

Considerations for Pso and PsA telemedicine in the time of COVID-19, and its impact for clinicians and patients

CONFRONTING CHALLENGES FOR THE DEACE WITHIN

Discover groundbreaking insights from leading experts, with videos, articles and more >

DR SHANTHI NARLA (Orcid ID : 0000-0003-0228-3262) PROFESSOR ANGELO VALERIO MARZANO (Orcid ID : 0000-0002-8160-4169) DR AFSANEH ALAVI (Orcid ID : 0000-0003-1171-4917) ILTEFAT HAMZAVI (Orcid ID : 0000-0002-3137-5601)

Article type : Review Article

Title: Identifying key components and therapeutic targets of the immune system in hidradenitis suppurativa with an emphasis on neutrophils

Authors:

S. Narla,¹ M. Azzam,² S. Townsend,³ G. Vellaichamy,³ A. V. Marzano,^{4,5} A. Alavi,⁶ M. A. Lowes⁷ and I. H. Hamzavi¹

- 1. Department of Dermatology, Henry Ford Hospital, Detroit, MI
- 2. University of Nevada School of Medicine, Reno, NV
- 3. Wayne State School of Medicine, Detroit, MI
- 4. Dermatology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- 5. Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- 6. Department of Medicine, Division of Dermatology, Women College Hospital, University of
- Toronto, Toronto, Ontario, Canada
- 7. The Rockefeller University, New York, New York

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/BJD.19538</u>

Abstract word count: 172 Word count: 3,111 Figures: 1 Tables: 1 Supplemental Tables: 0 References: 116

Key Words: hidradenitis suppurativa, neutrophils, interleukin-8, Leukotriene B4, complement, kallikrein, platelet-activating factor, interleukin-17, matrix metalloproteinases, tumor necrosis factoralpha, lipocalin 2; interleukin-1, interleukin-36, C3a, C5a, myeloperoxidase inhibitors

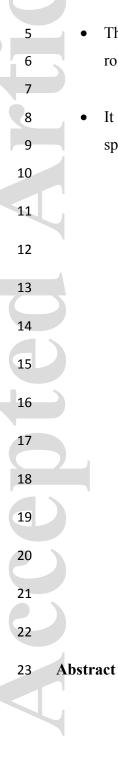
Abbreviations used: HS = hidradenitis suppurativa; IL = interleukin; LTB4 = leukotriene B4, PAF = platelet-activating factor; HiSCR= Hidradenitis Suppurativa Clinical Response; MASP = mannose associated serine protease; KK= kallikreins; MMP = Matrix metalloproteinase; Treg = CD4+ FoxP3+ CD127_{low} regulatory cells; PASH= pyoderma gangrenosum, acne, suppurative hidradenitis; MAC = membrane attack complex; PAD4 = petidylarginine deiminase 4; HOC1 = hypochlorous acid; ROS = reactive oxygen species; 5-LOX = 5-lipoxygenase (5-LOX); MAPK = mitogen-activated protein kinase; IBD = inflammatory bowel disease; Cat G = Cathepsin G; PAMPS = pathogen-associated molecular patterns; PRRs = pattern recognition receptors; RCTs = randomized-controlled trials; LCN-2 = Lipocalin-2; HC = healthy controls; HMWK = high molecular weight kininogen;

Corresponding author:

Iltefat H. Hamzavi, Ihamzav1@hfhs.org

Conflicts of interest: IHH is on the advisory board for AbbVie, is a principal investigator for Ferndale Laboratory, Inc., Galderma Laboratories, Inc., Janssen Biotech, Pfizer Inc., Bayer, Unigen Inc., Allergan, Johnson & Johnson, Incyte, is president of the HS foundation, and is a sub-investigator for Bristol-Myers Squibb and for Merck/MK-3200-011. SN is a sub-investigator for Pfizer, Incyte, and Biofrontera. AA has been an advisor for AbbVie, Janssen, LEO, Galderma, Novartis, Infla Rx, Kymera and Valeant, and is also an investigator for AbbVie, Novartis, Regeneron, Pfizer, Boehringer-Ingelheim, Glenmark, Merck Serono, Roche, Xoma, Janssen, UCB and Xenon. AA received an unrestricted educational grant from AbbVie. MAL has served on the advisory boards for Abbvie and Janssen, and consulted for Almirall, BSN, Incyte, Janssen, Kymera and Xbiotech. The other authors (MA, ST, GV and AVM) have no conflicts of interest relevant to this article to disclose.

Funding Source: None


Acceb

What is already known about this topic?

• Recruitment of neutrophils to HS lesions may play an essential role in the development of the inflammatory nodules and abscesses that characterize the disease.

What does this study add?

- This study reviews inflammatory molecules known to be elevated in HS, and discusses their roles in recruiting, activating, and assisting neutrophils.
- It also highlights pharmacologic interventions that could be used or developed to target the specific immune pathways involved with neutrophils for HS treatment.

1

2

3

Hidradenitis suppurativa (HS) is a chronic, inflammatory, recurrent, and debilitating skin 24 25 disease of the hair follicle unit that typically develops after puberty. The disorder is characterized by comedones, painful inflammatory nodules, abscesses, dermal tunnels, and scarring, with a 26 27 predilection for intertriginous areas of the body (axillae, inguinal, and anogenital regions). Recruitment of neutrophils to HS lesion sites may play an essential role in the development of the 28 29 painful inflammatory nodules and abscesses that characterize the disease. This is a review of the 30 major mediators involved in the recruitment of neutrophils to sites of active inflammation including bacterial components (endotoxins, exotoxins, capsule fragments, etc.), the complement pathway 31 anaphylatoxins C3a and C5a, tumor necrosis factor-alpha (TNF- α), interleukin 17 (IL-17), interleukin 32 8 (CXCL8/IL-8), interleukin 36 (IL-36), interleukin 1 (IL-1), lipocalin-2, leukotriene B4 (LTB4), 33 platelet-activating factor, kallikrein, matrix metalloproteinases (MMPs), and myeloperoxidase 34 35 inhibitors. Pharmacologic manipulation of the various pathways involved in the process of neutrophil recruitment and activation could allow for successful control and stabilization of HS lesions and the 36 37 remission of active, severe flares.

44 Introduction

Neutrophils are part of the front-line defense of host immune responses against invading
pathogens. The rapid migration of neutrophils from the circulation to a site of inflammation is
controlled by interactions with the vascular endothelium. L-selectin expressed on the surface of
neutrophils allows loose tethering to ligands expressed on the surface of endothelial cells as it rolls
along the endothelium. Rolling arrest is mediated by binding of chemoattractants such as CXCL8/IL-

8 to neutrophil receptors following high-affinity adherence to the endothelium. Neutrophils then
migrate into the tissue through paracellular and transcellular migration, with a small minority
penetrating and passing through pores in the cytoplasm of endothelial cells. Once at the tissue site of
inflammation, the neutrophils engage and kill microorganisms and clear infections via different
mechanisms such as chemotaxis, phagocytosis, liberation of cytokines, and neutrophil extracellular
traps (NETs). Further, a large body of evidence has indicated the importance of neutrophils not only
in innate immunity but also in the modulation of adaptive immune responses.^{1,2}

57 One disorder in which neutrophil recruitment may play an important role is hidradenitis 58 suppurativa (HS). HS is a recurrent debilitating skin disease of the hair follicle unit that 59 predominantly affects females compared to males, in the United States and Europe.³ HS is 60 characterized by painful inflammatory nodules, abscesses, comedones, dermal tunnels, and scarring in 61 folded skin rich in apocrine glands, the axillae, inguinal, and anogenital regions. ⁴ Suppuration is one 62 of the clinical hallmarks of HS, presenting both acutely in abscesses and as chronic drainage of 63 dermal tunnels.

