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Introduction

In literature, many important combinatorial properties of subsets of N
have been studied both with nonstandard techniques (see e.g. [JI01], [Hir88])
and from the point of view of βN (see e.g. [HS98], [Hin11]). The idea behind
the researches presented in this thesis is to mix these two di�erent approaches
in a technique that, at the same time, incorporates nonstandard tools and
ultra�lters. The "monads" of ultra�lters are the basis of this technique: given
an hyperextension ∗N of N with the c+-enlarging property, and an ultra�lter
U on N, the monad of U is the set

µ(U) = {α ∈∗N | U = Uα},

where

Uα = {A ∈ ℘(N) | α ∈∗A}.

Theorem 2.2.9 is the result that generated our researches: it states that
particular combinatorial properties of ultra�lters can be seen as "generated"
by the elements in their monads (that, for this reason, we call "generators").
So, in a way, the mix between nonstandard tools and ultra�lters is realized by
watching the ultra�lters as nonstandard points of speci�cal hyperextensions
of N.
Tensor products of ultra�lters are a central concept in our studies. While
the problem of how the monad of U ⊗ V and the monads of U ,V are related
was answered by Puritz in [Pu72, Theorem 3.4], an e�ective precedure to
produce a generator of the tensor product U ⊗ V starting with a generator
of U and a generator of V is, at least as far as we know, unknown. By this
problem we are led to consider a particular hyperextension of N, that we call
ω-hyperextension and denote by •N. Its particularity is that in •N we can
iterate the star map. This gives rise to the desired procedure to construct
generators of tensor products: as we prove in Theorem 2.5.16, if α is a gen-
erator of U and β is a generator of V then the pair (α,∗β) is a generator of
U ⊗ V .
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The combination of Theorem 2.2.9 and Theorem 2.5.16 gives a nonstandard
technique to study particular combinatorial properties on N. To investigate
the potentialities of this technique we re-prove some well-known results in
Ramsey Theory, e.g. Schur's Theorem and Folkman's Theorem. One of the
results that we discuss is a particular case of Rado's Theorem, concerning
with linear polynomials in Z[X] with sum of coe�cients zero. In this case we
show that the problem of the partition regularity of such polynomials can be
solved considering particular linear combinations of idempotent ultra�lters.
This suggests to face the problem of the partition regularity of nonlinear
polynomials. While we have not a complete characterization (in the style
of Rado's Theorem), we prove some general result that ensures the parti-
tion regularity of suitably constructed polynomials. The most general result
we prove in this context is Theorem 3.5.13: given a natural number n and
distinct variables y1, ..., yn, for every F ⊆ {1, ..., n} we pose

QF (y1, ..., yn) =
∏

j∈F yj

(QF (y1, ..., yn) = 1 if F = ∅). Theorem 3.5.13 states the following:

Theorem 0.0.1. Let k ≥ 3 be a natural number, P (x1, ..., xk) =
∑k

i=1 aixi
an injectively partition regular polynomial, and n a positive natural number.
Then, for every F1, ..., Fk ⊆ {1, .., n}, the polynomial

R(x1, ..., xk, y1, ..., yn) =
∑k

i=1 aixiQFi(y1, ..., yn)

is injectively partition regular.

We also study some general properties of the set of partition regular poly-
nomials. An interesting result is that, as a consequence of Theorem 3.6.3,
the research on partition regular polynomials can be restricted to consider
only irreducible polynomials.
The last topic we face are particular (pre�)orders de�ned on βN. This re-
search is motivated by the notion of "�nite embeddability" (see [DN12]):
given two subsets A,B of N, we say that A is �nitely embeddable in B (no-
tation A ≤fe B) if for every �nite subset F of A there is a natural number
n such that n+ F ⊆ B. This notion can be extended to ultra�lters: we say
that an ultra�lter U is �nitely embeddable in V (notation U Efe V) if for
every set B in V there is a set A ∈ U such that A ≤fe B.
This notion has some interesting combinatorial properties. In particular, we
prove that the relation Efe is a �ltered pre�order with maximal elements.
An interesting result is the following: let Mfe denotes the set of maximal
ultra�lters in (βN,Efe), and consider the minimal bilateral ideal K(βN,⊕)
of (βN,⊕). Then
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Mfe = K(βN,⊕).

Motivated by these nice features of the �nite embeddability, we consider a
generalization that is motivated by the following observation: the �nite em-
beddability is related with the class T of translations on N. In fact, A ≤fe B
if and only if for every �nite subset F of A there is a translation tn ∈ T such
that tn(F ) ⊆ B. This leads to consider the following notion: given a set F
of functions in NN, and two subsets A,B of N, we say that A is F -�nitely
mappable in B (notation A ≤F B) if for every �nite subset F of A there is
a function f in F such that f(F ) ⊆ B. Similarly, given two ultra�lters U ,V ,
we say that U is F -�nitely mappable in V (notation U EF V) if for every
set B in V there is a set A in U such that A ≤F B. The properties of these
notions are, under particular assumptions on the family F , similar to that
of �nite embeddability. In particular, when the pre-orders EF have maximal
elements, the maximal elements have important combinatorial properties.

The thesis is structured in four chapters.
Chapter One contains a short introduction to the "non-nonstandard" back-
ground of the thesis: we shortly recall the de�nitions and the basic properties
of ultra�lters and of the Stone-�ech compacti�cation βN of N, we present the
relations between ultra�lters on a set S and partition regularity of families
of subsets of S, and we recall (and prove) some of the most known results in
Ramsey Theory on N.
In Chapter Two we present, and construct, the nonstandard tools that we
need. We recall the de�nition of nonstandard model, as well as some im-
portant properties of the hyperextensions. Then we concentrate on the sets
of generators of ultra�lters and, led by considerations on tensor products of
ultra�lter, we introduce the ω-hyperextension •N of N.
In Chapter Three we test our nonstandard technique by re-proving some
well-known result in Ramsey Theorem; then we present our research on the
partition regularity of polynomials, indicating some possible future develop-
ments.
In Chapter Four we start presenting the properties of the �nite embeddabil-
ity for sets and ultra�lters. Then we concentrate on the generalization to
arbitrary families of functions, showing under what conditions the properties
of �nite embeddability can be generalized in this more general context, and
which combinatorial properties are satis�ed by the maximal elements in the
pre-ordered structures (βN,EF) for appropriate classes of functions F .
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Chapter 1

Ultra�lters, Partition Regularity

and some In�nite Combinatorics

In this chapter we introduce the "non-nonstandard" background of the
thesis. In the �rst part of the chapter we recall some known facts about the
space βN of ultra�lters on N (for a comprehensive introduction to ultra�lters
see [HS98]). Then we recall the notion of partition regularity for a family
of subsets of a given set S, and we show how this notion is strictly related
to ultra�lters. In the last section we present some well-known results in
Ramsey Theory (in particular Schur's, Folkman's, Van der Waerden's and
Rado's Theorems), and we show proofs of these results done from the point
of view of combinatorics and from the point of view of ultra�lters.

1.1 Ultra�lters: a Short Introduction

1.1.1 Basic de�nitions and properties of ultra�lters

A central notion in this thesis is that of ultra�lter on a set:

De�nition 1.1.1. If S is a nonempty set, a �lter is a collection F of subsets
of S such that:

• S ∈ F , ∅ /∈ F ;

• If A,B ∈ F then A ∩B ∈ F ;

• If A ∈ F and A ⊆ B ⊆ S then B ∈ F .

An ultra�lter U is a �lter with the following additional property:
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• For every subset A of S, if A /∈ U then Ac ∈ U .

An important fact is that every family that is closed by �nite intersection
is included in a �lter:

De�nition 1.1.2. A nonempty family G of subsets of a set S has the �-
nite intersection property if, for every natural number n, for every sets
G1, ..., Gn in G, the intersection

G =
⋂n
i=1Gi

is nonempty.

By de�nition, every �lter has the �nite intersection property. Conversely,
every family with the �nite intersection property is included in a �lter:

Proposition 1.1.3. Let S be a set. For every nonempty family G of subsets
of S with the �nite intersection property there is a �lter F on S that extends
G: G ⊆ F .

Proof. Given the family G with the �nite intersection property, consider

F = {F ⊆ S | there is a natural number n and elements G1, .., Gn in G with
G1 ∩ .. ∩Gn ⊆ F}.

Claim: F is a �lter that extends G.

The proof of the claim is straightforward; that G has the �nite intersection
property is used to prove that the empty set is not an element of F and that
F is closed by intersection.

De�nition 1.1.4. A �lter F on S is maximal if, for every �lter F ′ on S
such that F ⊆ F ′, F ′ = F .

Proposition 1.1.5. Let S be a set and F a �lter on S. The following two
conditions are equivalent:

1. F is an ultra�lter;

2. F is maximal.
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Proof. (1)⇒ (2) Let F be an ultra�lter. If F is properly contained in a �lter
F ′, and I ⊆ S is an element in F ′ \ F , by de�ni�tion of ultra�lter the set
S \ I is in F . Since F ⊆ F ′, in F ′ there are I and S \ I, and this is absurd
as I ∩ (S \ I) = ∅.
(2)⇒ (1) Let F be a maximal �lter, and suppose that F is not an ultra�lter.
Then there is a subset I of S such that I, S \ I /∈ F .

Claim: F ∪ {I} has the �nite intersection property.

Since F has the �nite intersection property, to prove the claim it is enough
to prove that, given any element F of F , F ∩ I 6= ∅. And this holds: in fact,
if F ∩ I = ∅ then F ⊆ S \ I and, as F is closed under supersets, from this it
follows that S \ I ∈ F , absurd.
By Proposition 1.1.3 it follows that there is a �lter F ′ on S that includes
F∪I, and this is in contrast with the maximality of F . So F is an ultra�lter.

A question that naturally arises is if every �lter can be extended to an
ultra�lter: the answer is a�rmative. The following result is due to Alfred
Tarski (see [Ta30]):

Theorem 1.1.6 (Tarski). Given a set S, every �lter F on S can be extended
to an ultra�lter on S.

Proof. Let F be a �lter on S, and consider the set Fil(F)S of �lters on S ex-
tending F , ordered by inclusion. We observe that every chain in (Fil(F)S,⊆)
has an upper bound: in fact, if 〈Fi | i ∈ I〉 is a chain of �lters containing F
(this means that I is a linearly ordered set and, for every i, j ∈ I with i < j,
Fi ⊆ Fj), then

F =
⋃
i∈I Fi

is a �lter containing F .
Since every chain in (Fil(F)S,⊆) has an upper bound, by Zorn's Lemma it
follows that there are maximal elements, and in Proposition 1.1.5 we proved
that every maximal �lter is an ultra�lter: this proves that there are ultra�l-
ters on S that extend F .

For every set S, the simplest ultra�lters on S are the principals:

De�nition 1.1.7. An ultra�lter U on a set S is principal if there is an
element s in S such that
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U = {I ⊆ S | s ∈ I}.

An ultra�lter is nonprincipal if it is not a principal ultra�lter.

If S is �nite every ultra�lter on S is principal: in fact, if S = {s1, ..., sn},
since S = {s1} ∪ .... ∪ {sn} then every ultra�lter on S contains exactly one
of the sets {s1}, {s2}, ..., {sn}, so it is principal.
Talking of �lters on S, the simplest is F = {S}. An important �lter, in case
S is in�nite, is:

Fr = {I ⊆ S | |S \ I| < ℵ0}.

The above �lter is called Fréchet's �lter. This is not an ultra�lter, as
every in�nite set S contains many in�nite subsets I with both I and S \ I
in�nite.
Nevertheless, this �lter is related with nonprincipal ultra�lters:

Proposition 1.1.8. Let S be an in�nite set, and U an ultra�lter on S. The
following two conditions are equivalent:

1. U is nonprincipal;

2. U extends the Fréchet's �lter on S.

Proof. (1) ⇒ (2) Suppose that the ultra�lter U is nonprincipal. Then, for
every element s in S, the set S \ {s} is in U . Since every element of the
Fréchet's �lter is obtained as a �nite intersection of sets in the form S \ {s},
and U is closed under �nite intersection, the Fréchet's �lter is a subset of U .
(2)⇒ (1) Suppose that U is a principal ultra�lter, and let s be the element
of S such that {s} ∈ U . Since U extends the Fréchet's �lter, S \ {s} ∈ U , so
{s} ∩ (S \ {s}) ∈ U , and this is absurd.

As a corollary, if S is an in�nite set then there are both principal and
nonprincipal ultra�lters on S. Observe that, since every ultra�lter on a set S
is an element of ℘(℘(S)) then, if κ is the cardinality of S, there are at most
22κ ultra�lters on S (while there are exactly κ principal ultra�lters).
In 1937, B. Pospí²il proved that 22κ is exactly the number of ultra�lters on
S whenever S is in�nite (see [Po37]). His result is even stronger: call an
ultra�lter U on S regular if, whenever A ∈ U , |A| = |S|.

Theorem 1.1.9 (Pospí²il). If S is an in�nite set of cardinality κ, there are
22κ regular ultra�lters on S.

11



1.1.2 The space βN
From now forwards, except when explicitally stated otherwise, we concen-

trate on the case S = N. As a corollary of Pospí²il's Theorem, in the space
of ultra�lters on N there are ℵ0 principal and 22ℵ0 nonprincipal ultra�lters:
our aim in this section is to present some important properties of this space.

De�nition 1.1.10. The set of ultra�lters on N (denoted by βN) is the
set

βN = {U ⊆ ℘(℘(N)) | U is an ultra�lter}.

βN is endowed with the Stone topology, that is the topology generated
by the family of open sets {ΘA}A∈℘(N), where

ΘA = {U ∈ βN | A ∈ U}.

Some observations: �rst of all since, for every subset A of N,

Θc
A = ΘAc

(because, for every ultra�lter U , exactly one between A and Ac is in U),
every element ΘA of the topological base is both closed and open: this entails
that the space βN is totally disconnected.
The second observation is that, via the identi�cation of every natural number
n with the principal ultra�lter Un,

(†) n↔ Un = {A ∈ N | n ∈ A},

N can be identi�ed with a subset of βN and, most importantly, via this
identi�cation:

Proposition 1.1.11. N is a dense subset of βN.

Proof. Let A be a nonempty subset of N, and consider the base open set
ΘA. If n is an element of A, the principal ultra�lter Un is in ΘA, as A is in
Un. This proves that in every base open set there is a principal ultra�lter, so
the set of principal ultra�lters, that via the identi�cation (†) is N, is a dense
subset of βN.

The Stone topology has the following two important features:

Proposition 1.1.12. βN, endowed with the Stone topology, is a compact
Hausdor� space.
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Proof. βN is compact: we use this equivalent formulation for compactness: a
topological space is compact if and only if for every family F of closed subsets
with the �nite intersection property the intersection

⋂
F∈F F is nonemtpy.

Let

F = {ΘAi | Ai ⊆ N, i ∈ I}

be a family of (base) closed subsets of βN, and assume that F has the
�nite intersection property. From this it follows that

G = {Ai | i ∈ I}

has the �nite intersection property. In fact, let Ai1 , ..., Aik be sets in G
and consider Ai1 ∩ ...∩Aik . Since ΘAi1

∩ ...∩ΘAik
6= ∅, there is an ultra�lter

U in this intersection; in particular, for every index 1 ≤ j ≤ k, since Aij ∈ U ,
the intersection

⋂k
j=1Aij ∈ U ; this entails that

⋂k
j=1Aij 6= ∅.

As G has the �nite intersection property, in can be extended to a �lter, so by
Theorem 1.1.6 it follows that there is an ultra�lter U on N such that G ⊆ U .
Observe that, for every index i, Ai ∈ G ⊆ U , so U ∈ ΘAi for every closed set
ΘAi in F . In particular, U ∈

⋂
F .

βN is an Hausdor� space: Let U 6= V be ultra�lters on N. As U 6= V , there
is a set A in ℘(N) such that A ∈ U and Ac ∈ V . So U ∈ ΘA and V ∈ ΘAc ,
and these are two disjoint open sets in the Stone topology.

Observe that, as N =
⋃
n∈N Θ{n}, N is an open subset of βN, so βN \N is

closed (and, since it is a closed subset of a compact space, it is also compact).
Another key aspect of βN is the following universal property:

Theorem 1.1.13. Every continuous map f : N→ K, where K is a compact
Hausdor� space, admits exactly one continuous extension f : βN→ K.

Proof. Given a function f : N → K, where K is a topological compact
Hausdor� space, and an ultra�lter U in βN, we de�ne the U limit of f as

U − limn∈N f(n) = k if and only if for every neighborhood I of k the set
f−1(I) = {n ∈ N | f(n) ∈ I} ∈ U .

This de�nition is well-posed: this limit always exists and it is unique. The
existence follows by the compactness of K: by converse, suppose that the U
limit of f does not exist. Then, for every element k in K there is an open
neighborhood Ok of k such that f−1(Ok) /∈ U . {Ok}k∈K is an open cover of
K, which is compact, so we can extract a �nite subcover K =

⋃n
i=1Oki . But
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N = f−1(K) =
⋃n
i=1 f

−1(Oki)

so, since U is an ultra�lter, for some index i ≤ n the set f−1(ki) is in U ,
and this is absurd: the U -limit of f always exists.
The unicity of the U -limit follows since K is Hausdor� because, if k1 6= k2
are two di�erent U limits of f , there are neighboroods I1 of k1, I2 of k2 with
I1 ∩ I2 = ∅, so f−1(I1) ∩ f−1(I2) = ∅ while, as f−1(I1) and f−1(I2) are sets
in U , their intersection should be nonempty.
This ensures that f : βN→ K, de�ned as

f(U) = U − limn∈N f(n) for every U ∈ βN

is a function in KβN.

Claim: f is the unique continuous extenction of f to βN.

1) f is an extension of f : via the identi�cation of every natural number
m with the principal ultra�lter Um,

f(m) = f(Um) = Um − limn∈N f(n),

and Um − limn∈N f(n) = f(m): by de�nition, k = Um − limn∈N f(n) if
and only if for every neighborood I of k, f−1(I) ∈ Um if and only if for every
neighborood I of k, m ∈ f−1(I), if and only if for every neighborood I of k,
f(m) ∈ I, and as K is Hausdor� it follows that k = f(m).
2) f is continuous: if I is any open set in K,

f
−1

(I) = {U ∈ βN | f(U) ∈ I} =

= {U ∈ βN | {n ∈ N | f(n) ∈ I} ∈ U} = Θ{n∈N|f(n)∈I},

and Θ{n∈N|f(n)∈I} is an open set.
3) f is the unique continuous extension of f : if g is any other continuous
extension of f , since f(n) = g(n) for every natural number n, and N is a
dense subset of βN, which is Hausdor�, then f(U) = g(U) for every ultra�lter
U ∈ βN, so f = g.

βN, endowed with the Stone topology, is a compact, Hausdor� space that
satis�es the universal property expressed in Theorem 1.1.13: in the literature,
this is called Stone-�ech compacti�cation:
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De�nition 1.1.14. The Stone-�ech compacti�cation of a discrete space
X is a compact Hausdor� space βX in which the original space forms a dense
subset, such that any continuous function from X to a compact Hausdor�
space K has a unique continuous extension to βX.

It can be proved that the Stone-�ech compacti�cation of a discrete space
is unique up to homeomorphism; so βN is (up to homeomorphism) the Stone-
�ech compacti�cation of N.
Sometimes, instead of ultra�lters on N we need ultra�lters on Nk:

De�nition 1.1.15. Let k be a natural number ≥ 1. The set of ultra�lters
on Nk (denoted by β(Nk)) is the set

β(Nk) = {U ⊆ ℘(℘(Nk)) | U is an ultra�lter}.

β(Nk) is endowed with the Stone topology, that is the topology generated
by the family of open sets {ΘA}A∈℘(Nk), where

ΘA = {U ∈ β(Nk) | A ∈ U}.

A particularly important subset of β(Nk) is the set of ultra�lters that are
tensor products of elements in βN:

De�nition 1.1.16. Given ultra�lters U1, ...,Uk on N, the tensor product
of U1, ...,Uk (denoted by U1⊗U1⊗ ...⊗Uk) is the ultra�lter on Nk de�ned by
this condition: for every subset A of Nk,

A ∈ U1 ⊗ U2 ⊗ ...⊗ Uk ⇔

⇔ {n1 ∈ N | {n2 ∈ N | ...{nk ∈ N | (n1, ..., nk) ∈ A} ∈ Uk}...} ∈ U2} ∈ U1.

We present some basic properties of tensor products in the form U ⊗ V ,
where U ,V are ultra�lters on N. In this proposition, with ∆+ we denote this
subset of N2:

∆+ = {(n,m) ∈ N2 | n < m},

which is also called the upper diagonal of N2, by obvious geometrical
considerations.

Proposition 1.1.17. For every ultra�lters U ,V in βN, W in βN2, the fol-
lowing properties hold:

1. if V is nonprincipal then ∆+ ∈ U ⊗ V;

15



2. if U is nonprincipal and A is an set in U ⊗ U then there is an in�nite
subset B of N such that {(b1, b2) | b1 < b2, b1, b2 ∈ B} ⊆ A;

3. W is the principal ultra�lter on (n,m) if and only if W = Un ⊗ Um;

4. if U 6= V then U ⊗ V 6= V ⊗ U .

Proof. 1) By de�nition, ∆+ ∈ U ⊗ V if and only if {n ∈ N | {m ∈ N |
(n,m) ∈ ∆+} ∈ V} ∈ U .
We observe that, for every natural number n,

{m ∈ N | (n,m) ∈ ∆+} = {m ∈ N | n < m} ∈ V

since this set is co�nite and V is nonprincipal.
This entails that

{n ∈ N | {m ∈ N | (n,m) ∈ ∆+} ∈ V} = N,

and N in an element of every ultra�lter U in βN. This proves that ∆+ ∈
U ⊗ V .
2) Given a set A in U ⊗ U , consider

π1(A) = {n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ U}

and, for every n ∈ π1(A), let An be the set

An = {m ∈ N | (n,m) ∈ A};

by de�nition, for every natural number n in π1(A), An ∈ U .
We inductively construct the set B: pose

b0 = minπ1(A), B0 = π1(A) ∩ Ab0 .

For n = m+ 1, pose

bm+1 = minBm, Bm+1 = Bm ∩ Abm+1 .

Observe that, for every natural number n, Bn is a set in U : by induction,
B0 ∈ U since both π1(A) and Ab0 are in U , and Bm+1 ∈ U since Bn ∈ U
by inductive hypothesis and Abn+1 is in U by construction; this entails, in
particular, that every set Bn is nonempty, so it is always possible to de�ne
bn. Also, for every y ∈ Bn, (bn, y) ∈ A since {bn} ×Bn ⊆ An.
Consider

B = {bn | n ∈ N}.
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If bi < bj are two elements of B, by construction i < j, so in particular
bj ∈ Bi and (bi, bj) ∈ A.
3) A ∈ Un ⊗ Um if and only if {a ∈ N | {b ∈ N | (a, b) ∈ A} ∈ Um} ∈ Un if
and only if {a ∈ N | (a,m) ∈ A} ∈ Un if and only if (n,m) ∈ A if and only if
A ∈ U(n,m).
4) Let A ⊆ N be a set in U such that Ac ∈ V . Then (A × Ac) ∈ U ⊗ V
and (Ac × A) ∈ V ⊗ U and, since (A × Ac) ∩ (Ac × A) = ∅, it follows that
U ⊗ V 6= V ⊗ U .

1.1.3 Semigroup structure and idempotents of βN
βN, similarly to N, is endowed with two operations: a sum and a product.

De�nition 1.1.18. Let U ,V be ultra�lters βN. The sum of U and V
(notation U ⊕ V) is the ultra�lter:

U ⊕ V = {A ⊆ N | {n ∈ N | {m ∈ N | m+ n ∈ A} ∈ V} ∈ U};

and the product of U and V (notation U � V) is the ultra�lter:

U � V = {A ⊆ N | {n ∈ N | {m ∈ N | m · n ∈ A} ∈ V} ∈ U}.

The operations of sum and product can also be seen as the extensions
to βN2 of the functions S : N2 → βN such that, for every pair of natural
numbers (n,m) in N2,

S(n,m) = Un+m

and P : N2 → βN such that, for every pair of natural numbers (n,m) in
N2,

P (n,m) = Un·m

restricted to the subspace of βN2 consisting of tensor products:

U ⊕ V = S(U ⊗ V); U � V = P (U ⊗ V).

A fact that has many important consequences both from an algebraical,
a topological and a combinatorial point of view is that (βN,⊕) and (βN,�),
endowed with the Stone topology, are right topological semigroups:

De�nition 1.1.19. A right topological semigroup is a pair (G; ?) where
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1. G is topological space;

2. ? is a binary associative operation on G;

3. for every element x in G, the function ?x : G → G that maps every
element y of G in y ? x is continuous.

Condition number three is usually rephrased saying that the operation ?
is right continuous.

Proposition 1.1.20. (βN,⊕) and (βN,�) are right topological semigroups.

Proof. We prove that (βN,⊕) is a right topological semigroup; the proof for
(βN,�) is analogue.
βN is a topological space, as it is endowed with the Stone topology.
That the operation ⊕ is associative follows by this chain of equivalences: for
every subset A of N,

A ∈ (U ⊕ V)⊕W ⇔ {n ∈ N | {m ∈ N | n+m ∈ A} ∈ W} ∈ (U ⊕ V)⇔

{a ∈ N | {b ∈ N | {m ∈ N | a+ b+m ∈ A} ∈ W} ∈ V} ∈ U ⇔

{a ∈ N | {x ∈ N | a+ x ∈ A} ∈ (V ⊕W)} ∈ U ⇔ A ∈ U ⊕ (V ⊕W).

The operation ⊕ is right continuous: let U be an ultra�lter in βN, and
denote with ϕU the function such that, for every ultra�lter V in βN,

ϕU(V) = V ⊕ U .

To prove that ϕU is continuous we observe that, for every subset A of N:

ϕ−1U (ΘA) = {V ∈ βN | A ∈ V ⊕ U} =

= {V ∈ βN | {n ∈ N | A− n ∈ U} ∈ V} = ΘB,

where B = {n ∈ N | A − n ∈ U} and A − n = {m ∈ N | n + m ∈ A}.
This proves that ϕU is continuous.

De�nition 1.1.21. Given a right topological semigroup (G, ?), an idempo-
tent of (G?) is an element x such that x ? x = x.

The key result, when talking about idempotent in right topological semi-
groups, is due to Robert Ellis (see [El57]):

Theorem 1.1.22 (Ellis). Every compact right topological semigroup (G, ?)
contains an idempotent element.
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Proof. First of all, consider the set

C = {C ⊆ G | C is a closed subset of G and C ? C ⊆ C}.

C is nonempty (since G ∈ C). We can order this set by reverse inclusion:

C ≤ C ′ if and only if C ′ ⊆ C.

Given a chain {Ci} of elements in C, an upper bound for this chain is⋂
i∈I Ci. By Zorn's Lemma it follows that there are maximal elements in

(C,≤) so, as ≤ is the reverse inclusion, there are minimal elements in (C,⊆).
Let C be a minimal element in (C,⊆), x an element in C, and consider

ϕx(C) = {c ? x | c ∈ C}.

Since ϕx is continuos and C is closed (so, compact), ϕx(C) is a compact
subset of G. So it is closed, and ϕx(C) ? ϕx(C) ⊆ C. By minimality of C it
follows that ϕx(C) = C.
Then ϕ−1x (x) 6= ∅ is a closed subset of C and, most importantly, ϕ−1x (x) ?
ϕ−1x (x) ⊆ ϕ−1x (x) since, given any y, z in ϕ−1x (x), x ? (y ? z) = (x ? y) ? z =
x ? z = x. So ϕ−1x (x) = C (again by minimality); in particular

x ? x = x:

x is an idempotent element in (G, ?).

Applying Ellis's Theorem to βN, we get a very important corollary:

Corollary 1.1.23 (Galvin). There are nonprincipal idempotents both in
(βN,⊕) and in (βN,�).

Proof. We have just to apply Ellis Theorem to the compact Hausdor� semi-
groups (βN \ N,⊕) and (βN \ N,�).

We just stretch that, for every ultra�lter U in βN,

if U ⊕ U = U � U then U = U0 or U = U2,

so the only ultra�lter which is both additively and multiplicatively idem-
potent is the principal ultra�lter U0. For the principal ultra�lters, the asser-
tion is trivial; for the nonprincipal, it is proved in [Hin79,Theorem 10.25].
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1.1.4 K(βN,⊕), K(βN,�)

In this section we present the concepts of right, left, bilateral and minimal
ideal in (βN,⊕) (resp. (βN,�)). These are important concepts for the
applications of the algebra of βN to combinatorics.

De�nition 1.1.24. A subset I of βN is a right ideal (resp. left ideal) in
(βN,⊕) if, for every ultra�lters U in I, V in βN, U ⊕ V (resp. V ⊕ U) is in
I.
I is a bilateral ideal in (βN,⊕) if it is both a left and a right ideal.
I is aminimal right ideal (resp. minimal left ideal) in (βN,⊕) if, whenever
J ⊆ I is a right (resp. left) ideal in (βN,⊕), J = I.
The notions of right, left, bilateral and minimal ideal in (βN,�) are de�ned
similarly.

In this context, a very important result on compact topological semi-
groups is the following theorem:

Theorem 1.1.25. In every compact right topological semigroup (G, ?) there
is a smallest bilateral ideal K(G, ?), which can be described as the union of
all the minimal left ideals or, also, as the union of all the minimal right ideals
of (G, ?).

A proof of this result can be found in [HS98]. As a consequence, since
(βN,⊕) and (βN,�) are compact right topological semigroups, we have:

Corollary 1.1.26. (βN,⊕) (resp. (βN,�)) has a minimal bilateral ideal
K(βN,⊕) (resp. K(βN,�)) which is the union of all its minimal left ideals
and, also, the union of all its minimal right ideals:

K(βN,⊕) =
⋃
{R | R minimal right ideal in (βN,⊕)} =

⋃
{L | L minimal

left ideal in (βN,⊕)};
K(βN,�) =

⋃
{R | R minimal right ideal in (βN,�)} =

⋃
{L | L minimal

left ideal in (βN,�)}.

Observe that, if I1 and I2 are two minimal right (resp. left) ideals in
(βN,⊕), I1 = I2 or I = I1 ∩ I2 = ∅, otherwise I would be a right (resp. left)
ideal strictly included in I1 and I2, which is absurd.

Proposition 1.1.27. Every right and every left topological ideal in (βN,⊕)
(respect. (βN,�)) contains an idempotent.

Proof. This result is proven in [HS98,Corollary 2.6 and Theorem 2.7].
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In [Ze09], Yevhen Zelenyuk proved that there is plenty of minimal right
ideals whenever we consider the Stone-�ech compacti�cation of in�nite dis-
crete abelian groups:

Theorem 1.1.28 (Zelenyuk). Let G be an in�nite discrete abelian group
with |G| = κ. Then βG contains 22κ minimal right ideals.

As a consequence, both in (βN,⊕) and (βN,�) there are 22ℵ0 idempotent
ultra�lters.

1.1.5 Piecewise syndetic sets and K(βN,⊕)

The ultra�lters in the closure of K(βN,⊕) have an interesting character-
ization in terms of a notion called "piecewise syndeticity":

De�nition 1.1.29. A subset A of N is thick if it contains arbitrarily long
intervals; it is piecewise syndetic if there is a natural number n such that

A− [0, n] = {m ∈ N | ∃i ≤ n with m+ i ∈ A}

is thick.

By de�nition every thick set is piecewise syndetic. In this section we want
to prove a well-known result: there is a close connection between piecewise
syndetic sets and K(βN,⊕).

Lemma 1.1.30. A subset A of N is thick if and only if there is a minimal
left ideal L included in ΘA.

Proof. This result is [BHMC98,Theorem 2.9(c)].

Theorem 1.1.31. A set A is piecewise syndetic if and only if K(βN,⊕) ∩
ΘA 6= ∅.

Proof. Suppose that A is piecewise syndetic, and let n be a natural number
such that T = A− [0, n] =

⋃
i≤n(A− i) is thick.

Let L be a minimal left ideal included in ΘT and U an ultra�lter in L. By
construction, U ∈ ΘT , so

T =
⋃
i≤n(A− i) ∈ U .

In particular, there is an index i ≤ n such that (A− i) ∈ U . This means
that A ∈ U ⊕ i = i⊕U , and i⊕U ∈ L, so ΘA ∩L 6= ∅, and the thesis follows
since L ⊆ K(βN,⊕).
Conversely, let U be an ultra�lter in K(βN,⊕) with A ∈ U . Let L = βN⊕U
be the minimal left ideal containing U . Pose
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TA =
⋃
n∈N(A− n).

