measures the proportion of 
false discoveries among a set of hypothesis tests called significant (Chen, Robinson, and Storey 
2019). Genes showing |log2FC| ≥ 1 and an FDR ≤ 0.1 were considered as differentially 
expressed (DE RNAs).  

Heatmap (Figure 7a) and PCA (Figure 7b) were displayed to evaluate the expression profiles 
obtained through the analysis. Both visualizations highlighted different expression profiles, 
suggesting that obesity  might strongly impact cellular features and gene expression in SAT.  

In particular, the heatmap (Figure 7a) displayed differentially expressed genes through a color 
code, where in green were represented the up-regulated genes and in red the down-regulated 
ones. The clustering analysis reported in the top part of the heatmap showed that the SAT from 
female OBF versus female NW (CTRL) belonged to two different "families", i.e. CTRL colored 
in light blue and OBF in pink. Indeed, in the bottom part of the graph it was possible to 
appreciate that OBF (N=5) were grouped together and separately from CTRL (N=5). This 
clustering was performed automatically based on the differential gene expression: the fact that 
the two conditions were "similar", indicated that the replicates within the group all presented 
with similar expression profiles.  

The PCA visualization (Figure 7b) also showed that the samples per each condition appeared 
separated and grouped together, indicating a similarity amongst CTRL and OBF, but relevant 
differences between the two conditions. These two methods of data visualization revealed that 
OBF present a different transcription profile in SAT, with a high number of DE RNAs and thus 
a global alteration in gene expression.  

DE RNAs were also displayed through a volcano plot to visualize the distribution of single up- 
and down-regulated genes (Figure 7c). On the x axis the log2FC is reported whereas on the y 
axis the P value in logarithmic scale is reported. The volcano plot was built considering a total 
of 30 327 genes. Genes that respected the condition in terms of log2FC and FDR were reported 
in red. Non differentially expressed genes were represented in grey, while genes that respected 
only one condition were represented in blue, i.e. genes respecting the FDR condition and not 
the log2FC one. The three dotted lines represents the conditions imposed in the analysis to 
consider the significant differentially expressed genes. In particular, the vertical lines regard the 
log2FC whereas the horizontal line the FDR. Already from the graph it is possible to appreciate 
how there is a majority of up-regulated genes.  
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Figure 7: Transcriptomic profiles of SAT from OBF and CTRL (a) Expression profiles of differently expressed genes in OBF 

versus CTRL reported as a Heatmap. (B), PCA of differently expressed genes in OBF versus CTRL (C)  Volcano plot 
showing deregulated genes between OBF and CTRL. On the x axis is reported the log2FC whereas on the y axis is reported 

the P value in logarithmic scale. 

Specifically, a total of 171 differentially expressed RNAs (DE RNAs) were detected in SAT 
tissue from OBF versus NW (Table 5). Of these, 160 were coding genes (mRNAs; 127 up-
regulated DE RNAs and 33 down-regulated DE RNAs) and 11 were non-coding genes 
(ncRNAs; 8 up-regulated DE RNAs and 3 down-regulated DE RNAs) (Table 5).  

Table 5: Number of differentially expressed genes in the SAT of OBF vs. NW. 
 OBF vs. NW 
 mRNAs ncRNAs Total 

Up-Regulated 127 8 135 

Down-Regulated 33 3 36 

Total 160 11 171 
 

The full characterization of the ncRNAs is reported in Table 6 with a classification of these 
ncRNAs for their specific biotype. It is possible to observe how the most abundant category are 
NATs, followed by lincRNAs, both lncRNAs.  

Table 6: Biotype characterization of differentially expressed  ncRNAs. TEC: To be Experimentally Confirmed; IG C 
pseudogene:inactivated immunoglobulin gene.  

ncRNAs 
 

Up-Regulated Down-Regulated Total 

NATs 3 1 4 

lincRNAs 2 0 2 

Processed pseudogene 0 1 1 

TEC 0 1 1 

Transcribed unprocessed pseudogene 1 0 1 

IG_C_pseudogene 1 0 1 

Unprocessed pseudogene 1 0 1 

Total 8 3 11 
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4.2.1.2. Analysis of deregulated genes: a focus on novel risk-genes  

A bibliographic analysis of previous literature 
was performed, in order to identify how many, 
amongst the 171 DE RNAs had been previously 
associated with obesity. This analysis (Figure 8) 
revealed that almost half of the deregulated 
genes (47.37%) had never been associated with 
the obesity condition. Moreover, most of the 
studies concerning the 90 obesity-associated 
genes were observational studies, correlating the 
genes to an obese phenotype. An in-depth functional characterization is needed to elucidate the 
role of SAT-deregulated genes in obese subjects. The results hereby reported could provide 
new insights in the molecular basis of obesity, providing 81 novel targets (Table 7).  

Table 7: List of 81 DE RNAs which were never previously associated to obesity. 
Gene Log2FC  Gene Log2FC  Gene Log2FC 

COL4A2-AS2 5.93  BUB1 2.60  MKX -1.82 
TM4SF19 4.98  NCAPH 2.49  SNX20 1.81 

DCSTAMP 4.63  FCGBP 2.48  RASGRP1 1.78 
CHRNA1 4.39  AP1S3 2.47  GAPT 1.78 
PDE6G 4.32  TYROBP 2.47  LINC01094 1.74 
URAD 4.18  AL121832.2 2.36  TNFSF8 1.70 

TM4SF19-
TCTEX1D2 4.12  CRABP2 2.34  PTPN22 1.67 

SDS 4.10  MXRA5Y 2.33  MFSD12 1.66 
ACTG2 -3.57  PTPN7 2.28  SPTB -1.64 
ANLN 3.49  ITGB2-AS1 2.23  DOK3 1.62 

COL11A1 3.49  SPINT1 2.22  GPR137B 1.58 
SIGLEC15 3.35  CD48 2.12  GLULP4 -1.54 

FCMR 3.27  ROR2 2.10  PLCXD1 -1.49 
RRM2 3.27  LGALS9 2.09  FAT2 1.48 
ST14 3.21  HAVCR2 2.07  PGF 1.46 

CCL22 3.15  SPTA1 2.03  HLA-DRB5 1.37 
SLAMF7 3.09  SLC19A2 -2.01  GLYCTK -1.36 
MYH11 -3.00  NPL 1.97  BTBD8 -1.35 

ADGRE4P 2.97  LILRB1 1.96  RUNX3 1.33 
CILP2 2.94  KCNJ5 1.95  MOCS1 -1.31 
ASPM 2.91  PARP15 1.95  TENM4 1.30 

SPOCD1 2.88  RUNX2 1.93  CKB -1.24 
GZMK 2.86  TPX2 1.92  AASS -1.16 

SLC6A12 2.82  CD22 1.92  ACER2 -1.15 
UBD 2.80  AC134669.1 1.90  AC015813.6 -1.08 

SMIM25 2.74  CIT 1.84  AL158206.1 -1.07 
IGHGP 2.66  DOK2 1.82  ADCY7 1.06 

Figure 8: Genes previously associated with obesity. 
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4.2.1.3. Characteristics of DE RNAs: interaction, tissue expression and cellular localization 

The top 20 deregulated genes based on their log2FC are reported in Table 8.  
Table 8: FC of Top 20 DE RNAs. Protein function description was obtained from the STRING database. 

Gene Name FC p value Gene Function 
COL4A2-AS2 5.93 0.00014 Unknown. 

MMP7 5.72 0.000018 
Matrilysin; Degrades casein, gelatins of types I, III, IV, and V, and 

fibronectin.  

DES -5.67 0.00000026 
Desmin; Muscle-specific type III intermediate filament essential for 

proper muscular structure and function.  
ADAMDEC1 5.26 0.000018 Important role in the control of the immune response. 

TREM2 5.20 0.0000011 
Triggering receptor expressed on myeloid cells 2; Forms a receptor 

signaling complex with TYROBP. 

SPP1 5.09 0.0000071 
Osteopontin; Binds tightly to hydroxyapatite. Forms an integral part 

of the mineralized matrix. Important to cell-matrix interaction. 

TM4SF19 4.98 0.0000034 Transmembrane 4 L six family member 19; Belongs to the L6 
tetraspanin family. 

MMP8 4.70 0.000028 Neutrophil collagenase; Can degrade fibrillar type I, II, and III 
collagens; Belongs to the peptidase M10A family. 

DCSTAMP 4.63 0.000025 

Dendritic cell-specific transmembrane protein; Cell surface 
receptor, roles in cellular fusion, cell differentiation, bone and 

immune homeostasis. Role in TNFSF11-mediated 
osteoclastogenesis.  

APOC4-
APOC2 

4.63 0.00083 Unknown. 

CHRNA1 4.39 0.00088 
Acetylcholine receptor subunit alpha; After binding acetylcholine, 

the AChR responds changing conformation and this leads to 
opening of a ion-conducting channel across the plasma membrane. 

PDE6G 4.32 0.000016 
Retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic 

phosphodiesterase subunit gamma; Implicated in transmission of 
the visual signal. 

URAD 4.18 0.00034 

Putative 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline 
decarboxylase; Catalyzes the stereoselective decarboxylation of 2-
oxo- 4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) to (S)-

allantoin. 
TM4SF19-

TCTEX1D2 4.12 0.00011 Unknown. 

SDS 4.10 0.000015 L-serine dehydratase/L-threonine deaminase; Serine dehydratase. 

TNNI2 3.96 0.00021 
Troponin I, fast skeletal muscle; Inhibitory subunit of troponin, the 
thin filament regulatory complex which confers calcium-sensitivity 

to striated muscle actomyosin ATPase activity. 

PLA2G7 3.78 0.00028 Platelet-activating factor acetylhydrolase; Modulates the action of 
platelet-activating factor (PAF) by hydrolyzing the sn-2 ester bond. 

CD300LB 3.77 0.000038 
CMRF35-like molecule 7; Acts as an activating immune receptor 
through its interaction with ITAM-bearing adapter TYROBP, and 

also independently by recruitment of GRB2. 

APOC1 3.75 0.00000075 
Apolipoprotein C-I; Inhibitor of lipoprotein binding to the low 

density lipoprotein (LDL) receptor, LDL receptor-related protein, 
and very low density lipoprotein (VLDL) receptor.  

CD52 3.73 0.000013 
CAMPATH-1 antigen; May play a role in carrying and orienting 

carbohydrate, as well as having a more specific role. 
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It is worth noticing that the top deregulated gene is a lncRNA, COL4A2-AS2, whose function 
is currently unknown, whilst the other 19 genes are all protein coding. Among the deregulated 
genes it is possible to highlight an implication for genes of the immune system, as 
ADAMDEC1, TREM2, DCSTAMP, CD300LB and CD52 are all involved in the immune 
response. There seems to be also a re-modelling of the surrounding tissue, as MMP7, SPP1, 
MMP8, DCSTAMP all play a role in this process. DES and TNNI2, which control the biology 
of striatal muscle, are also deregulated. Indeed, obesity can cause a decline in contractile 
function of skeletal muscle, reducing mobility and leading to the development of more obesity-
associated health risks (Tallis, James, and Seebacher 2018). 

The STRING database was used to construct an interaction network of deregulated genes where 
the nodes are proteins and the edges represent the predicted functional associations (Figure 9). 
The combined score is computed by combining the probabilities from the different evidence 
channels and corrected for the probability of randomly observing an interaction. It is possible 
to see that the proteins encoded by the genes interact in two main networks, with evidence 
which are both from curated databases and experimentally determined.  

 
Figure 9: STRING Protein Network Interaction. 
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With the NDEx plugin of the Cytoscape software it was also possible to investigate the genes 
expression and cellular localization. The genes deregulated in OBF are also expressed in a high 
number of other tissues (Figure 10). These include also neural specific tissues, such as the 
cerebellum, the caudate and the hippocampus, tissues implicated in the genitourinary apparatus, 
such as the fallopian tube, the endometrium, the urinary bladder, the seminal vesicle etc., and 
also the muscle tissue (e.g. skeletal muscle, heart muscle). These results could potentially 
suggest that the genes found deregulated in SAT could have a profound impact also in other 
un-related tissues, if their deregulation is confirmed in these locations.  

 
Figure 10: Specific tissue expression of deregulated genes as obtained with the NDEx database. 

Moreover, in Figure 11 it is possible to observe the known subcellular localization of the DE 
RNAs. A high number of variable organelles emerge, it is possible to suggest that the cells of 
the SAT present with ubiquitary perturbations, in the nucleus as well as the cytoplasm, the 
mitochondria, and the cytoskeleton indicating a profound alteration in all cellular functions. 

 
Figure 11: Subcellular localization of deregulated genes as obtained with the NDEx database. 
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4.2.1.4. Identification of co-regulating TFs  

The following aim was the identification of TFs binding sites in the DE RNAs gene set. Indeed, 
it was then possible to group together these genes under common regulators, as shown in Figure 
12. The main transcriptional regulator influencing the DE RNAs network seems to be SPI1, as 
it presents the highest number of targets. Interestingly, this TF, namely implicated in the 
activation of gene expression during myeloid and B-lymphoid cell development, has been also 
shown to be implicated in adipogenesis (Dispirito et al. 2013, Lefterova et al. 2014). Indeed, 
when it is expressed in mature adipocytes, it leads to the increased expression of macrophage 
genes and a global repression of genes with nearby adipocyte-specific PPARγ binding sites 
(Dispirito et al. 2013, Lefterova et al. 2014). Moreover, it has been implicated in insulin 
resistance, and its knock out promotes insulin sensitivity in high-fat diet-fed obese mice (Lin et 
al. 2012, Lackey et al. 2019). Other TFs implicated in adipogenesis and regulators in this 
network are HSF1 (Ma et al. 2015), EP300 (Lee et al. 2019, Takahashi et al. 2002), EBF1 
(Jimenez et al. 2007, Gao et al. 2014), NFKB1 (Berg et al. 2004), SRF (Rosenwald et al. 2017, 
Jones et al. 2020), CREB1 (Reusch, Colton, and Klemm 2000), TWIST2 (Lee et al. 2003, 
Franco et al. 2011), TP53 (Krstic et al. 2018, Huang et al. 2014), and, of course, C/EBPd, key 
regulator of early adipogenesis (Hishida et al. 2009, Lee et al. 2019). Moreover, PTCD1 knock 
out has been correlated with adult-onset obesity (Perks et al. 2017), whilst early over-nutrition 
leads to a decrease of PDX1 (Glavas et al. 2019). Members of the NFAT family have been 
implicated in adipogenesis and insulin resistance, but NFATc1 specifically was never reported 
to have a role in this process (Yang et al. 2006). EVX2, ZNF622, C9orf156, MTA3 and FLI1 
have not been correlated with adipogenesis to date. The identification of adipogenesis-related 
TFs integrates current knowledge of how these regulate the process, as this analysis specifically 
correlates them with DE RNAs and could thus enrich the knowledge on adipogenesis and/or 
obesity transcriptional regulators and targets. Moreover, as a number of DE RNAs are co-
regulated by TFs never before associated with adipogenesis or obesity, these results could prove 
helpful in directing scientists towards their characterization in these contexts.  