Numerous studies suggest contribution of both genetic susceptibility (e.g. γ - secretase 64 mutations) and dysregulation of the innate and adaptive immune pathways in HS pathogenesis. 5-8 A 65 recently proposed mechanism for development of HS lesions suggests that, in predisposed 66 67 individuals, dilated hair follicles in intertriginous areas may first rupture into the dermis. Next, the hair follicle contents, including commensal microbiota and keratin, appear to initiate an innate 68 immune response. Activated inflammasomes may release IL-1 further driving the production of pro-69 70 inflammatory cytokines including TNF, IL-6, and interferon-gamma (IFN- γ). These pro-71 inflammatory cytokines, in turn, lead to dendritic cell activation which produces IL-23. IL-23, in turn, has been shown to promote the expansion/maintenance of CD4+ T helper 17 (Th17) cells.9,10 72 Moreover, the ratio of Th17 cells to CD4+ FoxP3+CD127_{low} regulatory (Treg) cells is highly 73 dysregulated in HS lesional skin owing to the increase in IL-17 producing Th17 cells, and this 74 Th17/Treg axis imbalance may negatively affect Treg-controlled hair follicle stem cell homeostasis 75 and infundibular integrity.^{11,12} The keratinocyte response also results in the increased production of 76 TNF and antimicrobial peptides^{17,18}. 77

Among the numerous functions of neutrophils, of particular interest is the formation of NETs.
These web-like structures are released from the neutrophils into the extracellular space after exposure
to various danger signals to trap and kill microbes.¹³ During NET formation, petidylarginine
deiminase 4 (PAD4) is activated, promoting histone citrullination. Byrd et al showed that enhanced
NET formation in HS externalizes autoantigens that are recognized by HS serum antibodies.
Specifically, some of the antibodies recognizing citrullinated peptides such as those on histones were
detected in the serum of HS patients.¹⁴

85 Thus, migration of neutrophils to lesion sites may play an essential role in the development of 86 characteristic HS lesions (Figure 1). Pharmacologic manipulation of the various pathways involved in 87 this process could allow for successful reduction of neutrophilic migration and activation, leading to reduction in suppurative discharge, control of HS symptomatology, and improvement in disease 88 89 activity. The following review outlines the immunologic pathways that lead to neutrophil activation, recruitment, and migration, discusses the data for neutrophil involvement in the pathogenesis of HS, 90 and reveals potential pharmacologic interventions that could be used or developed to target specific 91 immune pathways for the treatment of HS (Table 1). 92

93 Bacterial Components

94 The innate immune system relies on recognition of evolutionarily conserved structures on pathogens termed pathogen-associated molecular patterns (PAMPs) and on a limited number of 95 96 germ-line encoded pattern recognition receptors (PRRs) (e.g. Toll-Like receptors (TLRs)). Upon PAMP recognition, PRRs present at the cell surface or intracellularly, signal to the host the presence 97 98 of infection and trigger a multitude of proinflammatory and antimicrobial responses that ultimately lead to the expression and synthesis of a broad range of molecules including cytokines, chemokines, 99 cell adhesion molecules, and immunoreceptors.¹⁵ Bacteria can attract neutrophils directly through 100 stimulation by antigens or by damaging cells.^{16,17} Thus, antibacterial therapies can be a method to 101 decrease antigen-mediated neutrophil chemotaxis and inflammation in HS lesions. 102

Previous microbiological studies found a wide range of bacteria sporadically associated with
 HS lesions: *Prevotella*, *Porphyromonas*, *Fusobacteria*, *Parvimonas*, *Staphylococcus* lugduinensis,
 milleri group streptococci, actinomycetes species, and *Staphylococcus* aureus.¹⁸⁻²¹

Antibiotics have long been a part of HS treatment, including topical clindamycin, oral tetracyclines,
combination oral rifampicin and clindamycin, as well as triple antibiotics with metronidazole,

108 rifampicin, and a quinolone.²²⁻²⁵ Further, clindamycin has been found to inhibit complement-derived

109 chemotaxis of polymorphonuclear leukocytes *in vitro* and may enhance the uptake of

110 microorganisms by the phagocytic cells of the host. Rifampin may work in HS though its capacity to

alter the secretion of cytokines by human monocytes, and tetracyclines have also been shown to

inhibit CXCL8/IL-8 and neutrophil activation.²⁶⁻³⁰ Recently, intravenous ertapenem has also been

shown to be effective in patients with severe disease that did not respond to other treatments,

especially as a bridge to biologics or surgery ⁴⁶⁻⁴⁸ However, further research involving large-scaled

randomized controlled trials (RCTs) is needed to fully elucidate the effects of antibiotics in HS

116 patients, and to develop effective combinations for maintenance therapies.

117 Anaphylatoxins and complement system

Complement is an ancient system that responds to stimuli such as bacteria to recruit 118 neutrophils and activate the innate immune system, ^{31,49} and its components have been shown to be 119 elevated in HS serum and tissue. 32-34 In the presence of immune dysregulation, dysbiosis and 120 121 bacterial overgrowth may activate the complement pathway leading to the excess production of complement 5a (C5a) and inflammatory cytokines resulting in the recruitment of neutrophils and 122 inflammatory cells to the affected area causing abscess formation and suppurative discharge. ³³ 123 Briefly, activation of the classical, lectin, or alternative pathways produces C3 convertase, which 124 subsequently induces a C5 convertase and the membrane attack complex (MAC) which can damage 125 126 and opsonize pathogen cells. Byproducts C3a and C5a are potent anaphylatoxins, recruiting neutrophils and activating the inflammasome. ³¹With the increased levels of neutrophils in HS lesions 127 and increased circulating complement levels in HS patients, complement mediating therapies offer 128 129 potential treatment options for patients.

There are both indirect and direct agents that target the complement pathway. Corticosteroids
are well known immune modulators, impacting the polyclonal hypergammaglobulinemia in HS. ³⁵⁻³⁷
A direct anti-C5a antibody IFX-1 is currently in phase II trials for the treatment of HS. While
promising safety and efficacy results were reported for the initial small open label study,³⁸ there was
no significant difference compared to placebo in a larger RCT. ³⁹ An open-label extension study is

135 ongoing. ⁴⁰ Avacopan, a C5a receptor 1 inhibitor, is currently in phase II clinical trials for the

136 treatment of moderate to severe HS (NCT03852472). Other anti-complement treatments in

137 development that have not yet been explored in HS, include C1 esterase inhibitors, anti-C5 antibodies

138 (Eculizumab, Ravulizumab), C3 inhibitor peptides, a protein inhibitor of C3 convertase, and anti-

139 factor B, anti-factor D and anti-properdin therapies.