Claim: L ⊆ ΘTA .

We prove the claim: let V be an element of L; L = βN⊕V = {n⊕ V | n ∈ N},
U ∈ L and ΘA is a neighbourhood of U since U ∈ ΘA: this entails that there
is a natural number n such that A ∈ n ⊕ V , so V ∈ ΘA−n, and this proves
that L ⊆ ΘTA .
In particular

{ΘA−n | n ∈ N}

is an open cover of L; but L is compact (since L is the image of βN,
which is compact, respect to the function V → V ⊕ U , which is continuous),
so there exists a natural number n such that {ΘA−i | i ≤ n} covers L,
and this is equivalent to say that, denoting with T the set

⋃
i≤n(A − i),

L ⊆
⋃
i≤n ΘA−i = ΘT .

By Lemma 1.1.33 it follows that
⋃
i≤n(A− i) is a thick set, so A is piecewise

syndetic.

Corollary 1.1.32. An ultra�lter U is in K(βN,⊕) if and only if every ele-
ment A of U is piecewise syndetic.

Proof. We use this property of Stone topology: for every subset S of βN, its
topological closure satis�es this condition:

For every ultra�lter U , U ∈ S if and only if, for every A ∈ U , ΘA ∩ S 6= ∅.

So, if U ∈ K(βN,⊕) and A ∈ U , there is an ultra�lter V in K(βN,⊕)
with A ∈ V , so by Theorem 1.1.34 A is piecewise syndetic. Conversely, if U is
an ultra�lter such that every element A of U is piecewise syndetic, since for
every piecewise syndetic set A there is some ultra�lter VA in K(βN,⊕)∩ΘA,
it follows that U ∈ K(βN,⊕).

1.1.6 U-limits
In this section we introduce the operation of limit in βN, and we show

that, for a subset of βN, to be closed in the Stone topology is equivalent to
be closed under U -limits.

De�nition 1.1.33. Given a nonempty set I, a sequence F = 〈Ui | i ∈ I〉 of
elements in βN and an ultra�lter V on I, the V-limit of the sequence F
(notation V − limI Ui) is the ultra�lter:
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V − limI Ui = {A ⊆ N | {i ∈ I | A ∈ Ui} ∈ V}.

Let us verify that U = V − limI Ui is actually an ultra�lter on N. First of
all, U is a �lter: N is in U since the set of indexes i such that N is in Ui is
I, which is in V ; U is closed under intersection since, if A ∈ U and B ∈ U , if
IA = {i ∈ I | A ∈ Ui} and IB = {i ∈ I | B ∈ Ui}, then both IA and IB are
in V , so IA ∩ IB is in V and IA∩B = {i ∈ I | A ∩B ∈ Ui} = IA ∩ IB.
U is an ultra�lter: for every subset A of N, for every index i ∈ I, A ∈ Ui or
Ac ∈ Ui, so I = IA ∪ IAc , and this entails that exactly one between IA and
IAc is in V , so exactly one between A and Ac is in U .
The operation of limit-ultra�lter is important from a topological point of
view. In fact, the closed subsets of βN can be characterized in terms of
U -limits:

Theorem 1.1.34. Let X be a subset of βN. The following two conditions
are equivalent:

1. X is closed in the Stone topology;

2. for every set I, for every sequence 〈Ui | i ∈ I〉 of elements in X, for
every ultra�lter V on I, the ultra�lter U = V − limi∈I Ui is in X.

Proof. (1) ⇒ (2) If X is a closed base set ΘA then for every set I, for
every sequence of ultra�lters 〈Ui | i ∈ I〉 on N, for every ultra�lter V on I,
V−limI Ui is in ΘA, i.e. A ∈ V−limI Ui: indeed, by de�nition, A ∈ V−limI Ui
if and only if the set IA = {i ∈ I | A ∈ Ui} is in V and, as X = ΘA, IA = I,
which is in V .
If X is an intersection of closed base sets, X =

⋂
j ΘAj , the conclusion follows

immediately from the previous case.
(2)⇒ (1) Suppose, conversely, that Xc is not an open set. Then there is an
ultra�lter U in Xc such that, for every base open set ΘA that includes U ,
there is an ultra�lter UA in X with A ∈ UA.
We use this fact to produce a sequence 〈UB | B ∈ ℘(N)〉 of ultra�lters indexed
by ℘(N) and an ultra�lter V on ℘(N) such that U is the V− lim of this family,
and this concludes, since by hypothesis this entails that U ∈ X, which is a
contradiction.
Step 1: For every set B in ℘(N), pick UB ∈ X such that if B ∈ U , then
B ∈ UB (if B is not in U , pick UB randomly).
Step 2: For every set A ∈ U , de�ne

ΓA = {B ∈ ℘(N) | B ⊆ A and B ∈ U}.
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Observe that the family {ΓA}A∈U has the �nite intersection property, as
ΓA1 ∩ ΓA2 = ΓA1∩A2 . Let V be an ultra�lter on ℘(N) with {ΓA}A∈U ⊆ V .
We claim that

U = V − limB∈℘(N) UB.

In fact, if A is any element in U , the set ΩA = {B ∈ ℘(N) | A ∈ UB}
includes ΓA since, by de�nition, if B ∈ ΓA then B ∈ U (so B ∈ UB) and
B ⊆ A (so A ∈ UB).
But ΓA is an element of V , so also ΩA is in V , and this entails that A ∈
V − limUB.
Since U and V−limUB are ultra�lters, this proves that U = V−limB∈℘(N) UB.

1.2 Partition Regularity

We introduce an argument that is strictly related to ultra�lters: the par-
tition regularity of a family of subsets of a set S.

De�nition 1.2.1. Let S be a set, n a natural number, and {A1, ...., An} a
subset of ℘(℘(N)). {A1, ..., An} is a partition of S if the following three
conditions are satis�ed:

1. S =
⋃n
i=1Ai;

2. Ai 6= ∅ for every index i ≤ n;

3. Ai ∩ Aj = ∅ for every indexes i 6= j, i, j ≤ n.

Convention: Whenever, given a set S, we write

S = A1 ∪ ... ∪ An

it is intended that {A1, ..., An} is a partition of S.

De�nition 1.2.2. Let F be a family, closed under superset, of nonempty
subsets of a set S. F is weakly partition regular if, whenever S = A1 ∪
... ∪ An, there exists an index i ≤ n such that Ai ∈ F .
F is strongly partition regular if, for every set A in F , if A = A1∪ ...∪An
then there exists an index i ≤ n such that Ai ∈ F .

Trivially, every strongly partition regular family of sets is also weakly
partition regular.
Partition regular families of subsets of a set S are related with ultra�lters on
S:
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Theorem 1.2.3. Let S be a set, and F a family closed under supersets of
nonempty subsets of S. Then the following equivalences hold:

1. F is weakly partition regular if and only if there exists an ultra�lter U
on S such that U ⊆ F ;

2. F is strongly partition regular if and only if F is an union of ultra�lters.

Proof. 1) Suppose that F is weakly partition regular and, for every subset A
of S, consider the partition S = A∪Ac. Since F is weakly partition regular,
at least one between A and Ac is in F .
Consider the subfamily G of F such that

G = {A ∈ F \ {∅} | Ac /∈ F \ {∅}}.

Claim: G is a �lter.

In fact, G does not contain the empty set and it contains S; it is closed
under superset because, if Ac /∈ F , then no subset of Ac is in F since this
family is closed under superset; it is closed under intersection because, if
A,B ∈ G, then

S = (A ∩B) ∪ Ac ∪ (Bc \ Ac),

and Bc \ Ac and Ac are not elements of F , so A ∩B ∈ F .
We can extend the �lter G to an ultra�lter U , and U ⊆ F : extending G, we
include in U only elements of F , because the only elements that are not in
F are complements of something that is in G, so they cannot be in U . So U
is an ultra�lters included in the weakly partition regular family F .
Conversely, suppose that U is an ultra�lter included in F , and let S =
A1 ∪ ...∪An be a partition of S. Then, by de�nition of ultra�lter, one of the
sets Ai is in U so, in particular, it is in F , and this proves that F is weakly
partition regular.
2) Suppose that F is strongly partition regular, and for every set A in F
consider

FA = {B ∈ F | B ⊆ A}.

FA is a weakly partition regular family of subsets of A, so there is an
ultra�lter UA on A with UA ⊆ FA.
UA can be extended to an ultra�lter on S closing under supersets, and this
is an internal operation for F : if U is the ultra�lter on S obtained extending
the ultra�lter UA, then U ⊆ F . This proves that every set A in F is included
in an ultra�lter U with U ⊆ F so, in particular, F is an union of ultra�lters.
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Conversely, suppose that F is an union of ultra�lters, and let A be an element
of F and UA an ultra�lter included in F such that A ∈ UA. Then, if A =
A1 ∪ ... ∪ An, there is an index i such that Ai is in UA, so Ai is in F .

From this moment on, we consider �xed a �rst order language of arith-
metic L, and when we talk about �rst order formulas is intended that the
language used is L. For an introduction to �rst order logic, see e.g. [CK90].

De�nition 1.2.4. We say that a �rst order sentence ϕ is weakly partition
regular or strongly partition regular on a set S if the related family
F(S, ϕ) has the corresponding property, where

F(S, ϕ) = {A ⊆ S | A |= ϕ}.

E.g.: let ϕ : be the sentence "`∃x x = 7", and S = N. Then F(N, ϕ) is
the principal ultra�lter U7, which is a strongly partition regular family, so ϕ
is strongly partition regular.
As partition regular families are related with ultra�lters, we introduce the
important concept of ϕ-ultra�lter:

De�nition 1.2.5. Let ϕ be a �rst order sentence, and U an ultra�lter on N.
U is a ϕ-ultra�lter if, for every element A of U , A satis�es ϕ.

As a corollary of Theorem 1.2.3, given a �rst order sentence ϕ, there is a
ϕ-ultra�lter on S if and only if the sentence ϕ is weakly partition regular on
S; similarly, for every subset A of S that satis�es ϕ there is a ϕ-ultra�lter
that contains A if and only if ϕ is strongly partition regular. This proves the
following theorem:

Theorem 1.2.6. Let ϕ be a �rst order sentence, and S a set. The following
two equivalences hold:

1. ϕ is weakly partition regular on S if and only if there exists a ϕ-
ultra�lter on S;

2. ϕ is strongly partition regular on S if and only if for every subset A of
S that satis�es ϕ there is a ϕ-ultra�lter that contains A.
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1.3 Some Results in Ramsey Theory

In this section, our goal is to recall some basic de�nitions and to present
some classical and widely known theorems in Ramsey Theory on N. These
results are proved both combinatorially and with the use of ultra�lters. This
is done since, in Chapter Three, we will reprove these results with nonstan-
dard techniques, and the proofs given here are used as a yardstick to outline
advantages and disadvantages of these nonstandard techniques.
The results in Ramsey Theory are usually presented in terms of colorations:

De�nition 1.3.1. Given a set S and a natural number n ≥ 1, a coloration
c of S with n colors is a map c : S → {1, ..., n}.

It is usually intended that, for every natural number i ≤ n, c−1(i) 6= ∅.
In a precise sense, colorations and partitions are the same: if P = {A1, ..., An}
is a partition of S in n pieces, the function c : S → {1, .., n} such that

for every element s in S, c(s) = i if and only if s ∈ Ai

is a coloration of S with n colors and, if c is a coloration of S with n
colors, the family P = {A1, ..., An}, where

for every i ≤ n, Ai = c−1(i)

is a partition of S in n pieces.
The result that gives the name to this branch of mathematic is Ramsey's
Theorem (proved by Frank Plumpton Ramsey in [Ram30]). Before stating
and proving Ramsey Theorem, we have to introduce the following de�nition:

De�nition 1.3.2. Given a set S and a natural number n, the set of subsets
of S with cardinality n is denoted by [S]n:

[S]n = {A ⊆ S | |S| = n}.

Theorem 1.3.3 (Ramsey). Given a natural number n, if [N]n is �nitely col-
ored then there exists an in�nite subset S of N such that [S]n is monochro-
matic.

Proof. Combinatorial Proof: We give the proof for the case n = 2. The
general case follows by induction on n.
Let c be the �nite coloration of [N]2, and let r be the number of colors of the
coloration c. We inductively de�ne in�nite sets Ai and natural numbers xi
in this way:
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1. A1 = N;

2. x1 is any element of N;

3. Fixed xi in Ai de�ne, for 1 ≤ j ≤ r, T ji = {y ∈ Ai | c({xi, y}) = j}.

Now, by de�nition, we have

Ai =
⋃r
j=1 T

j
i ,

and this forms a �nite partition of the in�nite set Ai \ {xi}. So, there is
at least one index j with T ji in�nite. Fix that index j and pose Ai+1 = T ji .
Finally, pose

A = {xi | i ≥ 1}.

We observe that, given natural numbers i, j, k with i < j and i < k, since
Aj ⊆ Ai and Ak ⊆ Ai, by de�nitions we have c({xi, xj}) = c({xi, xk}).
We construct this new coloration c′ with r colors for the set A: given xi in
A, we pose c′(xi) = j if and only if for every i < k we have c({xi, xk}) = j.
c′ is a �nite coloration of an in�nite set, so there is a monochromatic in�nite
subset S of A (with color j respect c′). And, by construction, for every
{x, y} ∈ [S]2, c({x, y}) = j, so [S]2 is monochromatic.

Proof. Proof with Ultra�lters: Let U be a nonprincipal ultra�lter on N and
let c be a coloration of [N]2 with r colors. Identify [N]2 with the set

∆+ = {(n,m) ∈ N2 | n < m},

and consider the coloration c′ of ∆+:

For every (n,m) ∈ N2, c′((n,m)) = c({n,m}).

Put, for 1 ≤ i ≤ r, Ci = {(n,m) ∈ ∆+ | c′((n,m)) = i}. Then

∆+ =
⋃r
i=1Ci,

and this is a partition of ∆+.
As we proved in Proposition 1.1.17, ∆+ is a set in U ⊗U so there is an index
i ≤ r such that Ci ∈ U ⊗ U . By point two of Proposition 1.1.17 it follows
that there is a subset B of N with

{(b1, b2) | b1 < b2, b1, b2 ∈ B} ⊆ Ci.
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By construction B is an in�nite subset of N monochromatic respect c: for
every {b1, b2} ∈ [B]2, c(b1, b2) = i.

One other gem in the early development of Ramsey Theory is Van Der
Waerden's Theorem (see [VdW27]):

Theorem 1.3.4 (Van Der Waerden). In every �nite coloration of N there
are arbitrarily long monochromatic arithmetic progressions.

Combinatorial proofs of this result can be found in [GRS90], and two
proofs with the use of ultra�lters are given in [BH90].
Here, we present this particular case:

Theorem 1.3.5. In every 2-coloration of N there is a monochromatic arith-
metic progression of lenght three.

Proof. To prove the result it is su�cient to show that there is a natural
number n such that, for every 2-coloration of {1, ..., n} = A1 ∪ A2, A1 or A2

contains an arithmetic progression of lenght three. Following the proof in
[GRS90], we show that n = 325 is su�cient for our pourposes.
Divide 325 in 65 blocks Bi, 1 ≤ i ≤ 65, of lenght 5, where

Bi = {5 · (i− 1), 5 · (i− 1) + 1, ..., 5 · (i− 1) + 4}.

There are only 25 = 32 ways to 2-color a block of lenght 5 so, by the
pigehonhole principle, there are two indexes i, j with 1 ≤ i < j ≤ 33 such
that the block Bi and the block Bj have the same coloration.
Consider the block Bi, and its elements 5i + 1, 5i + 2, 5i + 3. If they have
the same coloration, we found a monochromatic arithmetic progression of
lenght three. Otherwise, only two of them have the same color; observe that,
if those two numbers are 5i + a, 5i + b, also 5i + b + (b − a) ∈ Bi (that is
why we choose blocks of lenght 5). If b + (b − a) has the same coloration
of b and a, we have a monochromatic arithmetic progression of lenght three;
otherwise, consider Bi, Bj, Bj+(j−i) (since 1 ≤ i < j ≤ 33, j + (j − i) ≤ 65,
and that is why we choose n = 65 ·5 = 325). In Bj+(j−i) consider the element
5(j + (j − i)) + b+ (b− a). If its color is the same as 5i+ a, then

5i+ a, 5j + b, 5(j + (j − i)) + b+ (b− a)

is a monochromatic arithmetic progression of lenght three with common dif-
ference (j − i) + (b− a); if the color of 5(j + (j − i)) + b+ (b− a) is not the
same as the color of 5i+ a then, by construction, it must be the same as the
color of 5i+ b+ (b− a), and in this case
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5i+ b+ (b− a), 5j + b+ (b− a), 5(j + (j − i)) + b+ (b− a)

is a monochromatic arithmetic progression of lenght three of common
di�erence (j − i).

Proof. Proof with ultra�lters: The result is a straightforward consequence of
this claim:

Claim: If U is an idempotent ultra�lter in (βN,⊕) and A is a set in
2U ⊕ U , in A there is an arithmetic progression of lenght three.

We prove the claim: the property that we use is that, for every idempotent
ultra�lter U in βN, for every set S in U , the set

{n ∈ N | S − n ∈ U}

is in U , where S − n = {a ∈ N | a+ n ∈ S}.
Consider the set A. By de�nition of sum of ultra�lters,

A ∈ 2U ⊕ U ⇔ {n ∈ N | {m ∈ N | n+m ∈ A} ∈ 2U} ∈ U .

Consider the set

B = {n ∈ N | {m ∈ N | n+m ∈ A} ∈ 2U}.

As A ∈ 2U ⊕ U , for every natural number n in B the set

Bn = {m ∈ N | n+ 2m ∈ A}

is in U .
Let x be an element in B ∩ {n ∈ N | B − n ∈ U} and y an element in
(B − x) ∩ {n ∈ N | Bx − n ∈ U}. Observe that, by construction, x + y ∈ B
and Bx − y ∈ U .
Let z be an element in Bx ∩Bx+y ∩ (Bx− y). Observe that, by construction,
z + y ∈ Bx. Then

1. x+ 2z ∈ A, as x ∈ B and z ∈ Bx;

2. x+ y + 2z ∈ A, as x+ y ∈ B and z ∈ Bx+y;

3. x+ 2y + 2z ∈ A, as x ∈ B and z + y ∈ Bx.

As x+ 2z, x+ y + 2z, x+ 2y + 2z is am arithmetic progression of lenght
three in A, this proves the claim.
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We point out that Van der Waerden's theorem does not entail that in
every �nite coloration of N there are in�nite monochromatic arithmetic pro-
gressions: e.g. consider this 2-coloration of N:

For every natural number n, c(n) = 1 if and only if there is an odd natural
number m with m(m+1)

2
≤ n < (m+1)(m+2)

2
.

In this coloration, there are arbitrarily long arithmetic progression both
with color 1 and color 2, but there are not in�nite monochromatic arithmetic
progression, since both c−1(1) and c−1(2) are subsets of N with arbitrarily
long gaps.

Another important result in Ramsey Theory on N is Schur's Theorem
(see [Sc16]), which is the oldest of the results presented in this section (it
has been proved in 1916). This theorem ensures a weak condition of closure
under sum for some piece of any �nite partition:

Theorem 1.3.6 (Shur). For every �nite coloration c of N then are positive
natural numbers n,m such that c(n) = c(m) = c(n+m).

Proof. Combinatorial Proof: Suppose that c : N→ {1, ..., r} is an r-coloration.
We use c to induce an r coloration c′ on [N]2 de�ned in this way:

c′((i, j)) = c(|i− j|).

As a consequence of Ramsey Theorem, there is an in�nite subset S on
N with [S]2 monochromatic. Let i < j < k be elements of S (observe that
c′((i, j)) = c′((i, k)) = c′((j, k))), and pose n = j − i and m = k − j.
Then

1. c(n) = c(j − i) = c′((i, j))

2. c(m) = c(k − j) = c′((j, k))

3. c(n+m) = c((k − j) + (j − i)) = c(k − i) = c′((i, k))

so n,m and n+m are monochromatic.

Proof. Proof with Ultra�lters: Schur's Theorem is a straightforward conse-
quence of this claim:

Claim: For every idempotent ultra�lter U in (βN,⊕), for every set A in
U , there are elements n,m in A such that n+m ∈ A.
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We prove the claim: let U be an additively idempotent ultra�lter, and A
a set in U ; since U is idempotent, by de�nition

{n ∈ N | {m ∈ N | n+m ∈ A} ∈ U} ∈ U

Let B be the set:

B = {n ∈ N | {m ∈ N | n+m ∈ A} ∈ U}

and, for every natural number n in A ∩ B (that is nonempty, since it is in
U), let Bn be the set

Bn = {m ∈ N | n+m ∈ A}.

If m is an element in Bn ∩ A (that is nonempty since it is in U), by
construction n,m, n+m ∈ A, and this proves the claim.
If U is an additively idempotent ultra�lter, and c : N → {1, ..., n} a �nite
coloration of N, one of the monochromatic sets c−1(i) is in U , so it contains
a monochromatic lenght three arithmetic progression.

Schur's Theorem can be generalized:

De�nition 1.3.7. Let S = {s1, ..., sn} be a �nite subset of N with cardinality
n. The set of �nite sums of elements in S (notation FS(S)) is the set

FS(S) = {
∑

i∈J si | ∅ 6= J ⊆ {1, ..., n}}.

Similarly, if S = {sn | n ∈ N} is an in�nite subset of N, then

FS(S) = {
∑

i∈J si | J ∈ ℘fin(N) \ ∅},

where ℘fin(N) denotes the set of �nite subsets of N.

An important generalization of Schur's Theorem is Folkman's Theorem
(this theorem has been proved independently by many mathematicians, we
call it Folkman's Theorem following [GRS90]):

Theorem 1.3.8 (Folkman). For every �nite coloration of N, for every natu-
ral number k, there is a set Sk of cardinality k such that FS(Sk) is monochro-
matic.

Combinatorial Proof: We follow the proof presented in [GRS90]. To prove
this result, we need a lemma that involves the notion of "weakly monochro-
maticity" for a set in the form FS(S):
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De�nition 1.3.9. Given a nonempty �nite subset S = {s1, ..., sk} of N,
FS(S) is weakly monochromatic if, for every nonempty subset I of {s1, ..., sk},
the color of

∑
i∈I si is the color of smax(I).

The combinatorial proof of Folkman's Theorem is based on this lemma:

Lemma 1.3.10. For every natural numbers m, k ≥ 1 there is natural number
n such that if {1, ..., n} is m-colored then there are x1, ..., xk in {1, ..., n} such
that FS({x1, ..., xk}) is weakly monochromatic.

Proof. Let m be the number of colors of the colorations. We proceed by
induction on k. If k = 1, there is nothing to prove.
Suppose to have proved the result for k, and consider k + 1. By inductive
hypothesis, there is a natural number n such that in any m-coloration of
{1, .., n} there are x1, .., xk with FS({x1, ..., xk}) weakly monochromatic.
By Van der Waerden's Theorem, there is a natural numberN such that in any
m-coloration of {1, ..., N} there is a monochromatic arithmetic progression
A = {a, a+ b, ..., a+ nb}.
Consider B = {b, ..., nb}. By inductive hypothesis (here there is a little
abuse: the inductive hypothesis involves the set {1, ..., n}, and here we have
{b, ..., bn}, but it should be clear that we can return to the precise inductive
hypothesis by division for b), there are x1, ..., xk in B with FS({x1, ..., xk})
weakly monochromatic. Pose xk+1 = a. Then

FS({x1, ..., xk, xk+1})

is weakly monochromatic: consider any two elements y1, y2 in the form
y1 =

∑
i∈I1 xi, y2 =

∑
i∈I2 xi, where I1, I2 are nonempty subset of {1, ..., k+1}

with max(I1) = max(I2) = M . If M ≤ k, then y1 and y2 are monochromatic
since they are in FS({x1, ..., xk}). If M = k + 1, y1, y2 are monochromatic
since they are two terms of the arithmetic progression A.
This proves that in every m-coloration of {1, ..., N} there are k+ 1 elements
x1, .., xk+1 with FS({x1, .., xk+1}) weakly monochromatic, and the theorem
follows by induction.

We can now prove Folkman's Theorem:

Proof. Combinatorial Proof: The equivalent �nitary formulation of Folk-
man's Theorem is this: for every natural numbers r, k there is a natural
number n such that, for every r coloration of {1, ..., n} there are x1, ..., xk
with FS({x1, ..., xk}) monochromatic.
By Lemma 1.3.10 there is a natural number n such that in any coloration of
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{1, ..., n} there are y1, ..., yrk with FS({y1, ..., yrk}) weakly monochromatic.
y1, ..., yrk are colored with r colors, so there are at least k of them (say,
yj1 , ..., yjk) that are monochromatic. Pose

xi = yji .

By construction, {x1, ..., xk} is such that FS({x1, .., xk}) is monochro-
matic (say of color j): in fact, for any nonempty I ⊆ {1, ..., k}, the color of∑

i∈I xi depends only on the color of xmax(I), which is j, so all the elements
in FS({x1, .., xk}) are monochromatic.

Proof. Proof with Ultra�lters: The result follows by this claim:

Claim: if U is a idempotent ultra�lter in (βN,⊕) and A is an element
of U , for every natural number k there is a subset Sk of A such that |Sk| = k
and FS(Sk) ⊆ A.

We prove the claim: let U be an additively idempotent ultra�lter, and A
an element of U . Since A ∈ U , and U is idempotent, the set

B1 = {n ∈ N | A− n ∈ U}

is in U . Take an element n1 in A1 ∩B1 = A2.
Since A2 ∈ U , the set B2 = {n ∈ N | A1− n ∈ U} ∈ U . Take n2 ∈ A2 ∩B2 =
A3.
Similarly, suppose to have de�ned A1, ..., Ak, B1, ..., Bk, n1, ..., nk. Pose

Ak+1 = Ak ∩Bk;

since Ak+1 ∈ U , the set Bk+1 = {n ∈ N | Ak+1 − n ∈ U} is in U . Take
nk+1 ∈ Ak+1 ∩Bk+1 = Ak+2.
In this way, we construct a set X = {n1, n2, ....} ⊆ A, in�nite, with

FS(X) ⊆ A,

and, for every natural number k, for every subset Sk ofX with k elements,
Sk is a subset of A with cardinality k such that FS(Sk) ⊆ A. This proves
the claim, and the claim entails the thesis because, if c : N→ {1, ...,m} is an
m-coloration of N, since N =

⋃m
i=1 c

−1(i) one of the monochomatic sets c−1(i)
is in U , so it contains arbitrarily large subsets S such that FS(S) ⊆ c−1(i).

Fact: The proof with ultra�lters of Folkman's Theorem is a proof of a
stronger result, known as Hindman's Theorem:
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Theorem 1.3.11 (Hindman). Whenever N is �nitely colored there is an
in�nite subset S = {x1, x2, x3, ....} of N such that FS(S) is monocromatic.

Hindman's Theorem (see e.g. [Hin72], [HS98,Corollary 2.10]) has both
a great combinatorial and a great historical importance, since it is an ex-
ample of theorem where the ultra�lter proof is undoubtedly simpler than
the combinatorial one. In fact, the ultra�lter proof uses only few properties
of idempotent ultra�lters while, as for the combinatorial proof, quoting the
words of Neil Hindman:

Anyone with a very masochistic bent is invited to wade through the original
combinatorial proof.

Both Schur's and Folkman's Theorems can be seen as dealing with par-
tition regularity for homogeneous linear polynomials:

De�nition 1.3.12. An homogeneous linear polynomial with coe�cients in
Z

P (x1, ..., xn) :
∑n

i=1 cixi

is weakly partition regular on N if in every �nite coloration of N \ {0}
there is a monochromatic solution to the equation P (x1, ..., xn) = 0.
Similarly, a matrix A with coe�cients in Z

a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n
... ... ... ...
am,1 am,2 ... am,n


is weakly partition regular on N if in every �nite coloration of N \ {0}

there is a monochromatic solution to the linear system:
a1,1x1 + a1,2x2 + ... + a1,nxn = 0
a2,1x1 + a2,2x2 + ... + a2,nxn = 0

...
am,1x1 + am,2x2 + ... + am,nxn = 0

For example, Schur's Theorem states that the polynomial

P (x, y, z) : x+ y − z

is weakly partition regular on N, while Folkman's Theorem is equivalent
to state that, for every natural number n, the (2n− 1)× (n+ 2n− 1) matrix
A
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
r1
r2
...

r2n−1


is weakly partition regular on N, where the elements ai.j in the row ri are

constructed in this way: let f be a bijection between 2n − 1 and the set of
nonempty subsets of {1, ..., n}. Then

• if 1 ≤ j ≤ n and j ∈ f(i) then ai,j = 1;

• if 1 ≤ j ≤ n and j /∈ f(i) then ai,j = 0;

• if n < j ≤ n+ 2n − 1 and j − n = i then ai,j = −1;

• if n < j ≤ n+ 2n − 1 and j − n 6= i then ai,j = 0.

E.g., for n = 3, the matrix A can be choosen in this way

1 0 0 −1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0
1 1 0 0 0 0 −1 0 0 0
1 0 1 0 0 0 0 −1 0 0
0 1 1 0 0 0 0 0 −1 0
1 1 1 0 0 0 0 0 0 −1


In 1933 Richard Rado, a student of Issai Schur, characterized the weakly

partition regular matrices on N in terms of a condition on the system that
he called "column condition" (see [Rad33]):

De�nition 1.3.13. A matrix
a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n
... ... ... ...
am,1 am,2 ... am,n


with coe�cients in Z satis�es the columns condition if it is possible to

order the column vectors c1, ..., cn and to �nd integers i0 = 0 and i1, ..., ik
with 1 ≤ i1 < i2 < ... < ik = n such that, if we pose

Aj =
∑ij

(s=ij−1+1) cs,
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then

1. A1 = 0;

2. for 1 < j ≤ k, Aj is a linear combination of c1, ..., cij−1
.

Theorem 1.3.14 (Rado). Let A be a matrix with coe�cients in Z. Then
the following two conditions are equivalent:

1. A is weakly partition regular on N;

2. A satis�es the columns condition.

The proof of Rado's Theorem can be found, e.g., in [GRS90]; here we
provide a direct combinatorial proof of this corollary, that characterizes the
weakly partition regular linear homogeneous polynomials with coe�cients in
Z:

Theorem 1.3.15. Let P (x1, ..., xn) :
∑n

i=1 cixi be an homogeneous linear
polynomial with nonzero coe�cients in Z. The following conditions are equiv-
alent:

1. P (x1, ..., xn) is weakly partition regular on N;

2. there is a nonempy subset J of {1, ..., n} such that
∑

j∈J cj = 0.

The "only if" part of the theorem is based on this lemma, that strenghtens
Van der Waerden's Theorem:

Lemma 1.3.16. For every �nite coloration of N, for every natural numbers
n,m, there are natural numbers a, b such a, a+b, ..., a+nb, a−b, ..., a−nb,mb
are monochromatic.

This lemma is proved in [GRS90, pag 55].

The "if" part of the theorem uses the so-called smod(p) colorations (where
smod stand for "super modulo"):

De�nition 1.3.17. Let p be a prime number in N. The smod(p) coloration of
N is the (p− 1)-coloration such that, for every natural number n, if n = apk,
where k ≥ 0 and gcd(a, p)=1, then

smod(p)(n)= a mod p.

This given, we can prove Theorem 1.3.15:
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Proof. (2)⇒ (1) Reordering, if necessary, the coe�cients of P (x1, ..., xn), we
can assume that the sum of the �rst k coe�cients is 0:

c1 + ...+ ck = 0.

The idea is to describe a parametric solution Sm,{zi} of the equation P (x1, ..., xn) =
0, in the form

si =

{
a+ zib, 1 ≤ i ≤ k;

mb, k < i ≤ n,

where {zi | i ≤ k},m are given and a, b are parameters, and then to
apply Lemma 1.3.16 to �nd such a structure in one of the colors, obtaining
a monochromatic solution.
To get the desired parametrization we need to �nd s, {zi | i ≤ k}. There are
two cases: if k = n, there is nothing to prove, since if

∑n
i=1 ci = 0 then for

every natural number m the constant solution xi = m solves the equation;
so, we suppose that k < n and we consider the natural numbers c, d,m such
that

c = gcd(c1, ..., ck);

d =
∑n

i=k+1 ck;

m = c
gcd(c,d)

.