 
Figure 12: Regulon identification of DE RNAs. TFs are reported as white-filled hexagon shapes whereas DE RNAs are 

reports as ellipses color-filled. The color of DE RNAs indicates the respective log2FC deregulation. 
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4.2.1.5. GO analyses: Cellular Component, Molecular Function and Biological Processes  

Gene expression profiles of SAT tissue from OBF versus NW were then analyzed for GO terms 
enrichment, in order to better understand the possible genes cellular localization (Cellular 
Component), Molecular Functions and Biological Processes. Coding genes with |log2FC| ≥ 1 
were subjected to pathways analysis through enrichR web tool, and the outcomes were ordered 
according the adjusted p value, i.e. the p value adjusted taking into account the FDR (Chen, 
Robinson, and Storey 2019), and for each category only the top 10 GO terms were considered. 
Then, for each category, the outcomes were displayed through a GO Chord graph, which was 
obtained through R software. Thanks to this visualization strategy it was possible to better 
understand the relationship between genes and terms. On the right of the graph, the top 10 GO 
term for the category considered, whereas on the left the corresponding genes ordered according 
to log2FC. Segments connected each term to the respective involved gene. For each category, 
GO analysis was performed also with the ClueGO and BiNGO plugins, in order to compare the 
three interpretations and obtain more significant information. 

The GO terms analysis in Cellular Component highlighted 112 pathways. The top 10 GO 
Cellular Component strongly implicated the vesicle formation component, with terms such as 
“clathrin-coated endocytic vesicle membrane”, “clathrin-coated endocytic vesicle”, but even 
pathways related specific granules formation and lytic vacuoles ( Figure 13). 

 

Figure 13: GO Chord Cellular Component analysis for DE genes in SAT from in OBF vs. NW. On the right the top 10 
significant GO term for cellular component, whereas on the left the corresponding genes ordered according to log2FC. 

Segments connected each term to the respective involved gene.  

Moreover, the ClueGO analysis (Figure 14a) implicates a significant deregulation in plasma 
lipoproteins (p<0.01), along with again the vesicle and granule component (p<0.01) and, 
interestingly, an association with the immunological synapse (p<0.05). Supporting these 
results, the BiNGO analysis highlights how the most overrepresented terms are related to 
morphological changes in the plasma membrane, the lysosome and the extracellular regions 
(Figure 14b).  
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Figure 14: GO Cellular Component analysis. (a) ClueGO analysis for Cellular Component in OBF vs. NW. Each pie segment refers to 
the % of terms present per group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis for Cellular Component in in OBF vs. NW. The 

hubs reported show the overrepresented terms and the color intensity refers to the node significance. 

The GO terms analysis in Molecular Function highlighted 207 pathways. The top 10 GO terms 
implicated morphological components, such as actin and integrin binding, along with matrix 
remodeling with metallopeptidase activity, biochemical alterations such as carboxy-lyase and 
phosphoric ester hydrolase activity and signal transduction complexes such as the PI3K 
regulator subunit, phosphatase activity and protein tyrosine phosphatase activity (Figure 15).  

 
Figure 15: GO Chord Molecular Function analysis for DE genes in in OBF vs. NW. On the right the top 10 significant GO term 

for molecular functions, whereas on the left the corresponding genes ordered according to log2FC. Segments connected each 
term to the respective involved gene. 
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Along with the previously mentioned components, the ClueGO analysis (Figure 16a) implicates 
a significant deregulation lipid-related activity, such as lipid kinase activity (p<0.05), 
lipoprotein particle binding (p<0.01) and lipase activity (p<0.05). Moreover, the BiNGO 
analysis highlights how the most overrepresented terms are related to catalytic activities (Figure 
16b).  

 
Figure 16: GO Molecular Function. (a) ClueGO analysis for Molecular Function in in OBF vs. NW. Each pie segment refers to the % of 

terms present per group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis for Molecular Function in in OBF vs. NW. The hubs 
reported show the overrepresented terms and the color intensity refers to the node significance. 

The GO terms analysis for Biological Processes highlighted 1243 deregulated pathways, and 
the GO Chord graph reports the top 10 deregulated processes according to their significance 
(Figure 17). Remarkably, all these processes pertained immune-related functions, indicating a 
highly inflammatory phenomenon occurring in SAT of obese patients, indeed, the deregulated 
terms are all upregulated but one, and this analysis highlights the key molecular genes 
responsible for immune activation. 

 
Figure 17: GO Biological Processes analysis for DE genes in SAT from in OBF vs. NW. On the right the top 10 significant 
GO terms for Biological processes, whereas on the left the corresponding genes ordered according to log2FC. Segments 

connected each term to the respective involved gene. 
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The ClueGO (Figure 18a) and BinGO (Figure 18b) analysis supports the immunological 
implication, and moreover ClueGO indicates an extremely high implication for the regulation 
of tumor necrosis factor production.  

 
Figure 18: GO Biological Process. (a) ClueGO analysis for Biological Process in in OBF vs. NW. Each pie segment refers to 
the % of terms present per group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis for overrepresented Biological Process 
terms in in OBF vs. NW. The hubs reported show the overrepresented terms and the color intensity refers to the significance. 

4.2.1.6. Pathways characterization: top deregulated processes and implications for metabolic 
components 

The GO ontology analysis provided a preliminary characterization of the potential processes in 
which the DE RNAs are involved. To gain more in-depth insights into potential mechanisms, 
DE RNAs were also subjected to KEGG and WikiPathways analyses, as these represent the 
most relevant and open-sourced database to benchmark. The outcomes were displayed through 
a dot plot graph, chosen in order to visualize the most important features, as the y axis represents 
the name of the pathways whereas the x axis the Gene Ratio or Rich factor, i.e. the ratio of 
differentially expressed gene numbers annotated in that specific pathway term to all gene 
number annotated in that particular pathway term. The dot size represents the number of 
differentially expressed gene present in the specific pathway and the color indicates the adjusted 
p value i.e. the p valued modified considering the FDR.  

The work firstly aimed to identify the top 20 deregulated pathways ranked for their significance 
for KEGG and WikiPathways (Figure 19). In both cases, these included a number of pathways 
implicated in immunological responses, such as “antigen processing and presentation”, 
“cytokine-cytokine receptor interaction”, “macrophage markers”, “toll-like receptor signaling 
pathways”, “IL1 and megakaryocytes in obesity” and many more. Moreover, metabolic 
pathways, such as the amino acid and nitrogen metabolism, also result deregulated. This 
analysis approach highlights also a possible  deregulation in the gene expression signature 
correlated with specific diseases, such as rheumatoid arthritis, inflammatory bowel disease, 
gastric cancer and others. Indeed, amongst the deregulated pathways a number of them are 
correlated with pathogens infection (e.g. Human T-cell leukemia virus 1 infection, malaria, 
staphylococcus aureus infection, Ebola virus), suggesting that this specific deregulated 
molecular signature could be implicated in the worse disease prognosis observed in obese 
patients.  
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Figure 19: Dotplot of top 20 KEGG 2019 (a) and WikiPathways (b) analyses. The y-axis represents the name of the pathway, 
the x-axis represents the Rich factor, dot size represents the number of different genes and the color indicates the adjusted p-

value. 

The most significant pathway deregulation was also investigated using the ClueGO plugin, for 
KEGG (Figure 20a), WikiPathways (Figure 20b) and Reactome (Figure 20c) databases. The 
results again implicated immunological responses (viral protein interaction with cytokine and 
cytokine receptor for KEGG, microglia pathogen phagocytosis pathway for WikiPathways, 
immunoregulatory interactions between a lymphoid and a non-lymphoid cell for Reactome), 
together with an implication for auto-immune diseases such as rheumatoid arthritis, known to 
be associated with obesity (Stavropoulos-Kalinoglou et al. 2011). 

 
Figure 20: ClueGO analysis for KEGG (a), WikiPathways (b) and Reactome (c) in OBF vs NW. Each pie segment refers to 

the % of terms present per group (*p<0.05, **p<0.01 vs Control SAT). 

As metabolic complications of obesity can lead to the development of metabolic diseases, a 
focus was given on those pathways identified as correlated with dysfunctions in specific 
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metabolisms (Grundy et al. 2004). Indeed, cellular metabolism is typically defined as the sum 
of biochemical processes that either produce or consume energy (DeBerardinis and Thompson 
2012). These metabolic processes can be simplified in pathways involving three main classes 
of nutrients: carbohydrates, fatty acids and aminoacids (aa), necessary for maintaining energy 
homeostasis (DeBerardinis and Thompson 2012). The deregulated metabolic pathways are 
reported in Figure 21. 

 
Figure 21: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with (a) aa metabolism, (b) lipids 

metabolism and (c) carbohydrates metabolism. The y-axis represents the name of the pathway, the x-axis represents the Rich 
factor, dot size represents the number of different genes and the color indicates the adjusted p-value. 
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It is interesting to note that the highest number of deregulated pathways is correlated with aa 
metabolism, followed by carbohydrates. The lipids component seems to be the least affected 
by the gene perturbation, as it includes the lowest number of deregulated pathways. Indeed, 
changes in blood concentrations of essential aa and their derivatives, in particular branched 
chain aa, sulfur aa, tyrosine, and phenylalanine, are apparent with obesity and insulin resistance, 
often before the onset of clinically diagnosed T2D. A model was even proposed linking the free 
fatty acids-rich environment of obesity patients with diminution of branched chain aa catabolic 
enzyme activity, changes in methionine oxidation and cysteine/cystine generation, and tissue 
redox balance (NADH/NAD+) (Adams 2011). Even so, most studies focused on the 
peripherical or muscular deregulation in aa present in obese patients (Suzuki et al. 2019, Adams 
2011, Takashina et al. 2016, Guillet et al. 2016), and it is remarkable to note that this is also 
observable also in the SAT tissue (Figure 21a). Moreover, when studying the specific DE RNAs 
implicated in these processes, new target modulators could be identified.  

Concerning lipids metabolism, it has been shown that obesity is associated with increased basal 
lipolysis in adipose tissue, and elevated circulating free fatty acids (Singla, Bardoloi, and 
Parkash 2010). Indeed, obese people commonly have increased tissue lipid accumulation in the 
liver, skeletal muscle, and heart (Shulman 2014, Galgani, Cortés, and Carrasco 2014). It appears 
that elevated fat content in ectopic locations is more deleterious for whole-body and tissue 
metabolic homeostasis as indeed excessive fat accumulation in non-adipose cells seems to be 
causative of insulin resistance in obese individuals (Galgani, Cortés, and Carrasco 2014). 
Notably, in the DE RNAs dataset, a number of them have been found to correlate also with 
sphingolipids metabolism and cholesterol metabolisms, with even an implication for nuclear 
receptors involved in these processes (Figure 21b).  

Obesity has also been correlated with carbohydrates metabolism, as more and more studies are 
identifying glucose uptake into fat as modulator of systemic glucose homeostasis (Singla, 
Bardoloi, and Parkash 2010). Indeed, in all forms of obesity, there is a downregulation of 
GLUT4, a major factor contributing to the impaired insulin-stimulated glucose transport in 
adipocytes (Shepherd et al. 1993).  Moreover, there is reduced glucose disposal in adipose tissue 
in obese subjects (Singla, Bardoloi, and Parkash 2010), and it is of increasing relevance the 
identification of the molecular signature responsible for these changes. Deregulated pathways 
concerning carbohydrates metabolism include glycolysis and gluconeogenesis, the pentose 
signaling pathway, pyruvate metabolism, the citrate cycle and fructose and mannose 
metabolisms (Figure 21c). Interestingly, subjects fed with large doses of fructose versus 
glucose for several weeks tend to present exacerbated visceral and ectopic fat accumulation 
(Stanhope et al. 2009).  

Other deregulated metabolisms found in SAT of obese patients include vitamin, pyrimidine, 
and even specific drug metabolisms, suggesting a global alteration in the SAT metabolome of 
obese patients (Figure 22).  
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Figure 22: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with other metabolisms. The y-axis 
represents the name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes 

and the color indicates the adjusted p-value. 

Lastly, the specific pathways concerning adipogenesis were highlighted, and are reported in 
Figure 23. These included a deregulation in adipocytokines, PPAR and insulin signaling 
pathways, adipocytes differentiation and even thermogenesis (Figure 23). 

 
Figure 23: Dotplot of the KEGG 2019 and WikiPathways analysis of pathways correlated with adipogenesis. The y-axis 

represents the name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes 
and the color indicates the adjusted p-value. 

4.2.1.7. Role of the immunological component in SAT of OBF vs NW 

As all the previous results directed towards a strong implication for the immunological system 
in the SAT obtained from obese patients, a more in-depth analysis was performed concerning 
these processes. First of all, the specific immune-related pathways were highlighted in the 
KEGG and WikiPathways enrichment and displayed as a dotplot ranked for their significance 
(Figure 24). Specifically, 67 out of the 171 KEGG deregulated terms (39%) and  44 out of the 
158 WikiPathways deregulated terms (28%) were correlated with the immune system, 
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suggesting that the DE RNAs deregulation reported profoundly impacts this system, with a 
higher susceptibility for subsequent co-morbidities insurgence.   

 
Figure 24: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with the immune system. The y-axis 
represents the name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes 

and the color indicates the adjusted p-value. 

Moreover, via ClueGO analysis it was 
possible to interrogate the GO Immune 
System Processes database, obtaining 
the significant terms pertaining to these 
processes from the DE RNAs (Figure 
25). 5 equally represented categories 
were identified, implicating dendritic 
cells, antigen processing and 
presentation, and T cell activation. 
Indeed, it is these three mechanisms 
which seem to be most deregulated and 
their modulation could lead to an 
improved outcome in the case of co-insurgence of obesity secondary diseases or infections.   

The following step was to interrogate the DisGeNET database, which consists of an integrated 
analysis of all the known and predicted interactions between a set of genes and a disease class. 
Specifically, Figure 26 reports the known interaction of the DE RNAs with diseases of the 
Immune System, obtained from curated databases. It is thus possible to appreciate which 
specific genes deregulated in SAT lead to increased susceptibility for specific immune diseases, 
with possible implications for precision therapies when certain co-morbidities occur. The 
numerous diseases implicated include multiple types of diabetes, known complication of 
obesity, but also autoimmune diseases such as Lupus Erythematosus Systemic, Rheumatoid 

Figure 25: ClueGO analysis for GO Immune System Processes in 
OBF vs NW. Each pie segment refers to the % of terms present per 

group (**p<0.01 vs NW). 
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Arthritis, Immunologic Deficiency Syndromes, Multiple Sclerosis, defects in the leucocyte 
adhesion process, dermal diseases etc.  

 
Figure 26: DisGeNET analysis shows the terms implicated in Immune Diseases OBF vs. NW. The lines connecting the genes 
to the disease term represent the literature evidence for the terms’ implication in the disease. The color scale represents the 

genes FC. 