140 TNF-alpha

141 Resting neutrophils can become primed by agents that include bacterial products and 142 cytokines or chemokines (e.g. TNF- α , GM-CSF, CXCL8/IL-8 and IFN- γ).⁴¹ TNF- α primes the 143 neutrophil respiratory burst, up-regulates the expression of adhesion molecules, cytokines, and 144 chemokines, and at high local concentrates can stimulate reactive oxygen species (ROS) production in 145 adherent neutrophils to trigger bacterial killing.²

146 Adalimumab, a monoclonal antibody against TNF, is the only currently Food and Drug Administration approved systemic medication for treatment of HS. Other TNF inhibitors include 147 infliximab, etanercept, golimumab, and certolizumab. In a phase II study of 38 patients with 148 moderate-to-severe HS, more patients treated with infliximab experienced a 50% or greater decrease 149 in the Hidradenitis Suppurativa Severity Index (HSSI) in comparison to those on placebo.⁴² No 150 significant improvement in HS was found in patients given etanercept 50mg twice weekly for 24 151 weeks.⁴³ Golimumab has only been used in two case reports: in the first one, it did not result in 152 clinical improvement of HS,⁴⁴ while in the second case presenting with HS and pyostomatitis 153 154 vegetans on a background of ulcerative colitis, it resulted in complete and sustained remission of the overall clinical picture.⁴⁵ Finally, certolizumab was used in two HS patients but found to be 155 ineffective.⁴⁶ However, a recent case report showed complete resolution of nodules and abscesses 156 after 3 months of treatment.⁴⁷ 157

158 IL-17

IL-17, in cooperation or synergism with other inflammatory mediators, can induce a potent
 inflammatory cascade by upregulating a wide array of target genes that includes induction of
 neutrophil-specific chemokines (CXCL1, CXCL2, CXCL5, CXCL8). In addition to Th17 cells, innate

162 lymphoid cells, γ - δ T cells, mast cells, and neutrophils have been shown to produce IL-17. ^{48,49}

- Dermal IL-17 and T helper 17-enhanced responses drive neutrophil migration into affected areas and promote tissue damage. ^{50,51} Therefore, blocking IL-17 or the downstream effects of IL-17 may serve as a potential therapy in HS. ⁵²
- IL-17 has been shown to be elevated in the serum of classic HS patients, ^{53,54} and tissues of 166 classic and syndromic HS, ^{50,51,54,55} and IL-17 producing neutrophils are prominent in affected HS 167 lesional skin. ⁵⁰ Case reports have suggested that targeting IL-17 is a promising therapeutic approach 168 for HS. ⁵⁶⁻⁵⁸ Phase III clinical trials are currently underway testing the safety and efficacy of using 169 secukinumab, a fully human antibody that targets IL-17A, in the treatment of HS (NCT03713632). 170 171 However, IL-17 blockade can also be the trigger of paradoxical HS. ⁵⁷ The activation of type 1-IFN as well as IL-1ß and/or other proinflammatory cytokines/chemokines may explain the occurrence of 172 paradoxical HS. ⁵⁹ Previous studies have demonstrated that HS is associated with a significantly 173 increased risk of co-occurring and new-onset IBD⁶⁰; secukinumab has been associated with worsening 174 symptoms compared to placebo in clinical trials of Crohn's disease and therefore, the onset and/or 175 worsening of IBD needs to be closely monitored for in phase 3 trials.^{61,62} Another IL-17 inhibitor that 176 is under phase III studies for psoriasis that could potentially be used for HS includes ixekizumab. 63,64 177 A recent open-label cohort study of 10 patients treated with subcutaneous brodalumab (anti-17A, IL-178 17C and IL-17F) showed promising results.⁶⁵ Bimekizumab (dual IL-17A and IL-17F inhibitor) is 179 currently under phase II multicenter clinical trials for moderate-to-severe HS (NCT03248531). 180

181 IL-8/CXCL8

IL-8/CXCL8 primarily functions to induce chemotaxis of neutrophils to the site where they
 are needed.^{66,67} Alterations of CXCL8/IL-8 resulting in increased levels in both the skin and serum
 have been reported in patients with both classic HS and PASH (pyoderma gangrenosum, acne,
 suppurative hidradenitis). ^{55,68,69} In addition, CXCL 1/2/3 has been shown to be elevated in PG,
 PASH, and PAPASH (pyoderma gangrenosum, acne, suppurative hidradenitis, pyogenic arthritis).⁷⁰
 Currently, anti-IL8 treatments, such as Repertaxin^{71,72} and Sivelestat ⁷³, have not yet been explored in
 HS.

189 IL-36

IL-36α, IL-36β and IL-36γ are recently reported pro-inflammatory agonists in the IL-1 190 191 superfamily. They play an important role in the regulation of both the innate and adaptive immune 192 systems and induce proinflammatory signaling pathways via the activation of nuclear factor-kB and mitogen-activated protein kinase.⁹⁸⁻¹⁰¹ IL-36 (α , β , γ) is presumed to act as a bridge in the activation 193 of innate and adaptive immune responses, fostering IL-1 β , IL-6, TNF- α , and IL-23p19. These 194 195 cytokines have been shown to be involved in the generation of a Th17 immune response.⁷⁴ In 196 addition, NETs have neutrophil granule proteases, Cathepsin G (Cat G), elastase, and proteinase-3 (PR-3). NET-associated proteases, particularly Cat G, robustly process and activate IL-36a, IL-36B, 197 and IL-36y as well as IL-1a, thereby activating the biological activity of these cytokines.⁷⁵ 198

199A recent study has shown that the expression levels of IL-36α, IL-36β, IL-36γ, and IL-36R200were all significantly higher in lesional HS skin than in healthy controls. ⁷⁶ No IL-36 inhibitors are201currently under testing for HS; however, a phase 1 proof-of-concept study involving patients with202generalized pustular psoriasis treated with BI 655130, a monoclonal antibody against the IL-36203receptor (NCT02978690), showed good results. ⁷⁷

204 IL-1

IL-1 has been shown to increase neutrophil migration through upregulation of IL-8/CXCL8. ⁷⁸
 When HS cytokine patterns were further examined, IL-1β turned out to be a highly prominent
 cytokine, overexpressed even compared with psoriatic lesions.⁷⁹ IL-1 signaling is also important for
 adaptive immune responses.⁸⁰

In a RCT of 20 patients with HS, HS disease activity score was significantly decreased in the arm treated with anakinra (IL-1 type 1 receptor antagonist) (7 of 9) vs the placebo group (2 of 10) after 12 weeks, (but not at 24 weeks) (P = 0.02).⁸¹ In later case reports, there were also experiences of severe HS proving refractory to anakinra.⁸² In a phase II, multi-center, open label study of HS patients treated with subcutaneous bermekimab (IL-1 α inhibitor), approximately 60% of patients achieved HiSCR.⁸³ Canakinumab, an anti- IL-1 β antibody, has been given subcutaneously up to 150 mg per week for the treatment of HS with conflicting results in case reports and series.⁸⁴⁻⁸⁸

216 Lipocalin-2

Lipocalin-2 (LCN-2) is a secreted mediator found in the neutrophil secondary granules, and is 217 expressed de novo by macrophages and epithelium in response to inflammation.⁸⁹ In vitro, LCN-2 218 stimulated human neutrophils to produce vital proinflammatory mediators, such as IL-6, CXCL8/IL-219 8, TNF- α , and IL-1 α via a specific receptor, 24p3R, on neutrophils.⁹⁰ Blood samples of patients with 220 HS have demonstrated significantly elevated levels of LCN-2 in comparison to healthy controls.91 221 222 Strongly elevated LCN-2 expression was also present in HS lesions, with granulocytes and 223 keratinocytes being sources of this expression. Further, TNF-alpha was found to be a significant inducer of LCN-2 from keratinocytes. A highly significant positive relationship between LCN-2 224 levels and HS disease severity was demonstrated using the Sartorius score. LCN-2 levels were also 225 found to be positively associated with the number of affected body areas in HS.⁹¹ Currently, no 226 medications directly targeting LCN-2 exist on the market or in clinical trials. 227

228 LTB4

LTB4 is an inflammatory molecule (leukotriene) produced by leukocytes from arachidonic acid, specifically via the 5-lipoxygenase pathway.⁹² Of all the leukotrienes, LTB4 is the most potent chemoattractant for neutrophils, and is able to induce the formation of ROS and the release of lysosomal enzymes by neutrophils.⁹³

A recent lipidomics study found increased LTB4 in HS lesions.⁹⁴ In an open-label clinical trial using ustekinumab for HS, clinical responders were found to have lower expression levels of leukotriene A4-hydrolase (LTA4H) suggesting that leukotriene may play an important role in the inflammation of HS. ⁹⁵ A potential LTA4H inhibitor for HS is ubenimex, and 5-lipoxygenase (5-LOX) inhibitors may also be useful, ^{96,97} including zileuton,¹²⁵ atreleuton and setileuton. ⁹⁸

238 PAF

Platelet-activating factor is well known to stimulate neutrophil migration toward the stimulus
of injury in acute inflammation.⁹⁹ PAF activates neutrophils by stimulating their mitogen-activated
protein kinase (MAPK) and p38 signaling pathways.¹⁰⁰ Additionally, PAF mediates neutrophil
adhesion onto activated platelets, a process that is critical during the rolling phase of neutrophil
migration toward tissue.¹⁰¹ Evidence for the specific role of PAF in HS has not been published to

244 date. Synthetic rupatadine, an oral PAF and histamine H1 receptor antagonist, has not yet been trialed245 in HS.