By construction, dm is an integer multiple of c, so there is an integer z
in Z with

cz + dm = 0

and, by Bézout's Identity, since c = gcd(c1, ..., ck), there are integers
z1, ..., zk such that

c1z1 + ...+ ckzk = cz.

With this choice of m, {zi | i ∈ I}, Sm,{zi} is a parametric solution of the
equation: ∑n

i=1 cisi =
∑k

i=1 ci(a+ zib) +
∑n

i=k+1 cimb =

= a
∑k

i=1 ci+
∑k

i=1 cizib+
∑n

i=k+1 cimb = 0+bcz+ bdm = 0+b(cz+dm) = 0
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and Lemma 1.3.16 provides that, if Z = max{zi | i ≤ k}, there are
natural numbers a, b in N such that a, a + b, ..., a + Zb, a − b, ..., a − Zb,mb
monochromatic, and the set {a, a+b, ..., a+Zb, a−b, ..., a−Zb,mb} contains
a parametric solution in the form Sm,{zi}.
(1)⇒ (2) This implication follows by this claim:

Claim: If there is a prime number p such that p does not divide the sum
of any nonempty subset of {ci | i ≤ n}, then the equation

∑n
i=1 cixi = 0 has

no monochromatic solution respect the smod(p) coloration.

The thesis is a consequence of the claim: if every subset of the set of
coe�cients has sum di�erent from 0, since the set of all the possible sums of
the coe�cients of P (x1, ..., xn) is �nite, there is a prime number p that does
not divide any of these sums, and P (x1, ..., xn) is not weakly partition regular,
since it has not a monochromatic solution respect the smod(p) coloration.
Proof of the claim: Let p be a prime number such that p does not divide
any sum of the coe�cients of P (x1, ..., xn), and assume that (a1, ..., an) is a
monochromatic solution of the equation P (x1, ..., xn) = 0. We suppose that

N = gcd(a1, ..., an) = 1

since, by de�nition of smod(p)-coloration, if (a1, ..., an) is monochromatic
then (a1

N
, ..., an

N
) is monochromatic.

Reordering if necessary, we suppose that p does not divide x1, ..., xk and p
divides xk+1, ..., xn: since gcd(x1, ..., xn) = 1, k is necessarily ≥ 1.
We reduce the equation P (a1, ..., an) = 0 modulo p:∑n

i=1 ciai ≡ 0 mod p.

By construction, this is equivalent to say that∑k
i=1 ciai ≡ 0 mod p,

since we assumed that cj ≡ 0 mod p for every index j > k. By construc-
tion

smod(p)(a1)=smod(p)(a2)=...=smod(p)(ak)=y

for some 1 ≤ y < p and, since p does not divide any element ai,

smod(p)(ai)= (ai mod p).

From these observations it follows that∑k
i=1 ciai ≡ y ·

∑k
i=1 ci ≡ 0 mod p,
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that, since y 6= 0 mod p, holds if and only if∑k
i=1 ci ≡ 0 mod p:

{c1, ..., ck} is a �nite subset of the set of coe�cients, and
∑k

i=1 ci is divided
by p, and this is absurd. This proves the claim.

In next chapter we introduce a nonstandard technique that, in Chapter
Three, will be used to re-prove the results presented in this section from a
di�erent point of view.
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Chapter 2

Nonstandard Tools

In this chapter we expose the nonstandard tools that we need in the rest
of the thesis.
After recalling some general facts about nonstandard methods, we start to
study the monads of ultra�lters. These objects are de�ned in the follow-
ing way: given an ultra�lter U , and a hyperextension ∗N of N satisfying a
particular additional property, the monad of U is

GU = {α ∈∗N | α ∈
⋂
A∈U

∗A}.

These structures have already been studied in the literature (e.g. [Pu71]
and [Pu72]). In Section Two we outline some of their known properties and,
in Section Three, we present an original result, called Bridge Theorem, which
shows that particular combinatorial properties of ultra�lters can be seen as
generated by properties of their monads. Motivated by this observation, we
decide to rename the elements in the monad of U as generators of U .
The study of the sets of generators leads us to consider the tensor products of
ultra�lters. A problem that we outline is that, even if the set of generators of
a tensor product U ⊗V can be characterized in terms of GU and GV (this has
been done by Christian Puritz in [Pu72,Theorem 3.4]), this characterization
does not give a procedure to construct, given generators α of U and β of V ,
a generator of U ⊗ V .
This leads, by observations explicitated in Section Five, to consider a partic-
ular hyperextension of N, that we call ω-hyperextension and denote by •N.
Its particularity is that in •N we can iterate the star map. This property
turns out to be particularly usefull to deal with tensor products of ultra�l-
ters: in fact, the possibility to iterate the star gives the desired procedure to
construct generators of tensor products U ⊗ V starting with generators of U
and V .

41



In last section we apply this procedure to study, given ultra�lters U ,V on N,
the sets of generators of U ⊕ V and U � V in •N.

2.1 Nonstandard Methods

Nonstandard Analysis was ideated by Abraham Robinson in the late
1950's. Its original intent was to give a rigorous formalization to the no-
tion of in�nitesimal element, and to apply such a notion to mathematical
analysis (see [Ro66]).
In the following �fty years, Nonstandard Analysis has grown both as a branch
of mathematical logic, where its foundations are studied, and in terms of ap-
plications to a wide variety of problems. We suggest to the interested reader
the books [ACH97] and [Go98], where the methodology of nonstandard anal-
ysis, as well as many of its applications, are presented. In this section, we
are concerned with its logic foundations. Since this does not concern math-
ematical analysis, we prefer to talk about nonstandard methods.
We observe that there are many ways in which nonstandard methods have
been formalized. In this thesis, in order to formalize and use nonstandard
methods we adopt the framework of superstructures. For a comprehensive
tractation of this approach, see e.g. [CK90, Section 4.4]. Among the alterna-
tive approaches, we recall the classical [Ne77], where nonstandard methods
are presented from the point of view of the so-called Internal Set Theory, and
[BDNF06], where the autors give an introduction to the hyper-methods of
nonstandard analysis and present eight di�erent approaches to nonstandard
methods.
We begin our short introduction to nonstandard methods recalling the de�-
nition of superstructure on a set:

De�nition 2.1.1. Let X be an in�nite set. The superstructure on X is
V(X) =

⋃
n∈N Vn(X), where

V0(X) = X;

Vn+1(X) = Vn(X) ∪ ℘(Vn).

We make the extra assumption that X is a "base set": this means that
its elements behave as atoms within V(X) (formally, ∅ /∈ X and, for every
x in X, x ∩ V(X) = ∅). This makes it possible to de�ne the "individuals"
relative to V(X) as the elements of X, and the "`sets"' relative to V(X) as
the elements in V(X) \X.
Probably, there are two reasons for the di�usion of superstructures in non-
standard methods: the �rst is that superstructures satisfy many nice closure
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properties with respect to set-theoretic operations; the second is that super-
structures provide an easy way to formalize the naive concept of "mathe-
matical object" as "element of a superstructure". E.g., any real number is a
mathematical object, as well as any subset of real numbers, the set R2, the
relation of order in R, any real function, and so on. Within the Zermelo-
Fraenkel framework, all of these concepts can be realized as elements of a
superstructure V(R): e.g., any subset of the real numbers is a set in V1(R).
Superstructures, as "universes of mathematical objects", are the �rst ingre-
dient in the construction of nonstandard methods. The other two are the
star map and the transfer principle.

De�nition 2.1.2. Given two superstructures V(X), V(Y ), a star map is a
map ∗ : V(X)→ V(Y ) such that Y =∗X.

Usually, it is assumed that ∗ is proper:

De�nition 2.1.3. A star map ∗ is proper if for every in�nite set A relative
to V(X) the inclusion σA ⊆∗A is proper, where

σA = {∗a | a ∈ A}.

The last notion we have to introduce to talk about nonstandard methods
is the transfer principle.
We assume that the reader knows the basics of �rst order logic, in particolar
the notions of �rst order formula, free and bounded variables, open formula
and sentence. We �x some notations and conventions:

• With L we denote a �rst order logical language containing the simbol
of membership ∈ (e.g., the language of set theory);

• The formulas that we consider are constructed in the language L;

• We reserve the letters x, y, z, x1, x2, ... to denote variables;

• When writing a formula ϕ(x1, ..., xn, p1, ...., pm) we shall mean that
ϕ(x1, ..., xn, p1, ..., pm) is a �rst order formula, that its free variables
are exactly x1, ..., xn and its parameters are exactly p1, ..., pm;

• Except when strictly necessary, we do not indicate the parameters; in
particular, when we denote a formula as ϕ, it is intended that it may
have parameters, but that it has not free variables.

De�nition 2.1.4. Let ϕ(x, x1, ...., xk) be a formula of L, x a free variable in
ϕ and y a variable that is not bounded in ϕ. The abbreviation
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(∀x ∈ y)ϕ(x, x1, ...., xk)

means ∀x(x ∈ y)⇒ ϕ(x, x1, ...., xk). Similarly,

(∃x ∈ y)ϕ(x, x1, ...., xk)

means ∃x(x ∈ y)⇒ ϕ(x, x1, ...., xk).
The quanti�ers ∀x ∈ y and ∃x ∈ y are called bounded quanti�ers.
A bounded quanti�er formula is obtained from atomic formulas using
only connectives and bounded quanti�ers.

An other kind of formulas that we will need later are the elementary
formulas:

De�nition 2.1.5. A formula ϕ(x1, ..., xn) is elementary if it is a bounded
quanti�er formula and its only parameters are

• elements of Nk,

• subsets of Nk,

• functions f : Nk → Nh,

• relations on Nk,

where h, k are two positive natural numbers.

The last ingedient needed to talk about nonstandard methods is the trans-
fer principle:

De�nition 2.1.6. The star map ∗ : V(X) → V(Y ) satis�es the transfer
principle if for every bounded quanti�er formula ϕ(x1, ..., xn) and for every
a1, ..., an ∈ V(X)

V(X) |= ϕ(a1, ..., an) if and only if V(Y ) |=∗ϕ(∗a1, ...,
∗an).

In this de�nition, if ϕ(x1, ..., xn) is a formula with parameters p1, ..., pk,
∗ϕ(x1, ..., xn) is the formula obtained substituting, in ϕ(x1, ..., xn), each pa-
rameter pi with ∗pi: e.g., if ϕ(x) is the formula "x ∈ N", then ∗ϕ(x) is the
formula "x ∈∗N".
The transfer principle can be equivalently reformulated saying that ∗ is a
bounded elementary embedding (with a terminology mutuated from model
theory, see e.g. [CK90, pp.266�267]).

De�nition 2.1.7. A superstructure model of nonstandard methods is
a triple 〈V(X),V(Y ), ∗〉 where
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1. a copy of N is included in X and in Y ;

2. V(X) and V(Y ) are superstructures on the in�nite sets X, Y respec-
tively;

3. ∗ is a proper star map from V(X) to V(Y ) that satis�es the transfer
property.

It is assumed that, for every natural number n, ∗n = n. Observe that,
since Y =∗X, by transfer it follows that x ∈ X if and only if ∗x ∈ Y : so the
star map send individuals relative to V(X) to individuals relative to V(Y )
and sets relative to V(X) to sets relative to V(Y ).

De�nition 2.1.8. If y ∈ V(Y ), and there exists x ∈ V(X) such that y =∗x,
then y is called hyper-image of x, and we say that y is an hyper-image.
If x is an in�nite set in V(X) and y =∗x, y is also called the hyperextension
of x.
In particular, if x = N, then ∗N is called the set of hypernatural numbers.
An element y of V(Y ) is internal if there exists x ∈ X such that y ∈∗x.
An element y of V(Y ) is external if it is not internal.

Observe that every hyper-image is internal since, if y =∗x then y ∈
{∗x}=∗{x}.
The importance of the internal elements is clear when applying transfer: since
the transfer applies to bounded quanti�er formulas, we get that properties of
subsets of a given set Z ∈ V(X) transfer to the internal subsets of ∗Z in V(Y ).
The Internal De�nition Principle characterizes many internal objects in V(Y ):

Theorem 2.1.9 (Internal De�nition Principle). Let ϕ(x1, ..., xn, y) be a bounded
quanti�er formula. If A1, ..., An, B are internal, then the set

{b ∈ B | V(Y ) |= ϕ(A1, ..., Am, b)}

is internal.

Proof. This is Proposition 4.4.14 in [CK90].

One other result of great importance is the Overspill Principle. Before
stating this principle, we need this de�nition:

De�nition 2.1.10. An element η ∈∗N is in�nite if, for every natural num-
ber n, η > n.
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Theorem 2.1.11 (Overspill Principle). Let A be a nonempty internal sub-
set of ∗N that contains arbitrary large �nite elements. Then A contains an
in�nite element.

For a comprehensive tractation of this principle, see [Go98, section 11.4].
We just warn the reader that, in Goldblatt's book, the Overspill principle is
called Over�ow principle.
Observe that, as a consequence of the Overspill Principle, in ∗N there are
in�nite natural numbers.
Since hyperextensions of functions are particularly important in this chap-
ter, we point out that functions f : Nk → Nh are extended to functions
∗f :∗Nk →∗Nh that satisfy this condition: if Γf is the graph of f ,

Γf = {(x, y) ∈ Nk × Nh | f(x) = y},

the graph of ∗f is ∗Γf .
One other important aspect of nonstandard methods in the study of N is
this:

Proposition 2.1.12. N is a bounded elementary submodel of ∗N.

Proof. N is a submodel of ∗N, and the star map is a bounded elementary
embedding.

We usually work in nonstandard settings that satisfy some additional
condition: in the de�nition below, we recall that a family F of susets of a
given set S has the �nite intersection property if for every natural number
n, for every F1, ..., Fn elements of F , F1 ∩ ... ∩ Fn 6= ∅.

De�nition 2.1.13. Let κ be an in�nite cardinal number. We say that the
nonstandard model 〈V(X),V(Y ), ∗〉 has the κ-enlarging property (resp.
κ+-enlarging property) if, for every set x in V(X), for every family F of
subsets of x with |F| < κ (resp. |F| ≤ κ) and with the �nite intersection
property, the intersection

⋂
F∈F

∗F is nonempty.

Enlarging is a weaker form of a model-theoretic property called satura-
tion:

De�nition 2.1.14. Let κ be an in�nite cardinal number. We say that the
nonstandard model 〈V(X),V(Y ), ∗〉 has the κ-saturation property (resp.
κ+-saturation property) if for every family F of internal subsets of V(Y )
with |F| < κ (resp. |F| ≤ κ) and with the �nite intersection property, the
intersection

⋂
F∈FF is nonempty.
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We remark that κ-saturation trivially implies κ-enlarging, since every
hyper-image is an internal object in V(Y ).
Nonstandard models satisfying these properties have particular features: e.g.,
if the nonstandard model has the c+-enlarging property, and F is a �lter on
N, then ⋂

F∈F
∗F 6= ∅,

since F has the �nite intersection property and its cardinality is, at most,
c; if the nonstandard model has the c+-saturation property, the co�nality of
∗N is at least c+: by contrast, if S = 〈αi | i < c〉 is an unbounded sequence
in ∗N, and for every index i ≤ c we consider the set

Ii = {η ∈∗N | αi < η},

the family 〈Ii | i < c〉 is a family of internal sets with the �nite intersection
property and cardinality c so, by c+-saturation, the intersection⋂

i≤c Ii

is nonempty, and this is in contrast with S being unbounded. So the
co�nality of ∗N is at least c+.

2.2 The Bridge Theorem

2.2.1 The Bridge Map

In this section we present an important nexus between ultra�lters and
hyperextensions, that gives a nonstandard characterization of ultra�lters that
we will use throghout the thesis.
The correspondence is this:

Proposition 2.2.1. (1) Let ∗N be a hyperextension of N. For every hyper-
natural number α in ∗N, the set

Uα = {A ∈ N | α ∈∗A}

is an ultra�lter on N.
(2) Let ∗N be a hyperextension of N with the c+-enlarging property. For every
ultra�lter U on N there exists an element α in ∗N such that U = Uα.
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Proof. (1) Let α be an hypernatural number in ∗N, and consider Uα. Uα is
not empty because it contains N; moreover, it is easily seen that Uα is closed
under supersets, under intersections and that it does not contain the empty
set, so Uα is a proper �lter on N. It is an ultra�lter because, for every subset
A of N, A ∈ Uα or Ac ∈ Uα. In fact, we have the property

"for every natural number n ∈ N, either n ∈ A or n ∈ Ac",

and by transfer it follows that

"for every hypernatural number α ∈∗N, either α ∈∗A or α ∈∗Ac".

(2) Let ∗N be a hyperextension of N with the c+-enlarging property and U
an ultra�lter on N. The family

{A}A∈U

has the �nite intersection property; by c+-enlarging property it follows
that ⋂

A∈U
∗A 6= ∅,

as |U| ≤ c. If α is any element in this intersection, by construction
U = Uα.

An important fact is that, if the hyperextension ∗N does not satisfy the
c+-enlarging property then there may be ultra�lters U on N such that, for
every element α ∈∗N, Uα 6= U . E.g., let ∗N be a hyperextension of N that
does not satisfy the c+-enlarging property and F a family of subsets of N
with the �nite intersection property, and suppose that

⋂
F∈F

∗F = ∅. Then,
for every ultra�lter U that extends F (that such ultra�lters exist has been
proved in Chapter One), the set GU is empty.
Since we want to avoid this fact, throughout this chapter the hyperextensions
that we consider satisfy (at least) the c+-enlarging property.

De�nition 2.2.2. The bridge map is the function ψ :∗N→ βN de�ned by
putting for every hypernatural number α in ∗N

ψ(α) = Uα.

De�nition 2.2.3. We say that two hypernatural numbers α, β in ∗N are U-
equivalent (notation α ∼u β) when Uα = Uβ, i.e. if ψ(α) = ψ(β).
Given an ultra�lter U in βN, the set of generators of U is the set
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GU = {α ∈∗N | U = Uα}.

A warning is in order: in literature, the set GU is called the monad of
the ultra�lter U . Here, we prefer to rename it as "set of generators" to
emphasize the fact that vary properties of the ultra�lter U can be seen as
actually "generated" by the elements in GU . This, in our point of view, is
the core of our method of studying combinatorial properties of ultra�lters.
Some of the results about sets of generators that we present in this chapter
are adaptations, in our context, of results presented in [Pu72].
We observe that the bridge map associate �nite hypernatural numbers with
principal ultra�lters, and in�nite hypernatural numbers with nonprincipal
ultra�lters: e.g., let U be the principal ultra�lter on n. Not surprisingly,
GU = {n}: in fact, by de�nition, an hypernatural number α is in GU if and
only if α ∈∗A for every set A in U ; since U is principal, the set A = {n} is
in U , so by taking ∗A =∗ {n} = {n} it follows that α = n.
Conversely, if α is in�nite, and A is a subset of N such that α ∈∗A, then A
is necessarily in�nite, so Uα is nonprincipal. Next proposition shows that, in
this case, GU is huge:

Proposition 2.2.4. The bridge map ψ is not 1-1: in fact, for every non
principal ultra�lter U , the set GU = ψ−1(U) has |∗N|-many elements.

Proof. Let U be a non principal ultra�lter. For every set A in U , consider
the set

ΓA = {f : N→ A | f is 1− 1}.

The family {ΓA}A∈U has the �nite intersection property, so by c+-enlarging
there is an element ϕ ∈

⋂∗ΓA.
Claim: For every hypernatural number α in ∗N, ϕ(α) ∈ GU .

In fact, for every set A in U , as ϕ ∈ ΓA the range of ϕ is included in ∗A
so, by construction, the range of ϕ is included in GU , and this proves the
claim.
As ϕ is 1− 1, it follows that |∗N| ≤ |GU |, and this concludes the proof.

The following is an easy, but important, property of GU :

Proposition 2.2.5. Let U be a nonprincipal ultra�lter on N, and α, β dis-
tinct generators of U . Then |α− β| ∈∗N \ N.
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Proof. Let k be a positive natural number, and let {A1, A2, ..., Ak} be the
partition of N induced by the Euclidean division:

Ai = {n ∈ N | n ≡ i mod k}.

Since U is an ultra�lter, there is exactly one index i with Ai in U . As
∗Ai = {η ∈∗N | η ≡ i mod k}

and α, β are in ∗Ai, it follows that |α− β| ≡ 0 mod k. Since this is true
for every natural number k, the only possibilities are that α = β, which has
been excluded in the hypothesis, or |α− β| ∈∗N \ N.

When the hyperextension ∗N is c+-saturated, the sets of generators of
nonprincipal ultra�lters are coinitial and co�nal in ∗N \ N:

Proposition 2.2.6. Let ∗N be a c+-saturated hyperextension of N and U a
nonprincipal ultra�lter on N. Then:

1. GU is left unbounded in ∗N \ N;

2. for every in�nite hypernatural number η, GU ∩ [0, η) contains at least
c+ elements;

3. the coinitiality of GU in ∗N \ N is greater than c;

4. GU is right unbounded in ∗N;

5. for every η in ∗N \ N, GU ∩ (η,+∞) contains |∗N|-many elements;

6. the co�nality of GU is greater than c.

Proof. 1) Let η be an hypernatural number in ∗N \ N and pose, for every
A ∈ U ,

Aη = {α ∈∗A | α < η}.

Aη is internal, nonempty (as A ⊆ Aη) and the family

F = {Aη}A∈U

has the �nite intersection property (as Aη∩Bη = (A∩B)η) and cardinality
equal to c. By c+-saturation, the intersection⋂

A∈U Aη
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is nonempty; if α is an element in this intersection then α is in�nite, less
than η and in GU : this proves that GU is left unbounded in ∗N \ N.
2) Let η be an element in ∗N \ N. Since GU is left unbounded in ∗N \ N, for
every natural number k and for every hypernatural number µ < η the set

(k, µ) = {α ∈∗N | k < α < µ}

is a nonempty internal set. Then the family

F = {(k, µ) | k ∈ N and µ ∈ [0, η) ∩GU}

is a family of nonempty internal sets with the �nite intersection property.
Observe that the intersection ⋂

(k,µ)∈F(k, µ)

is empty. As c+-saturation holds, the only possibility is that |F| ≥ c+.
By construction, |F| = |GU ∩ [0, η)|, so |GU ∩ [0, η)| ≥ c+: this entails that
GU ∩ [0, η) contains at least c+-many elements.
3) Suppose that S = 〈αi | i < c〉 is a left unbounded sequence in GU , with
αi > αj whenever i < j. Consider the family

F = {(k, α) | k ∈ N, α ∈ S}.

F has the same cardinality as S and it is a family of internal sets, so by
c+-saturation there should be an hypernatural number β such that β ∈ (k, α)
for every (k, α) ∈ F , and this is absurd: β can not be �nite, otherwise if α
is any element in GU and k = β + 1 then β /∈ (k, α); β can not be in�nite
otherwise, since GU is left unbounded in ∗N \ N, there is an element α ∈ S
with α < β, so β /∈ (0, α).
We found an absurd, so such a sequence S can not exist: the coinitiality of
GU is greater than c.
4)-5) Let η be an hypernatural number in ∗N \N. As U is non principal, for
every set A in U , for every natural number k, there is an increasing function
f : N→ A ∩ (k,+∞) that is 1-1. By transfer, this entails that the set

FA = {f :∗N→∗A ∩ (η,+∞) | f is internal, increasing and 1-1}

is not empty. The family

F = {FA}A∈U

is a family of internal sets with the �nite intersection property (since
FA ∩ FB = FA∩B for every A,B ∈ U), and it has cardinality c. By c+-
saturation, the intersection
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⋂
A∈U FA

is nonempty. Let ϕ be a function in this intersection. By construction,
ϕ :∗N→ GU ∩ (η,+∞), it is increasing and it is 1-1: this entails that |∗N| =
|GU ∩ (η,∞)|, and that GU is right unbounded in ∗N.
6) Suppose that S = 〈αi | i < c〉 is an increasing unbounded sequence in GU .
Then the family

F = {(α,+∞) | α ∈ S}

has empty intersection, and this is absurd, since |F| = |S| = c, F has the
�nite intersection property and its elements are internal.

As a corollary we get:

Corollary 2.2.7. For every nonprincipal ultra�lter U the set of generators
of U is an external subset of ∗N.

Proof. Every internal subset of ∗N has a least element, while GU is left un-
bounded.

2.2.2 The Bridge Theorem

Throughout this section we suppose that ∗N is a hyperextension of N
with the c+-enlarging property. We also adopt the conventions about logical
formulas introduced in Section One.

De�nition 2.2.8. Let φ(x1, ..., xn) be a �rst order formula. The existential
closure of φ(x1, ..., xn) is the sentence

E(φ(x1, ..., xn)) : ∃x1....∃xnφ(x1, ..., xn).

The universal closure of φ(x1, ..., xn) is the sentence

U(φ(x1, ..., xn)) : ∀x1, ...,∀xnφ(x1, ..., xn).

A �rst order formula is existential (resp. universal) if it is the exis-
tential (resp. universal) closure of a �rst order formula.

The Bridge Theorem concerns ϕ-ultra�lters: we recall that, given a sen-
tence ϕ, an ultra�lter U is a ϕ-ultra�lter if every set A in U satis�es ϕ. The
Bridge Theorem states that, whenever ϕ is a �rst order existential sentence,
to check if an ultra�lter U is a ϕ-ultra�lter it is enough to study its set of
generators:
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Theorem 2.2.9 (Bridge Theorem). Let ϕ = E(φ(x1, ..., xn)) be a �rst order
existential sentence and U an ultra�lter in βN. Then the following conditions
are equivalent:

1. U is a ϕ-ultra�lter;

2. there are elements α1, ..., αn in GU such that ∗φ(α1, ..., αn) holds.

Proof. (1)⇒ (2): Let U be a ϕ-ultra�lter. Given a set A in U , consider

ΦA = {(a1, ..., an) ∈ An | φ(a1, ..., an)}.

Observe that, since U is a ϕ-ultra�lter, ΦA is nonempty for every set A
in U , and that the family {ΦA}A∈U has the �nite intersection property. In
fact, if A1, ..., Am are elements in U , then

ΦA1 ∩ ... ∩ ΦAm = ΦA1∩...∩Am 6= ∅.

By c+-enlarging property, the intersection

Θ =
⋂
A∈U

∗ΦA

is nonempty. Since, by construction,

"`for every (a1, ...., an) ∈ ΦA φ(a1, ..., an)"',

by transfer it follows

"`for every (α1, ..., αn) ∈∗ΦA
∗φ(α1, ..., αn)".

Let (α1, ..., αn) be an element of Θ. As observed, ∗φ(α1, ..., αn) holds and,
by construction, α1, ..., αn ∈ GU since, for every index i ≤ n, for every set A
in U , αi ∈∗A.
(2) ⇒ (1) Suppose that U is not a ϕ-ultra�lter, and let A be an element of
U such that, for every a1, ..., an in A, ¬φ(a1, ...., an) holds.
Then by transfer it follows that, for every ξ1, ..., ξn in ∗A, ¬∗φ(ξ1, ..., ξn) holds;
in particular, as GU ⊆∗A, for every ξ1, ..., ξn in GU , ¬∗φ(ξ1, ..., ξn) holds, and
this is absurd. So U is a ϕ-ultra�lter.

Corollary 2.2.10. An existential formula ϕ = E(φ(x1, ..., xn)) is weakly
partition regular if and only if there are n hypernatural numbers α1, ..., αn
such that α1 ∼u α2 ∼u .... ∼u αn and ∗φ(α1, ..., αn) holds.

Proof. By Theorem 1.2.6, ϕ is weakly partition regular if and only if there
is a ϕ-ultra�lter, and the thesis follows by Theorem 2.2.9.
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E.g, let φ(x, y, z) be the open formula

(x, y, z > 0) ∧ (x+ y = z).

As a consequence of Theorem 2.2.9, an ultra�lter U is an E(φ(x, y, z))-
ultra�lter if and only if there are positive α, β, γ ∈ GU such that α + β = γ.
What can we say about universal formulas?

Theorem 2.2.11. Let φ(x1, ..., xn) be a �rst order formula, ϕ its univer-
sal closure and U an ultra�lter in βN. Then the following conditions are
equivalent:

1. there is a set A in U that satis�es ϕ;

2. for every α1, ..., αn in GU
∗φ(α1, ..., αn) holds.

Proof. (1)⇒ (2) Let A be a set in U such that for every a1, ..., an in A
φ(a1, ..., an) holds; by transfer it follows that, for every α1, ..., αn in ∗A,
∗φ(α1, ..., αn) holds. In particular, asGU is a nonempty subset of ∗A, ∗φ(α1, ..., αn)
holds for every α1, ..., αn in GU .
(2) ⇒ (1) Suppose that for every set A in U there are a1, ..., an in A such
that ¬φ(a1, ..., an) holds. Then U is an E(¬(φ(x1, ..., xn)))-ultra�lter so, by
Theorem 2.2.9, in GU there are elements α1, ..., αn such that ¬(∗φ(α1, ..., αn))
holds, and this is absurd.

If ∗N is c+-saturated, we can prove two results similar to Theorem 2.2.9
and Theorem 2.2.11:

Lemma 2.2.12. Let φ(x1, ..., xn, y1, ..., ym) be a �rst order formula, α1, ..., αn
elements in ∗N and U an ultra�lter on N. The following two conditions are
equivalent:

1. (∃B ∈ U)(∀β1, ..., βm ∈∗B) ∗φ(α1, ..., αn, β1, ..., βm);

2. ∀β1, ..., βn ∈ GU ∗φ(α1, ..., αn, β1, ..., βm).

Proof. (1) ⇒ (2) If B is a set in U such that, for every β1, ..., βm in ∗B,
∗φ(α1, ..., αn, β1, ..., βm) holds then the thesis follows as GU ⊆∗B.
(2)⇒ (1) Suppose that, for every set B in U there are β1, ..., βm in ∗B such
that ¬∗φ(α1, ..., αn, β1, ..., βm) holds. Let

ΓB = {(β1, ..., βm) ∈∗Bm | ¬∗φ(α1, ..., αn, β1, ..., βm)}.
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By the internal de�nition principle, for every set B in U the set ΓB is
internal. So the family {ΓB}B∈U is a family of nonempty internal subsets of
∗N with the �nite intersection property: in fact, if B1, ..., Bk are elements in
U , then the intersection ⋂k

i=1 ΓBi = Γ⋂k
i=1Bi

6= ∅.

By c+-saturation property, the intersection

Θ =
⋂
B∈U ΓB

is nonempty. Let (β1, ..., βm) be an element in Θ. Then, for every index
i ≤ n, βi ∈ GU and ¬∗φ(α1, ..., αn, β1, ..., βm) holds, and this is absurd.

Theorem 2.2.13. Let φ(x1, ..., xn, y1, ..., ym) be a �rst order formula, and
U ,V ultra�lters on N. The following conditions are equivalent:

1. (∃α1, ...,∃αn ∈ GU)(∀β1, ...,∀βm ∈ GV) ∗φ(α1, ..., αn, β1, ..., βm);

2. (∃α1, ...,∃αn ∈ GU)(∃B ∈ V)(∀β1, ...,∀βm ∈∗B) ∗φ(α1, ..., αn, β1, ..., βm);

3. (∃B ∈ V)(∀A ∈ U)(∃a1, ...,∃an ∈ A)(∀b1, ...,∀bm ∈ B) φ(a1, ..., an, b1, ..., bm).

Proof. (1)⇒ (2) Let α1, ...αn be elements in GU as in the hypothesis. Then,
by Lemma 2.2.12 it follows that it exists a set B in V such that, for every
β1, ..., βm in ∗B, ∗φ(α1, ..., αn, β1, ..., βm) holds, and this entails the thesis.
(2) ⇒ (3): Let α1, ..., αn, B be as in the hypothesis. Suppose that, by con-
trast, there is a set A in U such that, for every a1, ..., an in A, there are
b1, ..., bm in B such that ¬φ(a1, ..., an, b1, ..., bm) holds. Then by transfer prop-
erty it follows that

∀ξ1, ...,∀ξn ∈∗A∃β1, ...,∃βm ∈∗B ¬∗φ(ξ1, ..., ξn, β1, ..., βm)

and this is absurd since α1, ..., αn ∈ GU ⊆∗A and ∗φ(α1, ..., αn, β1, ..., βm)
holds for every β1, ..., βm in ∗B.
(3)⇒ (1) Let B be a set in V as in the hypothesis and, for every set A in U ,
let

ΦA = {(a1, ..., an) ∈ An | ∀(b1, ..., bm) ∈ Bm φ(a1, ..., an, b1, ..., bm) holds}.