4.2.1.8. Potential cancer implications: susceptibility in obese patients  

The emerging link between obesity and multiple cancer types is gaining more and more 
relevance in recent years (Avgerinos et al. 2019, Kompella and Vasquez 2019, Ungefroren et 
al. 2015). Indeed, worldwide, the burden of cancer attributable to obesity, expressed as 
population attributable fraction, is 11.9% in men and 13.1% in women (Avgerinos et al. 2019). 
For this reason, the identification of the molecular signature occurring in obesity responsible 
for the insurgence of related carcinogenesis is of crucial importance. Firstly, the oncogenic-
related pathways were highlighted in the KEGG and WikiPathways analysis and displayed as 
a dotplot ranked for their significance (Figure 27). Specifically, 25 out of the 171 KEGG 
deregulated terms (15%) and 31 out of the 158 WikiPathways deregulated terms (20%) were 
correlated with the oncogenic phenomenon and diseases, suggesting a strong implication for 
the DE RNAs dataset in secondary carcinogenesis occurrence.   
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Figure 27: Dotplot of KEGG 2019 and WikiPathways analysis of oncogenesis-related pathways. The y-axis represents the 
name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes and the color 

indicates the adjusted p-value. 

As this kind of analysis does not allow for gene visualization, the DisGeNET database was 
investigated in order to elucidate all known interactions between cancers and DE RNAs (Figure 
28). It is possible to note how most genes involved are upregulated, correlating with numerous 
different cancer types. These include breast cancer, urinary cancer, lung cancer, colorectal 
cancer and many more.  

 
Figure 28: DisGeNET analysis shows the terms implicated in cancer in SAT from OBF vs. NW. The lines connecting the 

genes to the disease term represent the literature evidence for the terms’ implication in the disease. The color scale 
represents the genes FC. 

Even so, this type of analysis does not allow for prognosis correlation. Indeed, although in most 
cases an excessive body weight is associated with carcinogenesis development and poor 
outcome, some new studies are now highlighting how this might not always be the case. Studies 
are highlighting how  obesity can be a predictor of better overall survival in metastatic patients 
(Tsang et al. 2016) and moreover, in lung cancer, renal cell carcinoma and melanoma, obesity 
was found to be protective in terms of outcome (Petrelli et al. 2020). For this reason, the NDEx 
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plugin was used to construct a network where the edges are correlated with disease prognosis 
(Figure 29). It is interestingly to note how, for example, that in liver cancer most of the 
downregulated genes in the network are correlated with a favorable prognosis, indicating an 
overall higher susceptibility. Furthermore, a relevant number of unfavorable genes for renal 
and pancreatic cancer are reported to be upregulated. In depth studies will allow to predict and 
specifically address the risk for cancer development in obese patients.  

 
Figure 29: Gene-Cancer correlation network as obtained with the NDEx database. The edges color indicates the prognosis 

(favorable in blue and unfavorable in orange) and the color scale for the genes represents the genes FC. 

4.2.1.9. DE RNAs correlations with nutritional and metabolic diseases    

As previously reported, metabolic complications of obesity can lead to the development of 
metabolic diseases (Grundy et al. 2004), and for this reason the DisGeNET database was 
investigated in order to identify the interactions between DE RNAs and Nutritional and 
Metabolic Diseases, as obtained from curated databases (Figure 30). It is possible to notice how 
these diseases include also central nervous system diseases with a metabolic component, such 
as central nervous system inborn metabolic diseases, brain metabolic diseases, amyotrophic 
lateral sclerosis, semantic dementia etc., along with other metabolic diseases such as celiac 
disease, Tay-Sachs diseases and many more. 

As obesity and diabetes are the main focus of this thesis work, these two diseases were 
specifically investigated expanding the search to all known databases and depicting all known 
correlations (Figure 31b). 49 genes were found to be associated with obesity (Figure 31a) and 
35 with diabetes. It would be especially interesting to see if modulating disease parameters the 
deregulation in these DE RNAs would revert, and moreover specific attention should be put to 
those that are diabetes susceptibility genes, in order to prevent the development of the diabetic 
co-morbidity.  
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Figure 30: DisGeNET analysis shows the terms implicated in nutritional and metabolic diseases in SAT from OBF vs NW. 

The lines connecting the genes to the disease term represent the literature evidence for the terms’ implication in the disease. 
The color scale represents the genes FC. 

 
Figure 31: DisGeNET analysis shows the terms implicated in obesity (a) and diabetes (b) in SAT from OBF vs NW. The lines 
connecting the genes to the disease term represent the literature evidence for the terms’ implication in the disease. The color 

scale represents the genes FC. 

4.2.1.10. Identification of DE RNAs associated diseases 

The last analysis performed for this 
dataset consisted in investigating the 
ClinVar database. This highlights all 
diseases potentially associated with a 
list of DE RNAs (Figure 32). An 
incredibly high number of diseases 
emerge, suggesting that obesity 
could be correlated with the 
insurgence of even more 
pathogeneses than we thought. 

Figure 32: ClueGO analysis for GO Immune System Processes. Each pie 
segment refers to the % of terms present per group (*p<0.05  vs NW). 
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4.2.2. Transcriptional characterization of SAT of OBT2D vs. NW 

The second experimental condition analyzed was the transcriptional changes occurring between 
OBT2D and NW. Also in this case, a full characterization of the expression profile, along with 
the identification of significant deregulated pathways and disease-implications was performed. 

4.2.2.1. Expression profiles of SAT of obese OBT2D vs. NW  

Heatmap (Figure 33a) and PCA (Figure 33b) were displayed to evaluate the expression profiles 
obtained through the analysis. Both visualizations highlighted different expression profiles, 
showing that also T2D strongly impacts cellular features and gene expression in SAT. The 
clustering analysis reported in the top part of the heatmap showed that the SAT from OBT2D 
(DIABETES) and from NW (CTRL) belonged to two different "families", i.e. CTRL colored 
in light blue and DIABETES in pink. The PCA visualization (Figure 33b) also showed that the 
samples per each condition appeared separated and grouped together, indicating a similarity 
amongst CTRL and DIABETES, but relevant differences between the two conditions. The 
single genes found were displayed through a volcano plot (Figure 33c) and the DE RNAs were 
reported in red. 

 
Figure 33: Transcriptomic profile between SAT of T2D (DIABETES) and NW (CTRL) reported as heatmap (a) PCA (b), and 
volcano plot (c) where genes that respected the condition in terms of log2FC and FDR are reported in red, non-differentially 

expressed genes in grey, while genes that respected only one condition in blue. 

Specifically, a total of 259 DE RNAs were detected in SAT tissue from obese OBT2D versus 
NW (Table 9). Of these, 175 were coding genes (mRNAs; 101 up-regulated DE RNAs and 74 
down-regulated DE RNAs) and 84 were non-coding genes (ncRNAs; 71 up-regulated DE 
RNAs and 13 down-regulated DE RNAs).  

Table 9: Number of DE RNAs in SAT of OBT2D vs. NW subjects. 
 OBT2D vs. NW 
 mRNAs ncRNAs Total 

Up-Regulated 101 71 172 
Down-Regulated 74 13 87 

Total 175 84 259 
 

The full list characterization of the ncRNAs is reported in Table 10, with a classification of 
these ncRNAs for their specific biotype. It is possible to observe how the most abundant 
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category are both snoRNAs and novel RNAs whose biotype could not be defined by any other 
parameter (miscRNAs). 

Table 10: Biotype characterization of differentially expressed ncRNAs. 
 ncRNAs 
 Up-Regulated Down-Regulated Total 

NATs 0 4 4 
lncRNAs 9 0 9 
Mt tRNA 0 4 4 

Processed pseudogene 5 2 7 
Transcribed unprocessed pseudogene 1 0 1 

Transcribed processed pseudogene 0 2 2 
Unprocessed pseudogene 2 0 2 

miscRNA 19 0 19 
scaRNA 3 0 3 
scRNA 1 0 1 

snRNAs 9 0 9 
snoRNAs 19 0 19 

TEC 2 0 2 
IG C Gene 1 0 1 
TR C Gene 0 1 1 

Total 71 13 84 
 

4.2.2.2. Analysis of deregulated genes: a focus on novel risk-genes  

Firstly, a bibliographic analysis of previous 
literature was performed, in order to identify 
how many, amongst the 259 DE RNAs had 
been previously associated with T2D. This 
analysis (Figure 34) revealed that more than 
two thirds of the deregulated genes (63.3%) 
had never been associated with the diabetic 
condition. Even more in this condition, It is 
clear the need for functional investigation of 
DE RNAs, to obtain new insights in the 
molecular basis of diabetes.  

The list of the un-characterized novel genes is the following: ABCC1; AC005921.4; 
AC006963.1; AC006978.1; AC007242.1; AC009812.4; AC010655.2; AC010655.3; 
AC036222.2; AC073082.1; AC073283.3; AC079601.1; AC113410.1; ACEA_U3; ACEA_U3, 
RNU3, U3; ACEA_U3, RNU3A1, U3-2B, U3a, U3b1, U3b2; ACEA_U3, U3; ACTG2; 
ADAMTS10; ADAMTS2; AF093117.1; AKR1B15; AL109920.1; AL133243.4; AL133330.1; 
AL135938.1; AL138762.1; AL139407.1; AL356273.5; AL513523.1; AL513523.2; 
ALDH1L1-AS2; ANKDD1A; AP006222.1; ARHGEF26; ATP6V1FNB; BCYRN1; C1orf35; 

Figure 34: Ratio of novel and known genes for T2D. 
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CASQ2; CD209; CECR2; CES1P2; CHST2; CNKSR2; CNN1; COL12A1; CRISPLD2; CTH; 
DES; DSCC1; EYA1; FAM161A; FANCE; FAT2; FAT3; FCGBP; FJX1; FTH1P15; GCHFR; 
GOLGA8H; GOLGA8J; GOLGA8T; GPR137B; HNRNPA1P66; HOMEZ; IFI44; ISG20; 
ITK; KLHL29; KLRC4-KLRK1; KRT7; LENG1; MARCHF1; MBNL1-AS1; MIR155HG; 
MIR4435-2HG; MOCS1; MT-TA; MT-TE; MT-TN; MT-TQ; MUC20; NAALAD2; NDRG4; 
NKD1; NR1D1; NSA2P2; OASL; P2RX6; PAG1; PAIP2B; PDCL3P5; PGM5P3-AS1; PI15; 
PIK3R5; PKNOX2; PKP2; PMAIP1; POLR2I; PPP1R10; PRSS36; PRUNE2; RASL10B; 
RASSF5; REC8; RFX2; RN7SL381P; RN7SL471P; RN7SL720P; RN7SL88P; RNA28S5; 
RNU1-1; RNU1-27P; RNU1-28P; RNU4-1; RNU4-2; RNVU1-15; RNVU1-18; RNVU1-29; 
RNVU1-7; RNY3P1; RP11-469M7.1; RPL23AP7; SCARNA13; SCARNA5; SCARNA6; 
SCUBE3; SECTM1; SH3TC1; SLC7A1; SLC7A5; SLCO4A1; SNHG3; SNORA16A; 
SNORA23; SNORA68; SNORA73A; SNORA73B; SNORA7A; SNORA7B; SNORD10; 
SNORD17; SNORD3A; SNORD3B-1; SNORD3B-2; SNORD3C; SNORD89; SPTB; SRPX2; 
ST13P15; STOX1; SYT17; TM7SF2; TMEM25; TSTD1; TUBB2A; TUBB2B; TUBB2BP1; 
UPP1; URAD; XYLT1; ZNF232; ZNF425; ZNF763. 

4.2.2.3. Characteristics of DE RNAs: network interaction, tissue expression and cellular 
compartmentalization  

Amongst all the DE RNAs, the top 20 deregulated genes based on their log2FC are reported in 
Table 11. Along with protein coding genes, this list also includes tRNAs, rRNAs, lncRNAs and 
miscRNAs, suggesting an implication for the ncRNAs categories in diabetes. In this disease 
condition the immune system implication is even more relevant, with genes such as CSF3, 
CXCL10, CXCL11, GREM2, and LIF all implicated in this system.  

Table 11: Top20 DE RNAs. Protein function description was obtained from the STRING database while a bibliographic 
search was performed for ncRNAs. 

Gene Name FC p value Gene Function 

CYP1A1 -5.20 0.00049 
Cytochrome P450 1A1. In liver microsomes, this enzyme is involved in 
an NADPH-dependent electron transport pathway. It oxidizes a variety 
of structurally unrelated compounds, including steroids and fatty acids. 

CSF3 4.96 0.00033 Granulocyte colony-stimulating factor; Controls the production, 
differentiation, and function of granulocytes. 

CXCL10 4.68 0.00000064 C-X-C motif chemokine 10; Chemotactic for monocytes and T-
lymphocytes. Binds to CXCR3; Belongs to the integrin alpha family. 

MMP7 4.62 0.00054 
Matrilysin; Degrades casein, gelatins of types I, III, IV, and V, and 

fibronectin. Activates procollagenase. 

URAD 4.42 0.00012 
Catalyzes the stereoselective decarboxylation of 2-oxo- 4-hydroxy-4-

carboxy-5-ureidoimidazoline (OHCU) to (S)-allantoin. 

CXCL11 4.41 0.000050 
C-X-C motif chemokine 11; Chemotactic for interleukin-activated T-
cells but not unstimulated T-cells, neutrophils or monocytes. Induces 

calcium release in activated T-cells. Binds to CXCR3. 

OASL 4.14 0.00000090 
2'-5'-oligoadenylate synthase-like protein; Can bind double- stranded 

RNA. Belongs to the 2-5A synthase family. 

PI15 -4.13 0.00017 
Peptidase inhibitor 15; Serine protease inhibitor which displays weak 

inhibitory activity against trypsin.  

GREM2 -3.99 0.00083 Gremlin-2; Cytokine that inhibits the activity of BMP2 and BMP4 in a 
dose-dependent manner, and thereby modulates signaling by BMPs. 



Results 

  51 

SERPINE1 3.96 0.0012 
Plasminogen activator inhibitor 1; Serine protease inhibitor. Its rapid 

interaction with PLAT may be a control point in fibrinolysis. 
CA3 -3.85 0.00000047 Carbonic anhydrase 3; Reversible hydration of carbon dioxide. 

DES -3.84 0.00039 Desmin; Muscle-specific type III intermediate filament essential for 
proper muscular structure and function.  

MT-TQ -3.68 0.00050 Mt_tRNA, Mitochondrially encoded tRNA glutamine. 

RNA28S5 3.63 0.00000011 Processed pseudogene, represents the portion of one rDNA repeat 
encoding for 28S rRNA. 

BMP3 -3.59 0.000089 
Bone morphogenetic protein 3; Negatively regulates bone density. 

Antagonizes the ability of certain osteogenic BMPs to induce 
osteoprogenitor differentiation and ossification. 

LIF 3.54 0.000072 Leukemia inhibitory factor; has the capacity to induce terminal 
differentiation in leukemic cells. 

AL138762.1 3.48 0.000016 misc_RNA, NAT to FAM178A. 

SCUBE3 -3.42 0.000015 Signal peptide, CUB and EGF-like domain-containing protein 3; Binds 
to TGFBR2 and activates TGFB signaling. 

MIR155HG 3.35 0.00084 
lncRNA, microRNA host gene. Expressed at high levels in lymphoma 

and may function as an oncogene. 
AC113410.1 3.27 0.000000091 misc_RNA, unknown. 