Phytochemical products such as ginkgolides are either competitive antagonists or partial 246 agonists of the PAF system. ¹⁰² At the pharmacodynamic level, ginkgo biloba is known to inhibit key 247 neutrophil mediators including ROS production, selectin-mediated adhesion, and NF-KB-dependent 248 inflammation.¹⁰³ Within the dietary realm, olive oil, grapes, honey, fish, and dairy consist of 249 numerous products that exert anti-PAF activities. Mediterranean diets, as well as those incorporating 250 251 garlic, soy sauce, turmeric, and tea, may benefit from small-molecule PAF-inhibition, though the evidence is limited. ^{102,104} However, despite promising data, PAF antagonists have previously failed to 252 253 exhibit benefit in clinical trials relating to PAF-mediated inflammation in sepsis, acute pancreatitis, and asthma.¹⁰⁵ 254

255 Kallikrein

256 Kallikreins (KKs) are part of the plasma contact activation system, a component of the innate immune system, that is spontaneously activated by negatively charged surfaces (e.g. bacterial or 257 fungal surfaces). Once activated, kallikrein has been shown to cleave the central complement 258 component C3 directly to yield active components C3b and C3a. Kallikrein can also cleave high 259 260 molecular weight kininogen (HMWK) to release the proinflammatory peptide bradykinin, which in turn causes vascular leakage and the sensation of pain.¹⁰⁶ Direct expression of KKs in HS has not yet 261 been studied. However, KKs provide critical regulatory roles to skin cathelicidins such as LL-37,¹⁰⁷ 262 which has been shown to be increased in HS lesions and lead to increased immunoreactivity and 263 neutrophil recruitment to the local perifollicular epidermis. ^{108,109} Ecallantide, an inhibitor of plasma 264 kallikrein, has been shown to reduce neutrophil-mediated kallikrein activity and elastase release in in-265 vitro studies.110 266

267 Matrix Metalloproteinases (MMPs)

Matrix metalloproteinases (MMPs), zinc-dependent proteolytic enzymes, have been shown to play a role in the recruitment of neutrophils to sites of inflammation. MMPs facilitate extravascular migration of neutrophils through the extracellular matrix by degrading the matrix. ¹¹¹ Further, MMP-9

exists in neutrophils and is released upon neutrophil activation further potentiating the cycle. ¹¹² High 271 lesional and serum MMP-8 levels have been found in HS patients. ¹¹³ Increased expression of matrix-272 degrading enzymes (MMP 1,3,9 and 10) in HS skin lesions was paralleled by down-regulation of 273 tissue inhibitor of matrix metalloproteinases (TIMP, an important inhibitor of MMP activity). This 274 resulted in strongly increased MMP/TIMP4 ratios in HS, indicating an extraordinary activity of these 275 enzymes in HS linked to the destructive character of the disease. ⁷⁹ Tetracyclines (e.g. doxycycline, 276 277 minocycline) are antibiotics that can chelate the Zn²⁺ ion and thereby inhibit MMP activity. ¹¹⁴ Currently, tetracyclines are recommended for use in mild-to-moderate HS for a 12-week course or as 278 long-term maintenance therapy when appropriate.¹¹⁵ 279

280 Myeloperoxidase Inhibitor

Dapsone exerts its anti-neutrophilic effect by inhibiting the myeloperoxidase-H₂O₂-halide-281 mediated cytotoxic system. As part of the respiratory burst that neutrophils use to kill bacteria, 282 myeloperoxidase converts hydrogen peroxide into hypochlorous acid (HOCl). HOCl is the most 283 potent oxidant generated by neutrophils and can cause significant tissue damage during inflammation. 284 Dapsone arrests myeloperoxidase in an inactive intermediate form, reversibly inhibiting the enzyme, 285 thus interfering with neutrophil function. However, in a case series of 24 HS patients receiving 286 dapsone, improvement was only seen in 9 out of 24 (38%) treated patients. None of the 4 cases with 287 severe disease experienced improvement. Recurrence of disease at the cessation of treatment was 288 described as rapid. 116 289

290 Conclusion

Numerous physiologic pathways exist to recruit, activate, and assist neutrophils in the context of inflammation. A thorough understanding of the various cytokines and other molecules involved in these processes could be invaluable in the development of new targeted therapies or the re-purposing of existing therapies for the treatment of HS by inhibiting neutrophil recruitment and activation.

295

296

297

298	
299	

2	n	n	
3	υ	υ	

	301	Refer	ences
	302	1	Mortaz E, Alipoor SD, Adcock IM et al. Update on Neutrophil Function in Severe Inflammation.
	303	5	Frontiers in immunology 2018; 9 : 2171
	304	2	Wright HL, Moots RJ, Bucknall RC et al. Neutrophil function in inflammation and inflammatory
	305		diseases. Rheumatology 2010; 49: 1618-31.
	306	3	Phan K, Charlton O, Smith SD. Global prevalence of hidradenitis suppurativa and geographical
	307		variation—systematic review and meta-analysis. Biomedical Dermatology 2020; 4: 2.
	308	4	Alikhan A, Sayed C, Alavi A et al. North American clinical management guidelines for hidradenitis
	309		suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa
	310		Foundations: Part I: Diagnosis, evaluation, and the use of complementary and procedural
	311		management. Journal of the American Academy of Dermatology 2019; 81: 76-90.
ľ	312	5	Kelly G, Prens EP. Inflammatory Mechanisms in Hidradenitis Suppurativa. Dermatologic clinics 2016;
	313		34 : 51-8.
	314	6	Napolitano M, Fabbrocini G, Marasca C et al. Update on pathogenesis of hidradenitis suppurativa.
_	315	5	Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di dermatologia e
	316		sifilografia 2018; 153 : 3-7.
	317	7	Hoffman LK, Ghias MH, Lowes MA. Pathophysiology of hidradenitis suppurativa. Semin Cutan Med
	318		Surg 2017; 36 : 47-54.
	319	8	Tricarico PM, Boniotto M, Genovese G et al. An Integrated Approach to Unravel Hidradenitis
	320		Suppurativa Etiopathogenesis. Frontiers in immunology 2019; 10: 892.
	321	9	Morrison PJ, Ballantyne SJ, Kullberg MC. Interleukin-23 and T helper 17-type responses in intestinal
	322		inflammation: from cytokines to T-cell plasticity. <i>Immunology</i> 2011; 133 : 397-408.
	323	10	Hotz C, Boniotto M, Guguin A et al. Intrinsic Defect in Keratinocyte Function Leads to Inflammation in
	324		Hidradenitis Suppurativa. The Journal of investigative dermatology 2016; 136: 1768-80.