The family {ΦA}A∈U is a family of nonempty subsets of Nn with the �nite
intersection property as, if A1, ..., Ak are elements of U , the intersection

ΦA1 ∩ ... ∩ ΦAk = ΦA1∩....∩Ak
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is nonempty. By c+-enlarging property, the intersection

Θ =
⋂
A∈U

∗ΓA

is nonempty. Let (α1, ..., αn) be an element in this intersection. By con-
struction, α1, ..., αn are elements in GU and, since for every set A in U
∗ΘA = {(ξ1, ..., ξn) ∈∗An | ∀(β1, ..., βm) ∈ Bm ∗φ(ξ1, ..., ξn, β1, ..., βm) holds},

then ∗φ(α1, ..., αn, β1, ..., βm) holds for every β1, ..., βm in ∗B. SinceGV ⊆∗B,
we get the thesis.

The previous theorem has the following three interesting corollaries:

Corollary 2.2.14. Let φ(x1, ..., xn, y1, ..., ym) be a �rst order formula, and
U ,V ultra�lters on N. The following conditions are equivalent:

1. (∀α1, ...,∀αn ∈ GU)(∃β1, ...,∃βm ∈ GV) ∗φ(α1, ..., αn, β1, ..., βm);

2. (∀α1, ...,∀αn ∈ GU)(∀B ∈ V)(∃β1, ...,∃βm ∈∗B) ∗φ(α1, ..., αn, β1, ..., βm);

3. (∀B ∈ V)(∃A ∈ U)(∀a1, ...,∀an ∈ A)(∃b1, ...,∃bm ∈ B) φ(a1, ..., an, b1, ..., bm).

Proof. Each one of the conditions (1)-(2)-(3) is the contronominal of the
corrispective condition in Theorem 2.2.13.

Corollary 2.2.15. Let φ(x1, ..., xn, y1, ..., ym) be a �rst order formula, and
U an ultra�lter on N. The following conditions are equivalent:

1. (∃α1, ...,∃αn ∈ GU)(∀β1, ...,∀βm ∈ GU) ∗φ(α1, ..., αn, β1, ..., βm);

2. (∃α1, ...,∃αn ∈ GU)(∃B ∈ U)(∀β1, ...,∀βm ∈∗B) ∗φ(α1, ..., αn, β1, ..., βm);

3. (∃B ∈ U)(∀A ∈ U)(∃a1, ...,∃an ∈ A)(∀b1, ...,∀bm ∈ B) φ(a1, ..., an, b1, ..., bm).

Proof. This follows by Theorem 2.2.13 by putting U = V .

Corollary 2.2.16. Let φ(x1, ..., xn, y1, ..., ym) be a �rst order formula, and
U an ultra�lter on N. The following conditions are equivalent:

1. (∀α1, ...,∀αn ∈ GU)(∃β1, ...,∃βm ∈ GU) ∗φ(α1, ..., αn, β1, ..., βm);

2. (∀α1, ...,∀αn ∈ GU)(∀B ∈ V)(∃β1, ...,∃βm ∈∗B) ∗φ(α1, ..., αn, β1, ..., βm);

3. (∀B ∈ U)(∃A ∈ U)(∀a1, ...,∀an ∈ A)(∃b1, ...,∃bm ∈ B) φ(a1, ..., an, b1, ..., bm).

Proof. This follows by Corollary 2.2.13 by putting U = V .
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2.3 Extension of Functions to Ultra�lters

This section consists of two parts: in the �rst one we study, given a
function f : Nk → N and an ultra�lter U ∈ β(Nk), how GU and Gf(U) are
related. In the second part, we study which functions de�ned on ∗N can be
naturarly associated to functions de�ned on βN.
Since in this section we deal with ultra�lters on Nk, where k is any positive
natural number, and with sets of functions, we introduce the following two
de�nitions:

De�nition 2.3.1. If k is a positive natural number, and U an ultra�lter on
Nk, the set of generators of U is

GU = {(α1, ..., αn) ∈∗N | A ∈ U ⇔ (α1, ..., αn) ∈∗A}.

Since we want that every ultra�lter has generators, thoughout this section
we still assume that the hyperextension ∗N that we consider satis�es the c+-
enlarging property.

De�nition 2.3.2. Let A,B be sets. We denote by Fun(A,B) the set of
functions with domain A and range included in B.

2.3.1 Extension of functions in Fun(Nk,N) to functions

in Fun(β(Nk), βN)

It is well-known, as a consequence of βN being the Stone-�ech compacti-
�cation of N, that given any natural number k and any function f : Nk → N,
f induces a map f : β(Nk)→ βN:

De�nition 2.3.3. If f is a function in Fun(Nk,N), we denote by f the unique
continuous extension of f in Fun(β(Nk), βN).

f is the function such that, for every subset A of N, for every ultra�lter
U in β(Nk),

A ∈ f(U)⇔ f−1(A) ∈ U .

Observe that the application

· : Fun(Nk,N)→ Fun(β(Nk), βN)
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that associate to every function f in Fun(βNk, βN) its unique continu-
ous extension is 1-1 but is not surjective, as its range is included in the
subset of Fun(β(Nk),N) of continuous functions (and not every function in
Fun(β(Nk), βN) is continuous).
Also, the above application is not surjective onto the subset of continuous
functions in Fun(β(Nk), βN): e.g., if k = 1, V is a non principal ultra�lter
on N and g is the function in Fun(βN, βN) such that, for every ultra�lter U
in βN, g(U) = V , then g is a continuous function which is not the extension
of any element in Fun(N,N).
We present a few properties of the map · respect to the notion of U -equivalence
(that have been presented also in [Pu72] and [DN]). A known fact that we
use is the following theorem:

Theorem 2.3.4. For every function f in Fun(N,N) there is three-coloration
N = A1 ∪A2 ∪A3 such that, for every natural number n, if f(n) 6= n then n
and f(n) have two di�erent colors.

The proof of the above result can be found, e.g., in [DN].

Theorem 2.3.5. Let ∗N be a hyperextension of N with the c+-enlarging prop-
erty, f, g be two functions in Fun(Nk,N), α an element in ∗Nk, and U an
ultra�lter on Nk. Then the following properties holds:

1. If α ∈ GU then ∗f(α) ∈ Gf(U);

2. If k = 1 and α,∗f(α) ∈ GU then α =∗f(α);

3. If k = 1, f is 1-1 and ∗f(α),∗g(α) ∈ GU then ∗f(α) =∗g(α).

Proof. (1) Suppose that U = Uα, and consider f(U). By de�nition, a subset
A of N is in f(U) if and only if f−1(A) ∈ U . As U = Uα, it follows that A ∈
f(U) if and only if α ∈∗(f−1(A)) and this happens if and only if ∗f(α) ∈∗A.
So, if U = Uα then f(U) = U∗f(α).
(2) This is a consequence of Theorem 2.3.4: let A1, A2, A3 be subsets of N
such that if n 6= f(n) then there is an index i ≤ 3 such that n ∈ Ai and
f(n) /∈ Ai. Suppose that ∗f(α) 6= α; then, by transfer, there is an index i ≤ 3
such that α ∈∗Ai and ∗f(α) /∈∗Ai; in particular, Ai ∈ Uα and Ai /∈ U∗f(α),
absurd.
(3) Let A be an in�nite subset of N with α ∈∗A and Ac in�nite. f is 1-1, so
there exists a bijection ϕ : N→ N such that f and ϕ coincide on A. Since

{n ∈ N | f(n) = ϕ(n)}

includes A, then ∗f(α) =∗ϕ(α), so by hypothesis ∗g(α) ∼u∗ϕ(α). By (1)
it follows that

58



∗ϕ−1(∗g(α)) ∼u∗ϕ−1(∗ϕ(α)) = α

so by (2) it follows that

∗ϕ−1(∗g(α)) = α

which, as ϕ is bijective, holds if and only if ∗g(α) =∗ϕ(α), and ∗ϕ(α) is
by construction equal to ∗f(α).

When the star map satis�es the c+-saturation property, the previous re-
sult can be strengthened:

Theorem 2.3.6. Let ∗N be a hyperextension of N with the c+-saturation
property, f a function in Fun(Nk,N), α, β elements in ∗Nk, and U an ultra-
�lter on Nk. Then the following properties holds:

1. If ∗f(α) ∼u β then there is an element γ ∼u α such that β =∗f(γ);

2. ∗f [GU ] = Gf(U);

Proof. (1) Assume that ∗f(α) ∼u β, and let A be a set in Uα. By hypothesis,
β ∈∗f [∗A], so ∗f−1(β)∩∗A is not empty, and the family of internal sets

ΓA = {∗f−1(β)∩∗A | A ∈ Uα}

has the �nite intersection property. By c+-saturation, there is an element
γ in

⋂
A∈U ΓA: by construction, γ ∼u α and ∗f(γ) = β.

(2) By the result (1) in Theorem 2.3.5, ∗f [GU ] ⊆ Gf(U); by (1), for every β in
Gf(U), there is an element α in GU such that β =∗f(α); so ∗f [GU ] = Gf(U).

2.3.2 The ∼u-preserving functions in Fun(∗Nk,∗N)

In this section we still assume that ∗N is a hyperextension of N that satis-
�es the c+-enlarging property, and we study which functions in Fun(∗Nk,∗N)
can be naturally associated to functions in Fun(β(Nk), βN).
To explain the underlying idea, we pose k = 1. Given a function ϕ :∗N→∗N,
we want to use the bridge map to construct a function ϕ̂ : βN → βN such
that, for every hypernatural number α ∈∗N,

ϕ̂(Uα) = Uϕ(α).

Equivalently,
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ϕ̂ = ψ ◦ ϕ,

where ψ, as usual, denotes the bridge map.
We observe that ϕ̂ is not well-de�ned for every function ϕ ∈ Fun(∗N,∗N);
the only functions such that the above construction can be done are the
∼u-preserving:

De�nition 2.3.7. A function ϕ in Fun(∗Nk,∗N) is ∼u-preserving if, for
every (α1, ..., αk) ∼u (β1, ..., βk) in

∗Nk, ϕ((α1, ..., αk)) ∼u ϕ((β1, ..., βk)).
We denote by Pk the set of ∼u-preserving functions in Fun(∗Nk,∗N).

Theorem 2.3.8. The following diagram commutes:

Fun(Nk,N) Fun(β(Nk), βN)

Fun(∗Nk,∗N)

∗ ·̂

·
Q
Q
Q
Q
Qs �

�
�
�
�3
-

Equivalently, for every function f in Fun(Nk,N), ∗f is ∼u-preserving and
∗̂f = f .

Proof. Let f be a function in Fun(Nk,N). That ∗f is ∼u preserving, and
f(U(α1,...,αk)) = U∗f(α1,...,αk), is the content of point number one of Theorem
2.3.5.
As, for every (α1, ..., αk) ∈∗Nk,

∗̂f(U((α1,...,αk))) = U∗f((α1,...,αk)) = f(U(α1,...,αk)),

we have the thesis.

This theorem shows that the set {∗f | f ∈ Fun(Nk,N)} of hyper-images
of functions in Fun(Nk,N) is included in Pk. The reverse inclusione is false:
e.g., let α be an in�nite element in ∗N, and ϕ the function such that, for
every element β in ∗N, ϕ(β) = α. Then ϕ is ∼u-preserving, but it is not the
hyper-image of a function in Fun(Nk,N).
The association ·̂ is not 1-1. An interesting question is: given a function f in
Fun(Nk,N), which functions ϕ in Fun(∗Nk,∗N) satisfy the condition f = ϕ̂?

De�nition 2.3.9. Let f be a function in Fun(Nk,N). A function ϕ in
Fun(∗Nk,∗N) is ∼u-equal to f if

1. ϕ ∈ Pk;

2. ϕ̂ = f .
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Theorem 2.3.10. Let f be a function in Fun(Nk,N) and ϕ a function in
Fun(∗Nk,∗N). The following two conditions are equivalent:

1. ϕ is ∼u-equal to f ;

2. ϕ−1(∗A) =∗(f−1(A)) for every subset A of N.

Proof. (1) ⇒ (2) Suppose that ϕ is ∼u-equal to f , and let A be a subset of
N. Since ϕ̂ = f , it follows that ϕ̂−1(ΘA) = f

−1
(ΘA).

In particular, given an element (α1, ..., αk) in ∗Nk, if U = U(α1,...,αk) then
U ∈ ϕ̂−1(ΘA) if and only if U ∈ f

−1
(ΘA); this entails that ϕ̂(U) ∈ ΘA if

and only if f(U) ∈ ΘA. Since ϕ̂(U) = Uϕ((α1,...,αk)) and f(U) = U∗f((α1,...,αk)),
then ϕ((α1, ..., αk)) ∈∗A if and only if ∗f((α1, ..., αk)) ∈∗A, so (α1, ..., αk) ∈
ϕ−1(∗A) if and only if (α1, ..., αk) ∈∗f−1(∗A) =∗(f−1(A)). As this holds for
every (α1, ..., αk) in ∗Nk and every subset A of N, we get the thesis.
(2)⇒ (1) Suppose that ϕ−1(∗A) =∗(f−1(A)) for every subset A of N.

Claim 1: ϕ is in ∼u-preserving.

By contrast, suppose that ϕ is not in Pk. Then there are elements
(α1, ..., αk) ∼u (β1, ..., βk) in ∗Nk and a subsetA of N such that ϕ((α1, ..., αk)) ∈∗A
and ϕ((β1, ..., βk)) /∈∗A. So

(α1, ..., αk) ∈ ϕ−1(∗A) =∗(f−1(A)) and (β1, ..., βk) /∈∗(f−1(A)),

which is absurd since (α1, ..., αk) ∼u (β1, ..., βk) .

Claim 2: ϕ̂ = f .

In fact, let U be an ultra�lter in β(Nk), and (α1, ..., αk) a generator of
U . By hypothesis, for every subset A of N, ϕ((α1, ..., αn)) ∈∗A if and only if
∗f((α1, ..., αn)) ∈∗A, so ϕ((α1, ..., αn)) ∼u∗f((α1, ..., αn)), and since ϕ̂(U) =
Uϕ((α1,...,αn)) and f(U) = U∗f((α1,...,αn)), it follows that ϕ̂ = f .

2.4 Tensor k-tuples

In this section, we suppose that the hyperextension ∗N satis�es the c+-
saturation property.
Usually, when working in βN, we are interested in functions in Fun((βN)k, βN)
rather than in functions in Fun(β(Nk), βN). E.g., we are interested to study
the property of the sum ⊕ ∈ Fun((βN)2, βN) of ultra�lters rather than in
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studying the unique continuos extension in Fun(β(N2), βN) of the usual ad-
dition of natural numbers.
β(Nk) and (βN)k (that from now on we denote by βNk) are two di�erent
spaces. Nevertheless, βNk can be identi�ed with an important subset of
β(Nk): the subset of tensor products. We recall that, given ultra�lters
U1, ...,Uk in βN, U1 ⊗ ... ⊗ Uk is the ultra�lter on Nk de�ned by this con-
dition: for every subset A of Nk,

A ∈ U1 ⊗ ...⊗ Uk ⇔

⇔ {n1 ∈ N | {n2 ∈ N | ... | {nk ∈ N | (n1, ..., nk) ∈ A} ∈ Uk}.... ∈ U2} ∈ U1.

De�nition 2.4.1. We denote by Tk the subset of β(Nk) having as elements
the tensor products of ultra�lters in βN:

Tk = {U ∈ β(Nk) | ∃U1, ...,∃Uk ∈ βN with U = U1 ⊗ U2 ⊗ ...⊗ Uk}.

Proposition 2.4.2. If k > 1 then Tk is properly included in β(Nk).

Proof. In Proposition 1.1.17 we proved that the upper diagonal of N2 is an
element of every tensor product U ⊗ V of ultra�lters. Similarly, it could be
proved that the set

A = {(n1, ..., nk) ∈ Nk | ni ≤ nk for every i ≤ k}

is an element of every tensor product in β(Nk). So Tk ⊆ ΘA. As ΘAc 6= ∅,
it follows the thesis.

Theorem 2.4.3. The map ⊗k : βNk → Tk such that, ∀(U1, ...,Uk) ∈ βNk,

⊗k((U1, ...,Uk)) = U1 ⊗ U2 ⊗ ...⊗ Uk
is a bijection.

Proof. The map is clearly surjective. To prove that ⊗k is 1-1 we observe
that, given any subset A of N, the set

Ai = {(n1, ..., nk) ∈ Nk | ni ∈ A}

is in U1 ⊗ ...⊗ Uk if and only if A ∈ Ui; observe also that (Ac)i = (Ai)
c.

Suppose that (U1, ...,Uk) and (V1, ...,Vk) are two di�erent elements in βNk

with U1 ⊗ ... ⊗ Uk = V1 ⊗ ... ⊗ Vk. For every subset A of N, for every index
i, by hypothesis Ai ∈ U1 ⊗ ...⊗ Uk if and only if Ai ∈ V1 ⊗ ...⊗ Vk, and this
entails that A ∈ Ui if and only if A ∈ Vi. Since this is true for every index i
and for every subset A of N, then Ui = Vi for every index i ≤ k. This proves
that the map ⊗ is 1-1.
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To use the nonstandard techniques that we are introducing we need a
characterization of the set of generators of U1⊗...⊗Uk in terms of GU1 , ..., GUk .
To semplify the tractation, and clarify the basic ideas, we pose k = 2; at the
end of the section, we give the formulation for a generical natural number k.
Let U ,V be ultra�lters on N, and consider U ⊗ V .

Proposition 2.4.4. For every U ,V ultra�lters on N, GU⊗V is subset of GU×
GV . In particular, if both U and V are nonprincipal then GU⊗V is a proper
subset of GU ×GV .

Proof. Let U ,V be ultra�lters on N. For every sets A ∈ U , B ∈ V , the
cartesian product A×B ∈ U ⊗ V , so⋂

S∈U⊗V
∗S ⊆

⋂
A∈U ,B∈V(∗A×∗B) ⊆ GU ×GV .

When U and V are nonprincipal the inclusion is proper since, as we proved
in Proposition 1.1.17, the upper diagonal of N2 is in every such tensor prod-
uct; in particular, we get that for every (α, β) in GU⊗V , α ≤ β. But GV , as
we proved in Proposition 2.2.6, is left unbounded: if α is in GU , in GV there
is an element β < α, and (α, β) ∈ GU ×GV \GU⊗V .

We give a special name to the pairs in ∗N2 that generate tensor products:

De�nition 2.4.5. Let α, β be two hypernatural numbers in ∗N. (α, β) is a
tensor pair if U(α,β) = Uα ⊗ Uβ.

Proposition 2.4.6. For every natural number n and every hypernatural
number α, (α, n) and (n, α) are tensor pairs.

Proof. By de�nition, A ∈ U(α,n) if and only if (α, n) ∈∗A if and only if
α ∈ {β ∈∗N | (β, n) ∈∗A} =∗{a ∈ N | (a, n) ∈ A} if and only if {a ∈ N | {b ∈
N | (a, b) ∈ A} ∈ Un} ∈ Uα if and only if A ∈ Uα ⊗ Un. Similarly for (n, α).

The problem becomes: given two nonprincipal ultra�lters U ,V , how can
we characterize the tensor pairs (α, β) that generate U ⊗ V?

This problem has been solved by ChristianW. Puritz in [Pu72,Theorem 3.4]:

Theorem 2.4.7 (Puritz). Let ∗N be a hyperextension of N with the c+-
enlarging property. For every ultra�lters U ,V on N,

GU⊗V={(α, β) ∈∗N2 | α ∈ GU , β ∈ GV , α < er(β)},

where
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er(β) = {∗f(β) | f ∈ Fun(N,N),∗f(β) ∈∗N \ N}.

We just warn the reader that we have presented this theorem with the
modern notation U ⊗ V for tensor products, while Puritz uses the notation
U × V , which is not only graphically di�erent from ours, but has also a
di�erent meaning: given ultra�lters U , V , by de�nition U × V = V ⊗ U .
For tensor pairs, this theorem tells that (α, β) is a tensor pair if and only if
α < er(β). The problem is that, given two generical hypernatural numbers
α, β, it can be very di�cult to decide if α < er(β) or not; it would be
useful to have conditions equivalent to state that (α, β) is a tensor pair: the
equivalences below are exposed in [DN].

Theorem 2.4.8. If α, β are in�nite hypernatural numbers, the following
conditions are equivalent:

1. (α, β) is a tensor pair;

2. For every A ⊆ N2, if (α, β) ∈∗A then there is a natural number n with
(n, β) ∈∗A;

3. For every A ⊆ N2, if (n, β) ∈∗A for every n ∈ N, then (α, β) ∈∗A;

4. α < er(β).

Proof. First of all, that (4) is equivalent to (1) is the content of Puritz's
Theorem; observe also that (2) is equivalent to (3), since the one is the
contrapositive of the other applyed to Ac.
(1)⇒(3) Let A be a subset of N2. By de�nition, given any natural number n,
(n, β) ∈∗A if and only if β ∈ {η ∈ ∗N | (n, η) ∈∗A} if and only if β ∈∗{m ∈
N | (n,m) ∈ A} if and only if {m ∈ N | (n,m) ∈ A} ∈ Uβ.
Now suppose that, for every natural number n, (n, β) ∈∗A. As we observed,
this entails that for every natural number n the set {m ∈ N | (n,m) ∈ A} is
in Uβ so, in particular, the set

{n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ Uβ}

is N, which is in Uα, and this by de�nition implies that A ∈ Uα⊗Uβ. But
(α, β) is, by hypothesis, a tensor pair, so Uα ⊗ Uβ = U(α,β), and (α, β) ∈∗A.
(3)⇒(4) Let f be a function in Fun(N,N) such that ∗f(β) in�nite. Consider

A = {(n,m) ∈ N2 | n < f(m)}.
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Observe that, since ∗f(β) is in�nite, for every natural number n the pair
(n, β) is in ∗A = {(η, µ) ∈∗N2 | η <∗f(µ)}. By hypothesis, we get that
(α, β) ∈∗A, so α <∗f(µ). Since this is true for every f with ∗f(β) in�nite,
we get that α < er(β).

We can generalize Puritz's result and Theorem 2.4.8 to k-tuples:

De�nition 2.4.9. An element (α1, ..., αk) in ∗Nk is a tensor k-tuple if
U(α1,...,αk) = Uα1 ⊗ ...⊗ Uαk .

Proposition 2.4.10. For every natural number k > 1, for every α1, ..., αk+1

in ∗N, the following two conditions are equivalent:

1. (α1, ...., αk+1) is a tensor (k + 1)-tuple;

2. (α1, ..., αk) is a tensor k-tuple and ((α1, ..., αk), αk+1) is a tensor pair.

Proof. Observe that, via the function f : Nk+1 → Nk×N that maps (a1, ..., ak, ak+1)
in ((a1, ..., ak), ak+1), U(α1,...,αk,αk+1) can be identi�ed with U((α1,...,αk),αk+1).
So (α1, ..., αk, αk+1) is a tensor (k + 1)-tuple if and only if U(α1,...,αk,αk+1) =
Uα1 ⊗ ... ⊗ Uαk ⊗ Uαk+1

if and only if U(α1,...,αk,αk+1) = U((α1,....,αk),αk+1) =
(Uα1 ⊗ ... ⊗ Uαk) ⊗ Uαk+1

if and only if (α1, ..., αk) is a tensor k-tuple and
((α1, ..., αk), αk+1) is a tensor pair.

As a consequence, a characterization of tensor pairs in the form ((α1, ..., αk), αk+1)
would give an inductive procedure to test if (α1, ..., αk+1) is a tensor (k+ 1)-
tuple. Such a characterization can be obtained by generalizing Theorem
2.4.8:

Theorem 2.4.11. Given elements α1, ..., αk in ∗N, αk+1 in ∗N \ N, the fol-
lowing conditions are equivalent:

1. ((α1, ..., αk), αk+1) is a tensor pair;

2. For every subset A ⊆ Nk × N, if ((α1, ..., αk), αk+1) ∈∗A then there
exists (n1, ..., nk) ∈ Nk with ((n1, ..., nk), αk+1) ∈∗A;

3. For every subset A ⊆ Nk × N, if for every natural numbers n1, ..., nk
((n1, ..., nk), αk+1) ∈∗A then ((α1, ..., αk), αk+1) ∈∗A;

4. αi ≤ er(αk+1) for every index i ≤ k.
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Proof. Similarly to Theorem 2.4.8, we have that conditions (2) and (3) are
equivalent, since the one is the contrapositive of the other applyed to Ac.
(1)⇒(3): Let A be a subset of Nk × N. By de�nition, given natural num-
bers n1, ..., nk, ((n1, ..., nk), αk+1) ∈∗A if and only if αk+1 ∈ {β ∈ ∗N |
((n1, ..., nk), β) ∈∗A} if and only if αk+1 ∈∗{m ∈ N | ((n1, ..., nk),m) ∈ A} if
and only if {m ∈ N | ((n1, ..., nk),m) ∈ A} ∈ Uαk+1

.
Suppose that, for every natural numbers n1, ..., nk, ((n1, ..., nk), αk+1) ∈∗A.
As we observed, this entails that for every natural numbers n1, ..., nk the set
{m ∈ N | ((n1, ..., nk),m) ∈ A} is in Uαk+1

so, in particular,

{(n1, ..., nk) ∈ Nk | {m ∈ N | ((n1, ..., nk),m) ∈ A} ∈ Uαk+1
} = Nk,

so this set is in U(α1,...,αk), and this by de�nition implies that

A ∈ U(α1,...,αk) ⊗ Uαk+1
.

But ((α1, ..., αk), αk+1) is, by hypothesis, a tensor pair, so

U(α1,...,αk) ⊗ Uαk+1
= U((α1,...,αk),αk+1),

and ((α1, ..., αk), αk+1) ∈∗A.
(3)⇒(4) Let f be a function in Fun(Nk,N) such that ∗f(αk+1) is in�nite.
Consider

A = {((n1, ..., nk),m) ∈ Nk × N | ni < f(m) for every i ≤ k}.

Observe that, as ∗f(αk+1) is in�nite, for every natural numbers n1, ..., nk
the pair ((n1, ..., nk), αk+1) is in

∗A = {((η1, ..., ηk), µ) ∈∗Nk×∗N | ηi <∗f(µ) for every i ≤ k}.

By hypothesis, ((α1, ..., αk), αk+1) ∈∗A, so αi <∗f(αk+1) for every i ≤ k.
Since this holds for every function f in Fun(Nk,N) with ∗f(αk+1) in�nite, it
follows that αi < er(αk+1) for every index i ≤ k.
(4)⇒(1): This proof follows the original ideas of Puritz.
Consider U = U(α1,...,αk)⊗Uαk+1

, and let A be any set in U . For every n1, ..., nk
in N, de�ne

A(n1,...,nk) = {m ∈ N | ((n1, ..., nk),m) ∈ A}

and

A′(n1,...,nk)
= A(n1,...,nk) \ [0,max{n1, ..., nk}].

Consider the function f : N→ N such that, for every natural number m,
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f(m) = min{n ∈ N | ∃n1, ..., nk with ni ≤ n for every i ≤ k,
A(n1,...,nk) ∈ Uαk+1

and m /∈ A(n1,..,nk) \ [0, n]}.

The de�nition is well-posed because, since A is in U , there are arbitrarily
large natural numbers n (in particular, n > m) such that A(n1,...,nk) ∈ Uαk+1

for some n1, ...nk with ni ≤ n for every index i ≤ k.
Observe that ∗f(αk+1) is in�nite: in fact, suppose that ∗f(αk+1) = n for
some �nite natural number n; by de�nition, there are n1, ..., nk with ni ≤ n
for every index i ≤ k and A(n1,...,nk) ∈ Uαk+1

, which entails αk+1 in ∗A(n1,...,nk)

and, as αk+1 is in�nite, αk+1 ∈∗A(n1,...,nk) \ [0, n], so ∗f(αk+1) 6= n, absurd.
By hypothesis, αi <∗f(αk+1) for every index i ≤ k. Pose

A0 = {(n1, ..., nk) ∈ Nk | A(n1,...,nk) ∈ Uαk+1
}.

AsA is a set in U , A0 ∈ A(α1,...,αk) so (α1, ..., αk) ∈∗A0 = {(β1, ..., βk) ∈∗Nk |
A(β1,...,βk) ∈∗Uαk+1

}. So

A(α1,...,αk) = {µ ∈∗N | ((α1, ..., αk), µ) ∈∗A} ∈∗Uαk+1
.

For every index i ≤ k, αi <∗f(αk+1), and

∗f(αk+1) = min{η | ∃ρ1, ..., ρk with ρi ≤ η for every i ≤ k, A(ρ1,...,ρk) ∈∗Uαk+1

and αk+1 /∈ Aρ1,...,ρk \ [0, η]}.

Since, as we showed, A(α1,...,αk) ∈∗Uαk+1
, necessarily

αk+1 ∈ A(α1,...,αk) \ [0,max{α1, ..., αk}],

so ((α1, ..., αk), αk+1) ∈∗A. Since this is true for every set A in U , it
follows that U(α1,...,αk) ⊗ Uαk+1

= U((α1,...,αk),αk+1), so ((α1, ..., αk), αk+1) is a
tensor pair.

Corollary 2.4.12. For every natural number k ≥ 1, for every α1, ..., αk+1 in
∗N, the following two conditions are equivalent:

1. (α1, ..., αk+1) is a tensor (k + 1)-tuple;

2. αi < er(αi+1) for every index i ≤ k.

Proof. We proceed by induction on k. If k = 1, this is Puritz's Theorem.
(1)⇒ (2) Pose k = h+ 1, and suppose that (α1, ..., αk+1) is a tensor (k + 1)-
tuple. By Proposition 2.4.10 it follows that (α1, ...., αk) is a tensor k-tuple and
((α1, ..., αk), αk+1) is a tensor pair. By inductive hypothesis, αi < er(αi+1)
for every index i ≤ k−1, and by Theorem 2.4.11 it follows that αi < er(αk+1)
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for every index i ≤ k; in particular αk < er(αk+1).
(2)⇒ (1) Suppose that αi < er(αi+1) for every index i ≤ k. By Theorem
2.4.11 it follows that ((α1, ..., αk), αk+1) is a tensor pair and, by inductive
hypothesis, that (α1, ..., αk) is a tensor k-tuple. So, by Proposition 2.4.10,
(α1, ..., αk+1) is a tensor (k + 1)-tuple.

The above theorem, similarly to Theorem 2.4.8, gives four equivalent
characterizations for the tensor (k + 1)-tuples but, in some sense, it has a
weakness: even with these new characterizations, it is di�cult, given k + 1
elements α1, ...., αk+1 in ∗N, to decide if (α1, ..., αk+1) is a tensor (k+1)-tuple
or not.
We are led by this observation to ask if it is possible to �nd a relation R on
∗Nk+1 with these two properties:

1. if (α1, ..., αk+1) ∈ R then (α1, ..., αk+1) is a tensor (k + 1)-tuple, and

2. given α1, ...., αk+1 it is simple to decide if (α1, ..., αk+1) ∈ R or not.

This question can be solved by considering a hyperextension of N that has a
particular property: it allows the iteration of the star map.

2.5 The Nonstandard Structure •N
Let α, β be in�nite hypernatural numbers, and consider the ultra�lter

U = Uα ⊗ Uβ. By de�nition, a subset A of N2 is in U if and only if the set

{n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ Uβ}

is in Uα. Since α, β are generators of Uα,Uβ, this condition holds if and
only if

(†) α ∈∗{n ∈ N | β ∈∗{m ∈ N | (n,m) ∈ A}}.

As, by transfer, ∗{m ∈ N | (n,m) ∈ A} = {η ∈∗N | (n, η) ∈∗A}, (†) can
be rewritten in this way:

α ∈∗{n ∈ N | (n, β) ∈∗A}.

Here, we are tempted to continue in this way: by transfer

∗{n ∈ N | (n, β) ∈∗A} = {η ∈∗N | (η,∗β) ∈∗∗A}
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so, as α is an element of this set, it follows that

A ∈ Uα ⊗ Uβ if and only if (α,∗β) ∈∗∗A.