 

The STRING database was used  to visualize protein interaction networks in coding DE RNAs 
(Figure 35). It is possible to see that the proteins encoded by the genes interact in one main 
network, mainly comprising proteins of the immune system, and one smaller network, 
comprising of subunits of the RNA Polymerase II suggesting a disruption in transcription. 

 
Figure 35: STRING Protein Network Interaction. 
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The genes expression and cellular localization were then investigated (Figure 36). Concerning 
tissue expression, genes deregulated in SAT of OBT2D are ubiquitary (Figure 36). These 
include muscle tissues, the genitourinary apparatus, the digestive system, the lymph node and 
many more (Figure 36a). The deregulated genes are ubiquitarily localized in the cytosol and 
nucleus, along with other organelles, and this kind of representation gives possible insights into 
where to functionally investigate the DE RNAs for further in vivo biological investigation 
(Figure 36b). 

 
Figure 36: Tissue (a) and subcellular (b) localization of deregulated genes as obtained with the NDEx database. 

4.2.2.4. Identification of co-regulating TFs 

The TFs binding sites in the DE RNAs gene set were then identified (Figure 37). There does 
not seem to be a predominant regulator, and 17 TFs were identified. NFIC (Muhammad et al. 
2017), MTA3 (He et al. 2016), STAT5 (Jackerott et al. 2006), NFE2 (Jin et al. 2020, Xiao et 
al. 2019), HSF1 (Chen, Ding, et al. 2017) have been previously correlated with T2D. HSF1 
inhibition has been correlated with glucolipotoxicity-induced β-cells apoptosis (Purwana et al. 
2017). Interestingly, the TF FOXM1 was found to be induced by obesity and stimulate β-cells 
proliferation, revitalizing their replicative potential and enhancing insulin secretion (Davis et 
al. 2010, Golson et al. 2015), whilst mice with the knock out in the TF PGR, present in this 
regulation network, have an improved glucose homeostasis secondary to β-cells proliferation 
(Picard et al. 2002). SMAD4 and SMAD1 impact autoimmune diabetes development (Kim, 
Lee, and Jun 2017, Seong, Manoharan, and Ha 2018, Kim et al. 2007) whilst LTF has also been 
found very recently to be differentially expressed in a Chinese cohort of type 1 diabetic patients 
(Yang et al. 2020). Moreover, SRY has been correlated with insulin resistance (Goldsworthy et 
al. 2008). FLI1 and NFATc1 were previously identified to regulate also the obesity DE RNAs 
network (Figure 12) and were never previously correlated to either diabetes or obesity. 
POLR2A, belonging to the polymerase category and with thus a constitutive function  
(Fagerberg et al. 2014) has never been correlated with obesity nor diabetes. Other TFs which 
were never correlated to diabetes before include T (TBXT), ELF1 and BCLAF1.This analysis 
allowed the association of TFs with specific targets in SAT of diabetes patients, thus providing 
new transcriptional pathways worth investigating.   
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Figure 37: Regulon identification of DE RNAs. The analysis reports the identification of TFs binding to specific motifs 
present in the deregulated gene set. TFs are reported as white-filled hexagon shapes whereas DE RNAs are reports as 

ellipses color-filled. The color of DE RNAs indicates the respective log2FC deregulation. 

4.2.2.5. GO analyses: Cellular Component, Molecular Function and Biological Processes  

Gene expression profiles of SAT tissue from OBT2D versus NW were then analyzed for GO 
terms enrichment (Chen, Robinson, and Storey 2019), and for each category the top 10 GO 
term were considered and displayed through a GO Chord graph. The GO terms analysis in 
Cellular Component highlighted 122 pathways. The top 10 GO Cellular Component implicated 
the immune system (MHC complex), with the genes HLA-DQB2, HLA-DQB1 and HLA-DRA, 
the sarcoplasm, the vesicular component and even nuclear TFs complexes and the Golgi 
apparatus (Figure 38).  

 

Figure 38: GO Chord Cellular Component analysis for DE RNAs in OBT2D vs NW. On the right the top 10 significant GO terms 
for cellular component, whereas on the left the corresponding genes ordered according to log2FC. Segments connected each 

term to the respective involved gene. 
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The implication of the MHC complex and Golgi cisterna was supported by ClueGO analysis 
(Figure 39a) whilst the BiNGO analysis highlighted how the extracellular region and the 
sarcoplasmic reticulum are amongst the most overrepresented terms (Figure 39b).  

 

Figure 39: GO Cellular Component analysis. (a) ClueGO analysis for Cellular Component OBT2D vs NW. Each pie segment refers to 
the % of terms present per group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis for overrepresented Cellular Component terms 

in OBT2D vs NW. The hubs reported show the overrepresented terms. 

The GO terms analysis in Molecular Function highlighted 281 pathways. The top 10 GO 
Molecular Functions supported the observation made in the cellular component analysis, as half 
of the terms relate to immunological activities (Figure 40). Interestingly, RNA polymerase II 
TF activity is also impaired, suggesting profound transcriptional deregulation. 

 
Figure 40: GO Chord Molecular Function analysis for DE genes in OBT2D vs NW. On the right the top 10 significant GO terms, 

whereas on the left the corresponding genes ordered according to log2FC. 

Along with the previously mentioned components, the ClueGO analysis (Figure 41a) implicates 
nuclear receptor activity, heparin binding, and lyase activity, also found as an overrepresented 
term in BiNGO analysis (Figure 41b).  
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Figure 41: GO Molecular Function (a) ClueGO analysis in OBT2D vs NW. Each pie segment refers to the % of terms present per 

group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis in OBT2D vs NW. The hubs reported show the overrepresented terms. 

The GO terms analysis for Biological Processes highlighted 1390 deregulated pathways, and 
the GO Chord graph reports the top 10 deregulated processes according to their significance 
(Figure 42). Again, 7 out of 10 of these processes pertained immune-related functions, 
indicating a highly inflammatory phenomenon occurring in T2D patients. 

 
Figure 42: GO Biological Processes analysis for DE genes in SAT from OBT2D vs NW. On the right the top 10 significant 

GO terms, whereas on the left the corresponding genes ordered according to log2FC. 

The ClueGO (Figure 43a) and BiNGO (Figure 43b) analyses support the immunological 
implication, and moreover ClueGO implicates calcium transport, angiogenesis, apoptosis, 
neuroinflammatory response and DNA catabolic processes.  

 
Figure 43: GO Biological Process. (a) ClueGO analysis in OBT2D vs NW. Each pie segment refers to the % of terms present per 

group (*p<0.05, **p<0.01 vs NW) (b) BiNGO analysis in OBT2D vs NW. The hubs reported show the overrepresented terms. 
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4.2.2.6. Pathways characterization: top deregulated processes and implications for metabolic 
components.  

The top 20 deregulated pathways ranked for their significance were visualized for KEGG 
(Figure 44a) and WikiPathways (Figure 44b). A strong metabolic component is represented, 
with nitrogen metabolism, glycolysis/gluconeogenesis, metabolism of xenobiotics, fatty acid 
omega oxidation, aa metabolism and many more found deregulated. Several pathways also 
implicated in immunological responses and also in this case there is a deregulation in the gene 
expression signature correlated with specific diseases.  

 
Figure 44: Dotplot of top 20 deregulated pathways after KEGG 2019 (a) and WikiPathways (b) analyses. The y-axis 

represents the name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes 
and the color indicates the adjusted p-value. 

The ClueGO analysis for KEGG interestingly highlighted RNA transport as the most 
significantly deregulated component (p<0.01, Figure 45a) suggesting a strong impairment of 
physiologic functions. WikiPathways implicated the immunological response with a focus also 
on COVID-19 infection (Figure 45b). The Reactome database highlighted mostly 
immunological components (Figure 45c). 

 
Figure 45: ClueGO analysis for KEGG (a), WikiPathways (b) and Reactome (c) in OBT2D vs NW. Each pie segment refers to 

the % of terms present per group (*p<0.05, **p<0.01 vs NW). 
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Metabolic complications can aggravate obesity and be highly dysfunctional in diabetic patients 
(Grundy et al. 2004, Goetzman et al. 2018). The deregulated pathways related to these 
metabolisms are reported in Figure 46. Specifically, 10/170 KEGG and 7/183 terms for 
WikiPathways related to aa (Figure 46a), 6/170 for KEGG and 5/183 for WikiPathways related 
to lipids (Figure 46b) and 7/170 for KEGG and 2/183 for WikiPathways related to 
Carbohydrates (Figure 46c). 

 
Figure 46: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with (a) aa metabolism, (b) lipids 

metabolism and (c) carbohydrates metabolism. The y-axis represents the name of the pathway, the x-axis represents the Rich 
factor, dot size represents the number of different genes and the color indicates the adjusted p-value. 

Other deregulated metabolisms found in OBT2D include ABC transporters,  vitamins, 
pyrimidine, specific drug metabolisms with many more suggesting a global alteration in the 
SAT metabolome of T2D patients (Figure 47).  

 
Figure 47: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with other metabolisms. The y-axis 
represents the name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes 

and the color indicates the adjusted p-value. 
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Lastly, the specific 
pathways concerning 
adipogenesis were 
highlighted, and are also 
present when patients 
develop diabetes. These 
included a deregulation in 
adipogenesis, PPAR and 
insulin signaling pathways, 
and even thermogenesis 
(Figure 48). 

4.2.2.7. Analysis of the transcriptional immunological response in OBT2D 

A more in depth analysis was then performed concerning immunological processes. 67 out of 
the 170 KEGG deregulated terms (39%) and  41 out of the 183 WikiPathways deregulated terms 
(22%) were correlated with the immunogenic phenomenon, suggesting that the DE RNAs 
deregulation reported profoundly impacts this system, with a higher susceptibility for 
subsequent co-morbidities insurgence (Figure 49).   

 
Figure 49: Dotplot of KEGG 2019 and WikiPathways analysis of immune system-related pathways. The y-axis represents the 

pathway, the x-axis represents the Rich factor, dot size represents the number of genes and the color the adjusted p-value. 

Moreover, via ClueGO GO Immune 
System Processes database, it was possible 
to see that the two most represented 
categories concerned type I interferon 
signaling pathway and the positive 
regulation of antigen processing and 
presentation (Figure 50).   

Figure 50: ClueGO analysis in OBT2D vs NW. Each pie segment 
refers to the % of terms present per group (**p<0.01 vs NW). 

Figure 48: Dotplot of KEGG and WikiPathways analysis of pathways 
correlated with adipogenesis. 



Results 

  59 

The following step was to interrogate the DisGeNET curated database, noting numerous 
deregulated genes linked with multiple immunological diseases (Figure 51). The upregulated 
CSF2 and HLA-DQB1 appear to be the genes implicated in the highest number of conditions, 
respectively mainly lymphoma and diabetes.  

 
Figure 51: DisGeNET analysis shows the terms implicated in Immune Diseases in OBT2D vs NW. The lines connecting the 

genes to the disease term represent the literature evidence for the terms’ implication in the disease.  

4.2.2.8. Potential cancer implications: susceptibility in OBT2D  

As it is with obesity and cancer, there is also a known correlation between diabetes and cancer 
(Giovannucci et al. 2010). The study thus aimed at the identification of the cancer-susceptibility 
signature in obese diabetic patients. 26 out of the 170 KEGG deregulated terms (15%) and 42 
out of the 183 WikiPathways deregulated terms (23%) were correlated with oncogenesis 
(Figure 52).   

 
Figure 52: Dotplot of KEGG 2019 and WikiPathways analysis of oncogenesis-related pathways. The y-axis represents the 
name of the pathway, the x-axis represents the Rich factor, dot size represents the number of genes and the color indicates 

the adjusted p-value. 
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The DisGeNET database was 
investigated highlighting a 
susceptibility network 
reduced when compared to 
the obesity one, but still 
interesting (Figure 53). 
Indeed, it highlights how 
BRCA2, known for its 
implications in breast cancer, 
is upregulated, and there is 
also a deregulation in many 
genes, such as MMP7 and 
SERPINE1 implicated in 
gastric cancer.  

The investigation of the NDEx database allowed the identification of a higher number of 
implicated genes (Figure 54). Also in this case, there seems to be a high number of genes with 
unfavorable prognosis correlated with renal cancer, whist there seems to be reduced expression 
of genes correlating with a favorable prognosis for breast cancer.  

 

 
Figure 54: Gene-Cancer correlation network as obtained with the NDEx database. The edges color indicates the prognosis 

(favorable in blue and unfavorable in orange) and the color scale for the genes represents their FC. 

4.2.2.9. DE RNAs correlations with nutritional and metabolic diseases    

The DisGeNET database was investigated in order to identify the interactions between DE 
RNAs and Nutritional and Metabolic Diseases, as obtained from curated databases (Figure 55). 
It is possible to notice how these diseases include also central nervous system diseases with a 
metabolic component, along with other metabolic diseases such as Fanconi Anemia, celiac 
disease, and many more. 

Figure 53: DisGeNET analysis shows the terms implicated in cancer in OBT2D vs 
NW. The lines connecting the genes to the disease term represent the literature 

evidence for the terms’ implication in the disease. The color scale represents the 
genes FC. 
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When expanding the search to all known databases 48 genes were found to be associated with 
obesity (Figure 56a) and 40 with diabetes (Figure 56b). The most annotated gene correlated 
with obesity appears to be SERPINE1, whilst the most correlated with diabetes appears to be 
HLA-DQB1.  

 
Figure 56: DisGeNET analysis shows the terms implicated in obesity (a) and diabetes (b) in SAT from OBT2D vs NW. 

4.2.2.10. Identification of DE RNAs associated diseases 

The last analysis performed for this dataset 
consisted in investigating the ClinVar database. 
This highlights all diseases potentially associated 
with a list of DE RNAs (Figure 57). Interestingly, 
5 conditions emerge, and these are: susceptibility 
to HIV, cardiomyopathy, Alcohol dependence, 
Fanconi anemia and PD. 

Figure 55: DisGeNET analysis shows the terms implicated in nutritional and metabolic diseases OBT2D vs NW. 

Figure 57: ClueGO analysis for ClinVar in 
OBT2D vs NW (*p<0.05, **p0.01  vs NW). 
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4.2.3. Transcriptional characterization of SAT of OBT2D vs. OBF 

The last experimental condition analyzed was the transcriptional difference occurring between 
OBT2D and OBF. The aim was to identify the molecular signature responsible for the 
development of the diabetic comorbidity. Also in this case, a full characterization of the 
expression profile, along with the identification of deregulated pathways and disease-
implication was performed. 

4.2.3.1. Expression profiles of SAT of OBT2D vs. OBF  

Heatmap (Figure 58a) and PCA (Figure 58b) were displayed to evaluate the expression profiles 
obtained through the analysis. Both visualizations highlighted different expression profiles, 
suggesting also T2D strongly impacts cellular features and gene expression in SAT. The 
clustering analysis reported in the top part of the heatmap showed that the SAT from OBT2D 
(DIABETES) and from OBF belonged to two different "families" except for one sample.  