325	11	Moran B, Sweeney CM, Hughes R et al. Hidradenitis Suppurativa Is Characterized by Dysregulation of
326		the Th17:Treg Cell Axis, Which Is Corrected by Anti-TNF Therapy. The Journal of investigative
327		dermatology 2017; 137 : 2389-95.

Melnik BC, John SM, Chen W *et al.* T helper 17 cell/regulatory T-cell imbalance in hidradenitis
 suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune
 comorbidities. *The British journal of dermatology* 2018; **179**: 260-72.

Corsiero E, Pratesi F, Prediletto E *et al.* NETosis as Source of Autoantigens in Rheumatoid Arthritis. *Frontiers in immunology* 2016; **7**: 485.

Byrd AS, Carmona-Rivera C, O'Neil LJ *et al.* Neutrophil extracellular traps, B cells, and type I
 interferons contribute to immune dysregulation in hidradenitis suppurativa. *Science translational medicine* 2019; **11**.

Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. *Clin Microbiol Rev* 2009; 22: 240-73.

- 338 16 Petri B, Sanz M-J. Neutrophil chemotaxis. *Cell and Tissue Research* 2018; **371**: 425-36.
- 339 17 McDonald B, Pittman K, Menezes GB *et al.* Intravascular danger signals guide neutrophils to sites of
 340 sterile inflammation. *Science (New York, N.Y.)* 2010; **330**: 362-6.
- Ring HC, Thorsen J, Saunte DM *et al.* The Follicular Skin Microbiome in Patients With Hidradenitis
 Suppurativa and Healthy Controls. *JAMA dermatology* 2017; **153**: 897-905.
- 343 19 Guet-Revillet H, Coignard-Biehler H, Jais J-P *et al.* Bacterial pathogens associated with hidradenitis
 344 suppurativa, France. *Emerg Infect Dis* 2014; **20**: 1990-8.
- 345 20 Sartorius K, Killasli H, Oprica C *et al.* Bacteriology of hidradenitis suppurativa exacerbations and deep
 346 tissue cultures obtained during carbon dioxide laser treatment. *The British journal of dermatology*347 2012; **166**: 879-83.
- Guet-Revillet H, Jais JP, Ungeheuer MN *et al.* The Microbiological Landscape of Anaerobic Infections in
 Hidradenitis Suppurativa: A Prospective Metagenomic Study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2017; **65**: 282-91.
- Clemmensen OJ. Topical treatment of hidradenitis suppurativa with clindamycin. *International journal*of dermatology 1983; 22: 325-8.
- Jemec GB, Wendelboe P. Topical clindamycin versus systemic tetracycline in the treatment of
 hidradenitis suppurativa. *J Am Acad Dermatol* 1998; **39**: 971-4.

355 24	Gener G, Canoui-Poitrine F, Revuz JE et al. Combination therapy with clindamycin and rifampicin for
356	hidradenitis suppurativa: a series of 116 consecutive patients. Dermatology (Basel, Switzerland) 2009;
357	219 : 148-54.

- Join-Lambert O, Coignard H, Jais JP *et al.* Efficacy of rifampin-moxifloxacin-metronidazole
 combination therapy in hidradenitis suppurativa. *Dermatology* 2011; **222**: 49-58.
- Pradhan S, Madke B, Kabra P *et al.* Anti-inflammatory and Immunomodulatory Effects of Antibiotics
 and Their Use in Dermatology. *Indian journal of dermatology* 2016; **61**: 469-81.
- van der Zee HH, Boer J, Prens EP *et al.* The effect of combined treatment with oral clindamycin and
 oral rifampicin in patients with hidradenitis suppurativa. *Dermatology* 2009; **219**: 143-7.
- 364 28 Mendonça CO, Griffiths CE. Clindamycin and rifampicin combination therapy for hidradenitis
 365 suppurativa. *The British journal of dermatology* 2006; **154**: 977-8.
- Joshi RK, Atukorala DN, Abanmi A *et al.* Successful treatment of Sweet's syndrome with doxycycline.
 The British journal of dermatology 1993; **128**: 584-6.
- 368 30 Mrcp JB-J, Tan SV, Graham-Brown RAC *et al.* The successful use of minocycline in pyoderma
 369 gangrenosum—a report of seven cases and review of the literature. *Journal of Dermatological*370 *Treatment* 1989; 1: 23-5.
- 371 31 Rich RR, Fleisher, T.A., Schroeder, H., Frew, A.J., Weyland, C.M. The Human Complement System:
 372 Basic Concepts and Clinical Relevance Clinical immunology principles and practice. In: *Clinical*373 *Immunology*, 5th edn.: Elsevier. 2019; 299-317.
- 374 32 Grand D, Navrazhina K, Frew JW. Integrating Complement into the Molecular Pathogenesis of
 375 Hidradenitis Suppurativa. *Experimental dermatology* 2019.
- 376 33 Kanni T, Zenker O, Habel M *et al.* Complement activation in hidradenitis suppurativa: a new pathway
 377 of pathogenesis? *The British journal of dermatology* 2018; **179**: 413-9.
- 378 34 Hoffman LK, Tomalin LE, Schultz G *et al.* Integrating the skin and blood transcriptomes and serum
 379 proteome in hidradenitis suppurativa reveals complement dysregulation and a plasma cell signature.
 380 *PloS one* 2018; **13**: e0203672.
- 381 35 Settipane GA, Pudupakkam RK, McGowan JH. Corticosteroid effect on immunoglobulins. *The Journal*382 of allergy and clinical immunology 1978; 62: 162-6.
- 383 36 Hoffman LK, Ghias MH, Cohen SR *et al.* Polyclonal hyperglobulinaemia and elevated acute-phase
 384 reactants in hidradenitis suppurativa. *The British journal of dermatology* 2018; **178**: e134-e5.

- 385 37 Musilova J, Moran B, Sweeney CM *et al.* Enrichment of Plasma Cells in the Peripheral Blood and Skin
 386 of Patients with Hidradenitis Suppurativa. *The Journal of investigative dermatology* 2020; **140**: 1091 387 4.e2.
- 388 38 Giamarellos-Bourboulis EJ, Argyropoulou M, Kanni T *et al.* Clinical efficacy of complement c5a
 389 inhibition by ifx-1 in hidradenitis suppurativa: an open-label single-arm trial in patients not eligible for
 390 adalimumab. *The British journal of dermatology* 2020.
- 391 39 06-2019-InflaRx Announces Top-Line SHINE Phase IIb Results for IFX-1 in Hidradenitis Suppurativa In.
 392 Jena, Germany. 2019.
- 393 40 N.V. I. InflaRx Reports Positive Results from the Open Label Extension Part of the SHINE Study for IFX394 1 in Hidradenitis Suppurativa. In: AP.

Hallett MB, Lloyds D. Neutrophil priming: the cellular signals that say 'amber' but not 'green'. *Immunology today* 1995; 16: 264-8.