There are two problems: if β ∈∗N \ N, what is the meaning of ∗β? And
what is ∗∗A? Recall that, in the superstructure approach that we adopt,
the star map ∗ goes from a superstructure V(X) to one other superstructure
V(Y ): α, β are elements in V(Y ), and we cannot apply the star map ∗ to
them. This would be possible if V(X) = V(Y ): we would like to work with
a superstructure model 〈V(X),V(X), ∗〉 of nonstandard methods where the
star map goes from a superstructure V(X) to itself.
A natural question arises: is such a construction possible? The answer is
a�rmative; an example is given in the article [Ben95] by Vieri Benci, with a
construction that was motivated by the Alpha Theory; another possibility is
given by the nonstandard set theory ∗ZFC by Mauro di Nasso (see [DN97]),
where the enlarging map ∗ is de�ned for every set of the universe. The theory
∗ZFC is equiconsistent with ZFC.
In this section, we �x a superstructure model of nonstandard methods in the
form 〈V(X),V(X), ∗〉, and we study a few of its properties, with a particular
interest for the relations between this kind of superstructures and the bridge
map.

2.5.1 Star iterations

Throughout this section, we �x a single superstructure model of nonstan-
dard methods

〈V(X),V(X), ∗〉.

Since ∗ is, by de�nition, a function that maps V(X) into V(X), it is
natural to ask what happen if one iterates this function.

De�nition 2.5.1. We de�ne inductively the family 〈Sn | n ∈ N〉 of functions
Sn : V(X)→ V(X) posing

S0 = id;

and, for n ≥ 0,

Sn+1 = ∗ ◦ Sn.

We make this convention: if y is any object in V(X), for every natural
number n the notation
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n︷︸︸︷
∗...∗y

is equivalent to Sn(y), and it is used when the natural number n is "small":
e.g., if α is an hypernatural number, we usually denote S1(α), S2(α) by ∗α,
∗∗α, respectively.
In the following proposition, if ϕ(x1, ..., xn) is a �rst order formula with pa-
rameters p1, ..., pk, for every natural number n the formula ϕn(x1, ..., xn) is
obtained by ϕ(x1, ..., xn) by substituting each parameter pi with Sn(pi).

Theorem 2.5.2. For every positive natural number n, 〈V(X),V(X), Sn〉 is
a superstructure model of nonstandard methods.

Proof. By induction on n; the case n = 1 holds, as 〈V(X),V(X), ∗〉 is a
superstructure model of nonstandard methods.
Suppose n = m + 1. By de�nition of superstructure model of nonstandard
methods, we have to prove that Sn(X) = X and that Sn is a proper star
map with the transfer property.
1) Sn(X) = X: by induction we know that Sm(X) = X so, by transfer
property we get that ∗(Sm(X)) =∗X. As ∗(Sm(X)) =Sn(X) by de�nition,
and ∗X = X since 〈V(X),V(X), ∗〉 is a superstructure model of nonstandard
methods, it follows that Sn(X) = X.
2) Sn is a proper star map: let A be an in�nite subset of X. Consider

σnA = {Sn(a) | a ∈ A}.

Pose B =σmA. By construction, σnA =σB and, since ∗ is proper, σB is
a proper subset of ∗B. Also, by inductive hypothesis, B =σmA is a proper
subset of Sm(A) so, by transfer property (of ∗), it follows that ∗B is a proper
subset of Sm(A).
3) Sn satis�es the transfer property: let ϕ(x1, ..., xn) be a bounded quanti�er
formula. Since ∗ satis�es the transfer property, we know that, for every
a1, ..., ak in X,

V(X) |= ϕ(a1, ..., ak)⇔ V(X) |=∗ϕ(∗a1, ...,
∗ak). (1)

By inductive hypothesis, ∗m satis�es the transfer property, so for every
a1, ..., ak in X,

V(X) |= ϕ(a1, ..., ak)⇔ V(X) |= ϕm(Sm(a1), ..., Sm(ak)). (2)

Now, take any b1, ..., bk inX. By (1) it follows that V(X) |= ϕ(b1, ..., bk)⇔
V(X) |=∗ϕ(∗b1, ...,

∗bk). By (2), were we take ai =∗bi for every i ≤ k, we get
that V(X) |=∗ϕ(∗b1, ...,

∗bk) ⇔ V(X) |= ϕ(m+1)(Sm(∗b1), ..., Sm(∗bk)), so we
conclude that
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V(X) |= ϕ(b1, ..., bk)⇔ V(X) |= ϕn(Sn(b1), ..., Sn(bk)).

From now on, we focus on some particular properties of N and of the
hyperextensions Sn(N). Of course since, as we proved, 〈V(X),V(X), Sn〉 is
a superstructure model of nonstandard methods, Sn(N) has all the generical
properties of the hyperextensions of N. The particularity, in this context,
are the relations between di�erent hyperextensions Sn(N), Sm(N) for di�erent
natural numbers n,m.

Proposition 2.5.3. Let n ≤ m be natural numbers, and A a subset of N.
Then

1. For every natural number a, Sn(a) = a;

2. Sn(A) ⊆ Sm(A), and the inclusion is proper if and only if A is in�nite;

3. If α is an hypernatural number in Sn(A) then, for every natural number
k, Sk(α) ∈ S(n+k)(A);

4. Sn(A) = Sm(A) ∩ Sn(N);

5. Sn+1(N) is an end extension of Sn(N): ∀α ∈ Sn(N),∀β ∈ Sn+1(N) \
Sn(N), α < β.

Proof. 1) This property holds in every superstructure model of nonstandard
methods.
2) To prove this result we show that it holds if m = n + 1, as this clearly
entails the thesis.
Suppose that m = n + 1. That Sn(A) ⊆ Sn+1(A) holds since the map Sn
satis�es the transfer property: in fact, for every subset A on N, A ⊆∗A so,
by transfer property (of Sn), Sn(A) ⊆ Sn(∗A) = Sn+1(A).
Observe that, as a consequence of (1), if A is �nite then Sn(A) = A, so if the
inclusion Sn(A) ⊂ Sn+1(A) is proper then A is in�nite. Conversely, if A is
in�nite, then the inclusion A ⊂∗A is proper and, by transfer property of Sn,
it follows that the inclusion Sn(A) ⊂ Sn(∗A) = Sn+1(A) is proper.
3) This follows since the map Sk satis�es the transfer property: in fact, by
hypothesis α ∈ Sn(A) so, by transfer, Sk(α) ∈ Sk(Sn(A)), and Sk(Sn(A)) =
S(n+k)(A).
4) Sn(A) is a subset of Sm(A) by (2), and it is a subset of Sn(N) by transfer
(of Sn), as A ⊆ N. So Sn(A) ⊆ Sm(A) ∩ Sn(N). As for the reverse inclusion,
if α is an element in Sm(A) ∩ Sn(N) and α ∈ Sn(Ac), then by (3) it follows
that
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S(m−n)(α) ∈ S(m−n)(Sn(Ac)) = Sm(Ac),

and this is absurd.
5) This follows by transfer property (of Sn): we know that

∀n ∈ N,∀η ∈∗N \ N, n < η,

so by transfer property it follows that

∀α ∈ Sn(N),∀β ∈ Sn(∗N \ N), α < β,

and the conclusion follows as Sn(∗N \ N) = Sn+1(N) \ Sn(N).

We observe that, if A is not a subset of N but it is a generical subset of
Sn(N) for some natural number n ≥ 1, the properties of Proposition 2.5.3 do
not necessarily hold: in fact, e.g., if α is an in�nite hypernatural number in
∗N, and A = {α}, then ∗A = {∗α}, so A is not a subset of ∗A (as ∗α ∈∗∗N\∗N,
so α <∗α).

De�nition 2.5.4. Let 〈V(X),V(X), ∗〉 be a superstructure model of non-
standard methods. We call ω-hyperextension of N, and denote by •N, the
union of all hyperextensions Sn(N):

•N =
⋃
n∈N Sn(N).

In particular, for every natural number n, Sn(N) is a subset of •N. Actu-
ally, since

〈Sn(N) | n < ω〉

is an elementary chain of models, it follows that:

Theorem 2.5.5. For every natural number n, Sn(N) is an elementary sub-
model of •N.

This theorem is a particular case of the Elementary Chain Theorem,
see e.g. [CK90,Theorem 3.1.9]. As a consequence, it follows that •N is an
hyperextension of N.
Observe that, by de�nition of •N, Proposition 2.5.3 can be reformulated in
this way:

Proposition 2.5.6. Let n be a natural number, and A a subset of N. Then

1. For every natural number a, •a = a;
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2. Sn(A) ⊆•A, and the inclusion is proper if and only if A is in�nite;

3. For every hypernatural number α in •N, α ∈•A⇔ Sn(α) ∈•A

4. Sn(A) =•A ∩ Sn(N);

5. •N is an end extension of Sn(N): ∀α ∈ Sn(N),∀β ∈•N \ Sn(N), α < β;

Our aim is to study the bridge map ψ :•N → βN. As we saw in Section
2.2.1, the de�nition of the bridge map requires that the associated hyperex-
tension has, at least, the c+-enlarging property. The question is: does •N
satisfy the c+-enlarging property?

Proposition 2.5.7. For every natural number n ≥ 1 the implications (1)⇒
(2)⇒ (3) hold, where

1. ∗N has the c+-enlarging property;

2. Sn(N), seen as a hyperextension of N, has the c+-enlarging property;

3. •N, seen as a hyperextension of N, has the c+-enlarging property.

Proof. In the proof, F denotes a family of subsets of N with the �nite inter-
section property.
(1) ⇒ (2): For every set F ∈ F , as we proved in Proposition 2.5.3, since
F ⊆ N then ∗F ⊆Sn(F ). In particular⋂

F∈F
∗F ⊆

⋂
F∈FSn(F ).

Since
⋂
F∈F

∗F is nonempty by hypothesis, it follows that
⋂
F∈FSn(F ) is

nonempty, so Sn(N) has the c+-enlarging property.
(2) ⇒ (3): For every set F ∈ F , as F ⊆ N by Proposition 2.5.6 it follows
that Sn(F ) ⊆•F , so ⋂

F∈F Sn(F ) ⊆
⋂
F∈F

•F .

Since
⋂
F∈F Sn(F ) is nonempty by hypothesis, it follows that

⋂
F∈F

•(F ) is
nonempty, so •N has the c+-enlarging property.

The speci�cation "seen as a hyperextension of N" has been pointed out
since, e.g., ∗∗N is a hyperextension of N and a hyperextension of ∗N, and ask-
ing if ∗∗N has the c+-enlarging property with respect to families of subsets
of N is di�erent to ask if ∗∗N has the c+-enlarging property with respect to
families of subsets of ∗N.
Also, we observe that this result does not hold for the c+-saturation property,
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as a consequence of the following fact:

Fact: •N has co�nality ℵ0.

In fact, a countable right unbounded sequence in •N can be constructed
choosing, for every natural number n, an hypernatural number αn in Sn+1(N)\
Sn(N). Since •N has co�nality ℵ0, it can not be c+-saturated: if 〈αn | n ∈ N〉
is the countable sequence previously introduced, and for every natural num-
ber n we pose

In = {η ∈•N | η ≥ αn},

the family

〈In | n ∈ N〉

is a countable family of internal subsets of •N and
⋂
n∈N In = ∅. In

particular, •N is not c+-saturated.
As for the coinitiality of •N \ N, we have:

Proposition 2.5.8. If the map ∗ satis�es the c+-saturation property, the
coinitiality of •N \ N is at least c+.

Proof. Observe that, by construction, ∗N \N is an initial segment of •N \N,
so the coinitiality of •N \ N is equal to the coinitiality of ∗N \ N which, if ∗
satis�es the c+-saturation property, is at least c+.

The structure of •N leads to introduce the following concept:

De�nition 2.5.9. Let n ≥ 1 be a natural number, and (α1, ...., αn) be an
element of •Nn \ Nn. The height of (α1, ...., αn) (notation h((α1, ..., αn))) is
the least natural number m such that (α1, ...., αn) ∈ Sm(Nn).

Observe that, by de�nition,

h((α1, ..., αn)) = m⇔ (α1, ..., αn) ∈ Sm(Nn) \ Sm−1(Nn).

Proposition 2.5.10. For every natural number n, for every hypernatural
numbers α, α1, ..., αn in •N \ N, for every subset A of N, for every function
f in Fun(N,N) the following properties hold:

1. h(∗α) = h(α) + 1;
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2. h(Sn(α)) = h(α) + n;

3. h(α · β) = h(α + β) = h(αβ) = max{h(α), h(β)};

4. h((α1, α2, ..., αn)) = max{h(αi) | i ≤ n};

5. h(•f(α)) ≤ h(α);

6. α ∈•A⇔ α ∈ Sh(α)(A).

Proof. 1) Observe that m = h(α)⇔ α ∈ Sm(N)\Sm−1(N)⇔∗α ∈ Sm+1(N)\
Sm(N)⇔ h(∗α) = m+ 1.
2) It trivially follows by induction by (1).
3) This follows by observing that, for every α, β in •N, for every natural num-
ber n, α + β ∈ Sn(N) if and only if α · β ∈ Sn(N) if and only if αβ ∈ Sn(N)
if and only if both α, β are in Sn(N).
4) This follows by observing that, for every natural numberm ≥ 1, (α1, ..., αn) ∈
Sm(Nn) if and only if, for every index i ≤ n, αi ∈ Sm(N).
5) For every natural number m, by de�nition

•f�Sm(N) = Sm(f).

And Sm(f) ∈ Fun(Sm(N), Sm(N)) so, if h(α) = m, then h(•f(α)) = h(Sm(f)(α)) ≤
m.
6) If α ∈ Sh(α)(A) then, as Sh(α)(A) ⊆•A, α ∈•A. Conversely, since α ∈
Sh(α)(N), if α ∈ Sh(α)(Ac) then α ∈•Ac, and this is absurd.

From now on, we concentrate on the hyperextension •N of N, constructed
as to satisfy the c+-enlarging property, and we study the property of the
bridge map ψ :•N→ N.

2.5.2 Sets of generators in •N
In this section we study, in some detail, the properties of the sets of

generators of ultra�lters in •N. We recall that, given an ultra�lter U , the set
of generators of U in •N is

GU = {α ∈•N | U = Uα}

where, for every hypernatural number α in •N,

Uα = {A ⊆ N | α ∈•A}.
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Proposition 2.5.11. For every ultra�lter U in βN, for every hypernatural
number α in •N, for every natural number n, the following two conditions
are equivalent:

1. α is a generator if U ;

2. Sn(α) is a generator of U .

Proof. By point four of Proposition 2.5.6 it follows that, for every subset A
of N, α ∈•A if and only if Sn(α) ∈•A. From this follows that, for every subset
A of N,

A ∈ Uα ⇔ A ∈ USn(α),

so U = Uα if and only if U = USn(α).

De�nition 2.5.12. Given an ultra�lter U and a natural number n ≥ 1, Gn
U

denotes the set of generators of U with height at most n:

Gn
U = {α ∈ GU | h(α) ≤ n} = GU ∩ Sn(N).

Proposition 2.5.13. Let U be any nonprincipal ultra�lter on N, and n any
natural number. Then:

1. |Gn
U | = |Sn(N)|; |GU | = |•N|;

2. ∗Gn
U ⊆ Gn+1

U ;

3. The co�nality of GU is ℵ0.

Proof. 1) These two assertions follow by Proposition 2.2.4, since both Sn(N)
and •N are hyperextensions of N that satisfy the c+-enlarging property by
Proposition 2.5.7.
2) Observe that, for every set A in U , for every natural number n, by de�ni-
tion of sets of generators

Gn
U ⊆ Sn(A).

By transfer it follows that

∗Gn
U ⊆∗Sn(A) = Sn+1(A).

Since this holds for every set A in U , then
∗Gn
U ⊆

⋂
A∈U Sn+1(A) = Gn+1

U .
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3) Since Gn
U , as U is nonprincipal, is in�nite, by point (2) it follows that,

for every natural number n, since ∗ is a proper star map then Gn+1
U \Gn

U 6= ∅.
So, for every natural number n, there is an element αn in Gn+1

U \ Gn
U . The

sequence 〈αn | n ∈ N〉 is a right unbounded sequence of elements in GU , so
the co�nality of GU is ℵ0.

When the ∗map satis�es the c+-saturation property, the sets of generators
satisfy the following additional properties:

Proposition 2.5.14. Let ∗ be a star map with the c+-saturation property,
U an ultra�lter on N and n ≥ 1 a natural number. Then

1. Gn+1
U \Gn

U is left unbounded in Sn+1(N) \ Sn(N);

2. GU has coinitiality greater than c, and it is left unbounded in •N \ N.

Proof. 1) We proceed by induction on n. Suppose n = 0. Let η be an in�nite
hypernatural number in ∗N \ N and pose, for every set A in U ,

Aη = {α ∈∗A | α < η}.

These sets are internal, nonempty (as A ⊆ Aη) and the family {Aη}A∈U
has the �nite intersection property and cardinality ≤ c. By c+-saturation
property, ⋂

A∈U Aη 6= ∅;

if α is an element in this intersection then α is in�nite, α < η and α ∈ G1
U :

this proves that G1
U is left unbounded in ∗N \ N.

By induction, suppose to have proved the property for every n ≤ k, and
consider n = k + 1. By inductive hypothesis, we know that

For every η in Sk+1(N) \ Sk(N) it exists α in Gk+1
U \Gk

U such that α < η.

Since Gk
U = Gk+1

U ∩Sk(N), we can substitute Gk+1
U \Gk

U with G
k+1
U \Sk(N);

by transfer, it follows that

For every η in Sk+2(N) \ Sk+1(N) it exists α in ∗Gk+1
U \ Sk+1(N) such that

α < η

and we conclude observing that, since ∗Gk+1
U ⊆ Gk+2

U , it follows

∗Gk+1
U \ Sk+1(N) ⊆Gk+2

U \ Sk+1(N) = Gk+2
U \Gk+1

U .
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2) By construction, since G1
U is an initial segment of GU , the coinitiality

of GU is equal to that of G1
U , which is greater than c by c+-saturation.

In next section is showed an important feature of the sets of generators
in •N: in this context, where the iteration of the star map is allowed, there
are particularly simple rules that, given generators α1, ..., αn of ultra�lters
U1, ...,Un, produce generators of the tensor product U1 ⊗ U2 ⊗ ...⊗ Un.

2.5.3 Tensor k-tuples in •N
As we observed in Section 2.4, given two hypernatural numbers α, β in

a generical extension ∗N of N (that satis�es the c+-enlarging property) it is
usually complicated to decide if (α, β) is, or is not, a tensor pair. In this
section, we consider the hyperextension •N of N, constructed starting with a
superstructure model of nonstandard methods 〈V(X),V(X), ∗〉 with the star
map ∗ that satis�es the c+-enlarging property.
What we search is a binary relation R over •N that satis�es the following
two properties:

1. given two hypernatural numbers α, β it is simple to decide if the pair
(α, β) is in R or not;

2. every pair (α, β) in R is a tensor pair.

The star iteration provides such a relation:

De�nition 2.5.15. The binary relation R on •N is the relation such that,
for every α, β in •N:

(α, β) ∈ R⇔ ∃k ∈ N,∃γ ∈•N such that β = S(h(α)+k)(γ).

In this de�nition, we just observe that β ∼u γ, as a consequence of
Proposition 2.5.11. This relation satis�es the property (1); the important
fact is that R satis�es also the second property, as it is proved in the theorem
below:

Theorem 2.5.16. For every hypernatural numbers α, β in •N, if (α, β) ∈ R
then (α, β) is a tensor pair.

Proof. As (α, β) ∈ R, there are a natural number k and an hypernatural
number γ ∈•N such that β = S(h(α)+k)(γ). To prove that (α, β) is a tensor
pair we have to show that, for every subset A of N2, (α, β) ∈•A if and only
if A ∈ Uα ⊗ Uβ.
Let A be a subset of N2. By de�nition,
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A ∈ Uα ⊗ Uβ ⇔ {n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ Uβ} ∈ Uα.

Since, as observed, Uβ = Uγ, it follows that

A ∈ Uα ⊗ Uβ ⇔ {n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ Uγ} ∈ Uα.

By de�nition of generated ultra�lter,

{n ∈ N | {m ∈ N | (n,m) ∈ A} ∈ Uγ} ∈ Uα ⇔

⇔ α ∈ Sh(α)({n ∈ N | γ ∈ Sh(γ)({m ∈ N | (n,m) ∈ A})}).

By transfer property,

α ∈ Sh(α)({n ∈ N | γ ∈ Sh(γ)({m ∈ N | (n,m) ∈ A})})⇔

⇔ α ∈ Sh(α)({n ∈ N | Sk(γ) ∈ S(h(γ)+k)({m ∈ N | (n,m) ∈ A})})⇔

⇔ (α, S(h(α)+k)(γ)) ∈ S(h(α)+h(γ)+k)(A).

Since S(h(α)+k)(γ) = β and h((α, β)) = h(β) = h(α) + h(γ) + k, by
Proposition 2.5.6 it follows that

(α, S(h(α)+k)(γ)) ∈ S(h(α)+h(γ)+k)(A)⇔ (α, β) ∈•A.

This proves that, for every subset A of N2,

A ∈ Uα ⊗ Uβ ⇔ (α, β) ∈•A,

so (α, β) is a tensor pair.

Corollary 2.5.17. For every hypernatural numbers α, β in •N, (α, Sh(α)(β))
is a tensor pair.

Proof. Just observe that, for every α, β in •N, (α, Sh(α)(β)) ∈ R.

In •N, tensor pairs have the following equivalent characterization:

Proposition 2.5.18. Let α, β be two hypernatural numbers in •N. The fol-
lowing conditions are equivalent:

1. (α, β) is a tensor pair;

2. (α, β) ∼u (α, Sh(α)(β)).
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Proof. Observe that, given α, β ∈•N, (α, Sh(α)(β)) is a tensor pair and, as
β ∼u Sh(α)(β), if follows that U(α,Sh(α)(β)) = Uα ⊗ Uβ.
(1)⇒ (2) If (α, β) is a tensor pair, U(α,β) = Uα ⊗ Uβ by de�nition, so by the
above observation we get that (α, β) ∼u (α, Sh(α)(β)).
(2) ⇒ (1) If U(α,β) = U(α,Sh(α)(β)) then, by the previous observation, U(α,β) =
Uα ⊗ Uβ so (α, β) is a tensor pair.

We remark that the result of Theorem 2.5.16 could be derived combining
Puritz's Theorem with the following fact:

Proposition 2.5.19. For every hypernatural number α in •N, for every nat-
ural number n ≥ 1, for every function f ∈ Fun(N,N), or •f(Sn(α)) ∈ N or
h(•f(Sn(α))) ≥ n+ 1.

Proof. The result follows from this claim:

Claim: •f(Sn(α)) = Sn(•f(α)).

We prove the claim: if Γ•f is the graph of •f , for every x, y in •N, for
every n ≥ 1 ∈ N,

(x, y) ∈ Γ•f ⇔ (Sn(x), Sn(y)) ∈ Γ•f .

In particular, if x = α, y =•f(α) the claim is proved.
So, if •f(Sn(α)) /∈ N, then h(•f(Sn(α))) = h(Sn(•f(α))) = n + h(•f(α)) ≥
n+ 1.

Corollary 2.5.20. Theorem 2.5.16.

Proof. Let α, β be hypernatural numbers in •N such that (α, β) ∈ R, and let
n, γ be such that β = S(h(α)+n)(γ). Let f be a function in Fun(N,N).
Then or •f(β) ∈ N, or h(•f(β)) ≥ h(α) + n + 1; in this second case, since
h(•f(β)) > h(α), it follows that α <•f(β).
Since this happens for every function f in Fun(N,N) with •f(β) in�nite, by
Puritz's Theorem it follows that (α, β) is a tensor pair.

Corollary 2.5.21. Let k ≥ 2 be a positive natural number and α1, ..., αk
hypernatural numbers in •N. The following two conditions are equivalent:

1. (α1, ..., αk) is a tensor k-tuple;

2. (∗α1, ...,
∗αk) is a tensor k-tuple.
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Proof. Observe that, for every α, β in •N, α < er(β) if and only if ∗α < er(∗β)
(since, for every function f in Fun(N,N) such that •f(β) /∈ N, α ≤•f(β)⇔∗α ≤∗(•f(β))
and ∗(•f(β)) =•f(∗β)). This, combined with Theorem 2.4.11, gives the equiv-
alence between (1) and (2).

We still have the problem, given generical hypernatural numbers α1, ..., αk
in •N, to decide if (α1, ..., αk) is a tensor k-tuple. Similarly to the case k = 2,
we get that an appropriate use of star iteration gives a procedure to bypass
this problem:

De�nition 2.5.22. Let k ≥ 2 be a natural number and α1, ..., αk hypernatural
numbers in •N. The tensorized of (α1, ..., αk) (notation: T (α1, ..., αk)) is
the k-tuple

T (α1, ..., αk) = (Sh1(α1), Sh2(α2), ..., Shk(αk)),

where hi =
∑

j<i h(αj) for every index i in {1, ..., k}.

Observe that h1 = 0 (we included h1 in the de�nition because this inclu-
sion gives an uniform formulation to this notion).
E.g., if α, β, γ are three hypernatural numbers in ∗N, then

T (α, β, γ) = (α,∗β,∗∗γ).

Proposition 2.5.23. For every hypernatural numbers α1, ..., αk in •N the
tensorized T (α1, ..., αk) of (α1, ..., αk) is a tensor k-tuple.

Proof. We just observe that h(Shi(αi)) = hi + h(αi), so er(Shi+1
(αi+1)) >

Shi(αi); by Theorem 2.4.11 it follows that T (α1, ..., αk) is a tensor k-tuple.

As a corollary we get that, for every hypernatural numbers α1, ...αk in
•N,

Uα1 ⊗ ...⊗ Uαk = UT (α1,...,αk).

This gives a procedure to study, given a function f ∼u-preserving in
Fun(•Nk,•N), the restriction of f̂ to Tk: in fact, for every α1, ..., αk in •N

f̂(Uα1 ⊗ ...⊗ Uαk) = Uf(T (α1,...,αk)).
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This gives the possibility to study the functions in Fun(βNk, βN) in non-
standard terms. Next section is dedicated to two important particular cases:
the functions ⊕ and �.
We conclude this section with a remark. Puritz's Theorem, in some sense,
tells that a pair (α, β) is a tensor pair if β is "much larger" than α. In
•N, whenever α, β are hypernatural numbers such that h(α) < h(β), we can
surely state that β is much larger than α. One could imagine, then, that the
following property holds:

∀α, β ∈•N \ N, if h(α) < h(β) then (α, β) is a tensor pair.

This is false: consider the function f ∈ Fun(N,N) such that

f(n) =


p, if there are a prime number p

and a natural number k such that n = pk;

n, otherwise.

Let η be a prime number in ∗N \ N, ξ an hypernatural number in ∗N,
and consider β = η

∗ξ. By construction, •f(β) = η ∈∗N \ N. If α is any
hypernatural number in ∗N with α > η, since α is not smaller than er(β), by
Puritz's Theorem it follows that the pair (α, β) is not a tensor pair.

2.5.4 Sets of generators of sums and products of ultra-

�lters

We want to apply the results of Section 2.5.3 to study in nonstandard
terms two of the most important operations on βN, the sum ⊕ and the prod-
uct �.
As we already observed, the sum U ⊕ V (resp. the product U � V) of
two ultra�lters can be seen as the image, respect the continuous extension
S : βN2 → βN of the sum + : N2 → N (resp. the continuous extension
P : βN2 → βN of the product · : N2 → N), of the ultra�lter U ⊗ V . This,
combined to various results proven in this chapter, has the following conse-
quence:

Proposition 2.5.24. For every ultra�lters U ,V on N

GU⊕V = {α + β | (α, β) ∈ GU⊗V}

and

GU�V = {α · β | (α, β) ∈ GU⊗V}.
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In particular:

Proposition 2.5.25. For every ultra�lters U ,V ,W in βN, U ⊕ V = W if
and only if there are α ∈ GU , β ∈ GV such that (α, β) is a tensor pair and
α + β ∈ GW .

The Proposition 2.5.23 provides an easy way to �nd generators for ten-
sor products of ultra�lters. This gives a method to explicitally construct
generators for sums and products of ultra�lters:

De�nition 2.5.26. For every hypernatural numbers α, β in •N, we pose

α♥β = α+Sh(α)(β),

and

α♦β = α · Sh(α)(β).

In next theorem, we denote by ψ the bridge map with domain •N.

Theorem 2.5.27. For every hypernatural numbers α, β in •N,

ψ(α♥β) = ψ(α)⊕ ψ(β)

and

ψ(α♦β) = ψ(α)� ψ(β).

Proof. Simply observe that, since (α, Sh(α)(β)) is a tensor pair, α + Sh(α)(β)
is a generator of U ⊕ V , as a consequence of Theorem 2.3.5. Similarly with
the product.

Note that the above property is false if we consider +, · in place of ♥,♦.
Next proposition contains a list of easy properties of ♥,♦:

Proposition 2.5.28. For every α, β, γ ∈•N we have the following relations:

1. For all n ∈ N, α♥n = n♥α = α + n;

2. For all n ∈ N α♦n = n♦α = α · n;

3. α♥(β♥γ) = (α♥β)♥γ;

4. α♦(β♦γ) = (α♦β)♦γ;
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5. (α♥β)♦γ = α♦Sh(β)(γ) + Sh(α)(β♦γ);

6. γ♦(α♥β) = γ♦α + γ♦Sh(α)(β);

7. γ♦(α + β) = γ♦α + γ♦β;

8. ∗α♥β =∗(α♥β);

9. ∗α♦β =∗(α♦β);

10. In general, α♥β 6= β♥α e α♦β 6= β♦α;

11. For all n ∈ N, α♥β = (α + n)♥(β − n) = (α− n)♥(β + n);

12. h(α♥β) = h(α) + h(β);

13. h(α♦β) = h(α) + h(β);

14. h(α) = h(β) = h(α + β)⇒ (α + β)♦γ = α♦γ + β♦γ;

15. Let I be a �nite set. If, for all i ∈ I, h(
∑

i∈I αi) = h(αi), then
(
∑

i∈I αi)♥(
∑

i∈I βi) =
∑

i∈I(αi♥βi);

16. Let I be a �nite set. If, for all i ∈ I, h(
∑

i∈I αi) = h(αi), then
(
∏

i∈I αi)♦(
∏

i∈I βi) =
∏

i∈I(αi♦βi);

17. (α♥β)♦γ ∼u (α♦γ)♥(β♦γ).

Proof. 1) and 2) are obtained since the height of every natural number n is
0, and ∗n = n.
3) α♥(β♥γ) = α♥(β+Sh(β)(γ)) = α+Sh(α)(β)+S(h(α)+h(β))(γ) = (α♥β)♥γ.
The same for 4.
5)-6)-7) are simple calculations.
8) ∗α♥β =∗α+S(h(α)+1)(β) =∗(α + Sh(α)(β)) =∗(α♥β). Same calculation for
9).
10) We can say more: we have α♥β = β♥α ⇔ (α ∈ N) ∨ (β ∈ N), and the
same for ♦.
11) (α + n)♥(β − n) = α + n+Sh(α)(β) − n = α♥β, and the same with
(α− n)♥(β + n).
12)-13) α♥β=α + Sh(α)(β). In this sum the maximum height is that of
Sh(α)(β), which is h(α) + h(β). So h(α♥β) = h(α) + h(β). The same for ♦.
14)-15)-16) are similar (13 is a particular case of 14). Call n the height com-
mon to all the αi's and their sum (product). Then (

∑
i∈I αi)♥(

∑
i∈I βi) =

(
∑

i∈I αi)+Sn(
∑

i∈I βi) =
∑

i∈I(αi+Sn(βi)) =
∑

i∈I αi♥βi, and similar for
the product.
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17) We know from βN that this is true, because ⊕ and � on βN are distribu-
tive.

We conclude this section showing that the quotient space •N/∼u , endowed
with the operation ♥ (resp. ♦), is algebraically and topologically equivalent
to (βN,⊕) (resp. (βN,�)):

De�nition 2.5.29. Two topological semigroups are algebraically and topo-
logically equivalent if there is a mapping from the one to the other which
is both a homeomorphism and an algebraic isomorphism.

The terminology is mutuated from [HS98]. We �x some notations: when-
ever [α]∼u , [β]∼u are two equivalence classes in •N/∼u , then [α]∼u♥[β]∼u =
[α♥β]∼u and [α]∼u♦[β]∼u = [α♦β]∼u . These de�nitions, as a consequence of
Theorem 2.5.27, are well-posed.
The topology that we consider on •N is the so-called S-Topology (see e.g.
[DNF05, Section 3]). This topology, which can be similarly de�ned in every
hyperextension of N, is generated by taking, as base of open sets, the family
of hyperextensions of subsets of N:

B = {•A | A ⊆ N}.