The PCA visualization (Figure 58b) also showed that the samples per each condition appeared 
separated and grouped together, indicating a highly differential expression. The single genes 
found were displayed through a volcano plot (Figure 58c) and the DE RNAs were reported in 
red. Indeed, it is possible to observe in this case how genes are mostly up-regulated. 

 
Figure 58: Transcriptomic profile between SAT of DIABETES and OBF reported as heatmap (a) PCA (b), and volcano plot 
(c) where genes that respected the condition in terms of log2FC and FDR are reported in red, non-differentially expressed 

genes in grey, while genes that respected only one condition in blue. 

Specifically, a total of 149 DE RNAs were detected in OBT2D versus OBF (Table 12). Of 
these, 71 were coding genes (mRNAs; 25 up-regulated DE RNAs and 46 down-regulated DE 
RNAs) and 78 were non coding genes (ncRNAs; 69 up-regulated DE RNAs and 9 down-
regulated DE RNAs).  

Table 12: Number of DE RNAs in the SAT of OBT2D vs. OBF. 
 OBT2D vs. OBF 
 mRNAs ncRNAs Total 

Up-Regulated 25 69 94 
Down-Regulated 46 9 55 

Total 71 78 149 
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The full list characterization of the ncRNAs is reported in Table 13, with a full classification of 
these ncRNAs for their specific biotype. It is possible to observe how the most abundant 
categories are both snRNAs (21 DE RNAs) and miscRNAs (24 DE RNAs). Another class 
highly represented are snoRNAs, with 14 DE RNAs. A number or other categories are 
represented, such as NATs lncRNAs, lincRNAs and other lncRNAs classes. Moreover, 
transcribed unprocessed, transcribed processed and unprocessed pseudogenes are also found 
deregulated, one for each category, along with one rRNA and one sense intronic RNA.   

Table 13: Biotype characterization of differentially expressed ncRNAs. 
 ncRNAs 
 Up-Regulated Down-Regulated Total 

NATs 0 2 2 

lincRNAs 2 1 3 

Other lncRNAs 3 1 4 

Processed pseudogene 1 2 3 

Transcribed unprocessed pseudogene 0 1 1 

Transcribed processed pseudogene 0 1 1 

Unprocessed pseudogene 0 1 1 

miscRNA 24 0 24 

rRNA 1 0 1 

scaRNA 2 0 2 

Sense intronic 1 0 1 

snRNAs 21 0 21 

snoRNAs 14 0 14 

Total 69 9 78 
 

4.2.3.2. Analysis of deregulated genes: a focus on novel risk-genes  

Firstly, a bibliographic analysis of previous literature 
was performed, in order to identify how many, 
amongst the 149 DE RNAs had been previously 
associated with either obesity or diabetes. This 
analysis (Figure 59) revealed that 71.14% of the 
genes had never been associated with either the 
diabetic or obesogenic condition. Even more in this 
condition, this highlights the need for functional 
investigation of DE RNAs, to obtain new insights in 
the molecular basis of diabetes. The list of the un-characterized novel genes is the following: 
5_8S_rRNA; AC006963.1; AC007242.1; AC008158.1; AC009131.1; AC016705.2; 
AC017007.1; AC024051.1; AC024051.11; AC024051.2; AC024051.3; AC024051.4; 
AC024051.6; AC024051.7; AC024575.1; AC036222.2; AC051619.7; AC079601.1; 

Figure 59: Ratio of novel and known genes for 
diabetes and obesity. 
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AC090181.2; AC090527.1; AC107021.2; AC113410.1; AF093117.1; AL109920.1; 
AL135938.1; AL138762.1; AL160313.1; AL356273.5; AL356299.1; AL391647.2; 
AL513523.1; AL513523.2; AL845331.2; CFDP1; CIR1; DIRAS1; FHAD1; FRMPD4; 
GABRB3; GOLGA6L17P; GPR78; GRIN3A; KCNE1B; KIF26B; LEO1; MAGED4; MFAP1; 
MUC20; MUC20P1; NEFH; NKX3-1; NRK; NSA2P2; OASL; PIEZO2; PLCXD1; PRRG3; 
PTMS; PYCR1; RFX2; RNA28S5; RNU1-1; RNU1-2; RNU1-27P; RNU1-28P; RNU1-3; 
RNU1-4; RNU2-1; RNU4-1; RNU4-2; RNVU1-18; RNVU1-28; RNVU1-29; RNVU1-2A; 
RNVU1-7; RNY3P1; ROR2; RP11-469M7.1; RP11-815I9.4; RP3-461P17.10; RPL23AP7; 
SCARNA13; SCARNA6; SEL1L2; SLC28A3; SLC7A5; SMARCE1P3; SNORA23; 
SNORA48; SNORA54; SNORA63; SNORA68; SNORA7A; SNORA7B; SNORD10; 
SNORD13; SNORD17; SNORD33; SNORD3C; TCEAL3; TMEM79; TXNDC2; UPF3B; 
WDR74; ZMIZ1-AS1; ZNF425. 

4.2.3.3. Characteristics of DE RNAs: network interaction, tissue expression and cellular 
compartmentalization  

Amongst all the DE RNAs, the top 20 deregulated genes based on their log2FC are reported in 
Table 14. The majority of this list consisted in miscRNAs, indicating that ncRNAs could be of 
crucial relevance in disease progression and that there is a lot yet to be characterized which 
could be responsible of the development of the diabetic comorbidity.  

Table 14: FC of top20 DE RNAs.  
Gene Name FC p value Gene Function 
AL391647.2 5.99 0.0000059 misc_RNA; unknown function 

CXCL8 5.56 0.000099 
Interleukin-8; IL-8 is a chemotactic factor that attracts neutrophils, 

basophils, and T-cells, but not monocytes. It is released from several 
cell types in response to an inflammatory stimulus.  

5_8S_rRNA 5.55 0.00048 rRNA; unknown function. 
AC016705.2 -5.20 0.00082 lncRNA; unknown function. 
AC008158.1 5.10 0.000079 misc_RNA; unknown function. 
AC036222.2 4.95 0.00000024 misc_RNA; sense intronic to SKAP1, unknown function. 

TXNDC2 -4.91 0.00038 Thioredoxin domain-containing protein 2; Probably plays a 
regulatory role in sperm development.  

AL356273.5 4.86 0.00000072 misc_RNA; unknown function. 
AL513523.2 4.68 0.0000020 misc_RNA; unknown function. 
AC024575.1 4.58 0.00015 misc_RNA; NAT to SWSAP1, unknown function. 
AL513523.1 4.52 0.00000078 misc_RNA; unknown function. 
AC007242.1 4.42 0.00000050 misc_RNA; unknown function. 
AC113410.1 4.39 0.0000000097 misc_RNA; unknown function. 
AL138762.1 4.37 0.000010 misc_RNA; unknown function. 
AC017007.1 4.33 0.000103 misc_RNA; unknown function. 
AF093117.1 4.30 0.0000077 misc_RNA; unknown function. 
AL160313.1 4.20 0.00027 misc_RNA; unknown function. 

PTGS2 4.19 0.00016 
Prostaglandin G/H synthase 2; Converts arachidonate to 

prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. 
Responsible for production of inflammatory prostaglandins.  

SLC28A3 -4.14 0.00057 
Solute carrier family 28 member 3; Involved in the homeostasis of 

endogenous nucleosides. 

OASL 3.98 0.0000032 
2'-5'-oligoadenylate synthase-like protein; Does not have 2'-5'-OAS 

activity, but can bind double- stranded RNA. 
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The STRING database was 
used to visualize the present 
interaction networks in coding 
DE RNAs (Figure 60). It is 
possible to see that the proteins 
encoded by the genes interact 
in one main network, 
comprising proteins of the 
immune system, and two 
smaller ones.  

The genes expression and 
cellular localization were then 
investigated (Figure 61). 
Concerning tissue expression, 
genes pertaining to the switch 
from obesity to the diabetic 
comorbidity are ubiquitary 
(Figure 61a). The DE RNAs 
are also localized in the cytosol 
and nucleus, along with other 
organelles, and this kind of 
representation gives possible insights into where to functionally investigate the DE RNAs for 
further in vivo biological investigation (Figure 61b). 

 
Figure 61: Tissue (a) and subcellular (b) localization of deregulated genes as obtained with the NDEx database. 

Figure 60: STRING Protein Network Interaction. 
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4.2.3.4. Identification of co-regulating TFs  

The TFs binding sites in 
the DE RNAs gene set 
were then investigated 
(Figure 62), and 18 TFs 
were identified. RXRA 
acts synergistically with 
PPAR receptors, and 
studies demonstrated that 
its binding to PPARa 
enhances fatty acids uptake 
and beta-oxidation, 
whereas its binding to 
PPARγ increases FA 
uptake and deposition as 
triacylglycerides 
(Ravnskjaer et al. 2005). 
The presence of the master 
adipogenesis regulator 
C/EBPb is also interesting, 
as this factor is crucial for 
the first phases of adipogenesis (Guo, Li, and Tang 2015). Moreover, RARG modulates 
adipogenesis through the regulation of FRA1, PPARG2 and C/EBPa (Xie et al. 2020). A 
polymorphism in the NR1H2 gene has been associated with T2D and obesity (Solaas et al. 
2010) whilst a variant in NR3C1 has been associated with obesity (Lin et al. 2003). Moreover, 
FHL2 is involved in Wnt signaling in diabetic kidney disease (Li et al. 2015) and JAZF1 has 
been found to inhibit  adipose tissue inflammation in diet-induced diabetic mice (Meng et al. 
2018). E2F6 has never been directly correlated to obesity or diabetes, but it upregulates the 
cellular proliferation of b islets (Shi et al. 2019). YEATS4, EXOSC3, GAR1, ZNF622, 
CHURC1-FNTB, POLR2A, RFX4, DLX1, HOXA10 and ZMAT4 have to this day never been 
correlated with obesity nor diabetes.  

 4.2.3.5. GO analyses: Cellular Component, Molecular Function and Biological Processes  

Gene expression profiles of SAT tissue from OBT2D vs. OBF were then analyzed for GO 
enrichment (Chen, Robinson, and Storey 2019), and the top 10 GO terms ranked for their 
significance were considered and displayed through a GO Chord graph. The GO terms analysis 
in Cellular Component highlighted 59 pathways, indicating lipoproteins and vesicular 
compartments as most enriched, along with transmembrane receptors  (Figure 63).  

Figure 62: Regulon identification of DE RNAs. The analysis reports the identification 
of TFs binding to specific motifs present in the deregulated gene set. TFs are 

reported as white-filled hexagon shapes whereas DE RNAs are reports as ellipses 
color-filled. The color of DE RNAs indicates the respective log2FC deregulation. 
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The implication for chylomicron was supported by ClueGO analysis (Figure 64a) and by 
BiNGO analysis (Figure 64b). 

 
Figure 64: GO Cellular Component analysis. (a) ClueGO analysis for Cellular Component in OBT2D vs. OBF. Each pie 

segment refers to the % of terms present per group (**p<0.01 vs Obese SAT) (b) BiNGO analysis for overrepresented Cellular 
Component terms in OBT2D vs. OBF. The hubs reported show the overrepresented terms. 

The GO terms analysis in Molecular Function highlighted 179 pathways. The top 10 GO 
Molecular Functions highlighted again an implication for the immune system, with chemokine 
and cytokine activity (Figure 65). Moreover, the RNA polymerase I core binding activity is 
implicated, along with growth factor activity.  

Figure 63: GO Chord Cellular Component analysis for DE genes in OBT2D vs. OBF. On the right the top 10 significant 
terms, whereas on the left the corresponding genes ordered according to log2FC. 
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The ClueGO analysis implicated again chemokine and chemoattractant activity, (Figure 66a) 
and this is true also for the overrepresented terms in  BiNGO analysis (Figure 66b).  

 

Figure 66: GO Molecular Function (a) ClueGO analysis in OBT2D vs. OBF. Each pie segment refers to the % of terms present per 
group (*p<0.05, **p<0.01 vs Control SAT) (b) BiNGO analysis in OBT2D vs. OBF. The hubs reported show the 

overrepresented terms. 

The GO terms analysis for 
Biological Processes highlighted 
934 deregulated pathways, and the 
GO Chord graph reports the top 10 
deregulated processes according to 
their significance (Figure 67). 
Again, 7 out of 10 of these 
processes pertained immune-related 
functions, along with chylomicron 
clearance and cAMP signaling. 

 

Figure 65: GO Chord Molecular Function analysis for DE genes in SAT from OBT2D vs. OBF. On the right the top 10 
significant GO term, whereas on the left the corresponding genes ordered according to log2FC. 

Figure 67: GO Biological Processes analysis for DE RNAs in SAT from 
OBT2D vs. OBF. On the right the top 10 significant GO terms, whereas 

on the left the corresponding genes ordered according to log2FC. 
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The ClueGO analysis shows a strong representation for induction of positive chemotaxis (Figure 
68a), whilst the most over-represented term is the regulation of cell proliferation (Figure 68b).  

 
Figure 68: GO Biological Process. (a) ClueGO analysis in OBT2D vs. OBF. Each pie segment refers to the % of terms present per 

group (**p<0.01 vs Control SAT) (b) BiNGO analysis in OBT2D vs. OBF. The hubs reported show the overrepresented terms. 

4.2.3.6. Pathways characterization: top deregulated processes and implications for metabolic 
components 

DE RNAs were then subjected to KEGG and WikiPathways and the outcomes were displayed 
through a dot plot graph. The top 20 deregulated pathways ranked for their significance were 
visualized for KEGG (Figure 69a) and WikiPathways (Figure 69b). Numerous pathways are 
implicated in the immunogenic response, along with pathways implicated in cancers and even 
the “AGE-RAGE signaling pathway in diabetic complications”. 

 
Figure 69: Dotplot of top 20 KEGG 2019 (a) and WikiPathways (b) analysis. The y-axis represents the name of the pathway, 
the x-axis represents the Rich factor, dot size represents the number of different genes and the color indicates the adjusted p-

value. 

The ClueGO analysis for KEGG interestingly highlighted RNA transport as most significant 
deregulated component (p<0.01), along with viral protein interaction with cytokine and 
cytokine receptor (Figure 70a), whilst WikiPathways implicated the hepatitis C and 
hepatocellular carcinoma, along with HIF-1 survival signaling (Figure 70b). The Reactome 
databases highlighted the IL-10 signaling, transcriptional regulation, glycosylation and plasma 
lipoprotein clearance (Figure 70c). 
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Figure 70: ClueGO analysis for KEGG (a), WikiPathways (b) and Reactome (c) in OBT2D vs. OBF. Each pie segment refers 

to the % of terms present per group ( **p<0.01 vs OBF). 

The deregulated 
pathways related to 
these metabolisms 
are reported in Figure 
71. Specifically, 
1/101 KEGG and 
5/120 terms for 
WikiPathways 
related to aa 
metabolism (Figure 
71a), 6/101 for 
KEGG and 5/120 for 
WikiPathways 
related to lipids 
metabolism (Figure 
71b) and 1/101 for 
KEGG and 1/120 for 
WikiPathways 
related to 
Carbohydrates (Figure 71c). It is possible to observe how in this case, the metabolic component 
seems to be less implicated, suggesting that this could not be responsible for the differences in 
diabetic patients with respect to obese ones.  