- Grant A, Gonzalez T, Montgomery MO *et al.* Infliximab therapy for patients with moderate to severe
 hidradenitis suppurativa: a randomized, double-blind, placebo-controlled crossover trial. *J Am Acad Dermatol* 2010; **62**: 205-17.
- 400 43 Adams DR, Yankura JA, Fogelberg AC *et al.* Treatment of hidradenitis suppurativa with etanercept
 401 injection. *Archives of dermatology* 2010; **146**: 501-4.
- 402 44 van der Zee HH, Prens EP. Failure of anti-interleukin-1 therapy in severe hidradenitis suppurativa: a
 403 case report. *Dermatology* 2013; **226**: 97-100.
- 404 45 Tursi A. Concomitant hidradenitis suppurativa and pyostomatitis vegetans in silent ulcerative colitis
 405 successfully treated with golimumab. *Digestive and liver disease : official journal of the Italian Society*406 of Gastroenterology and the Italian Association for the Study of the Liver 2016; **48**: 1511-2.
- 407 46 Sand FL, Thomsen SF. Off-label use of TNF-alpha inhibitors in a dermatological university department:
 408 retrospective evaluation of 118 patients. *Dermatologic therapy* 2015; 28: 158-65.
- 409 47 A case report of hidradenitis suppurativa treated with certolizumab. *Journal of the American*410 *Academy of Dermatology* 2019; **81**: AB436.
- 411 48 O'Brien RL, Born WK. Dermal γδ T cells What have we learned? *Cellular Immunology* 2015; **296**: 62412 9.
- 413 49 Keijsers RRMC, Joosten I, van Erp PEJ *et al.* Cellular sources of IL-17 in psoriasis: a paradigm shift?
 414 *Experimental dermatology* 2014; 23: 799-803.

	415	50	Lima AL, Karl I, Giner T et al. Keratinocytes and neutrophils are important sources of proinflammatory
	416		molecules in hidradenitis suppurativa. The British journal of dermatology 2016; 174: 514-21.
_	417	51	Schlapbach C, Hanni T, Yawalkar N et al. Expression of the IL-23/Th17 pathway in lesions of
	418		hidradenitis suppurativa. J Am Acad Dermatol 2011; 65: 790-8.
	419	52	Griffin GK, Newton G, Tarrio ML et al. IL-17 and TNF-alpha sustain neutrophil recruitment during
	420		inflammation through synergistic effects on endothelial activation. Journal of immunology (Baltimore,
	421		<i>Md. : 1950)</i> 2012; 188 : 6287-99.
	422	53	Matusiak L, Szczech J, Bieniek A et al. Increased interleukin (IL)-17 serum levels in patients with
	423		hidradenitis suppurativa: Implications for treatment with anti-IL-17 agents. J Am Acad Dermatol 2017;
	424		76 : 670-5.
	425	54	Wolk K, Warszawska K, Hoeflich C et al. Deficiency of IL-22 contributes to a chronic inflammatory
	426		disease: pathogenetic mechanisms in acne inversa. Journal of immunology (Baltimore, Md. : 1950)
	427		2011; 186 : 1228-39.
	428	55	Marzano AV, Damiani G, Ceccherini I et al. Autoinflammation in pyoderma gangrenosum and its
	429		syndromic form (pyoderma gangrenosum, acne and suppurative hidradenitis). The British journal of
	430		dermatology 2017; 176 : 1588-98.
	431	56	Jørgensen A-HR, Yao Y, Thomsen SF. Therapeutic Response to Secukinumab in a 36-Year-Old Woman
	432		with Hidradenitis Suppurativa. Case reports in dermatological medicine 2018; 2018: 8685136
	433	57	Marasca C, Megna M, Balato A et al. Secukinumab and hidradenitis suppurativa: Friends or foes?
	434		JAAD case reports 2019; 5 : 184-7.
	435	58	Thorlacius L, Theut Riis P, Jemec GBE. Severe hidradenitis suppurativa responding to treatment with
	436		secukinumab: a case report. The British journal of dermatology 2018; 179: 182-5.
	437	59	Navarro-Trivino FJ, Sanchez-Parera R, Ruiz-Villaverde R. Secukinumab-induced paradoxical
	438		hidradenitis suppurativa. Dermatologic therapy 2019: e13150.
	439	60	Egeberg A, Jemec GBE, Kimball AB et al. Prevalence and Risk of Inflammatory Bowel Disease in
	440		Patients with Hidradenitis Suppurativa. Journal of Investigative Dermatology 2017; 137: 1060-4.
	441	61	Hueber W, Sands BE, Lewitzky S et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for
	442		moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-
	443		controlled trial. <i>Gut</i> 2012; 61 : 1693-700.

444	62	Wang J, Bhatia A, Krugliak Cleveland N et al. Rapid Onset of Inflammatory Bowel Disease after
445		Receiving Secukinumab Infusion. ACG Case Rep J 2018; 5: e56-e.
446	63	Odorici G, Pellacani G, Conti A. Ixekizumab in hidradenitis suppurativa: a case report in a psoriatic
447		patient. Giornale italiano di dermatologia e venereologia : organo ufficiale, Societa italiana di
448		dermatologia e sifilografia 2019.
449	64	Wcisło-Dziadecka D, Kaźmierczak A, Grabarek B et al. Are new variants of psoriasis therapy (IL-17
450		inhibitors) safe? International journal of dermatology 2019; 58: 1360-5.
451	65	Frew JW, Navrazhina K, Grand D et al. The Effect of Subcutaneous Brodalumab upon Clinical Disease
452		Activity in Hidradenitis Suppurativa: An Open Label Cohort Study. J Am Acad Dermatol 2020.
453	66	Rajagopalan L, Rajarathnam K. Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-
454		terminal domain. The Journal of biological chemistry 2004; 279: 30000-8.
455	67	Zarbock A, Stadtmann A. CXCR2: From Bench to Bedside. Frontiers in immunology 2012; 3.
456	68	Jimenez-Gallo D, de la Varga-Martinez R, Ossorio-Garcia L et al. The Clinical Significance of Increased
457		Serum Proinflammatory Cytokines, C-Reactive Protein, and Erythrocyte Sedimentation Rate in
458		Patients with Hidradenitis Suppurativa. Mediators of inflammation 2017; 2017: 2450401.
459	69	Vossen ARJV, van der Zee HH, Prens EP. Hidradenitis Suppurativa: A Systematic Review Integrating
460		Inflammatory Pathways Into a Cohesive Pathogenic Model. <i>Frontiers in immunology</i> 2018; 9 : 2965
461	70	Marzano AV, Ortega-Loayza AG, Heath M et al. Mechanisms of Inflammation in Neutrophil-Mediated
462		Skin Diseases. Frontiers in immunology 2019; 10.
463	71	Wang J, Hu W, Wang K et al. Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2,
464		inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances
465		efficacy of 5-fluorouracil. International journal of oncology 2016; 48: 1341-52.
466	72	Dominguez C, McCampbell KK, David JM et al. Neutralization of IL-8 decreases tumor PMN-MDSCs
467		and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI insight 2017; 2.
468	73	Shibata S, Takahashi G, Shioya N et al. Suppressive effects of sivelestat on interleukin 8 and TNF-alpha
469		production from LPS-stimulated granulocytes in whole blood culture. Journal of anesthesia 2010; 24:
470		901-7.
471	74	Murrieta-Coxca JM, Rodríguez-Martínez S, Cancino-Diaz ME et al. IL-36 Cytokines: Regulators of
472		Inflammatory Responses and Their Emerging Role in Immunology of Reproduction. Int J Mol Sci 2019;
473		20 : 1649.
Z		