Lemma 2.5.30. (•N/∼u ,♥) (resp. (•N/∼u ,♦)), enodowed with the quotient
star topology, is a right topological semigroup.

Proof. To prove the thesis we have to show that ♥ is associative and that if
is right continuous.
That ♥ is associative is proved in Proposition 2.5.28.
To prove that ♥ is right continuous, let β be an hypernatural number in •N,
and consider the function ϕβ such that, for every α ∈•N,

ϕβ(α) = α + Sh(α)(β).

The map ϕβ is continuous in the S-Topology: in fact, for every subset A
of N,

ϕ−1β (A) = {α ∈•N | α + Sh(α)(β) ∈•A} =•{n ∈ N | n+ β ∈ Sh(β)(A)}

since for every hypernatural number α, α + Sh(α)(β) ∈•A if and only if
α + Sh(α)(β) ∈ Sh(α)+h(β)(A) if and only if α ∈ Sh(α)({n ∈ N | n + β ∈
Sh(β)(A)}) if and only if α ∈•{n ∈ N | n+ β ∈ Sh(β)(A)}.
If we pose

BA = {n ∈ N | n+ β ∈ Sh(β)(A)},
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it follows that ϕ−1β (•A) =•BA, so ϕβ is continuous in the star topology.
That ♦ is continuous can be proved similarly.

Theorem 2.5.31. (βN,⊕) (resp (βN,�)) is algebraically and topologically
equivalent to (•N/∼u ,♥) (resp. (•N/∼u ,♦)).

Proof. The map to consider is the bridge map ψ. That it is an algebraical
isomorphism has been proved in Theorem 2.5.27. It is also an homeomor-
phism: in fact, ψ is clearly bijective. It is continuous and open since, for
every subset A of N, ψ(•A/∼u ) = ΘA and ψ−1(ΘA) =•A/∼u . Since every
bijective continuous open function is an homeomorphism, we have the thesis.

2.6 Further Studies

Among the possible future studies, we want to point out a question that
concerns the ω-hyperextension of N. Since •N is included in V(X), we can
apply the star map to •N, and consider ∗(•N), ∗∗(•N) and so on. If α is an
ordinal number, one could consider the α-hyperextension Sα(N) of N, that
can be inductively de�ned as follows: if α = β + 1, then

Sα(N) =∗(Sβ(N));

if α is a limit ordinal, then

Sα =
⋃
γ<α Sγ(N).

The questions that arise regard the structure of Sα(N), as well as the re-
lations between Sα(N) and Sβ(N) for di�erent ordinal numbers α, β. We just
outline a fact: in Section 2.5.1 we proved that •N is not c+-saturated. The
proof was based on the fact that • is the union of an ω-chain of end extensions
of N. For a generical ordinal number α, this proof does not necessarily work.
So, maybe, there are α-extensions that are c+-saturated:

Question 2: Let κ be an in�nite cardinal number. Does it exists an
ordinal number α such that Sα(N) is κ-saturated? Does it exists an ordinal
number α such that Sα(N) is κ+-saturated?
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Chapter 3

Proofs in Combinatorics by Mean

of Star Iterations

The basic concepts that we use in this chapter have been introduced in
Chapters One an Two. We recall that, given a logical sentence ϕ, an ultra-
�lter U is a ϕ-ultra�lter if and only if every set A in U satis�es ϕ. We work
in the ω-hyperextension •N of N, constructed starting with a hyperextension
∗N that satis�es the c+-enlarging property. Finally, we recall that, given
two hypernatural numbers α, β ∈∗N, α♥β denotes the hypernatural number
α+∗β ∈•N.
The tools introduced so far are used, in this chapter, to study some topics
in in�nite combinatorics. In Section One, we present two known examples
of application of nonstandard methods to combinatorics. Then, in Section
Two, we test our nonstandard technique re-proving some well-known result in
Ramsey Theory, e.g. Schur's Theorem and Folkman's Theorem. The results
proved in Sections Three and Four show that, under certain assumptions on
the �rst order sentence ϕ, there are ϕ-ultra�lters that are additively or mul-
tiplicatively idempotent. This is used, in Section Five, to study the partition
regularity of polynomials. This topic is faced also in Section Six, where we
concentrate on the closure of the set of partition regular polynomials under
certain operations. Finally, is Section Seven, we indicate three possible future
developments of the researches presented in this chapter.

3.1 Applications of Nonstandard Methods to

Ramsey Theory: Two Examples

The idea of applying nonstandard methods in in�nite combinatorics is
not new. In this section we expose two known examples of such applications.
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The �rst one concerns the particular case of Ramsey Theorem about colorings
of subsets of N with cardinality two (a treatment of Ramsey Theorem both
from the combinatorial and the ultra�lter points of view has been done in
Chapter One). In the literature, there are nonstandard proofs of this result
(see e.g. [Hir88]); the one we present here uses star iteration (see [DN]).
We recall that, for every subset A of N, [A]2 = {B ⊆ A | |B| = 2}.

Theorem 3.1.1 (Ramsey). For every �nite partition C1 ∪ ... ∪ Ck of [N]2

there is an in�nite subset H of N with [H]2 ⊆ Ci for some index i.

Proof. First of all, observe that, by transfer, ∗∗C1 ∪ ....∪∗∗Ck is a partition of
[∗∗N]2. Let α be any in�nite number in ∗N, and let i be the index such that
{α,∗α} ∈∗∗Ci. We now construct inductively a sequence B0, B1, ... of subsets
of N and a sequence h0, h1, ... of natural numbers, with hn < hn+1 for every
n and such that [H]2 ⊆ Ci, where H is the in�nite set

H = {hn | n ∈ N}.

Step 0: Observe that, by transfer, {α,∗α} ∈∗∗Ci if and only if

α ∈∗{n ∈ N | {n, α} ∈∗Ci}.

Put

A = {n ∈ N | {n, α} ∈∗Ci}

and let h0 be any element in A. By construction, {h0, α} ∈∗Ci so, by
transfer, α ∈∗B0, where

B0 = {m ∈ N | {h0,m} ∈ Ci}.

As α ∈∗A∩∗B0, the set A∩B0 is nonempty and unbounded. Let h1 > h0
be an element in this set. Observe that, by construction, {h0, h1} ∈ Ci.
Step n + 1: Suppose we have constructed B0, B1, ..., Bn and we have taken
elements h0 < h1 < ... < hn such that hi ∈ A ∩ B0 ∩ ... ∩ Bi for every index
i ≤ n − 1, and [{h1, ..., hn}]2 ⊆ Ci. By construction, {hn, α} ∈∗Ci so, by
transfer, α ∈∗{m ∈ N | {hn,m}} ∈ Ci}. Pose

Bn = {m ∈ N | {hn,m} ∈ Ci}.

As α ∈∗A∩∗B0 ∩ ...∩∗Bn, the set A ∩ B0 ∩ ... ∩ Bn is nonempty and
unbounded; take hn+1 > hn in this set. Observe that, by construction,
[{h0, ..., hn+1}]2 ⊆ Ci.
By construction, the in�nite set H = {hn | n ∈ N} is such that [H]2 ⊆ Ci
because, if hn < hm are elements in H then, as hm ∈ Bn, {hn, hm} ∈ Ci.
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We observe that it is not coincidental that in this proof the set Ci is cho-
sen to have {α,∗α} ∈∗∗Ci: in fact, as we observed in Chapter Two, for every
element α in ∗N, (α,∗α) is a tensor pair, so this proof is involving the tensor
product Uα⊗Uα, whit Uα a non principal ultra�lter, exactly as the ultra�lter
proof of Ramsey Theorem given in Chapter One does.
The second well-known application of nonstandard methods to in�nite com-
binatorics that we present is a well-known theorem of Renling Jin:

Theorem 3.1.2 (Jin). Let A,B be subsets of N with positive Banach density.
Then A+B = {a+ b | a ∈ A, b ∈ B} is piecewise syndetic.

The notion of piecewise syndetic set has been introduced in Chapter One.
We recall the Banach density of a subset of Z:

De�nition 3.1.3. Given a subset A of Z, its Banach density BD(A) is

BD(A) = limn→+∞(supa−b=n
|A∩[a,b]|

n
).

Banach density can be characterized in nonstandard terms:

Given a subset A of N and a number x ∈ [0, 1], BD(A) > x if and only if
there are α ∈∗N, β ∈∗N \ N such that st( |

∗A∩[α,α+β)|
β

) > x.

The proof of Theorem 3.1.2 is based on a result proved by Jin himself in
[Ji02]. To state his result we have to de�ne two notions:

De�nition 3.1.4. An in�nite initial segment C of ∗N is a cut if it is closed
under sums, i.e. if C + C = {a+ b | a, b ∈ C} ⊆ C.
Let η ∈∗N \ N be given. If C ⊆ [0, η] is a cut, and A is a subset of [0, η],
then A is C-nowhere dense if for every interval I = [a, b] in [0, η] such
that b − a > C (i.e. b − a > c for every c ∈ C) there is a subinterval
[c, d] ⊆ [a, b] \ A such that d− c > C.

Theorem 3.1.5 (Jin). Let η be an in�nite hypernatural number and let

C ⊆ [0, η] be a cut. If A,B ⊆ [0, η] are two internal sets such that st( |A|
η

) > 0

and st( |B|
η

) > 0, then A⊕ηB is not C-nowhere dense, where ⊕η is the addition
mod η on ∗N.

The proof of the above thorem, as well as �ve important corollaries (the
third corollary is Theorem 3.1.2), can be found in [Ji02].
Given the above result, we can prove Theorem 3.1.2:
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Proof. By the nonstandard characterization of the Banach density, since
BD(A) > 0 and BD(B) > 0 there are elements α, µ in ∗N, β, η in ∗N \ N
with st( |

∗A∩[α,α+µ)|
µ

) > 0 and st( |
∗B∩[β,β+η)|

η
) > 0. The nonstandard charac-

terization of the Banach density ensures that, if necessary, we can clip both
A and B and assume that µ = η. Consider the internal sets A′ and B′, where

A′ = (∗A ∩ [α, α + η))− α and B′ = (∗B ∩ [β, β + η))− β,

and the hypernatural number 2η. By construction, A′ and B′ are subsets
of [0, η], and both st( |A

′|
η

) and st( |B
′|
η

) are greater than 0 (since these quantities
equal the Banach densities of A and B, respectively). By Theorem 3.1.5, if
C is any cut included in [0, 2η], A′ ⊕2η B

′ (which, by construction, is equal
to A′ +B′) is not C-nowhere dense.
Let C = N. The fact that A′+B′ is not N-nowhere dense entails the existence
of an interval I = [a, b], with b− a in�nite, such that A′ +B′ has no gaps of
in�nite lenght in I. But, as A′ + B′ is internal, by overspill it follows that
there are not arbitrarily long �nite gaps in A′ + B′, so there is a natural
number n such that in A′ + B′ there are no gaps of length greater than
n. So A′ + B′ + α + β =∗A ∩ [α, α + η)+∗B ∩ [β, β + η) has no gaps of
length greater than n in the interval I+α+β; in particular, this entails that
∗A+∗B =∗(A + B) has no gaps of length greater than n in I + α + β. By
transfer it follows that A+B is piecewise syndetic.

We choosed this theorem as an example of nonstandard methods applied
to in�nite combinatorics for two reasons. The �rst one is that it is connected
with the arguments that we expose in Chapter Four; the second reason is that,
in our opinion, the underlying philosophy between Jin's and our approach is
similar. Quoting Jin's words from the article [Ji00]:

Nonstandard methods are used here to reduce the complexity of the
mathematical objects that one needs in a proof. [...] This complex-
ity reduction from second order to �rst order enables us to see the
path towards solutions more clearly with a better understanding,
hence produce a shorter proof with greater e�ciency;

and

Nonstandard methods o�er a better intuition.

In our opinion, these are exactly the two advantages that the star itera-
tions and the Bridge Theorem present when dealing with certain combinato-
rial problems.
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3.2 Some New Proofs of Old Results

Most of the results in this section are not new: they are either well-
known in literature or straight consequences of Rado's Theorem for linear
equations.
However, we present new proofs of these results by the technique of star
iterations (and the application of Bridge Theorem) so as to outline, in a
well-known setting, the potentialites of this technique.
Throughout this chapter, we consider given a superstructure model of non-
standard methods 〈V(X),V(X), ∗〉 such that the star map satis�es the c+-
enlarging property, and we work in the hyperextension •N of N (we recall
that, since the star map ∗ satis�es the c+-enlarging property, also the map •
satis�es the c+-enlarging property).
The notations we use have been introduced in Chapter Two. We recall that,
given a �rst order formula φ(x1, ..., xn, p1, ..., pk), its existential closure is

E(φ(x1, ..., xn, p1, ..., pk)) : ∃x1, ..., xnφ(x1, ..., xn, p1, ..., pk),

where x1, ..., xk are the only free variables and p1, ..., pk the only parame-
ters of φ; to simplify notations, we do not explicitally mention the parameters
in φ(x1, ..., xn), except if necessary. A �rst order sentence is existential if it
is the existential closure of a �rst order formula.
Whenever ϕ(x1, ..., xn) is a �rst order formula with parameters p1, ..., pk, and
m is a natural number, Sm(ϕ(x1, ...., xn)) is the formula obtained by replac-
ing each parameter pi in ϕ(x1, ..., xn) with Sm(pi); similarly, •ϕ(x1, ..., xn) is
the formula obtained by replacing each parameter pi in ϕ(x1, ..., xn) with •pi.
Finally, we recall that a �rst order formula ϕ(x1, ..., xn) is elementary if its
only parameters are elements in Nk, subsets of Nk, functions in Fun(Nk,Nh)
or relations on Nk, where k, h are positive natural numbers.
The following result will be used to semplify most of the proofs in this chap-
ter:

Proposition 3.2.1. Let ϕ = E(φ(x1, ..., xn)) be an existential sentence; if
U is a ϕ-ultra�lter then there are α1, ..., αn ∈∗N generators of U such that
φ(α1, ..., αn) holds.

Proof. This is just the formulation of the Bridge Theorem applied to ∗N.

Idempotent ultra�lters have been widely used in the study of partition
regularity. We recall that an ultra�lter U is additively (resp. multiplicatively)
idempotent if U = U ⊕ U (resp. if U = U � U).
Given their prominence in this context, it is natural and necessary to look
for their characterizations in terms of generators:
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Proposition 3.2.2. Let α be an hypernatural number in •N with height n.
The following properties are equivalent:

1. Uα is additively idempotent;

2. α ∼u α♥α;

3. There is an element β in •N with α ∼u β ∼u α♥β;

4. For every β ∼u α, α♥β ∼u α;

5. There is an element β in •N such that (α, β) is a tensor pair and
Uα = Uβ = Uα+β;

6. For every subset A of N, if α ∈ Sn(A) then there exists a subset B of
A such that α ∈ Sn(B) and α +B ⊆ Sn(B);

7. For every subset A of N, if α ∈ Sn(A) then there is an element a in A
such that α + a ∈ Sn(A).

Proof. (1)⇒(2): Suppose that Uα is additively idempotent. As we proved in
Chapter Two, (α, Sn(α)) is a tensor pair, so Uα+Sn(α) = Uα ⊕ Uα = Uα, and
this implies that α ∼u α♥α.
(2)⇒(3): Just put β = α.
(3)⇒(4): This is a consequence of Theorem 2.5.27: �x β as in the hypothesis.
If γ is any other element in GUα , since β ∼u γ then α♥β ∼u α♥γ, so by
hypothesis α♥γ ∼u α.
(4)⇒(5): As a consequence of the hypothesis, α ∼u α♥α = α + Sn(α),
and α ∼u Sn(α) (as proved in Proposition 2.5.11). Let β = Sn(α): then
α ∼u α + β, where (α, β) is a tensor pair, as we proved in Theorem 2.5.16.
(5)⇒(1): Let β be an hypernatural number as in the hypothesis. Observe
that, since (α, β) is a tensor pair, then α + β ∈ GUα⊕Uβ . So, as α ∼u β ∼u
α+β, Uα⊕Uα = Uα⊕Uβ = Uα: this proves that Uα is additively idempotent.
(2)⇒(6): Let A be any subset of N, and suppose that α ∈ Sn(A). By
hypothesis, since A ∈ Uα, α + Sn(α) ∈ S2n(A). In particular,

α ∈ {γ ∈ Sn(N) | γ + Sn(α) ∈ S2n(A)} =Sn({a ∈ N | a+ α ∈ Sn(A)}).

Let B = {a ∈ N | a + α ∈ Sn(A)}. By construction, α ∈ Sn(B) and
α+B ⊆ Sn(A). We claim that, if a is any element in B, then a+α ∈ Sn(B).
In fact, a+α ∈ Sn(B)⇔ a+α+Sn(α) ∈ S2n(A)⇔ α+Sn(α) ∈ S2n(A−a)⇔
α + Sn(α) ∈ S2n(A − a) and, as α ∼u α + Sn(α), this is equivalent to
α ∈ S2n(A− a) which is equivalent to α + a ∈ S2n(A), and this is true since
a ∈ B.
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So a+ α ∈ Sn(B) for every element a in B; in particular, α +B ⊆ Sn(B).
(6)⇒(7): Consider the set B given in the hypothesis. If a is any of its
elements, then a+ α ∈ Sn(B) ⊆ Sn(A).
(7)⇒(1): To every set A in Uα we associate the set

Aα = {a ∈ A | a+ α ∈ Sn(A)}.

By hypothesis, every Aα is nonempty, so the family F = {Aα}A∈Uα has
the �nite intersection property, as (A∩B)α = Aα ∩Bα for every A,B in Uα.
By c+-enlarging property, the set

S =
⋂
A∈Uα Sn(Aα)

is nonempty. If β is any element of height n in S, then β is an element
of height n in GUα (since, as Aα ⊆ A, S ⊆ GUα) and β + Sn(α) ∈ GUα since,
by transfer, β ∈ Sn(Aα) entails that β + Sn(α) ∈ S2n(A) for every A ∈ Uα.
But β + Sn(α) = β♥α ∈ GUβ⊕Uα = GUα⊕Uα , so Uα is additively idempotent.

With the same sort of considerations, we obtain a characterization of the
multiplicatively idempotent ultra�lters:

Proposition 3.2.3. Let α be an hypernatural number in •N with height n.
The following properties are equivalent:

1. Uα is multiplicatively idempotent;

2. α ∼u α♦α;

3. There is an element β in •N with α ∼u β ∼u α♦β;

4. For every β ∼u α, α♦β ∼u α;

5. There is an element β in •N such that (α, β) is a tensor pair and
Uα = Uβ = Uα·β;

6. For every subset A of N, if α ∈ Sn(A) then there exists a subset B of
A such that α ∈ Sn(B) and α ·B ⊆ Sn(B);

7. For every subset A of N, if α ∈ Sn(A), then there is an element a in A
such that α · a ∈ Sn(A).

The proof can be deduced from that of Proposition 3.2.2.
The results in this chapter involve also Schur, Folkman and Van der Waerden
ultra�lters:
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De�nition 3.2.4. An ultra�lter U in βN is

1. Schur if every element A ∈ U satis�es Schur's property, i.e. if there
are mutually distinct elements a, b, c ∈ A such that a+ b = c;

2. Folkman if every element A ∈ U satis�es Folkman's property, i.e. if
for every natural number k there is a subset Sk = {s1, ..., sk} ⊆ A with
k elements such that

FS(Sk) = {
∑

i∈I si | I 6= ∅, I ⊆ {1, ..., k}} ⊆ A;

3. Van der Waerden if every element A ∈ U satis�es Van der Waerden's
property, i.e. if there are arbitrarily long arithmetic progressions in A.

Observe that Schur's property is existential, and that Folkman's and Van
der Waerden's properties are in�nite conjunctions of existential properties.
The �rst result we present involves Schur ultra�lters:

Proposition 3.2.5. Every nonprincipal additively idempotent ultra�lter U
is a Schur ultra�lter.

Proof. Since Schur's property is existential, as a consequence of the Bridge
Theorem, in order to prove that U is a Schur ultra�lter it is su�cient to show
that there are three mutually di�erent elements α, β, γ ∈ GU with α+β = γ.
Let α ∈∗N be any generator of U ; for every element ξ ∈ GU , by Proposition
2.5.11 we deduce that ∗ξ ∈ GU and, as Uα is idempotent, by point four of
Proposition 3.2.2 we deduce that α♥ξ is in GU . In particular, if ξ = α, by
letting β =∗α and γ = α♥α = α+∗α, the three elements α, β, γ are in GU
and α + β = γ, so U is a Schur ultra�lter.

As a corollary, since we know that in βN there are additively idempotent
ultra�lters (see Chapter One, Section 1.3), it follows that the family FS of
subsets of N satisfying the Schur's property is weakly partition regular, and
this is the content of Schur's Theorem.
Schur's property has a multiplicative analogue, that we call multiplicative
Schur's property:

De�nition 3.2.6. An element U of βN is a multiplicative Schur ultra�l-
ter if every element A of U satis�es the multiplicative Schur's property, i.e.
if there are three mutually distinct elements a, b, c ∈ A such that a · b = c.
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With a proof which is very similar to that of Proposition 3.2.5 one can
prove that every multiplicatively idempotent ultra�lter U is a multiplicative
Schur ultra�lter. Here we present a di�erent proof of the existence of this kind
of ultra�lters. We recall that, given an ultra�lter U in βN, 2U is the image
of U respect the continuous extension exp ∈ Fun(βN, βN) of the function
exp ∈ Fun(N,N) such that, for every natural number n, exp(n) = 2n.

Proposition 3.2.7. If U is an additively idempotent ultra�lter then V = 2U

is a multiplicative Schur ultra�lter.

Proof. The multiplicative Schur's property is expressed by an existential sen-
tence, so it is su�cient to show that in GV there are three mutually di�erent
elements α, β.γ with α · β = γ.
Since U is additively idempotent, as a result of Proposition 3.2.5 there are
three mutually distinct elements η, µ, ξ in GU with η + µ = ξ. As a conse-
quence of Theorem 2.3.5, the elements 2η, 2µ, 2ξ are three mutually distinct
elements in GV . Observe that if α = 2η, β = 2µ, γ = 2ξ then α · β = γ, so V
is a multiplicative Schur ultra�lter.

De�nition 3.2.8. Given any natural number n ≥ 3, let APn be the existen-
tial formula

APn : ∃x1, ..., xn((x2 − x1 6= 0) ∧
∧n−2
i=1 (xi+1 − xi = xi+2 − xi+1)).

A subset A of N satis�es APn if and only if it contains an arithmetic
progression of lenght n. In particular, Van der Waerden's property is the
in�nite conjunction

∧∞
n=1APn.

Proposition 3.2.9. If U is a non principal additively idempotent ultra�lter
then 2U ⊕ U and U ⊕ 2U are AP3-ultra�lters.

Proof. Since AP3 is an existential sentence, in order to prove the thesis is
enough to �nd three mutually di�erent elements in G2U⊕U (resp. in GU⊕2U)
that are in arithmetic progression.
Observe that, as U is idempotent, also 2U is idempotent, since 2U ⊕ 2U =
2(U ⊕U) = 2U . Let ξ ∈∗N be any element in GU ; by idempotency, ξ,∗ξ, ξ+∗ξ
are in GU and 2ξ, 2∗ξ, 2ξ + 2∗ξ are in G2U .
In particular, in G2U⊕U one �nds

1. 2ξ+∗∗ξ = 2ξ♥∗ξ

2. 2ξ+∗ξ+∗∗ξ = 2ξ♥(ξ+∗ξ)
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3. 2ξ + 2∗ξ+∗∗ξ = (2ξ + 2∗ξ)♥ξ

These three elements form an arithmetic progression of length 3 in G2U⊕U
(with rate ∗ξ), so 2U ⊕ U is a AP3-ultra�lter.
Similarly, in GU⊕2U there is the arithmetic progression ξ+ 2∗∗ξ, ξ+∗ξ+ 2∗∗ξ,
ξ + 2∗ξ + 2∗∗ξ of length three, so also U ⊕ 2U is an AP3-ultra�lter.

From this proposition it follows that the family FAP3 of subsets of N con-
taining an arithmetic progression of length three is weakly partition regular;
that is, every �nite coloration of N has a monochromatic three terms arith-
metic progression. We think that the above nonstandard proof of this fact is
an example of the advantages of the star iteration technique: both the com-
binatorial proof and the proof with ultra�lters given in Chapter One were
less intuitive and more complex (expecially the combinatorial one, that was
made only for 2-colorations).
Also, this proof can be generalized to obtain this result:

Proposition 3.2.10. If U is a non principal additively idempotent ultra�lter
and n,m are di�erent positive natural numbers, then mU ⊕nU and nU ⊕mU
are ϕn,m-ultra�lters, where ϕn,m is the existential sentence

ϕn,m : ∃x, y, z((y − x 6= 0) ∧ (n(y − x) = m(z − x)))"'.

Proof. Let ξ ∈∗N be an element in GU . As nU and mU are additively idem-
potent, by construction one �nds the following elements in GnU⊕mU :

1. α = nξ +m∗∗ξ

2. β = nξ +m∗ξ + n∗∗ξ

3. γ = nξ + n∗ξ +m∗∗ξ.

Notice that m(γ − α) = mn∗ξ = n(β − α), so nU ⊕mU is a ϕn,m-ultra�lter.
A similar proof can be done for mU ⊕ nU .

Corollary 3.2.11. Given two di�erent positive natural numbers n,m, if N is
�nitely colored then there are three mutually distinct monochromatic natural
numbers a, b, c such that n(c− a) = m(b− a).

Proof. By Proposition 3.2.10 it follows that the family of subsets of N sat-
isfying the existence of three mutually distinct natural numbers a, b, c with
n(c−a) = m(b−a) is weakly partition regular, since it contains an ultra�lter.
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Actually, this result can be strenghtened:

Theorem 3.2.12. For every natural number k ≥ 1, for every positive natural
numbers n1, n2, ..., nk+1 with ni 6= ni+1 for every index i ≤ k, there exists a
ϕn1,...,nk-ultra�lter U , where

ϕn1,...,nk : ∃x1, ..., xk, y1, ..., yk, z1, ..., zk such that for every index i ≤ k
xi, yi, zi are three mutually distinct elements and, for every index i ≤ k − 1,

the following two conditions holds:

1. ni(zi − xi) = ni+1(yi − xi);

2. xi+1 = zi (if i ≤ k − 1).

Proof. Let V be an additively idempotent ultra�lter, let ξ ∈∗N be a generator
of V , and consider the ultra�lter

U = n1V ⊕ n2V ⊕ ...⊕ nkV .

Claim: U is a ϕn1,...,nk-ultra�lter.

Since ϕn1,...,nk is an existential sentence, to prove the claim it is enough to
prove that there are elements α1, ..., αk, β1, ..., βk, γ1, ..., γk in GU such that,
for every index i ≤ k, αi, βi, γi are mutually distinct, ni(γi−αi) = ni+1(βi−αi)
and αi+1 = γi.
We construct the elements αi, βi, γi inductively: let

• α1 =
∑k

i=1(niS2(i−1)(ξ));

• β1 = α1 + n1
∗ξ;

• γ1 = α1 + n2
∗ξ.

Observe that, by construction, n2(β1− α1) = n2 · n1
∗ξ = n1(γ1− α1) and

α1, β1, γ1 are generators of U .
Now, if αh, βh, γh have been constructed, pose

• αh+1 = γh;

• βh+1 = αh+1 + ni+1S2h−1(ξ);

• γh+1 = αh+1 + niS2h−1(ξ).
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Observe that αh+1 = γh, nh+2(βh+1 − αh+1) = nh+1 · nh+1S2h−1(ξ) =
nh+1(γh+1 − αh+1) and that αh+1, βh+1, γh+1 are generators of U .
With this procedure we constuct elements α1, ..., αk, β1, ...βk, γ1, ..., γk in GU
with the desired properties, so U is a ϕn1,...,nk-ultra�lter.

Corollary 3.2.13. For every natural number k ≥ 1, for every positive nat-
ural numbers n1, n2, ..., nk+1 with ni 6= ni+1 for every index i ≤ k, if N is
�nitely colored then there are monochromatic elements a1, ..., ak, b1, ..., bk, c1, ..., ck
such that

1. for every index i ≤ k, ai, bi, ci are mutually distinct;

2. for every index i ≤ k, ni(zi − xi) = ni+1(yi − xi);

3. for every index i ≤ k − 1, xi+1 = zi.

Now we focus on a very important result in Ramsey Theory that we
discussed also in Chapter One: Folkman's Theorem. In Chapter One we
proved that Folkman's Theorem can be deduced as a particular case of a
more general result, Hindman's Theorem, which ultra�lter proof is based on
the existence of additively idempotent ultra�lters.
We present a nonstandard proof of Folkman's Theorem, to show one other
example of star iterations:

Theorem 3.2.14. Every nonprincipal additively idempotent ultra�lter U is
a Folkman ultra�lter.

Proof. For every natural number k, let

fk : {I ∈ ℘({1, ..., k}) | I 6= ∅} → {1, ..., 2k − 1}

be a bijection, and let E(φk(x1, ...., xk, y1, ..., y2k−1)) the existential sen-
tence

E(φk(x1, ...., xk, y1, ..., y2k−1)) : ∃x1, ...., xk, y1, ..., y2k−1 such that, for every
I 6= ∅ ⊆ {1, ..., k},

∑
i∈I xi = yf(I).

We observe that a subset A of N contains a subset Tk of cardinality k
with FS(Tk) ⊆ A if and only if A satis�es E(φk(x1, ...., xk, y1, ..., y2k−1)).

Claim: U is an E(φk(x1, ...., xk, y1, ..., y2k−1))-ultra�lter for every k > 0
in N.

Take any k > 0 in N and, if U = Uα, consider
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α,∗α,...,Sk−1(α).

Pose Tk = {α,∗α,...,Sk−1(α)} and observe that FS(Tk) ⊆ GU since, for
every I 6= ∅ ⊆ {1, ..., k},

∑
i∈I Si−1(α) in in GU .

In particular, U is an E(φk(x1, ...., xk, y1, ..., y2k−1))-ultra�lter for every k > 0,
and this entails that it is a Folkman ultra�lter.

From this result it follows that the family of sets satisfying the Folkman's
property is weakly partition regular, and this is the content of Folkman's
Theorem.
We end this section with a result that is not "Ramsey-style": we show, as
promised in Chapter One, that the center of (βN,⊕) is N. This proof can be
found in [DN].
Let (ak)k∈N be a sequence of natural numbers such that limk(ak+1 − ak) =
+∞, and consider the set A =

⋃
k∈N[a2k, a2k+1).

Proposition 3.2.15. For every non principal ultra�lter U there exists an
ultra�lter V such that A ∈ U ⊕ V ⇔ Ac ∈ V ⊕ U .

Proof. Observe that for every natural number n the set A contains many
intervals of length greater than n, since limk(ak+1 − ak) = +∞. By transfer,
for every hypernatural number µ the hyperextension ∗A contains many in-
tervals of length greater than µ, and the same also holds for ∗Ac. This is a
key property in the proof.
Consider ∗A, and pose U = Uα. Suppose that α ∈∗A (the case α ∈∗Ac is
similar).
There are two possibilities:
1) For every natural number n, α+n ∈∗A. By transfer it follows that, for ev-
ery hypernatural number µ ∈∗N, ∗α+µ ∈∗∗A, which entails that A ∈ Uµ⊕Uα
for every µ ∈∗N. If there is an hypernatural number µ in ∗N with α+∗µ ∈∗∗Ac
(i.e. Ac ∈ Uα ⊕ Uµ) we can conclude just choosing V = Uµ.
We know that ∗Ac contains arbitrarily long intervals, so there exists an hy-
pernatural number η such that the interval I = [aη, aη+1) has length greater
than α and is included in ∗Ac. In particular, by letting µ = aη, we have
that µ + n ∈ I for every natural number n and so, by transfer, for every
hypernatural number ξ we have that ∗µ+ ξ ∈∗I ⊆∗∗Ac. Posing ξ = α we get
the thesis.
2) There exists n ∈ N such that α+ n ∈∗Ac. This entails, since the intervals
[a2η, a2η+1) are in�nite for η ∈∗N \ N, that for every natural number m ≥ n,
α+m ∈∗Ac. By transfer it follows that for every hypernatural number µ in
∗N with µ ≥ n, ∗α+µ ∈∗∗Ac; in particular, Ac ∈ Uµ⊕Uα for every µ ∈∗N\N.
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If there is an hypernatural number µ in ∗N \N such that α+∗µ ∈∗∗A, we can
conclude.
The proof follows the same ideas as the second part of (1): this time we �nd
η such that I = [a2η, a2η+1) is included in ∗A and has length greater than α.
So, again, if µ = a2η then by transfer we get that α+∗µ ∈∗∗I ⊆∗∗A, and this
entails the thesis.