4.2.3.7. Role of the immunological component in SAT from OBT2D vs. OBF 

An in-depth analysis was performed concerning immunological processes. 42 out of the 101 
KEGG deregulated terms (41.6%) and  27 out of the 120 WikiPathways deregulated terms 
(22.5%) were correlated with the immunogenic phenomenon, suggesting that the increased 
immunogenic response may exacerbate the obesogenic phenotype, ultimately leading to 
diabetes insurgence (Figure 72).   

Figure 71: Dotplot of KEGG 2019 and WikiPathways analysis of pathways correlated with (a) 
aa, (b) lipids and (c) carbohydrates metabolism. The y-axis represents the name of the pathway, 
the x-axis represents the Rich factor, dot size represents the number of different genes and the 

color indicates the adjusted p-value. 
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Figure 72: Dotplot of KEGG 2019 and WikiPathways analysis of immune system pathways. The y-axis represents the name 
of the pathway, the x-axis represents the Rich factor, dot size represents the number of genes and the color the adj p-value. 

Moreover, via ClueGO GO Immune System 
Processes database, it was possible to see that 
the two most represented categories were 
lymphocyte chemotaxis and macrophage 
differentiation (Figure 73).   

 

 
 

The following step was to 
interrogate the DisGeNET curated 
database, finding a number of genes 
correlated with multiple 
immunological diseases (Figure 74). 
PTGS2 is the gene implicated in the 
highest number of disease 
conditions, whilst the CXCL8, is the 
most upregulated gene. This codes 
for the primary cytokine involved in 
the recruitment of neutrophils to the 
site of damage or infection.   

 

 

 
 

Figure 73: ClueGO analysis for GO Immune System 
Processes in OBT2D vs. OBF. (**p<0.01 vs OBF) 

Figure 74: DisGeNET analysis shows the terms implicated in Immune 
Diseases in SAT from OBT2D vs. OBF. The lines connecting the genes to 

the disease term represent the literature evidence for the terms’ 
implication in the disease. The color scale represents the genes FC. 
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4.2.3.8. Potential cancer implications: susceptibility in OBT2D vs. OBF  

When comparing the DE RNAs in SAT from diabetic patients versus obese ones, we wished to 
see if there would be an even higher predisposition to the development of certain cancer types. 
Indeed, 22 out of the 101 KEGG deregulated terms (21.8%) and  31 out of the 120 
WikiPathways deregulated terms (25.8%) were identified as correlated with oncogenesis 
(Figure 75).   

 
Figure 75: Dotplot of KEGG 2019 and WikiPathways analysis of oncogenesis-related pathways. The y-axis represents the 
name of the pathway, the x-axis represents the Rich factor, dot size represents the number of different genes and the color 

indicates the adjusted p-value. 

The DisGeNET database was investigated highlighting a susceptibility network with CXCL8 
as most upregulated gene and correlated with gastric cancer. PTGS2 was correlated with 
multiple conditions such as adrenal cancer, gastric cancer and a general precancerous condition 
(Figure 76). The investigation of the NDEx database allowed the identification of a higher 
number of implicated genes. Interestingly, as it was for diabetes versus control conditions, there 
seems to be an increased susceptibility for renal cancer when switching to a diabetic phenotype 
(Figure 76).  

 
Figure 76: (a) DisGeNET analysis shows the terms implicated in cancer in SAT from OBT2D vs. OBF. The lines connecting 
the genes to the disease term represent the literature evidence for the terms’ implication in the disease. The color scale for 
the genes represents the FC (b) Gene-Cancer correlation network as obtained with the NDEx database. The edges color 

indicates the prognosis (favorable in blue and unfavorable in orange) and the color scale for the genes represents the FC. 
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4.2.3.9. DE RNAs correlations with nutritional and metabolic diseases    

The DisGeNET database was investigated in order to identify the interactions between DE 
RNAs and Nutritional and Metabolic Diseases, as obtained from curated databases (Figure 
77a). It is possible to notice how these diseases include also central nervous system diseases 
with a metabolic component, along with other metabolic diseases such as hyperlipoproteinemia, 
highly linked with the APOE gene. When expanding the search to all known databases 24 genes 
were found to be associated with obesity (Figure 77b) and 18 with diabetes (Figure 77c). APOE 
and VEGFA seem to be the most annotated genes correlated with obesity and diabetes, with 
more than 10 evidence per gene (Figure 77b and Figure 77c respectively).  

 
Figure 77: DisGeNET analysis shows the terms implicated in nutritional and metabolic diseases (a) obesity (b) and diabetes 

(c) in OBT2D vs. OBF. 

4.2.3.10. Identification of DE RNAs associated diseases 

The last analysis performed for this 
dataset consisted in investigating the 
ClinVar database. This highlights all 
diseases potentially associated with a list 
of DE RNAs (Figure 78).  

Interestingly, numerous diseases emerge, 
and amongst the most represented are 
Familial type 3 hyperlipoproteinemia, 
Gordon’s syndrome, anterior segment 
dysgenesis 4, atypical hemolytic-uremic 
syndrome and even epilepsy. 

 

 

 

 

 

Figure 78: ClueGO analysis for ClinVar database. Each pie 
segment refers to the % of terms present per group (*p<0.05 vs 
OBF) 
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4.3. Role of ncRNAs in disease pathogenesis: a focus on lncRNAs in obesity 

The last part of this research work focused on the identification and characterization of the non-
coding transcriptome in obesity and diabetes pathogenesis. Indeed, RNA-seq analyses in SAT 
obtained from 5 NW, 5 OBF, and 5 OBT2D highlighted a strong component of non-coding 
genes, and as this particular class of molecules are showing to have more and more of a relevant 
function in the pathogenesis of numerous diseases it is worth analyzing the role that these could 
play in obesity and diabetes.  

4.3.1. Role of ncRNAs in obesity and diabetes  

4.3.1.1. Increase of the non-coding biological component in the diabetic comorbidity  

From the RNA-results, several coding and non-coding DE RNAs emerged as differentially 
expressed in each analyzed condition, and these are reported as a volcano plot graph 
highlighting only the non-coding component (Figure 79). 

 

Figure 79: Transcriptomic profile reported as volcano plot for (a) SAT of OBF versus CTRL, (b) SAT of DIABETES versus 
control and (c) SAT of DIABETES versus OBF, where genes that respected the condition in terms of log2FC and FDR are 

reported in red, non-differentially expressed genes in grey, while genes that respected only one condition in blue. 

When comparing the different biotypes, it was found that the ratio between the coding and non-
coding compartment was different amongst the categories (Figure 80). It is remarkable to note 
how the number of non-coding DE RNAs increases when switching from an obesogenic 
condition to a diabetic one. Specifically, whilst non-coding DE RNAs are 6.43% of total DE 
RNAs in obese subjects, this percentage increases to up to 32.43% in diabetic subjects. Even 
more interesting is the fact that when considering the molecular underlining responsible for the 
additional diabetic phenotype (OBT2D vs. OBF), more than 50% of the DE RNAs are ncRNAs. 
This highlights how the non-coding epigenome could be of crucial relevance in the 
development of specific comorbidities, highlighting the possibility of new targets for future 
therapeutic intervention and prevention.   
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Figure 80: % of coding and non-coding DE RNAs in the three experimental conditions. 

4.3.1.2. Network interaction of coding and non-coding DE RNAs in obesity and diabetes  

As the non-coding component seems to be widely deregulated in SAT from obese and diabetic 
patients, the next step was to investigate whether the coding and non-coding component 
interact. This was done performing a WGCNA, which creates a correlation-network of the DE 
RNAs through the obtainment of an adjacency matrix which weights the possible interactions 
amongst genes. The obtained networks with a weighted correlation threshold of 0.1 are reported 
in Figure 81.  

 
Figure 81: WGCNA of (a) OBF vs. NW (b) OBT2D vs. NW and (c) OBT2D vs. OBF. The correlation threshold was set to 0.1 

and the ncRNAs are reported in pink. The thicker edges refer to the first degree interactions of non-coding DE RNAs. 
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Firstly, in obese versus healthy SAT, 8 ncRNAs, reported in pink, emerge as part of the 
interactome (Figure 81a). Specifically, all but AL121832.2 (NAT to RPS21) are found to be 
part of a main interaction network, although not directly with one-another. They could possibly 
influence numerous coding genes found altered via RNA-seq, thus suggesting that they also 
play a fundamental role in the altered signaling pathways present in obesity. In the OBT2D 
versus NW SAT, 62 ncRNAs present a correlation threshold higher than 0.1, and are thus 
displayed as interaction networks (Figure 81b). These ncRNAs interact in 13 separate networks. 
It is interesting to note the presence of one network composed solely of non-coding DE RNAs, 
one of solely mitochondrial non-coding DE RNAs and one of all ncRNAs but one. Indeed, in 
this case, the non-coding component seems to act not through an interaction with the coding 
genome, but rather as a separate interacting entity which could ultimately lead to phenotypic 
changes. Lastly, 67 ncRNAs participate in a correlation network in when considering the 
differential expression present in diabetic versus obese SAT (Figure 81c). These ncRNAs, the 
highest component found, interacts with the target coding DE RNAs in one single network, 
suggesting that they, together, influence the dynamics of diabetic tissues. Indeed, a center core 
is made up of ncRNAs interacting at multiple levels with one another, whilst two distinguished 
edges (still connected to the network) include a higher number of coding DE RNAs. Overall, 
these results indicate that the non-coding epigenome might play a significant role in the 
development of the diabetic comorbidity 

4.3.2. Computational and functional analyses of lncRNAs in OBF  

As lncRNAs are being more and more implicated in metabolic diseases, along with 
physiological function of the adipose tissue, the last aim of this work was the characterization 
of the deregulated lncRNAs which emerged through RNA-Seq in OBF. 

4.3.2.1. Computational characterization of lncRNAs in OBF  

Out of the 11 deregulated DE RNAs which emerge from transcriptional analysis of OBF vs. 
NW SAT, 6 belong to the lncRNAs category (Table 15). Most are uncharacterized genes, with 
no known function, and interestingly three of them are NATs to coding genes (COL4A2, 
ITGB2, and RPS21). The common aliases for each will be used for now on: SMIM25, COL4-
AS2, CTEPHA1, RPS21-AS, ITGB2-AS1, ACER2-AS.  

Table 15: List of lncRNAs DE in OBF vs NW SAT. 
Gene_name Log2FC Aliases Function 

SMIM25 2.74 
GCRL1, 

LINC01272, 
PELATON 

Nuclear expressed, monocyte- and macrophage-specific 
lncRNA, upregulated in unstable atherosclerotic plaque. 

COL4A2-AS2 5.93  
NAT to COL4A2, which pays a role in osteogenic 
differentiation and is differentially secreted in 
adipogenic differentiation. 

LINC01094 1.74 CTEPHA1 
Deregulated in post-menopausal osteoporosis, 
implicated in Chronic Thromboembolic Pulmonary 
Hypertension 

AL121832.2 2.36 RPS21-AS1 NAT to RPS21, unknown function 

ITGB2-AS1 2.23  NAT to ITGB2 and polymorphism in ITGB2 were 
associated with obesity.  

AL158206.1 -1.07 ACER2-AS NAT to ACER2, an alkaline ceramidase implicated in 
lipids metabolism.  
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As insights into the genomic localization could provide useful information on neighboring 
genes and thus coordinated loci regulation, the chromosomal localization and neighboring 
genes were identified using the ensemble database and reported in Figure 82. The specific genes 
are highlighted in green. The most interesting observation can be made on SMIM25. Indeed, it 
is localized near the C/EBPb gene, activator of early adipogenesis.  

 
Figure 82: Genomic localization of (a) SMIM25, (b) COL4A2-AS2, (c) RPS21-AS1, (d) ITGB2-AS1, (e) CTEPHA1, (f), 

ACER2-AS as obtained from the ensemble database. Specific genes are highlighted in green. 

A deeper analysis was performed looking at the specific gene structure, when present: this 
highlights the presence of exons and the genes localization with respect to overlapping genes 
(Figure 83). The sequence was obtained using Geneious version 2020.2 created by Biomatters. 
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Specifically, the gene sequence is reported in green, whilst the ncRNA organization is reported 
in red. The thicker segments represent the exons whilst the interconnecting lines the introns.  

 
Figure 83: Genomic structure of (a) SMIM25, (b) COL4A2-AS2, (c) ITGB2-AS1, (d) CTEPHA1, as obtained with Geneious 

version 2020.2 created by Biomatters. 

Evolutionarily, lncRNAs are present in all vertebrate species and their sequences cover the 
portion of the DNA previously termed as “junk DNA”, non-protein coding and thus previously 
thought of no value, although this view is now surpassed. Typically evolutionary conservation 
is based on sequence similarities between nucleotide or amino acid sequences (Diederichs 
2014). LncRNAs sequences are overall less conserved than protein coding-genes, but more than 
introns or random intergenic regions. When looking for sequence similarity, it was found that 
only short sequence stretches are typically conserved, as lncRNAs evolve rapidly and often lack 
orthologs (Diederichs 2014). This is also the case for the lncRNAs analyzed in this work, as the 
phylogenetic trees reported in Figure 84 highlight. These were obtained blasting the ncRNAs 
for sequence similarity across species, and the predicted sequences were used to construct the 
trees. It is possible to observe how these lncRNAs sequences present the highest similarity in 
mammals, especially primates. For ACER2-AS, it was not possible to construct the tree as the 
only similarity was found in Macaca Mulatta. Even so, the gene presented homology with its 
sense gene ACER in other species.  

 
Figure 84: Phylogenetic tree of sequence similarity for (a) SMIM25, (b) COL4A2-AS2, (c) RPS21-AS1, (d) ITGB2-AS1, (e) 

CTEPHA1 as constructed with Geneious version 2020.2 created by Biomatters. 
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The specific sequence alignment is shown in Figure 85. It is possible to see that longer segments 
of the sequences are maintained when considering primates, whereas when considering other 
species (e.g. Canis Lupus for SMIM25) the similar sequence fragment is shorter. 

 
Figure 85: Alignment of (a) SMIM25, (b) COL4A2-AS2, (c) RPS21-AS1, (d) ITGB2-AS1, (e) CTEPHA1 across species as 

constructed with Geneious version 2020.2 created by Biomatters. 

Interestingly, lncRNAs present higher structural conservation rather than nucleotide sequence 
conservation, as it is the structure which seems to be fundamental for their subsequence function 
(Zampetaki, Albrecht, and Steinhofel 2018). Insights into the secondary structure are useful for 
motives identification, which could determine the lncRNAs protein interactors and targets. 
Indeed, lncRNAs can fold into complex secondary structures and subsequently interact with 
proteins, DNA or other RNAs, modulating their function. The RNA secondary structure was 
predicted using the RNA fold web server for base pair probability (Figure 86).  