	474 75	Clancy DM, Henry CM, Sullivan GP et al. Neutrophil extracellular traps can serve as platforms for
	475	processing and activation of IL-1 family cytokines. The FEBS Journal 2017; 284: 1712-25.
_	476 76	Hessam S, Sand M, Gambichler T et al. Interleukin-36 in hidradenitis suppurativa: evidence for a
	477	distinctive proinflammatory role and a key factor in the development of an inflammatory loop. British
	478	Journal of Dermatology 2018; 178 : 761-7.
	479 77	Bachelez H, Choon SE, Marrakchi S et al. Inhibition of the Interleukin-36 Pathway for the Treatment of
	480	Generalized Pustular Psoriasis. The New England journal of medicine 2019; 380: 981-3.
	481 78	Sica A, Matsushima K, Van Damme J et al. IL-1 transcriptionally activates the neutrophil chemotactic
	482	factor/IL-8 gene in endothelial cells. <i>Immunology</i> 1990; 69 : 548-53.
	483 79	Witte-Handel E, Wolk K, Tsaousi A et al. The IL-1 Pathway Is Hyperactive in Hidradenitis Suppurativa
	484	and Contributes to Skin Infiltration and Destruction. The Journal of investigative dermatology 2019;
	485	139 : 1294-305.
	486 80	Evavold CL, Kagan JC. How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2018; 430: 217-37.
	487 81	Tzanetakou V, Kanni T, Giatrakou S et al. Safety and Efficacy of Anakinra in Severe Hidradenitis
	488	Suppurativa: A Randomized Clinical Trial. JAMA Dermatol 2016; 152: 52-9.
	489 82	Russo V, Alikhan A. Failure of Anakinra in a Case of Severe Hidradenitis Suppurativa. Journal of drugs
	490	in dermatology : JDD 2016; 15 : 772-4.
	491 83	Gottlieb A, Natsis NE, Kerdel F et al. A Phase II, Open Label Study of Bermekimab in Patients with
	492	Hidradenitis Suppurativa Shows Resolution of Inflammatory Lesions and Pain. The Journal of
	493	investigative dermatology 2020.
	494 84	Sun NZ, Ro T, Jolly P et al. Non-response to Interleukin-1 Antagonist Canakinumab in Two Patients
	495	with Refractory Pyoderma Gangrenosum and Hidradenitis Suppurativa. J Clin Aesthet Dermatol 2017;
	496	10 : 36-8.
	497 85	Lim SYD, Oon HH. Systematic review of immunomodulatory therapies for hidradenitis suppurativa.
	498	Biologics : targets & therapy 2019; 13 : 53-78.
	499 86	Houriet C, Seyed Jafari SM, Thomi R et al. Canakinumab for Severe Hidradenitis Suppurativa:
	500	Preliminary Experience in 2 Cases. JAMA Dermatology 2017; 153: 1195-7.
	501 87	Jaeger T, Andres C, Grosber M et al. Pyoderma gangrenosum and concomitant hidradenitis
	502	suppurativarapid response to canakinumab (anti-IL-1β). European journal of dermatology : EJD
	503	2013; 23 : 408-10.
	Y	

504	88	Tekin B, Salman A, Ergun T. Hidradenitis suppurativa unresponsive to canakinumab treatment: A case
505		report. Indian journal of dermatology, venereology and leprology 2017; 83 : 615-7.
506	89	Dahl SL, Woodworth JS, Lerche CJ et al. Lipocalin-2 Functions as Inhibitor of Innate Resistance to
507		Mycobacterium tuberculosis. Frontiers in immunology 2018; 9.
508	90	Shao S, Cao T, Jin L et al. Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by
509		Modulating Neutrophil Chemotaxis and Cytokine Secretion. Journal of Investigative Dermatology
510		2016; 136 : 1418-28.
511	91	Wolk K, Wenzel J, Tsaousi A et al. Lipocalin-2 is expressed by activated granulocytes and keratinocytes
512		in affected skin and reflects disease activity in acne inversa/hidradenitis suppurativa. British Journal of
513		Dermatology 2017; 177 : 1385-93.
514	92	Saeki K, Yokomizo T. Identification, signaling, and functions of LTB4 receptors. Seminars in
515		<i>immunology</i> 2017; 33 : 30-6.
516	93	Cotran RS, Kumar, V., Collins, T., Robbins S.L. Robbins Pathologic Basis of Disease, 9th edn.
517		Philadelphia: Sunders. 2014.
518	94	Penno CA, Jäger P, Laguerre C et al. Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions
519		Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Pro-Inflammatory Leukotriene B4.
520		The Journal of investigative dermatology 2020.
521	95	Blok JL, Li K, Brodmerkel C et al. Ustekinumab in hidradenitis suppurativa: clinical results and a search
522		for potential biomarkers in serum. The British journal of dermatology 2016; 174: 839-46.
523	96	Zhao S, Yao K, Li D et al. Inhibition of LTA4H by bestatin in human and mouse colorectal cancer.
524		EBioMedicine 2019; 44 : 361-74.
525	97	Bouchette D, Preuss CV. Zileuton. In: StatPearls. Treasure Island (FL): StatPearls Publishing
526	StatDor	arls Publishing LLC. 2019.
527	98	Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors
528		structural design, SAR and mechanism based approach. <i>Bioorganic & medicinal chemistry</i> 2019; 27 :
529	00	3745-59.
530	99	Shaw JO, Pinckard RN, Ferrigni KS <i>et al</i> . Activation of human neutrophils with 1-O-
531		hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine (platelet activating factor). <i>Journal of</i>
532		immunology (Baltimore, Md. : 1950) 1981; 127 : 1250-5.
N		

Nick JA, Avdi NJ, Young SK *et al.* Common and distinct intracellular signaling pathways in human
neutrophils utilized by platelet activating factor and FMLP. *The Journal of clinical investigation* 1997;
99: 975-86.

Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is
 mediated by interaction of Mac-1 with fibrinogen bound to alphallbbeta3 and stimulated by platelet activating factor. *The Journal of clinical investigation* 1997; **100**: 2085-93.

539 102 Papakonstantinou VD, Lagopati N, Tsilibary EC *et al.* A Review on Platelet Activating Factor Inhibitors:
540 Could a New Class of Potent Metal-Based Anti-Inflammatory Drugs Induce Anticancer Properties?
541 *Bioinorganic chemistry and applications* 2017; 2017: 6947034.

Fei R, Fei Y, Zheng S *et al.* Purified polysaccharide from Ginkgo biloba leaves inhibits P-selectinmediated leucocyte adhesion and inflammation. *Acta pharmacologica Sinica* 2008; **29**: 499-506.

544 104 Kohli K, Ali J, Ansari M *et al.* Curcumin: A natural antiinflammatory agent. *Indian Journal of*545 *Pharmacology* 2005; **37**: 141-7.

Lordan R, Tsoupras A, Zabetakis I *et al.* Forty Years Since the Structural Elucidation of PlateletActivating Factor (PAF): Historical, Current, and Future Research Perspectives. *Molecules (Basel, Switzerland)* 2019; 24.

549 106 Irmscher S, Döring N, Halder LD *et al.* Kallikrein Cleaves C3 and Activates Complement. *Journal of*550 *Innate Immunity* 2018; **10**: 94-105.

Yamasaki K, Schauber J, Coda A *et al.* Kallikrein-mediated proteolysis regulates the antimicrobial
effects of cathelicidins in skin. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology* 2006; **20**: 2068-80.

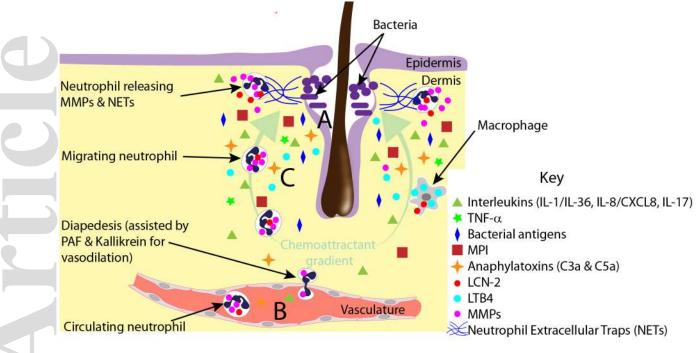
Thomi R, Schlapbach C, Yawalkar N *et al.* Elevated levels of the antimicrobial peptide LL-37 in
hidradenitis suppurativa are associated with a Th1/Th17 immune response. *Experimental dermatology* 2018; **27**: 172-7.