Corollary 3.2.16. The center of (βN,⊕) is N.

Proof. By the previous proposition, for every non principal ultra�lter U there
exists an ultra�lter V such that U ⊕ V 6= V ⊕ U , so U is not in the center of
(βN,⊕).
Conversely, if U = Un for some n ∈ N then, for every ultra�lter V = Uα,
Un ⊕ Uα = Un+α = Uα ⊕ Un, which is the thesis.

3.3 Invariant Formulas and Ultra�lters

In this section we talk about the relationships between the operation ⊕
of sum of ultra�lters (resp. the operation � of product of ultra�lters) and
particular formulas. The following result is an example:

Proposition 3.3.1. If U ,V are Schur ultra�lters, then U ⊕ V is a Schur
ultra�lter.

Proof. Let α, β ∈∗N be generators of U such that α + β ∈ GU , and let
γ, δ ∈∗N be generators of V such that γ+δ ∈ GV . By point 15 of Proposition
2.5.28 it follows that (α + β)♥(γ + δ) = (α♥γ) + (β♥δ); as in GU⊕V there
are η = α♥γ, µ = β♥δ and ξ = (α+ β)♥(γ + δ), and η + µ = ξ, it is proved
that U ⊕ V is a Schur ultra�lter.

The previous result is a particular case of a general important phe-
nomenon:

De�nition 3.3.2. Let φ(x1, ..., xn) be a �rst order open formula. φ(x1, ..., xn)
is additive if, for every a1, ..., an, b1, ..., bn ∈ N, if φ(a1, ..., an) and φ(b1, ..., bn)
hold, then φ(a1 + b1, ...., an + bn) holds.
Similarly, φ(x1, ..., xn) is multiplicative if, for every a1, ..., an, b1, ..., bn ∈ N,
if φ(a1, ..., an) and φ(b1, ..., bn) holds then φ(a1 · b1, ..., an · bn) holds.
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De�nition 3.3.3. Let φ(x1, ..., xn) be a �rst order open formula. φ(x1, ..., xn)
is additively invariant if, for every a1, ..., an, b in N,

φ(a1, ..., an) holds if and only if φ(a1 + b, ..., an + b) holds.

Similarly, φ(x1, ..., xn) ismultiplicatively invariant if, for every a1, ..., an, b
in N with b 6= 0,

φ(a1, ..., an) holds if and only if φ(a1 · x, ..., an · x) holds.

De�nition 3.3.4. A �rst order existential sentence E(φ(x1, ..., xn)) is addi-
tive (resp. multiplicative) if φ(x1, ..., xn) is additive (resp. multiplicative).
E(φ(x1, ..., xn)) is additively invariant (resp. multiplicatively invariant)
if φ(x1, ..., xn) is additively invariant (resp. multiplicatively invariant).

E.g. Schur's property is additive, and it is multiplicatively invariant,
and the same holds for the properties APn, that are also multiplicative and
additively invariant.
In this section we consider only elementary formulas, because they satisfy an
important property: if ϕ(x1, ..., xn) is an elementary �rst order formula, and
α1, ..., αn are hypernatural numbers in ∗N, then

∗ϕ(α1, ..., αn) holds if and only if ∗∗ϕ(α1, ..., αn) holds.

Theorem 3.3.5. Let ϕ = E(φ(x1, ..., xn)) be an elementary �rst order exis-
tential sentence. Then the following conditions hold:

1. if ϕ is additive, and U ,V are ϕ-ultra�lters, then U ⊕V is a ϕ-ultra�lter
as well;

2. if ϕ is multiplicative, and U ,V are ϕ-ultra�lters, then U � V is a ϕ-
ultra�lter as well;

3. if ϕ is additively invariant, U is a ϕ-ultra�lter and V is any ultra�lter,
then U ⊕ V and V ⊕ U are ϕ-ultra�lters as well;

4. if ϕ is multiplicatively invariant, U is a ϕ-ultra�lter and V 6= U0 is any
ultra�lter, then U � V and V � U are ϕ-ultra�lters as well.

Proof. 1) Let α1, ..., αn ∈∗N be generators of U such that ∗φ(α1, ..., αn) holds,
and β1, ..., βn ∈∗N generators of V such that ∗φ(β1, ..., βn) holds. By transfer,
since ϕ is elementary, ∗∗φ(α1, ..., αn) holds. By transfer, since ∗φ(β1, ..., βn)
holds then ∗∗φ(∗β1, ...,

∗βn) holds. By additivity of φ, and by transfer, it
follows that
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∗∗φ(α1+
∗β1, ..., αn+∗βn)

holds. Since α1+
∗β1, ..., αn+∗βn are generators of U ⊕ V it follows that

U ⊕ V is a ϕ-ultra�lter.
2) This is similar to (1), with the multiplication in replacement of the addi-
tion.
3) Let α1, ..., αn ∈∗N be generators of U such that ∗φ(α1, ..., αn) holds, and
let β ∈∗N be any generator of V . Then, since ϕ is elementary, by addi-
tive invariance and transfer it follows that ∗φ(α1, ..., αn) is equivalent to
∗∗φ(α1+

∗β, ..., αn+∗β), and α1+
∗β, ..., αn+∗β are generators of U ⊕ V , so

U ⊕ V is a ϕ-ultra�lter.
To prove that V ⊕ U is a ϕ-ultra�lter, we observe that, by transfer, since
∗φ(α1, ..., αn) holds also ∗∗φ(∗α1, ...,

∗αn) holds, and by transfer and additive
invariance ∗∗φ(β+∗α1, ..., β+∗αn) holds for every β in ∗∗N; as β+∗α1, ..., β+∗αn
are generators of V ⊕ U , V ⊕ U is a ϕ-ultra�lter.
4) The proof for the multiplicatively invariant existential formulas is ana-
logue to (3).

There are some interesting corollaries of the above result:

Corollary 3.3.6. For every natural number k, for every index i ≤ k, let ϕi
be an elementary �rst order existential sentence and Ui a ϕi-ultra�lter. Then

1. if, for every i ≤ k, ϕi is additive then U1 ⊕ .... ⊕ Uk is a (
∧k
i=1 ϕi)-

ultra�lter;

2. if, for every i ≤ k, ϕi is additively invariant then U1 ⊕ .... ⊕ Uk is a
(
∧k
i=1 ϕi)-ultra�lter;

3. if, for every i ≤ k, ϕi is multiplicative then U1� ....�Uk is a (
∧k
i=1 ϕi)-

ultra�lter;

4. if, for every i ≤ k, ϕi is multiplicatively invariant then U1� ....�Uk is
a (

∧k
i=1 ϕi)-ultra�lter.

Proof. This follows trivially by Theorem 3.3.5.

E.g., if U is a Schur ultra�lter and V is an AP3-ultra�lter, since these two
properties are multiplicatively invariant the ultra�lter U �V is both a Schur
and an AP3-ultra�lter.

Corollary 3.3.7. Let ϕ be an elementary �rst order existential sentence,
and
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Sϕ = {U ∈ βN | U is a ϕ-ultra�lter}.

Then

1. if ϕ is additive then Sϕ is closed under ⊕;

2. if ϕ is multiplicative then Sϕ is closed under �;

3. if ϕ is additively invariant then Sϕ is a bilateral ideal in (βN,⊕);

4. if ϕ is multiplicatively invariant then Sϕ is a bilateral ideal in
(βN \ {U0},�).

Proof. These conditions are straightforward consequences of Theorem 3.3.5.

Corollary 3.3.8. If S,F ,VDW are the sets

1. S = {U ∈ βN | U is a Schur ultra�lter};

2. F = {U ∈ βN | U is a Folkman ultra�lter};

3. VDW = {U ∈ βN | U is a Van der Waerden ultra�lter};

then

1. S is a bilateral ideal in (βN \ U0,�), and it is closed under ⊕;

2. F and VDW are bilateral ideals both in (βN,⊕) and in (βN \ U0,�).

Proof. That S is a bilateral ideal in (βN \ U0,�) follows by Corollary 3.3.7,
since Schur's property is multiplicatively invariant.
Consider the set VDW . Observe that an ultra�lter is in VDW if and only
if it is an APn-ultra�lter for every natural number n; so, if for every natural
number n we consider the set

APn = {U ∈ βN | U is an APn-ultra�lter},

by construction VDW =
⋂
n∈NAPn. As, for every natural number n, the

formula APn is both additively and multiplicatively invariant, the sets APn
are bilateral ideals both in (βN,⊕) and in (βN \ U0,�). So VDW , being
an intersection of bilateral ideals, is a bilateral ideal both in (βN,⊕) and in
(βN \ U0,�).
The proof for the set F is similar, and can be done replacing the formulas
APn with the formulas E(φk(x1, ..., xk, y1, ..., y2k−1) introduced in the proof
of Theorem 3.2.14, that are both additively and multiplicatively invariant.
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3.4 Idempotent ϕ-ultra�lters

In this section we investigate the relations between limits of sequences of
ultra�lters and ϕ-ultra�lters for generic weakly partition regular sentences ϕ.
In particular, we shall focus our attention to additively (and multiplicatively)
invariant existential sentences. We recall that, given a nonempty set I, a
sequence F = 〈Ui | i ∈ I〉 of elements in βN and an ultra�lter V on I, the
V − limI of the sequence F is the ultra�lter

V − limI Ui = {A ⊆ N | {i ∈ I | A ∈ Ui} ∈ V}.

Where not explicitly stated otherwise, in the following we suppose that
the set of indexes I is N; in this case, the V − limN Un is simply denoted by
V − limUn. The results we prove hold also in the general case I 6= N.
An important characteristic of limit ultra�lters is the following:

Theorem 3.4.1. Let V be an ultra�lter and, for every natural number n,
let Un be an E(φn(x1, ..., xkn))-ultra�lter. Then, for every element A in U =
V − limUn, the set {n ∈ N | ∃x1, ..., xn ∈ A φn(x1, ..., xkn)} ∈ V, and hence
it is in�nite whenever V is nonprincipal.

Proof. For every set A in U , the set

IA = {n ∈ N | A ∈ Un} ∈ V .

Now, for every n ∈ IA, as Un is an E(φn(x1, ..., xkn))-ultra�lter, A satis�es
E(φn(x1, ..., xkn)).

Observe that, as a consequence of the above proposition, whenever m is
a natural number there is a natural number n greater than m such that A
satis�es E(φn(x1, ..., xkn)).
It is not di�cul to show that, in general, U is not an E(φn(x1, ..., xkn))-
ultra�lter for every natural number n: e.g., suppose that each E(φn(x)) is
the existential sentence "∃x(x = n)": the only subset of N that satis�es all
the sentences ϕn is N, so there is no ultra�lter which is a ϕn(x)-ultra�lter for
all natural numbers n.
This leads to a question: under what conditions, given a family of weakly
partition properties Φ = {ϕn}n∈N, there is an ultra�lter U which is a ϕn-
ultra�lter for every natural number n?
We recall that a sentence ϕ is weakly partition regular if and only if there is
a ϕ-ultra�lter on N (as we proved in Theorem 1.2.6).
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Theorem 3.4.2. Let V be a nonprincipal ultra�lter on N and, for every nat-
ural number n, let E(φn(x1, ..., xkn)) be a weakly partition regular existential
sentence, let Un be an E(φn(x1, ..., xkn))-ultra�lter, and let U = V − limUn.
If the set B = {n ∈ N | E(φn(x1, ..., xkn)) ⇒

∧
m≤nE(φm(x1, ..., xkm))} is in

V then U is an E(φn(x1, ..., xkn))-ultra�lter for every natural number n.

Proof. Let A be an element of U , and consider the set IA = {n ∈ N | A ∈ Un}.
Then IA ∩ B ∈ V is in�nite since V is not principal. In particular, for every
natural number n in IA∩B, A satis�es E(φn(x1, ..., xkn)) and, as n is in B, A
satis�es also

∧
m≤nE(φm(x1, ..., xkm)). Since this happens for arbitrarily large

natural numbers n, A satis�es all the formulas in {E(φn(x1, ..., xkn)) | n ∈ N},
so U is an E(φn(x1, ..., xkn))-ultra�lter for every natural number n.

Corollary 3.4.3. Let Φ = 〈E(φn(x1, ..., xkn)) | n ∈ N〉 be a countable set of
weakly partition regular existential sentences. If

S = {n ∈ N | E(φn(x1, ..., xkn))⇒
∧
m≤nE(φm(x1, ..., xkm))}

is in�nite then there exists an ultra�lter U that is an E(φn(x1, ..., xkn))-
ultra�lter for every n ∈ N. In particular, the property

∧
n∈NE(φn(x1, ..., xkn))

is weakly partition regular.

Proof. Let V be a nonprincipal ultra�lter on N such that S ∈ V and, for
every natural number n, let Un be an E(φn(x1, ..., xkn))-ultra�lter. Then
by Theorem 3.4.2 it follows that U = V − limUn is an E(φn(x1, ..., xkn))-
ultra�lter for every natural number n in N.

Example: If V is a non principal ultra�lter, and 〈Un | n ∈ N〉 is a se-
quence of of ultra�lters such that the set {n ∈ N | Un is a APn-ultra�lter} is
in V , then U = V − limUn is a Van der Waerden ultra�lter.

Corollary 3.4.4. Let ϕ be a sentence. Then

Xϕ = {U ∈ βN | U is a ϕ-ultra�lter}

is closed.

Proof. Let 〈Ui | i ∈ I〉 be a sequence of ϕ-ultra�lters, and let V be an
ultra�lter on I. Then, if A ∈ V − limI Ui, then A ∈ Ui for some index i ∈ I,
so A satis�es ϕ; since this is true for every A ∈ V − limUi, then V − limUi is
a ϕ-ultra�lter, so it is in X. We proved that X is closed under the operation
of limit ultra�lter, so by Theorem 1.1.34 it follows that X is closed.
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In the previous result it has not been assumed that ϕ is a �rst order
sentence since it holds for any sentence ϕ.
We list three important examples of closed subsets of βN:

1. The set S = {U ∈ βN | U is a Schur ultra�lter};

2. The set F = {U ∈ βN | U is a Folkman ultra�lter};

3. The set VDW = {U ∈ βN | U is a Van der Waerden ultra�lter}.

That S is closed follows from Corollary 3.4.4; that VDW is closed can be
proved observing that an ultra�lter U is a Van der Waerden ultra�lter if, for
every n ∈ N, it satis�es APn, and by last corollary, for every natural number
n the set

APn = {U ∈ βN | U is an APn-ultra�lter}

is closed. Then VDW , which is the intersection
⋂
nAPn, is closed as well.

The proof for the set F is similar, and can be done by replacing the sentences
APn with the sentences E(φk(x1, ..., xk, y1, ..., y2k−1)) introduced in the proof
of Theorem 3.2.14.
Putting together the results of Corollary 3.4.4 and of Theorem 3.3.5 we prove
the following important theorem:

Theorem 3.4.5. Let ϕ : φ(x1, ..., xn) be an existential elementary weakly
partition regular formula, and suppose that ϕ is additive or additively invari-
ant. Then there is an additively idempotent ϕ-ultra�lter.
Similarly, if ϕ is multiplicative or multiplicatively invariant, then there is a
multiplicatively idempotent ϕ-ultra�lter.

Proof. By the hypothesis of weakly partition regularity, the set

Sϕ = {U ∈ βN | U is a ϕ-ultra�lter}

is not empty. Corollary 3.4.4 ensures that Sϕ is closed (so, in particu-
lar, compact), while Theorem 3.3.5 ensures, when ϕ is additive or additively
invariant, that Sϕ is closed under the sum ⊕. Then Ellis's Theorem entails
that there exists an additive idempotent in Sϕ.
The proof for a multiplicative or multiplicatively invariant formula is ana-
logue.

Corollary 3.4.6. There is a multiplicatively idempotent Van der Waerden
ultra�lter.
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Since it is known that no ultra�lter is both multiplicatively and additively
idempotent, by Corollary 3.4.6 it follows that there exists a Van der Waerden
ultra�lter that is not additively idempotent. This may not seem strange, but
we recall that the "canonical" proof of Van der Waerden's Theorem with
ultra�lters consists in showing that special additively idempotent ultra�lters
are Van der Waerden ultra�lters; this result shows that the converse is false:
Van der Waerden ultra�lters are not necessarily additively idempotents.

3.5 Partition Regularity of Polynomials

In this section we face the problem of the partition regularity on N for
polynomials with coe�cients in Z. First of all, we recall some important
de�nitions about polynomials.

De�nition 3.5.1. Let X = {xn} be a countable set of variables. The set of
polynomials with variables in X and coe�cients in Z (notation Z[X])
is

Z[X] =
⋃
F⊆℘fin(X) Z[F ],

i.e. a polynomial P is in Z[X] if and only if there are variables x1, ..., xn
in X such that P ∈ Z[x1, ..., xn].
A monomial is a polynomial in the form M(x1, ..., xk) = axn1

1 · ... · x
nk
k ,

where a ∈ Z, x1, ..., xn ∈ X and n1, ..., nk are natural numbers; the degree of
a monomial M(x1, ..., xk) is d =

∑k
i=1 ni; the degree of P (x1, ..., xn) is the

maximum degree of its monomials; given a variable xi, the partial degree
of xi in P (x1, ..., xn) is the degree of the polynomial obtained considering the
variables distinct from xi as constants, i.e. considering P (x1, ..., xn) as a
polynomial in Z[x1, ..., xi−1, xi+1, ..., xn]; the partial degree of P (x1, ..., xk)
is the maximum partial degree of its variables; a polynomial is linear if it
has degree 1; it is homogeneous if all its monomials have the same degree.

De�nition 3.5.2. Let P (x1, ..., xn) be a polynomial in Z[X]. P (x1, ..., xk) is

1. partition regular (on N) if the existential sentence

σP : ∃a1, ..., an ∈ N \ {0} P (a1, .., an) = 0

is weakly partition regular (on N);

2. injectively partition regular (on N) if the existential sentence
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ιP : ∃a1, ..., an ∈ N \ {0} (P (a1, ..., an) = 0 ∧ (
∧
i 6=j ai 6= aj))

is weakly partition regular (on N).

Convention: Whenever P (x1, ..., xn) is a polynomial in Z[X], we use the
symbols σP and ιP to denote the existential sentences introduced in De�ni-
tion 3.5.2.

Trivially, every injectively partition regular polynomial is also partition
regular.
We make three assumptions:

1. all polynomials are given in normal reduced form, i.e. for every poly-
nomial P (x1, ..., xn) in Z[X], if M(x1, ..., xn) = axk11 · ... · xknn is one of
its monomials then a 6= 0 and if M1(x1, ..., xn) = a1x

k1
1 · ... · xknn and

M2(x1, ..., xn) = a2x
h1
1 ·...·xh2n are two distinct monomials in P (x1, ..., xn)

then there is an index i ≤ n such that ki 6= hi;

2. whenever we denote a polynomial by P (x1, ..., xn), we mean that {x1, ..., xn}
are all and only the variables that appear in P (x1, ..., xn); i.e. for ev-
ery index i ≤ n, the partial degree of xi in P (x1, ..., xn) is at least 1,
and for every variable y in X \ {x1, ..., xn}, the partial degree of y in
P (x1, ..., xn) is 0:

3. all the polynomials we consider have constant term 0.

The �rst and second assumptions need no explanations; as for the third one,
we remark that polynomials with constant term zero and polynomials with
non-zero constant term have di�erent behaviours with respect to the problem
of partition regularity. E.g., Rado proved that

Theorem 3.5.3 (Rado). Suppose that (
∑n

i=1 aixi) + c ∈ Z[x1, ..., xn] is a
polynomial with non-zero constant term c. Then P is partition regular on N
if and only if either

1. there exists a natural number k such that (
∑n

i=1 aik) + c = 0 or

2. there exists an integer z such that (
∑n

i=1 aiz) + c = 0 and there is a
subset J of {1, ..., n} such that

∑
j∈J aj = 0.

The above theorem is proved in [Rad33]. It shows the contrast between
the case c 6= 0 and the case c = 0: while the �rst one is related with the
existence of a constant solution, the latter is not.
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A study of the problem of the injectivity of solutions for partition regular
polynomials with non zero constant term has been done by Neil Hindman
and Imre Leader in [HL06] (actually, to be precise, their study involves the
general case of partition linear homogeneous systems and their interested is
in noncostant solutions, that is a more general notion than that of injective
solutions).
We start our study of partition regularity of polynomials with the linear case,
proving that the linear polynomials in Z[X] with sum of coe�cients zero are
injectively partition regular. The interest in this result is that, given the
polynomial P , we exibit an ιP -ultra�lter constructed as a linear combination
of additively idempotent ultra�lters.
Then we deal with the nonlinear case which, in our opinion, is the most
interesting: in fact, while Rado's Theorem settles the linear case, very little
is known for the nonlinear one.

3.5.1 An ultra�lter proof of Rado's Theorem for linear

polynomials with sum of coe�cients zero

In this section we prove this result:

Theorem 3.5.4. Let P (x1, ..., xn, y1, ..., ym) : (
∑n

i=1 cixi) − (
∑m

j=1 djyj) ∈
Z[X] be a polynomial such that n+m ≥ 3, the coe�cients c1, ..., cn, d1, ..., dm
are positive, and

∑n
i=1 ci =

∑m
j=1 dj, and let U be an additively idempotent

ultra�lter. If

V1 = c1U ⊕ (c1 + c2)U ⊕ c2U ⊕ (c2 + c3)U ⊕ ....⊕ (cn−1 + cn)U

and

V2 = d1U ⊕ (d1 + d2)U ⊕ d2U ⊕ (d2 + d3)U ⊕ ...⊕ (dm−1 + dm)U

then the ultra�lter V = V1⊕V2 is a ιP -ultra�lter; in particular, P (x1, ..., xn, y1, ..., yn)
is injectively partition regular.

A useful tool to simplify notations in the proof of this theorem are the
"tabular scriptures" for particular elements of •N. Let α be an element in
•N. By writing

S1(α) S2(α) ... Sk(α)
β1 a1,1 a1,2 ... a1,k
β2 a2,1 a2,2 ... a2,k
... ... ... ... ...
βk ak,1 ak,2 ... ak,k
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where the elements ai,j are natural numbers, we intend that, for every
index i ≤ k, βi =

∑k
j=1 ai,jSj(α). E.g., the tabular

∗α ∗∗α
β1 1 2
β2 0 3
β3 7 0

is a notation to mean that β1 =∗α + 2∗∗α, β2 = 3∗∗α and β3 = 7∗α.
Before proving Theorem 3.5.4 we give an example that should be useful to
understand the ideas involved in its proof. Consider the polynomial

P (x1, x2, x3, y1, y2) : 3x1 + 2x2 + 4x3 − y1 − 8y2.

If U is an additively idempotent ultra�lter, consider the ultra�lter

V = 3U ⊕ 5U ⊕ 2U ⊕ 6U ⊕ U ⊕ 9U ,

If α ∈∗N is a generator of U , pose

S1(α) S2(α) S3(α) S4(α) S5(α) S6(α) S7(α) S8(α) S9(α)
β1 3 5 5 2 2 6 1 1 9
β2 3 0 5 2 6 6 1 1 9
β3 3 3 5 2 0 6 1 1 9
γ1 3 3 5 2 2 6 1 9 9
γ2 3 3 5 2 2 6 1 0 9

The numbers above have been chosen in such a way that β1, β2, β3, γ1, γ2
are mutually distinct generators of V and, moreover, P (β1, β2, β3, γ1, γ2) = 0,
as can be noted computing the coe�cient ck of each element Sk(α), 1 ≤ k ≤ 9,
in the expression P (β1, β2, β3, γ1, γ2):

1. c1 = 9 + 6 + 12− 3− 24 = 0;

2. c2 = 15 + 0 + 12− 3− 24 = 0;

3. c3 = 15 + 10 + 20− 5− 40 = 0;

4. c4 = 6 + 4 + 8− 2− 16 = 0;

5. c5 = 6 + 12 + 0− 2− 16 = 0;

6. c6 = 18 + 12 + 24− 6− 48 = 0:
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7. c7 = 3 + 2 + 4− 1− 8 = 0;

8. c8 = 3 + 2 + 4− 9− 0 = 0;

9. c9 = 27 + 18 + 36− 9− 72 = 0.

The proof of Theorem 3.5.4 is just a generalization of the ideas presented
in the above example.

Proof. Let U be an additively idempotent ultra�lter, and let V1, V2, V be the
ultra�lters introduced in the statement. We claim that V is a ιP -ultra�lter,
which yields the thesis. Let α ∈∗N be a generator of U , and consider the
elements in Table 1 and in Table 2:

Table 1

S1(α) S2(α) S3(α) S4(α) S5(α) ... S3n−5(α) S3n−4(α) S3n−3(α)
β1 c1 c1 + c2 c1 + c2 c2 c2 ... cn−1 cn−1 cn−1 + cn
β2 c1 0 c1 + c2 c2 c2 + c3 ... cn−1 cn−1 cn−1 + cn
β3 c1 c1 c1 + c2 c2 0 ... cn−1 cn−1 cn−1 + cn
... ... ... ... ... ... ... ... ... ...
βn−2 c1 c1 c1 + c2 c2 c2 ... cn−1 cn−1 cn−1 + cn
βn−1 c1 c1 c1 + c2 c2 c2 ... cn−1 cn−1 + cn cn−1 + cn
βn c1 c1 c1 + c2 c2 c2 ... cn−1 0 cn−1 + cn

Table 2

S1(α) S2(α) S3(α) S4(α) S5(α) ... S3m−5(α) S3m−4(α) S3m−3(α)
γ1 d1 d1 + d2 d1 + d2 d2 d2 ... dm−1 dm−1 dm−1 + dm
γ2 d1 0 d1 + d2 d2 d2 + d3 ... dm−1 dm−1 dm−1 + dm
γ3 d1 d1 d1 + d2 d2 0 ... dm−1 dm−1 dm−1 + dm
... ... ... ... ... ... ... ... ... ...
γm−2 d1 d1 d1 + d2 d2 d2 ... dm−1 dm−1 dm−1 + dm
γm−1 d1 d1 d1 + d2 d2 d2 ... dm−1 dm−1 + dm dm−1 + dm
γm d1 d1 d1 + d2 d2 d2 ... dm−1 0 dm−1 + dm

For every i ≤ n and j ≤ 3·(n−1), the coe�cient ai,j in position (i, j) in Table
1 is determined as follows: let s, t be such that j = 3t + s, 0 ≤ t ≤ (n− 2),
s ∈ {1, 2, 3}.
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• if s = 1, pose ai,j = ct+1;

• if s = 2 then


at+1,j = ct+1 + ct+2;

at+2,j = 0;

ai,j = ct+1; otherwise

• If s = 3 pose ai,j = ct+1 + ct+2;

The coe�cients in Table 2 are constructed exactly as for Table 1, by
exchanging the roles of coe�cients c1, ..., cn and coe�cients d1, ..., dm.
Observe that, with this construction, as U is additively idempotent then
β1, ..., βn are generators of V1 and γ1, ..., γm are generators of V2.
Pose

β =
∑3(n−1)

i=1 piSi(α),

where, if 0 ≤ t ≤ (n− 2), s ∈ {1, 2, 3} and i = 3t+ s,

• if s = 3 pi = ct + ct+1;

• otherwise pi = ct+1.

Similarly, pose

γ =
∑3(m−1)

i=1 qiSi(α),

where, if 0 ≤ t ≤ (m− 2), s ∈ {1, 2, 3} and i = 3t+ s, then

• if s = 3 then qi = dt + dt+1;

• otherwise qi = dt+1.

For 1 ≤ i ≤ n, 1 ≤ j ≤ m pose

• ξi = βi♥γ;

• ηj = β♥γj.

Observe that β, β1, ..., βn are mutually distinct generators of V1 and γ, γ1, ..., γm
are mutually distinct generators of V2, so the elements ξ1, ..., ξn, η1, ..., ηm are
mutually distinct generators of V .

Claim: P (ξ1, ..., ξn, η1, ..., ηm) = 0.

To prove the claim, since P (ξ1, ..., ξn, η1, ..., ηm) is by construction an ex-
pression in S1(α), S2(α), ..., S3(n+m−2)(α), it is su�cient to show that for
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each index k ≤ 3(n+m− 2) the coe�cient of Sk(α) in this expression is 0.
Given an index k, let t, s be such that k = 3t + s, t ≤ n + m − 2 and
s ∈ {1, 2, 3} There are two cases to consider.
Case 1: t ≤ n− 1.

• If s = 1, the coe�cient is

∑n
i=1 cict+2 −

∑m
j=1 djct+2 = ct+2(

∑n
i=1 ci −

∑m
j=1 dj) = 0.

• If s = 2, the coe�cient is

((
∑n

i=1,i 6=t+1,t+2 cict+1) + ct+1(ct+1 + ct+2) + ct+2(0))−
∑m

j=1(dj(ct+1)) =

= ct+1(
∑n

i=1 ci −
∑m

j=1 dj) = 0.

• If s = 3, the coe�cient of Sk(α) is

∑n
i=1 ci(ct+1 + ct+2)−

∑m
j=1 dj(ct+1 + ct+2) =

= (ct+1 + ct+2)(
∑n

i=1 ci −
∑m

j=1 dj) = 0

since
∑n

i=1 ci =
∑m

j=1 dj by hypothesis.

Case 2: n− 1 < t ≤ n+m− 2: similar to case 1, exchanging the roles of
coe�cients c1, ..., cn and coe�cients d1, ..., dm.
This shows that the coe�cient of Si(α), for 1 ≤ i ≤ 3(n + m − 2), in the
expression P (ξ1, ..., ξn, η1, ..., ηm) is 0, so (ξ1, ..., ξn, η1, ..., ηm) is a solution to
P (x1, ..., xn, y1, ..., ym) made of mutually distinct elements, and hence V is a
ιP -ultra�lter.

3.5.2 Nonlinear polynomials

While the linear homogeneous case is settled by Rado's Theorem, very
little is known for the nonlinear case, that we consider in this section.
The �rst non-linear injective partition regular polynomial that we present is
P (x, y, z, w) : x+ y− zw. Its partition regularity has been �rst proved by P.
Csikvári, K. Gyarmati and A. Sárközy in [CGS]; here, we present a di�erent
approach, based on the following result:

Proposition 3.5.5. There exists a nonprincipal multiplicatively idempotent
Schur ultra�lter.
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Proof. Schur's property is a multiplicatively invariant property, and the set
of nonprincipal Schur ultra�lters is nonempty; the thesis follows by applying
Theorem 3.4.5.

Corollary 3.5.6. The polynomial

P (x, y, z, w) : x+ y − zw

is injectively partition regular.

Proof. Let U be a nonprincipal multiplicatively idempotent Schur ultra�lter.

Claim: U is a ιP -ultra�lter.

In fact, let η, µ, ξ ∈∗N be mutually distinct generators of U with η+µ = ξ;
since U is multiplicatively idempotent, the elements η·∗η, µ·∗η, ξ·∗η are in
GU .
Consider the elements α = η·∗η, β = µ·∗η, γ = ξ, δ =∗η, and observe that

α + β = η·∗η + µ·∗η = ξ·∗η = γ · δ.

In particular, as α, β, γ, δ are mutually distinct generators of U , then U
is a ιP -ultra�lter, so P (x, y, z, w) is injectively partition regular.

The importance of a multiplicative idempotent Schur ultra�lter is that it
mixes an additive property (Schur's) with a multiplicative property (idem-
potence).
To generalize the result of Corollary 3.5.6, a natural idea is to search for other
ultra�lters with similar features: good candidates are Folkman ultra�lters.

Proposition 3.5.7. There is a nonprincipal multiplicatively idempotent Folk-
man ultra�lter.

Proof. We observe that we can not directly apply Theorem 3.4.5, as Folk-
man's property is not expressed by an existential sentence. Nevertheless, we
proved in Corollary 3.3.8 that the set F of Folkman ultra�lters on N is a
bilateral ideal in (βN\{U0},�); in particular, as every Folkman ultra�lter is
nonprincipal, F is a bilateral ideal in (βN \N,�), and we showed in Section
3.4 that it is a closed subset of βN. Then, by Ellis's Theorem, there is a
nonprincipal multiplicatively idempotent ultra�lter in F .