 
Figure 86: Secondary structure of (a) SMIM25, (b) COL4A2-AS2, (c) RPS21-AS1, (d) ITGB2-AS1, (e) CTEPHA1, (f), 

ACER2-AS as obtained RNA Fold Web Server. The color legend represents the base pair probability. 
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The last computational analysis 
performed involved the promoter of 
each specific lncRNA. Using the 
Ciiider software, it was possible to 
predict the presence of binding sites 
for PPARg, C/EBPa, C/EBPb and 
C/EBPd (Figure 87). SMIM25 was 
the only one which did not present 
any binding site for these four TFs.  

4.3.2.2. In vitro characterization of lncRNAs regulation 

As these lncRNAs have been found to be deregulated in SAT of obese patients, in vitro 
biological experiments were performed in order to investigate their role in adipogenesis, along 
with a study of their possible regulation. From here on, the lncRNAs SMIM25, COL4A2-AS2, 
RPS21-AS1, CTEPHA1 were considered for in vitro analysis. Furthermore, COL4A2 and 
RPS21, sense gene of respectively COL4A2-AS2 and RPS21-AS1, were also analyzed. The 
first step was to analyze the expression of these genes in SAT and VAT in adipogenesis, at 
different time points. SAT and VAT differentiated samples were obtained from 2 obese patients 
and subsequent gene expression was investigated via Real Time PCR. The results obtained are 
reported in Figure 88. All of the lncRNAs present changes in expression along different phases 
of differentiation. SMIM25 appears to be differentially expressed in VAT versus SAT tissue, 
and RPS21-AS1 appears to be the most upregulated during differentiation, with a peak at Day 
6 of adipogenic induction and a subsequent decrease. RPS21 is also upregulated in VAT tissue, 
significantly at Day 4 and Day 8. Moreover, COL4A2 was significantly upregulated in VAT 8 
days after differentiation.  

 
Figure 88: Differential expression of lncRNAs and sense genes in SAT and VAT tissue from obese patients was verified by 
Real Time PCR. 18S was used as housekeeping gene. Data are expressed as mean of 2 samples ± SEM (n = 2), * p < 0.05, 

**p<0.01 vs. SAT Day 0, #p<0.05, ##p<0.01, ###p<0.001 vs VAT Day 0. 
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promoter region of the different lncRNAs obtained using CiiiDER. 



Results 

  81 

The genes expression was then analyzed during the differentiation in hADSCs obtained from 
the lipoaspirate of a NW subject. hADSCs were differentiated for 14 days, and samples 
collected at day 0, 2, 4, 7, 10 and 14. Also in this case the expression of the lncRNAs and sense 
genes changes at the different phasis of the adipogenesis process, and they all seem to present 
a peak at day 7 (Figure 89). This upregulation is extremely significant at day 7 for SMIM25, 
RPS21-AS1, CTEPHA1, COL4A2 and RPS21. Interestingly, in the case of CTEPHA1 e 
COL4A2, the expression seems to peak at day 7, with a subsequent decrease. On the contrary, 
for RPS21-AS1 and RPS21, the increase seems to be stable and maintained even after 14 days.  

 
Figure 89: Differential expression of lncRNAs and sense genes in lipoaspirate of a NW subject was verified by Real Time 

PCR. GAPDH was used as housekeeping gene. Data are expressed as mean of 3 experiments each performed in duplicates ± 
SEM (n = 6), * p < 0.05, **p<0.01, ***p<0.001 vs. Day 0. 

To ensure that efficient differentiation had taken place, the expression of C/EBPb, C/EBPd, 
C/EBPa, PPARg and FABP4 was also assessed via Real Time PCR (Figure 90), and results 
demonstrate their specific increase. 

 
Figure 90: Differential expression of adipogenesis genes in hADSCs was verified by Real Time PCR. GAPDH was used as 
housekeeping gene. Data are expressed as mean of 3 experiments each performed in duplicates ± SEM (n = 6), * p < 0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 vs. Day 0. 
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The work then aimed to identify if adipogenesis-related TFs influenced the lncRNAs and 
relative sense genes expression in hADSCs. To do so, RNA interference was firstly used to 
inhibit the expression of C/EBPb, C/EBPd’s and C/EBPa, regulators of adipogenesis. The 
efficiency of silencing was measured evaluating the respective expression of C/EBPb, C/EBPd 
and C/EBPa, (Figure 91). 

 
Figure 91: Efficiency of silencing was verified by Real Time PCR. GAPDH was used as housekeeping gene. Data are 

expressed as mean of 2 experiments each performed in duplicates ± SEM (n = 4) for C/EBPb and as mean of 1 experiment 
performed in duplicate ± SEM (n = 2) for C/EBPd and C/EBPa,. **** p < 0.0001 vs siNEG. 

When C/EBPb’s expression was silenced, all but SMIM25 were found to be downregulated, 
suggesting that C/EBPb is necessary for their expression (Figure 92). 

 
Figure 92: Differential expression of lncRNAs and sense genes in hADSCs silenced for C/EBPb versus control (siNEG) was 

verified by Real Time PCR. GAPDH was used as housekeeping gene. Data are expressed as mean of 2 experiments each 
performed in duplicates ± SEM (n = 4), * p < 0.05 vs siNEG. 

Similarly, when C/EBPd’s expression was silenced, all the genes were found to be 
downregulated, except for COL4A2-AS2, suggesting that C/EBPd is necessary for their 
expression (Figure 93). 
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Figure 93: Expression of lncRNAs and sense genes in hADSCs silenced for C/EBPd versus control (siNEG) was verified by 

Real Time PCR. GAPDH was used as housekeeping gene. Data are expressed as mean of 1 experiment in duplicate ± SEM (n 
= 2). 

When C/EBPa was silenced, all the genes were found to be downregulated, except for 
COL4A2-AS2, suggesting that C/EBPd is necessary for their expression (Figure 94) 

 
Figure 94: Expression of lncRNAs and sense genes in hADSCs silenced for C/EBPa versus control (siNEG) was verified by 
Real Time PCR. GAPDH was used as housekeeping gene. Data are expressed as mean of 1 experiments in duplicate ± SEM 

(n = 2). 

As PPARg is known to be adipogenesis’ master regulator, its influence on the lncRNAs and 
respective sense genes was analyzed. To do so, its expression was firstly induced with its 
activator troglitazone (Figure 95). All the lncRNAs and respective sense genes were induced 
by PPARg’s activation, and this is significantly true for SMIM25, RPS21 and CTEPHA1. 
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Figure 95: Expression of lncRNAs and sense genes in hADSCs treated with Troglitazone was verified by Real Time PCR. 

GAPDH was used as housekeeping gene. Data are expressed as mean of 3 experiments each performed in duplicates ± SEM 
(n = 6), * p < 0.05, **p<0.01 vs CTR. 

To verify that this induction was specific, hADSCs were differentiated in presence or absence 
of PPARg’s inhibitor T0070907 (Figure 96). When this was done, it was possible to notice that 
the SMIM25 and RPS21-AS1 specific induction after 7 days of differentiation was inverted 
with the PPARg’s inhibitor, suggesting that it is these two targets specifically which are 
modulated by it.  

 
Figure 96: Expression of lncRNAs and sense genes in hADSCs differentiated in absence (DIFF) or presence of T070907 
(aPPARg) was verified by Real Time PCR. GAPDH was used as housekeeping gene. Data are expressed as mean of 2 

experiments each performed in duplicates ± SEM (n = 4), * p < 0.05, **p<0.01 vs CTR. 
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As obesity is strictly influenced by the nutritional component, the last experiment consisted in 
differentiation of hADSCs in three different medium: a standard one with high glucose, one 
with low glucose, and one supplemented with a lipid mixture of free fatty acids. The efficiency 
of the differentiation was firstly verified assessing the expression of PPARg and FABP4, as 
reported in Figure 97. 

 
Figure 97: Expression of PPARg and FABP4 in hADSCs differentiated in a differentiation medium with low glucose, with 
high glucose, and with a lipid mixture was verified by Real Time PCR. GAPDH was used as housekeeping gene. Data are 

expressed as mean of 2 experiments each performed in duplicates ± SEM (n = 4), * p < 0.05, ***p<0.001 vs CTR. 

Interestingly, SMIM25, COL4A2-AS2 and CTEPHA1 seem to be significantly upregulated in 
the differentiation medium composed of low glucose, suggesting that this molecule could 
highly influence their expression (Figure 98).  

 

Figure 98: Expression of PPARg and FABP4 in hADSCs differentiated in a differentiation medium with low glucose, with 
high glucose, and with a lipid mixture was verified by Real Time PCR. GAPDH was used as housekeeping gene. Data are 

expressed as mean of 2 experiments each performed in duplicates ± SEM (n = 4), * p < 0.05, ***p<0.001 vs CTR. 
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5. Discussion 
Obesity is defined by the WHO as a condition of abnormal or excessive accumulation of body 
fat that presents a risk to health. It can lead to an increase in associated morbidities for many 
chronic diseases such as T2D, hypertension, coronary artery disease, dyslipidemia, stroke, 
osteoarthritis, certain forms of cancer (Haslam, Sattar, and Lean 2006, Lawrence and Kopelman 
2004, WHO 2020a), and even result in an increased mortality rate (WHO 2020a). To this day, 
it is not possible to conclude what is the relative contribution of either genetic or the 
environment in obesity onset. Indeed, behavior and genes are different levels of the same causal 
framework, and epigenetics through RNA biology might play a central role in elucidating new 
targetable pathways. 

The aim of this research work was the investigation of the transcriptional differences present in 
obesity and T2D. Indeed, the identification of a subset of DE RNAs in obese and diabetic SAT 
allows the identification of new targetable disease pathways. Moreover, the study of the specific 
transcriptional differences between obese subjects who develop the diabetic comorbidity and 
those who do not could specifically highlight the DE RNAs responsible for the insurgence of 
this secondary disease. These targets could become useful for screening of patients at risk for 
comorbidities insurgence, and even allow the development of therapies based on precision 
medicine. Moreover, the work focused on the role of the non-coding part of the genome in 
diseases development, as the role of these molecules in physiological processes and diseases 
mechanisms is becoming more and more prominent. Specifically, RNA-seq was performed on 
the SAT obtained from 5 healthy NW females, 5 obese females, and 5 obese females with T2D. 
Three experimental conditions were subsequently analyzed: the differences occurring between 
obese and healthy subjects, the differences occurring between diabetic and healthy subjects, 
and moreover the differences occurring between diabetic and obese subjects. For each 
condition, a global bioinformatics characterization of the DE RNAs and the pathways in which 
they are involved was performed.  

In SAT from obese versus healthy patients, 171 DE RNAs were identified, and of these 160 
were coding genes whilst 11 were non-coding DE RNAs. Remarkably, 81 of these genes had 
never been correlated to obesity before and could thus be of great relevance for future 
characterization in the obesogenic context. Amongst the top deregulated genes, a significant 
implication was found for the immune system, to be expected as the SAT from obese patients 
presents a high degree of flogosis, along with tissue remodeling and, interestingly, the biology 
of the striatal muscle. Indeed, obesity can cause a decline in contractile function of skeletal 
muscle, thereby reducing mobility and leading to the development of even more obesity-
associated health risks (Tallis, James, and Seebacher 2018). The proteins codified by the DE 
RNAs co-interact in two main networks, are expressed in multiple organs of the body and are 
localized in numerous different cellular organelles. Although this is quite a general 
characterization, the use of these databases allows for a comprehensive screening, and open the 
future works aimed at characterizing the role of one specific DE RNA could benefit from this 
preliminary information, knowing already which could be the DE RNA’s co-interactors and 
localization. Moreover, the DE RNAs are governed by a highly complex network of 18 TFs, of 
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which the most implicated seems to be SPI1, involved in both the activation of gene expression 
during myeloid and B-lymphoid cell development and in adipogenesis (Dispirito et al. 2013, 
Lefterova et al. 2014). Indeed, when it is expressed in mature adipocytes, it leads to the 
increased expression of macrophage genes and a global repression of genes with nearby 
adipocyte-specific PPARγ binding sites (Dispirito et al. 2013, Lefterova et al. 2014). Other TFs 
implicated in this network previously associated to adipogenesis are HSF1 (Ma et al. 2015), 
EP300 (Lee et al. 2019, Takahashi et al. 2002), EBF1 (Jimenez et al. 2007, Gao et al. 2014), 
NFKB1 (Berg et al. 2004), SRF (Rosenwald et al. 2017, Jones et al. 2020), CREB1 (Reusch, 
Colton, and Klemm 2000), TWIST2 (Lee et al. 2003, Franco et al. 2011), TP53 (Krstic et al. 
2018, Huang et al. 2014), and, remarkably, C/EBPd, key regulator of early adipogenesis 
(Hishida et al. 2009, Lee et al. 2019). Moreover, PTCD1 knock out has been correlated with 
adult-onset obesity (Perks et al. 2017), whilst early over-nutrition leads to a decrease of PDX1 
(Glavas et al. 2019). Members of the NFAT family have been implicated in adipogenesis and 
insulin resistance, but NFATc1 specifically was never reported to have a role in this process 
(Yang et al. 2006). The implicated EVX2, ZNF622, C9orf156, MTA3 and FLI1 have not been 
correlated with adipogenesis to date. This identification of new TFs could prove helpful in 
directing scientists towards their characterization in adipogenesis-related contexts.  

The DE RNAs were analyzed for GO terms enrichment, in order to better understand the 
possible genes, cellular localization (Cellular Component), Molecular Functions and Biological 
Processes. DE RNAs in SAT from obese patients were strongly implicated in the vesicle 
formation component, granule formations, lytic vacuoles, lipoproteins, association with the 
immunological synapse, and even morphological changes in the plasma membrane. Indeed, the 
molecular functions mostly involved implicate morphological components such as actin and 
integrin binding, along with matrix remodeling with metallopeptidase activity, biochemical 
alterations such as carboxy-lyase and phosphoric ester hydrolase activity, lipid kinase activity, 
catalytic activities and signal transduction complexes such as the PI3K regulator subunit, 
phosphatase activity and protein tyrosine phosphatase activity. Lastly, the biological processes 
mainly involved pertained immune-related functions, with a specific role for tumor necrosis 
factor production. A subsequent analysis allowed the identification of the deregulated pathways 
through KEGG and WikiPathways enrichment. Specifically, the most significant pathways 
were implicated in immunological responses and specific metabolic pathways. This analysis 
approach highlights also a possible  deregulation in the gene expression signature correlated 
with specific diseases,  related with obesity, such as rheumatoid arthritis (Crowson et al. 2013, 
George and Baker 2016), inflammatory bowel disease (Bryant et al. 2018), gastric cancer (Yang 
et al. 2009) and others. Interestingly, these diseases had been previously related to obesity, and 
this pathway analysis highlight the possible specific molecular signature responsible for the 
disease insurgence. Moreover, amongst the deregulated pathways a number of them are 
correlated with pathogens infection (e.g. Human T-cell leukemia virus 1 infection, Malaria, 
Staphylococcus aureus infection, and Ebola virus), suggesting that this specific deregulated 
molecular signature could be implicated in the worse disease prognosis observed in obese 
patients (Falagas and Kompoti 2006, Hegde and Dhurandhar 2013). Indeed, individuals with 
obesity are also linked with large significant increases in morbidity and mortality from COVID‐
19 (Popkin et al. 2020, Wadman 2020). 
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As metabolic complications of obesity can lead to the development of metabolic diseases, a 
focus was given on those pathways identified as correlated with dysfunctions in specific 
metabolisms (Grundy et al. 2004). The most implicated component found were aminoacids 
(aa), previously studied in relation to obesity as these patients present with a reduction of 
branched chain aa catabolic enzyme activity, changes in methionine oxidation and 
cysteine/cystine generation, and tissue redox balance (NADH/NAD+) (Adams 2011). Even so, 
most studies focused on the peripherical or muscular deregulation in aa present in obese patients 
(Suzuki et al. 2019, Adams 2011, Takashina et al. 2016, Guillet et al. 2016) whilst this study 
highlights how this deregulation is also present in SAT. Lipids metabolism has also been found 
to be deregulated, and this is in agreement with studies showing that obesity is associated with 
increased basal lipolysis in adipose tissue, elevated circulating free fatty acids and increased 
tissue lipid accumulation in the liver, skeletal muscle, and heart (Singla, Bardoloi, and Parkash 
2010, Shulman 2014, Galgani, Cortés, and Carrasco 2014). Lastly, the carbohydrates 
metabolism was found deregulated, and indeed more and more studies are identifying glucose 
uptake into fat as modulator of systemic glucose homeostasis (Singla, Bardoloi, and Parkash 
2010). 