557 109 Emelianov VU, Bechara FG, Glaser R *et al.* Immunohistological pointers to a possible role for excessive
558 cathelicidin (LL-37) expression by apocrine sweat glands in the pathogenesis of hidradenitis
559 suppurativa/acne inversa. *The British journal of dermatology* 2012; **166**: 1023-34.

560 110 Bernstein JA, Qazi M. Ecallantide: its pharmacology, pharmacokinetics, clinical efficacy and 561 tolerability. *Expert review of clinical immunology* 2010; **6**: 29-39.

- Heissig B, Nishida C, Tashiro Y *et al.* Role of neutrophil-derived matrix metalloproteinase-9 in tissue
 regeneration. *Histology and histopathology* 2010; **25**: 765-70.
- Lin TC, Li CY, Tsai CS *et al.* Neutrophil-mediated secretion and activation of matrix metalloproteinase9 during cardiac surgery with cardiopulmonary bypass. *Anesthesia and analgesia* 2005; **100**: 1554-60.
- Tsaousi A, Witte E, Witte K *et al.* MMP8 Is Increased in Lesions and Blood of Acne Inversa Patients: A
 Potential Link to Skin Destruction and Metabolic Alterations. *Mediators of inflammation* 2016; **2016**:
 4097574-.
- Hu J, Van den Steen PE, Sang QX *et al.* Matrix metalloproteinase inhibitors as therapy for
 inflammatory and vascular diseases. *Nature reviews. Drug discovery* 2007; 6: 480-98.
- Alikhan A, Sayed C, Alavi A *et al.* North American clinical management guidelines for hidradenitis
 suppurativa: A publication from the United States and Canadian Hidradenitis Suppurativa
 Foundations: Part II: Topical, intralesional, and systemic medical management. *Journal of the American Academy of Dermatology* 2019; **81**: 91-101.

575 116 Yazdanyar S, Boer J, Ingvarsson G *et al.* Dapsone Therapy for Hidradenitis Suppurativa: A Series of 24 576 Patients. *Dermatology* 2011; 222: 342-6.


588 589	
590	
591	
592	
593	
594	Figure 1. Neutrophil migration towards active HS lesions. At the site of an active HS lesion,
595	commensal microbiota initiate an immune response and the complex biological process of
596	inflammation occurs, along with all its associated mediators (e.g. cytokines, chemokines, leukocytes,
597	etc.). Circulating neutrophils respond to these mediators and extravasate from the vasculature via
598	diapedesis, intent on reaching the site of inflammation from which these mediators are originating.
599	Neutrophils eventually reach the site of inflammation via chemotaxis along an ever-increasing
600	chemoattractant gradient—one that is further augmented by a positive feedback loop of arriving-
601	neutrophilic contents—potentiating the initial inflammatory response.
602	
603	
604	
605	
606	
607	
608	
609	
610	

Therapeutic	Inhibitors	Comments on Inhibitors
Targets		
Bacterial	Antibiotics ^{22-25,46-48}	Those most commonly indicated in HS include to
Components		clindamycin, oral tetracyclines, combination oral
(endotoxins,		rifampicin/clindamycin, triple antibiotics with
exotoxins, capsule		metronidazole, rifampicin, and a quinolone, and I
fragments, etc.)		ertapenem
Anaphylatoxins	IFX-1 ^{39,40}	A direct anti-C5a antibody that is currently in pha
(C3a and C5a)		trials for the treatment of HS
	Avacopan	A C5a receptor 1 inhibitor that is also currently in
	(NCT03852472)	phase II trials for the treatment of moderate to sev
		HS
	Eculizumab,	Anti-C5 antibodies that are currently indicated fo
	Ravulizumab	treatment of paroxysmal nocturnal hemoglobinur
		atypical hemolytic uremic syndrome, and
		neuromyelitis optica
	Theoretical	C1 esterase inhibitors, C3 inhibitors, C3 converta
	treatments yet to be	inhibitors, anti-factor B, anti-factor D, anti-prope
	explored	
Tumor Necrosis	Adalimumab,	Adalimumab is the only Food and Drug
Factor-Alpha	Infliximab,	Administration approved systemic medication for
(TNF- α)	Etanercept,	
	Golimumab, &	
	Certolizumab ^{42,44-47}	

Myeloperoxidase	Dapsone ¹¹⁶	Inhibits myeloperoxidase-H2O2-halide-mediated
Inhibitor		cytotoxic system in an inactive intermediate form,
		preventing neutrophil function
Matrix	Tetracyclines ¹¹⁵	Chelate Zn2+ ion of zinc-dependent MMPs
Metalloproteinases		
(MMPs)		
Interleukin-8 (IL-8)	Repertaxin ^{71 72}	Currently used as a chemotherapeutic agent for
		multiple malignancies
	Sivelestat ⁷³	Suppresses IL-8 production in granulocytes and
		inhibits neutrophil elastase; indicated in the treatment
		of acute respiratory failure
Interleukin-17	Secukinumab	Anti-IL-17 antibodies currently indicated for the
(IL-17)	(NCT03713632),	treatment of psoriasis, psoriatic arthritis, and
1	Ixekizumab ^{63,64}	ankylosing spondylitis; phase III trials are currently
		underway testing secukinumab's safety and efficacy i
5		the treatment of HS
	Bimekizumab	A dual IL-17A and IL-17F inhibitor; currently in
	(NCT03248531)	phase II trials for moderate-to-severe HS
	Brodalumab ⁶⁵	Unique blockade of IL-17A, IL-17C and IL-17F;
	(NCT03910803)	showed promising results for HS in open-label cohort
		study
Interleukin-1	Anakinra ^{81,82}	IL-1 receptor antagonist; some experiences of severe
(IL-1)		HS proving refractory to anakinra
	Bermekimab ⁸³	Anti-IL-1α antibody currently undergoing phase II
	(NCT04019041)	trials for the treatment of HS
	Canakinumab ⁸⁴⁻⁸⁸	Anti-IL-1 β antibody; has demonstrated mixed results
		for HS
Interleukin-36	DL (55120.77	No IL-36 inhibitors are currently under testing for HS
(IL-36)	BI 655130 ⁷⁷	phase 1 proof-of-concept study involving patients wit

		1	
			generalized pustular psoriasis treated with BI 655130,
			a monoclonal antibody against the IL-36 receptor
			(NCT02978690), showed good results
	Lipocalin-2		Currently, no medications directly targeting LCN-2
	(LCN-2)		exist on the market or in clinical trials.
	Leukotriene B4	Ubenimex ^{96,97}	Also has subtle inhibition effect on MMPs
	(LTB4)	Zileuton ¹²⁵	Inhibits 5-Lipoxygenase (5-LOX) enzyme in
			leukotriene synthesis pathway; currently undergoing
è			phase II trials for the treatment of moderate to severe
			inflammatory facial acne
		Atreleuton,	Similar to zileuton in mechanism of action and
		Setileuton ⁹⁸	indication; currently in clinical trial stages for multiple
	H		respiratory diseases
	Platelet-Activating	Rupatadine	Synthetic PAF antagonist that is currently indicated
	Factor		for the treatment of severe allergies & chronic
	5		idiopathic urticaria
		Natural PAF	Includes ginkgolides, alpha-bulnesene, and
Q		antagonists ^{102,104}	andrographolide; Mediterranean diets, as well as those
	5		incorporating garlic, soy sauce, turmeric, and tea
	Kallikrein	Ecallantide ¹¹⁰	Selectively inhibits the activity of plasma kallikrein;
			indicated for the treatment of hereditary angioedema
64.4		I	

614 Acce

bjd_19538_f1.jpg