An in-depth analysis was performed pertaining the immune system in SAT tissue from obese 
patients. Indeed, 67 out of the 171 KEGG deregulated terms (39%) and  44 out of the 158 
WikiPathways deregulated terms (28%) were correlated with the immune system, suggesting 
that the DE RNAs deregulation reported profoundly impacts this system, with a higher 
susceptibility for subsequent co-morbidities insurgence. The GO Immune System Processes 
database implicated  dendritic cells, antigen processing and presentation, and T cell activation 
whilst the DisGeNET database allowed the identification of specific genes leading to increased 
susceptibility for specific immune diseases, such as Lupus Erythematosus Systemic, 
Rheumatoid Arthritis, Immunologic Deficiency Syndromes, Multiple Sclerosis, defects in the 
leucocyte adhesion process, dermal diseases. Moreover, as the emerging link between obesity 
and multiple cancer types is gaining more and more relevance in recent years (Avgerinos et al. 
2019, Kompella and Vasquez 2019, Ungefroren et al. 2015) the identification of the molecular 
signature occurring in obesity responsible for the insurgence of related carcinogenesis is of 
crucial importance. Indeed, 25 out of the 171 KEGG deregulated terms (15%) and 31 out of the 
158 WikiPathways deregulated terms (20%) were correlated with the oncogenic phenomenon 
and diseases, whilst the specific gene association with each cancer was also displayed, with a 
focus on favorable and unfavorable prognosis, as studies are highlighting how  obesity can be 
a predictor of better overall survival in metastatic patients (Tsang et al. 2016) and moreover, in 
lung cancer, renal cell carcinoma and melanoma, obesity was found to be protective in terms 
of outcome (Petrelli et al. 2020). These results highlight a more specific cancer-signature, and 
possibly allow for early intervention. Lastly, the genes were correlated with specific metabolic 
complications, including central nervous system inborn metabolic diseases, brain metabolic 
diseases, amyotrophic lateral sclerosis, semantic dementia, celiac disease, Tay-Sachs diseases 
and many more. 

In SAT from diabetic versus healthy patients, 259 DE RNA was identified, and of these 175 
were coding genes whilst 84 were non-coding DE RNAs. 164 of these genes had never been 



Discussion 

  89 

correlated to diabetes before, and amongst the top 20 deregulated genes immune-related genes 
were identified, along with 3 ncRNAs. The coding DE RNAs co-interact in two main networks, 
are ubiquitarily expressed in multiple organs of our body and are localized in numerous 
different cellular organelles. Moreover, the DE RNAs are governed by 17 TFs, of which NFIC 
(Muhammad et al. 2017), MTA3 (He et al. 2016), STAT5 (Jackerott et al. 2006), NFE2 (Jin et 
al. 2020, Xiao et al. 2019), HSF1 (Chen, Ding, et al. 2017) have been previously correlated 
with T2D. Moreover, HSF1 inhibition has been correlated with glucolipotoxicity-induced beta 
cell apoptosis (Purwana et al. 2017), FOXM1 was found to be induced by obesity and stimulate 
β-cell proliferation, (Davis et al. 2010, Golson et al. 2015), SRY has been correlated with 
insulin resistance (Goldsworthy et al. 2008) whilst mice with the knock out in the TF PGR have 
improved glucose homeostasis (Picard et al. 2002). SMAD4 and SMAD1 impact autoimmune 
diabetes development (Kim, Lee, and Jun 2017, Seong, Manoharan, and Ha 2018, Kim et al. 
2007) whilst LTF has also been found very recently to be differentially expressed in a Chinese 
cohort of type 1 diabetic patients (Yang et al. 2020). FLI1 and NFATc1 were identified to 
regulate the obesity DE RNAs network, but they were never previously correlated to either 
diabetes or obesity. POLR2A, T (TBXT), ELF1 and BCLAF1 have never been correlated with 
obesity nor diabetes.  

All three terms in GO analysis revealed again a significant implication of the immune system 
(MHC complex), with the DE RNAS HLA-DQB2, HLA-DQB1 and HLA-DRA, along with 
specific chemokines and immune system regulators. Other components implicated are the 
sarcoplasm, the vesicular component and even nuclear TF complexes and the Golgi apparatus. 
In addition, RNA polymerase II TF activity is also impaired, suggesting profound 
transcriptional deregulation. Amongst the top deregulated pathways, a strong metabolic 
component is present, with nitrogen metabolism, glycolysis/gluconeogenesis, metabolism of 
xenobiotics, fatty acid omega oxidation, aa metabolism and indeed metabolic complications 
can often aggravate obesity and be highly dysfunctional in diabetic patients (Grundy et al. 2004, 
Goetzman et al. 2018). Several pathways also implicated in immunological responses and RNA 
transport is also implicated as one of the most significantly deregulated pathways. Interestingly, 
RNA-binding proteins (RBPs) were found dysregulated in diabetes and are being studied for 
the potential to design RNA-based therapeutic effects, but not much is known about the role of 
RNA metabolism in this disease (Nutter and Kuyumcu-Martinez 2018). 39% of the KEGG 
deregulated terms and 22% WikiPathways deregulated terms were correlated with the 
immunogenic phenomenon, suggesting that the DE RNAs deregulation reported profoundly 
impacts this system, with a focus on type I interferon signaling pathway and the positive 
regulation of antigen processing and presentation. Focusing of specific genes, the upregulated 
CSF2 and HLA-DQB1 appear to be implicated in the highest number of conditions, 
respectively mainly lymphoma and diabetes. There is also a known correlation between 
diabetes and cancer (Giovannucci et al. 2010) and indeed 15% KEGG deregulated terms and 
23% WikiPathways deregulated terms (23%) were correlated with oncogenesis. BRCA2, 
known for its implications in breast cancer, is upregulated, and there is also a deregulation in 
many genes, such as MMP7 and SERPINE1 implicated in gastric cancer along with a high 
number of genes with unfavorable prognosis correlated with renal cancer. DE RNAs are also 
associated with numerous metabolic diseases.  
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The last transcriptional condition analyzed was that pertaining the SAT of diabetic subjects 
versus obese ones, where 149 DE RNAs were detected. 71 were coding genes whilst 78 were 
non-coding DE RNAs and 71.14% of the DE RNAs had never been correlated to diabetes 
before. It is extremely interesting to note that most of the top deregulated DE RNAs consists in 
ncRNAs, suggesting that this class is of significant relevance in the development of the diabetic 
co-morbidity. The proteins encoded by the genes interact in one main network, comprising 
proteins of the immune system, and two smaller ones, also in this case genes are ubiquitarily 
expressed in multiple organs of our body and are localized in numerous different cellular 
organelles. 18 TFs were identified to govern this network, such as RXRA which acts 
synergistically with PPAR receptors (Ravnskjaer et al. 2005), the master adipogenesis regulator 
C/EBPb (Guo, Li, and Tang 2015) and RARG, who modulates adipogenesis through the 
regulation of FRA1, PPARG2 and C/EBPa (Xie et al. 2020). Moreover, A polymorphism in 
the NR1H2 gene has been associated with T2D and obesity (Solaas et al. 2010), a variant in 
NR3C1 has been associated with obesity (Lin et al. 2003), FHL2 is involved in Wnt signaling 
in diabetic kidney disease (Li et al. 2015) and JAZF1 has been found to inhibit  adipose tissue 
inflammation in diet-induced diabetic mice (Meng et al. 2018). E2F6, YEATS4, EXOSC3, 
GAR1, ZNF622, CHURC1-FNTB, POLR2A, RFX4, DLX1, HOXA10 and ZMAT4 have to 
this day never been correlated with obesity nor diabetes.  

GO ontologies indicated a role for lipoproteins and vesicular compartments, transmembrane 
receptors, the immune system, RNA polymerase I core binding activity and even cellular 
proliferation. Amongst  the top deregulated pathways numerous are associated with the immune 
system and cancers, and indeed 42 out of the 101 KEGG deregulated terms (41.6%) and  27 out 
of the 120 WikiPathways deregulated terms (22.5%) were correlated with the immunogenic 
phenomenon, whilst 22 out of the 101 KEGG deregulated terms (21.8%) and  31 out of the 120 
WikiPathways deregulated terms (25.8%) were identified as correlated with oncogenesis. 
Interestingly, as it was for diabetes versus control conditions, there seems to be an increased 
susceptibility for renal cancer when switching to a diabetes. Metabolism-associated diseases 
include central nervous system diseases with a metabolic component, along with other 
metabolic diseases such as hyperlipoproteinemia, highly linked with the APOE gene.  

The last part of this research work focused on the identification and characterization of the non-
coding transcriptome in obesity and diabetes pathogenesis, as this class of molecules are 
showing to have more and more of a relevant function in the pathogenesis of numerous diseases. 
It is remarkable to note how the number of non-coding DE RNAs increases when switching 
from an obesogenic condition to a diabetic one. Specifically, whilst non-coding DE RNAs are 
6.43% of total DE RNAs in obese subjects, this percentage increases to up to 32.43% in diabetic 
subjects. Even more interesting is the fact that when considering the molecular underlining 
responsible for the additional diabetic phenotype (diabetic vs. obese), more than 50% of the DE 
RNAs are ncRNAs. This highlights how the non-coding epigenome could be of crucial 
relevance in the development of specific comorbidities, highlighting the possibility of new 
targets for future therapeutic intervention and prevention. The identification of co-interaction 
networks allowed to identify numerous targets through which the ncRNAs might exert their 
functions, along with strong non-coding specific deregulated networks.  
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A focus was then given on the lncRNAs deregulated in obesity. 6 specific lncRNAs were 
identified, SMIM25, COL4A2-AS2, CTEPHA1, RPS21-AS1, ITGB2-AS1, ACER2-AS, and a 
comprehensive computational characterization was performed to identify their genomic 
localization, structure and phylogenetic conservation. Indeed, lncRNAs sequences are overall 
less conserved than protein coding-genes and when looking for sequence conservation, it was 
found that only short sequence stretches are typically conserved, as lncRNAs evolve rapidly 
and often lack orthologs (Diederichs 2014). Interestingly, lncRNAs present higher structural 
conservation rather than nucleotide sequence conservation, as it is the structure which seems to 
be fundamental for their subsequent function (Zampetaki, Albrecht, and Steinhofel 2018). 
Moreover, it was found that all but SMIM25 presented binding sites for PPARg, C/EBPa, 
C/EBPb and C/EBPd at the promoter level, suggesting further biological validation would be 
of relevance.  

LncRNAs SMIM25, COL4A2AS2, RPS21-AS1, CTEPHA1 and COL4A2 and RPS21, sense 
gene of respectively COL4A2AS2 and RPS21-AS1, were considered for in vitro analysis. 
When analyzing their deregulation in different adipogenesis phases, in obese subjects SMIM25 
appears to be differentially expressed in VAT versus SAT tissue, whilst RPS21 appears to be 
the most upregulated during differentiation. In hADSCs of lean subjects differentiated for 14 
days, all the considered lncRNAs and sense genes change at the different phasis of the 
adipogenesis process, presenting a peak at day 7. RNA interference studies were performed in 
order to assess whether a decrease for of C/EBPb and C/EBPd could result in alteration of the 
lncRNAs. When C/EBPb’s expression was silenced, all but SMIM25 were found to be 
downregulated, suggesting that C/EBPb is necessary for their expression. Similarly, when 
C/EBPd’s expression was silenced, all the genes were found to be downregulated. As PPARg 
is known to be adipogenesis’ master regulator, its influence on the lncRNAs and respective 
sense genes was analyzed. To do so, its expression was firstly induced with its activator 
troglitazone and indeed all the lncRNAs and respective sense genes were induced by PPARg’s 
activation. To verify that this induction was specific, hADSCs were differentiated in presence 
or absence of the PPARg’s inhibitor T0070907. SMIM25 and RPS21-AS1 specific induction 
after 7 days of differentiation was inverted in presence of the PPARg inhibitor, suggesting that 
it is these two targets specifically which are modulated by it. Lastly, as obesity is strictly 
modulated by the nutritional component, hADSCs were differentiated in three different culture 
media: a standard one with high glucose, one with low glucose, and one supplemented with a 
lipid mixture of free fatty acids. Interestingly, SMIM25, COL4A2-AS2 and CTEPHA1 seem 
to be significantly upregulated in the differentiation medium composed of low glucose, 
suggesting that glucose levels and glucose metabolism could highly influence their expression.  

Overall, the results presented in this work highlight the fundamental role that transcriptional 
deregulation could have in the development of obesity and subsequent diabetes co-morbidities. 
The work provides a comprehensive database of who these DE RNAs are, what function they 
exert, which pathways they influence and their potential disease implications. It will be of great 
relevance for future analysis seeking to identify new targets in obesity and diabetes 
pathogenesis, providing a crucial starting point for further omics analyses and specific 
functional evaluations. Indeed, further in-depth analysis of the transcriptional profiles of the 



Discussion 

  92 

three categories could provide insights also into splicing or mutational events. Specifically, 
differential splicing is a post-transcriptional biological process which enables the production of 
multiple mRNAs from one gene. As this is an emerging approach, a number of computational 
approaches have been developed to identify and quantify differentially spliced genes from 
RNA-seq data, in order to obtain further insights into the analyzed conditions (Mehmood et al. 
2019). Moreover, somatic mutations, typically detected through an analysis of the DNA 
sequence, can now be identified in RNAseq data, providing even more information for a certain 
disease condition (Sheng et al. 2016, Prodduturi et al. 2018). The results obtained here also 
clearly highlight the role of the non-coding component in the development of the diabetic co-
morbidity, and functional investigation of this molecules could be of crucial relevance in 
understanding a new disease-mechanism never before analyzed, and even highlight why certain 
patients are at a higher risk for developing a specific co-morbidity, paving the way for early 
intervention and precision medicine strategies.   
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