The existence of such an ultra�lter has some interesting consequences:
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Corollary 3.5.8. For every natural number n ≥ 1, the polynomial

P (x1, ..., xn, y, z) : (
∑n

i=1 xi)− yz

is injectively partition regular.

Proof. Let U be a nonprincipal multiplicatively idempotent Folkman ultra-
�lter, and let η1, ..., ηn, ξ ∈∗N be mutually distinct generators of U such that
ξ = η1 + ...+ ηn. Observe that

η1·∗ξ + ...+ ηn·∗ξ = ξ·∗ξ.

If we consider the elements α1 = η1·∗ξ,..., αn = ηn·∗ξ, β = ξ, γ =∗ξ,
we have that α1, ..., αn, β, γ are generators of U (as U is multiplicatively
idempotent) and

(
∑n

i=1 αi)− β · γ = 0.

So U is a ιP -ultra�lter, and P (x1, ..., xn, y, z) is an injectively partition
regular polynomial.

Actually, in the previous corollary there is no need to consider two vari-
ables y, z:

Corollary 3.5.9. For every natural numbers n,m with n + m ≥ 3, the
polynomial

P (x1, ..., xn, y1, ..., ym) : (
∑n

i=1 xi)−
∏m

j=1 yj

is injectively partition regular.

Proof. Let U be a multiplicatively idempotent Folkman ultra�lter, and let
η1, ...ηn, ξ ∈∗N be mutually distinct generators of U such that ξ = η1+...+ηn,
and consider µ =∗ξ·∗∗ξ · ...·∗m−1ξ.
Pose

α1 = η1 · µ,..., αn = ηn · µ,

and

β1 = ξ, β2 =∗ξ,..., βm =∗m−1ξ.

Since U is multiplicatively idempotent, the mutually distinct elements
α1, ..., αn, β1, ..., βm are in GU , and∑n

i=1 αi =
∏m

j=1 βj.
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So U is a ιP -ultra�lter, and P (x1, ..., xn, y1, ..., ym) is an injectively parti-
tion regular polynomial.

The above result is also proved, in a di�erent way, in [Hin11].
The next generalization seems less straightforward: in the polynomial (

∑n
i=1 xi)−∏m

j=1 yj we can substitute the sum of variables with a sum of monomials and
retain the injective partition regularity:

Corollary 3.5.10. For every natural number n ≥ 2 ∈ N, for every positive
natural numbers l1, ..., ln,m ∈ N, the polynomial

P (x1,1, ..., xn,ln , y1, ..., ym) :
∏l1

i1=1 x1,i1 + ...+
∏ln

in=1 xin,n −
∏m

j=1 yj

is injectively partition regular.

We do not prove this result, as it is a straightforward corollary of Theorem
3.5.13, which is a result by far more general. The result that we need in order
to prove Theorem 3.5.13 is the following:

Proposition 3.5.11. If P (x1, ..., xn) is an homogeneous injectively partition
regular polynomial, then the set

IP = {U ∈ βN | U is a ιP -ultra�lter}

is a compact bilateral ideal in (βN \ N,�); in particular, it contains a
nonprincipal multiplicatively idempotent ultra�lter.
Similarly, if P (x1, ..., xn) is an homogeneous partition regular polynomial, the
set

SP = {U ∈ βN | U is a σP -ultra�lter}

is a compact bilateral ideal in (βN,�), and it contains a nonprincipal
multiplicatively idempotent ultra�lter.

Proof. The result for IP follows as the formula ιP is multiplicatively invari-
ant, since P is homogeneous. Then observe that the elements of IP are
necessarily nonprincipal, and apply Theorem 3.4.5.
As for SP , the property of compact bilateral ideal follows by Corollary
3.3.7 and Corollary 3.4.4, since the formula σP is multiplicatively invariant.
SP contains a nonprincipal multiplicatively idempotent ultra�lter because
SP ∩ (βN \N) 6= ∅: in fact, by contradition suppose that every σP -ultra�lter
is principal; if k is a natural number such that Uk ∈ SP , by de�nition
P (k, ...., k) = 0 and, as P (x1, ..., xn) is homogeneous, if α is any in�nite
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hypernatural number then P (kα, ..., kα) = 0, so Ukα ∈ SP ∩ (βN \ N), ab-
surd.
In particular, SP ∩ (βN \ N) is a nonempty compact bilateral ideal in (βN \
N,�), so it contains a nonprincipal multiplicatively idempotent ultra�lter.

De�nition 3.5.12. Let n be a positive natural number, and {y1, ..., yn} a set
of mutually distinct variables. For every �nite set F ⊆ {1, .., n}, we denote
by QF (y1, ..., yn) the monomial

QF (y1, ..., yn) =

{∏
j∈F yj, if F 6= ∅;

1, if F = ∅.

Theorem 3.5.13. Let k ≥ 3 be a natural number, P (x1, ..., xk) =
∑k

i=1 aixi
an injectively partition regular polynomial, and n a positive natural number.
Then, for every F1, ..., Fk ⊆ {1, .., n}, the polynomial

R(x1, ..., xk, y1, ..., yn) =
∑k

i=1 aixiQFi(y1, ..., yn)

is injectively partition regular.

Proof. Since P (x1, ..., xk) is homogeneous and partition regular, by Proposi-
tion 3.5.11 it follows that there is a nonprincipal multiplicatively idempotent
ιP -ultra�lter U . Let α1, ..., αk ∈∗N be mutually distinct generators of U such
that P (α1, ..., αk) = 0, and let β ∈∗N be any generator of U . For every index
j ≤ n, pose

βj = Sj(β).

Observe that, for every index j ≤ n, βj ∈ GU . Pose, for every index
i ≤ k,

ηi = αi · (
∏

j /∈Fi βj).

Since U is multiplicatively idempotent, ηi ∈ GU for every index i ≤ k.

Claim:
∑k

i=1 aiηiQFi(β1, ..., βn) = 0.

In fact,∑k
i=1 aiηiQFi(β1, ..., βn) =

∑k
i=1 aiαi(

∏
j /∈Fi βj)(

∏
j∈Fi βj) =

=
∑k

i=1 aiαi(
∏n

j=1 βj) = (
∏n

j=1 βj)
∑k

i=1 aiαi = 0.

117



Three observations:

1. as a consequence of the proof, U is both a ιP and a ιR-ultra�lter;

2. if the hypothesis on the injective partition regularity of P (x1, ..., xk) is
replaced by the hypothesis that P (x1, ..., xk) is partition regular, this
same proof shows that in this case P (x1, ..., xn) is partition regular;

3. observe that some of the variables y1, ..., yn may appear in more than
a monomial: e.g., the polynomial

P (x1, x2, x3, x4, y1, y2, y3) : x1y1y2 + 4x2y1y2y3 − 3x3y3 − 2x4y1

satis�es the hypothesis of the above theorem, so it is injectively parti-
tion regular.

In view of this result, there is a particular class of polynomials that are
partition regular:

De�nition 3.5.14. Let P (x1, ..., xn) :
∑k

i=1 aiMi(x1, ..., xn) be a polynomial
in Z[X], and let M1(x1, ..., xn), ...,Mk(x1, ..., xn) be its distinct monomials.
P (x1, ..., xn) admits a set of exclusive variables {v1, ..., vk} if vi appears
only in the monomial Mi(x1, ..., xn). In this case we say that the variable vi
is exclusive for P (x1, ..., xn), and the set {v1, ..., vk} of exclusive variables
is denoted by Vescl(P ).

E.g., the polynomial P (x, y, z, t, w) : xyz + yt − w admits {x, t, w} or
{z, t, w} as sets of exlusive variables, while the polynomial P (x, y, z) : xy +
yz − xz does not admit a set of exclusive variables.

De�nition 3.5.15. Given a polynomial P (x1, ..., xn) :
∑k

i=1 aiMi(x1, ..., xn),
where M1(x1, ..., xn), ...,Mk(x1, ..., xn) are its distinct monomials, the reduct
of P (notation Red(P )) is the polynomial:

Red(P )(y1, ..., yk):
∑k

i=1 aiyi.

E.g., if P (x1, ..., xn) is an homogeneous linear polynomial then

Red(P )(y1, ..., yn) = P (y1, ..., yn);

if P (x, y, z, t, w) is the polynomial xy + 4yz − 2t+ yw, then

Red(P )(y1, y2, y3, y4) = y1 + 4y2 − 2y3 + y4.
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As a consequence of Theorem 3.5.13 we obtain the following result:

Corollary 3.5.16. Let P (x1, ..., xn) =
∑k

i=1 aiMi(x1, ..., xn) be a polynomial
with partial degree one, and suppose that

1. P admits a set of exclusive variables;

2. Red(P ) is injectively partition regular.

Then P (x1, ..., xn) is an injectively partition regular polynomial.

Proof. By reordering, if necessary, we can suppose that the exclusive vari-
ables are x1, ..., xk, and that the variable xj is exclusive for the monomial
Mj(x1, ..., xn). Then, by hypothesis,∑k

i=1 aixi

is partition regular as it is, by renaming the variables, equal to Red(P ).
If F = {1, ..., n− k}, for i ≤ k we put

Fi = {j ∈ F | xj+k divides Mi(x1, ..., xn)}.

Then if we put, for j ≤ n − k, yj = xi+k, P (x1, ..., xn) is, by renaming the
variables, equal to ∑k

i=1 aixiQFi(y1, ..., yn−k).

The above polynomial, as a consequence of Theorem 3.5.13, is injectively
partition regular, and this entails the thesis.

A natural question is if the implication in the above theorem can be
reversed. Following the ideas in the proof of Rado's Theorem for linear equa-
tions, we prove that, if P (x1, ..., xn) is homogeneous and partition regular,
then Red(P ) is partition regular.

Lemma 3.5.17. If p is a prime number in N and α, β are two ∼u-equivalent
hypernatural numbers, then smod(p)(α)=smod(p)(β), where

smod(p)(α) = i if and only if, if γ is the greatest exponent such that pγ | α,
and α = pγδ, then δ ≡ i mod p.

Proof. We observe that, given the prime number p in N, then N =
⋃p−1
i=1 Ci,

where Ci = {n ∈ N | smod(p)(n) = i}. Clearly, if i 6= j then Ci ∩ Cj = ∅, so
there exists exactly one index i such that Ci ∈ Uα; in particular, α, β ∈•Ci,
so smod(p)(α) = smod(p)(β) = i.
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Theorem 3.5.18. If P (x1, ...., xn) is an homogeneous partition regular poly-
nomial then Red(P ) is partition regular.

Proof. By contradiction, suppose that Red(P ) is not partition regular. Then,
as Red(P ) is linear, by Rado's Theorem no subset of the set of coe�cients of
Red(P ) sums to 0 and, since P (x1, ..., xn) and Red(P ) have by construction
the same coe�cients, this entails that no subset of the set of coe�cients of
P (x1, ..., xn) sums to 0.
Let p be a prime number that does not divide the sum of any subset of
the set of coe�cients, U a σP -ultra�lter, and α1, ..., αn generators of U with
P (α1, ..., αn) = 0.
For every index i ≤ n let βi, γi be hypernatural numbers such that

αi = pγiβi,

where βi is not divisible by p. By de�nition of smod(p), smod(p)(αi) =
smod(p)(βi); as the elements αi are all ∼u-equivalent, it follows that, for
every pair of indexes i, j ≤ n, smod(p)(βi) = smod(p)(βj) and, since the
elements βi are not divisible by p,

smod(p)(βi) = (βi) mod (p) = b 6= 0 for every index i ≤ n.

By hypothesis, the polynomial P (x1..., xn) has the form

P (x1, ..., xn) :
∑k

j=1 ajx
dj1
1 · ... · x

djn
n ,

where, if d is the degree of P (x1, ..., xn), for evey index j ≤ k
∑n

i=1 dji = d.
Since α1, ..., αn is a solution of P (x1, ..., xn) = 0,∑k

j=1 ajα
dj1
1 · ... · α

djn
n = 0.

As αi = pγiβi, the above expression can be written like this:

(1)
∑k

j=1 ajp
∑n
i=1 djiγjβ

dj1
1 · ... · β

djn
n = 0.

Pose, for every index j ≤ k,

cj =
∑n

i=1 djiγi,

and

c = min{cj | 1 ≤ j ≤ k}.

Then (1) can be rewritten as

pc
∑k

j=1 ajp
cj−cβ

dj1
1 · ... · β

djn
n = 0,
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and, as pc 6= 0, this entails that

(2)
∑k

j=1 ajp
cj−cβ

dj1
1 · ... · β

djn
n = 0;

observe that for each index j such that cj = c (and there is at least one
index with this property), pcj−c = 1.
From (2) it follows that:∑k

j=1 ajp
cj−cβ

dj1
1 · ... · β

djn
n ≡ 0 mod p.

Observe that, for all the indexes j ≤ k with cj 6= c, the term ajp
cj−cβ

dj1
1 ·

... · βdjnn ≡ 0 mod p. So, if J̃ is the nonempty set of indexes j with Γj = Γ,

(3)
∑

j∈J̃ ajβ
dj1
1 · ... · β

djn
n ≡ 0 mod p.

We observed that, modulo p, the elements βi, i ≤ n, are equal to some
natural number b which is not 0, so the expression (3) can be rewritten as:

(4)
∑

j∈J̃ ajb
d ≡ 0 mod p.

Since b 6= 0 mod p then bd 6= 0 mod p, so (4) holds if and only if∑
j∈J̃ aj = 0 mod p, and that is a contradiction as we have chosen p in

such a way that the sum of elements of every subset of coe�cients is not
divisible by p.

3.6 Properties of the Set of Injectively Parti-

tion Regular Polynomials

In this section we study the properties of the set of injectively partition
regular polynomials, with a particular interest for the homogeneous polyno-
mials.

De�nition 3.6.1. The set of injectively partition regular polynomials
on N is

P = {P ∈ Z[X] | P is injectively partition regular on N},

and the set of homogeneous injectively partition regular polyno-
mials on N is

H = {P ∈ P | P is homogeneous}.
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In this section we always assume that the polynomials are given in normal
reduced form, that the variables of P (x1, ..., xn) are exactly x1, ..., xn, that
every considered polynomial has costant term 0 and, given a polynomial
P (x1, ..., xn), the symbols σP , ιP denote the sentences introduced in de�ni-
tion 3.5.2.
The �rst interesting property that we prove is that the multiples of a poly-
nomial P (x1, ..., xn) in P are in P :

Theorem 3.6.2. Given a polynomial P (x1, ..., xn) in P and a generical poly-
nomial Q(y1, ..., ym) in Z[X], P (x1, ..., xn) · Q(y1, ..., ym) is in P; in partic-
ular, if P (x1, ..., xn) is in H and Q(y1, ..., ym) ∈ Z[X] is homogeneous, then
P (x1, ..., xn) ·Q(y1, ..., ym) ∈ H.

Proof. Pick U ιP -ultra�lter, and let α1, ..., αn ∈∗N be mutually distinct gen-
erators of U . Let β1, ..., βm be mutually distinct elements in GU \{α1, ..., αn}.
Then α1, ..., αn, β1, ..., βm are mutually distinct elements such that P (α1, ..., αn)·
Q(β1, ..., βm) = 0. So U is also a ιP ·Q-ultra�lter, and P (x1, ...., xn)·Q(y1, ..., ym) ∈
P .
In particular, if P (x1, ..., xn) ∈ H and Q(y1, ..., ym) is homogeneous, the prod-
uct P (x1, ..., xn) ·Q(y1, ..., ym) is an homogeneous element of P so it is in H.

In particular, P is a sub-semigroup of (Z[X], ·) and H is a sub-semigroup
of (H[X], ·), where H[X] is the sub-semigroup of (Z[X], ·) of homogeneous
polynomials.
Conversely, we now prove that if P (x1, ..., xn) is in P , and it is not irreducible,
then at least one of its factors belongs to P . Only in this theorem, when
writing Qi(x1, ..., xn) we mean that the set of variables of Qi is a subset of
{x1, ..., xn}; if α1, ..., αn are hypernatural numbers in •N, by Q(α1, ..., αn) we
denote the number obtained by replacing each variable xi in Q by αi.

Theorem 3.6.3. Suppose that the polynomial P (x1, ..., xn) is factorized as

P (x1, ...., xn) =
∏k

i=1Qi(x1, ..., xn).

Then P (x1, ..., xn) ∈ P if and only if there exists an index i such that
Qi(x1, ..., xn) ∈ P.

Proof. The implication ⇐ is an immediate consequence of Theorem 3.6.2.
⇒: Let U be a ιP -ultra�lter on A, and let α1, ..., αn be mutually distinct
generators of U such that P (α1, ..., αn) = 0. Then, for at least one index i,
Qi(α1, ..., αn) = 0, so U is a ιQi-ultra�lter, and hence Qi(x1, ..., xn) is in P .
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From the previous theorem it follows this important fact:

Fact: To study the partition regularity of polynomials it is su�cient to
work with irreducible polynomials.

The situation for the sum of elements in P is less simple:

Proposition 3.6.4. If P (x1, ..., xn), Q(y1, ..., ym) are in H, and {x1, ..., xn}∩
{y1, .., ym} = ∅, then P (x1, ..., xn) +Q(y1, ..., ym) ∈ P.

Proof. Suppose that U is a ιP -ultra�lter and V is a ιQ-ultra�lter. We claim
that U�V is a ιP+Q-ultra�lter. In fact, let α1, ..., αn ∈∗N be mutually distinct
generators of U , and let β1, ..., βm ∈∗N be mutually distinct generators of V ,
with P (α1, ..., αn) = Q(β1, ..., βm) = 0. Then, by transfer, Q(∗β1, ...,

∗βm) =
0. Consider the elements η1, ..., ηn, ξ1, ..., ξm in GU�V , where

ηi = αi·∗β1 for i ≤ n and ξj = α1·∗βj for j ≤ m.

Then, as P (x1, ..., xn) and Q(y1, ..., ym) are homogeneous, if dp and dq are
their respective degrees, then we have

P (η1, ..., ηn)+Q(ξ1, ..., ξm) =∗β
dp
1 P (α1, ..., αn)+αd11 Q(∗β1, ...,

∗βm) = 0+0 = 0.

So, as η1, ..., ηn, ξ1, ..., ξm are mutually distinct generators, U � V is a
ιP+Q-ultra�lter, and hence P (x1, .., xn) +Q(y1, ..., ym) ∈ P .

Theorem 3.6.5. Let P (x1, ..., xn), Q(y1, ..., ym) be polynomials in P such
that

1. the partial degree of both P (x1, ..., xn) and Q(y1, ..., ym) is 1;

2. P (x1, ..., xn) +Q(y1, ..., ym) admits a sets of exclusive variables;

3. Red(P ) and Red(Q) are polynomials in P.

Then P (x1, ..., xn) +Q(y1, ..., ym) ∈ P.

Proof. This result follows by Corollary 3.5.16: in fact, P (x1, ..., xn)+Q(y1, ..., ym)
has partial degree 1, admits a set of exclusive variables and its reduct is
weakly partition regular, as Red(P + Q) is, renaming the variables if nec-
essary, equal to Red(P )+Red(Q) and by Proposition 3.6.4 it follows that
Red(P )+Red(Q) is partition regular, since both Red(P ) and Red(Q) are in
H by hypothesis.
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In the theorem below, just observe that, given an homogeneous polyno-
mial P (x1, ..., xn) ∈ Z[X] with degree d, xd1 · .... · xdn · P ( 1

x1
, ..., 1

xn
) ∈ Z[X].

Theorem 3.6.6. If P (x1, ...xn) is a polynomial in H with degree d then the
polynomial Q(x1, ..., xn) = xd1 · .... · xdn · P ( 1

x1
, ..., 1

xn
) is in P.

Proof. Let U be a ιP -ultra�lter, and let α1, ..., αn ∈∗N be mutually distinct
generators of U with P (α1, ..., αn) = 0. Consider

β1 = 1
α1
, ... ,βn = 1

αn
.

By construction, β1, ..., βn are ∼u-equivalent elements and P ( 1
β1
, ..., 1

βn
) =

0, so Q( 1
β1
, ..., 1

βn
) = 0. The problem is that β1, ..., βn are not hypernatural

numbers, and in order to apply the Bridge Theorem we need n mutually
distinct hypernatural numbers ξ1, ..., ξn with Q(ξ1, ..., ξn) = 0.
Since P (x1, ..., xn) is homogeneous, for every γ ∈•N

Q(γ · β1, ..., γ · βn) = 0.

If there is an hypernatural number γ such that:

1. γ · βi ∈•N for every i ≤ n and

2. γ · βi ∼u γ · βj for every i, j ≤ n

then the elements γ · β1, ..., γ · βn are n mutually distinct ∼u-equivalent
hypernatural numbers, so Uγ·β1 is a ιQ-ultra�lter on N, and Q ∈ P . Consider

η = (α1)!

(where (α1)! denotes the factorial of α1), and

γ =∗η.

We claim that γ has the properties (1) and (2):

1. γ·βi is an hypernatural number for every index i ≤ n, because γ =∗(α1!) =(∗α1)!
that (as ∗α1 > αi for every i ≤ n) is divisible by each αi;

2. γ ·βi ∼u γ ·βj for every i, j ≤ n because, for every i ≤ n, γ ·βi = βi·∗η ∈
GUβi�Uη and, as βi ∼u βj for every i, j ≤ n, Uβi � Uη = Uβj � Uη.
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In [BR91] the autors actually proved that the above result can be gener-
alized. In fact, they proved that, if G(x1, ..., xn) is a partition regular system
of homogeneous equations (this means that for every �nite coloration of N
there is a monochromatic solution to G(x1, ..., xn) = 0), then the system
G( 1

x1
, ..., 1

xn
) is partition regular.

As a corollary of Theorem 3.6.6, we prove that there are partition regular
polynomials that do not admit a set of exclusive variables:

Corollary 3.6.7. The polynomial P (x, y, z) : yz + xz − xy is injectively
partition regular.

Proof. The polynomial Q(x, y, z) : x + y − z is injectively partition regular.
So the polynomial xyz( 1

x
+ 1

y
− 1

z
) is injectively weakly partition regular, and

this entrails the thesis.

A di�erent proof of this corollary can be found in [CGS].

3.7 Further Studies

In this section we present three possible developments of the research on
partition regular polynomials.

3.7.1 Polynomials with partial degree ≥ 2

Corollary 3.5.16 regards polynomials with partial degree 1; a natural ques-
tion is if it can be extended to polynomials with partial degree greater than
one. The answer is negative:

Proposition 3.7.1. The polynomial

P (x, y, z) = x+ y − z2

is not weakly partition regular.

This result is proved in [CGS]. Observe that x + y − z2 admits a set of
exclusive variables and that its reduct Red(P )=y1+y2−y3 is weakly partition
regular.
A way to obtain some partial result regarding partition regular polynomials
with partial degree greater than one is to consider the multiplicative Van der
Waerden ultra�lters:
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De�nition 3.7.2. An ultra�lter U is a multiplicative Van der Waer-
den ultra�lter if every element A of U satis�es the multiplicative Van der
Waerden's property, i.e. if A contain arbitrarily long geometric progressions.

It is well-known that, in βN, there are multiplicative Van der Waerden
ultra�lters: e.g., for every Van der Waerden ultra�lter U , the ultra�lter 2U

is a multiplicative Van der Waerden ultra�lter.

Proposition 3.7.3. Let h, k be positive natural numbers. Then, for every
positive natural numbers n1, ..., nh,m1, ...,mk such that

∑h
i=1 ni =

∑k
j=1mj,

the polynomial:

P (x1, ..., xh, y1, ..., yk) :
∏h

i=1 x
ni
i −

∏m
k=1 y

mj
j

is injectively partition regular.

Proof. As
∑h

i=1 ni =
∑k

j=1mj, the polynomial

Q(t1, ..., th, z1, ..., zk) :
∑h

i=1 niti −
∑k

j=1mjzj

is injectively partition regular (as we proved in Theorem 3.5.4); in partic-
ular, there are mutually distinct positive natural numbers a1, .., ah, b1, ..., bk
with

Q(a1, ..., ah, b1, ..., bk) = 0.

Pose M = max{a1, ..., ah, b1, ...., bk}. Let U be a multiplicative Van der
Waerden ultra�lter. We claim that U is a ιP -ultra�lter.
In fact, let η, ξ be hypernatural numbers in •N such that η, ηξ, ...., ηξM are
generators of U , and pose

αi = ηξai for i ≤ h; βj = ηξbj for j ≤ k.

By construction, α1, ..., αh, β1, ..., βk are mutually distinct generators of
U , and P (α1, ..., αk, β1, ..., βh) = 0:

P (α1, ..., αk, β1, ..., βh) =
∏h

i=1(ηξ
ai)ni −

∏k
j=1(ηξ

bj)mj =

η
∑k
i=1 niξ

∑k
i=1 aini − η

∑h
j=1mjξ

∑h
j=1 bjmj = 0.

So U is a ιP -ultra�lter; in particular, P (x1, ..., xh, y1, ..., yk) is an injec-
tively partition regular polynomial.
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This result, combined with Theorem 3.6.3, could be a basic tool to prove
the partition regularity for equations with partial degree greater than 1, and
to try to answer to the following question:

Question: Is there a characterization of partition regular polynomials in
Z[X]?

3.7.2 Extension of Deuber's Theorem on Rado's Con-

jecture

In 1973, Walter Deuber proved, in his PhD Thesis, Rado's conjecture on
large subsets of N:

De�nition 3.7.4. 1) An m× n matrix M with integer entries is partition
regular (on N) if the existential formula ∃x1, ..., xnM(x1, ..., xn) = 0 is par-
tition regular on N.
2) A subset A of N is large if and only if for every m × n partition regular
matrix M , there are elements a1, ..., an in A such that A(a1, ..., an) = 0.

Rado's Conjecture: The family

L = {A ⊆ N | A is large}

of large subsets of N is strongly partition regular, i.e. if an element A of
L is partitioned into �nitely many sets A = A1 ∪ ... ∪ An then, for at least
one index i ≤ n, Ai ∈ L.

Deuber's result settled the case for the family of large sets (his original
proof is in [De73], see also [De89]); our generalization to non-linear polyno-
mials gives rise to two questions similar to Rado's Conjecture:

De�nition 3.7.5. A subset A of N is a polynomial set if for every weakly
partition regular polynomial P (x1, ..., xn) there are elements a1, ..., an in A
such that P (a1, ..., an) = 0.
A is an homogeneous set if for every homogeneous partition regular polyno-
mial P (x1, ..., xn) there are elements a1, ..., an in A such that P (a1, ..., an) =
0.

Question 1: Are the family of polynomial subsets of N or the family of
homogeneous subsets of N weakly partition regular?

We do not know the answer for the polynomial case; as for the homoge-
neous case, the answer is a�rmative:

127



Theorem 3.7.6. There is an ultra�lter U on N such that, for every homo-
geneous partition regular polynomial P (x1, ..., xn), U is a ιP -ultra�lter.

Proof. For every homogeneous partition regular polynomial P (x1, ..., xn),
consider

SP = {U ∈ βN | U is a ιP -ultra�lter}.

As we proved in Section 3.4, every set SP is a closed subset of βN, and a
bilateral ideal in (βN,�).

Claim: The family {SP}P∈H has the �nite intersection property.

In fact, as a consequence of Corollary 3.3.6, for every natural number
k, for every polynomials P1(x1,1, ..., x1,n1), ...., Pk(xk,1, ..., xk,nk), if, for every
index i ≤ k, the ultra�lter Ui is an element of SPi then U1 � ...� Uk is a ιPi
ultra�lter for every i ≤ k, so

U1 � ...� Uk ∈
⋂k
i=1 SPi .

As βN is compact, and the family {SP}P∈H, where H is the set of homo-
geneous partition regular polynomials, has the �nite intersection property,
the intersection ⋂

P∈H SP
is nonempty, and if U is an ultra�lter in this intersection, by construction

it is a ιP ultra�lter for every homogeneous weakly partition regular polyno-
mial P (x1, ..., xn).

Corollary 3.7.7. The family of homogeneous subsets of N is weakly partition
regular.

Proof. Let U be an ultra�lter such that, for every homogeneous partition
regular polynomial P (x1, ..., xn), U is a ιP -ultra�lter, and A any of its ele-
ments; by construction A is an homogeneous set. So U is a subset of the
family of homogeneous sets, and by Theorem 1.2.3 it follows that this family
is weakly partition regular.

Question 2: Are the family of polynomial subsets of N or the family of
homogeneous subsets of N strongly partition regular?

We do not know. We conjecture that this is true at least for the homoge-
nous case, while the non-homogeneous case seems particularly challenging.
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3.7.3 Partition regularity on Z,Q,R
In this chapter we concentrated on the partition regularity on N for poly-

nomials in Z[X]; a natural generalization would be to study the partition
regularity of the same polynomials on Z,Q,R.

De�nition 3.7.8. Let A be a subset of R, and P (x1, ..., xn) a polynomial in
Z[X]. P (x1, ..., xn) is partition regular on A if the existential formula:

σP : ∃a1, ..., an ∈ A \ {0} P (a1, ..., an) = 0

is weakly partition regular on A.
P (x1, ..., xn) is injectively partition regular on A if the existential for-
mula:

ιP : ∃a1, ..., an ∈ A \ {0} (P (a1, ..., an) = 0 ∧
∧n
i 6=j,i,j=1 ai 6= aj)

is weakly partition regular on A.
The set of partition regular polynomials on A is denoted by PA.

As Z, Q and N have the same cardinality, and since the hyperextension
∗N has the c+−enlarging property, the Bridge Theorem could be proved
also for ultra�lters on Z, Q; from now on, in this section, we assume that
the hyperextension ∗N has the |℘(R)|+-enlarging property, because with this
hypothesis the Bridge Theorem is valid also for ultra�lters on R.
First of all, from the de�nitions it follows that

PN ⊆ PZ ⊆ PQ ⊆ PR

A known fact is that every linear homogeneous polynomial P (x1, ..., xn) ∈
Z[X] is partition regular on N if and only if it is partition regular on R (see
e.g. [HL06]). Actually, the arguments used to prove Theorem 3.6.6 could be
arranged to prove the following result:

Theorem 3.7.9. Let P (x1, ..., xn) be an homogeneous polynomial in Z[X].
Then the following conditions are equivalent:

1. P (x1, ..., xn) is injectively partition regular on N;

2. P (x1, ..., xn) is injectively partition regular on Z;

3. P (x1, ..., xn) is injectively partition regular on Q.
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When the polynomial is not homogeneous, the equivalence does not hold.
In fact, e.g., the polynomial x+y2 is partition regular on Z (since x = y = −1
is a solution) but it has no solutions on N, and the polynomial 2x + 1 is
partition regular on Q but it has no solutions on Z.
A result that is useful to study the partition regularity in this more general
context is the following:

Theorem 3.7.10. Let ∗R be an hyperextension of R with the |R|+-saturation
property. Let A be a subset of R, P (x1, ..., xn) a polynomial in PA and f ∈
Fun(A,A) an injective function. The following conditions are equivalent:

1. there is a ιP -ultra�lter U in Θf [A];

2. the existential sentence φ(y1, ..., yn): "there are mutually distinct y1, ..., yn
with P (f(y1), ..., f(yn)) = 0" is weakly partition regular.

Proof. (1) ⇒ (2) Let U be a ιP -ultra�lter, and α1, ..., αn ∈∗R mutually dis-
tinct elements in GU such that P (α1, ..., αn) = 0. From the hypothesis it
follows that there is an ultra�lter V in βA such that U = f(V). Then, as
proved in Theorem 2.3.6 (the result was stated and proved for A = N but,
since the hyperextension ∗R satis�es the |R|+-saturation property, the same
proof shows that the result holds for A = Q,R,Z as well), there are mutually
distinct elements β1, ..., βn ∈ GV with ∗f(βi) = αi for every index i ≤ n. This
proves that V is a φ(y1, ..., yn)-ultra�lter.
(2) ⇒ (1) Let V be a φ(y1, ...., yn)-ultra�lter, β1, ..., βn mutually distinct el-
ements in GV with P (∗f(β1), ....,

∗f(βn)) = 0, and consider U = f(V). By
construction, if for every index i ≤ n we pose αi =∗f(βi), then α1, ..., αn
are mutually distinct elements in GU with P (α1, ..., αn) = 0, so U is a ιP -
ultra�lter in Θf [A].

We present three corollaries of this result:

Corollary 3.7.11. A polynomial P (x1, ..., xn) is in PZ if and only if P (−x1, ...,−xn)
is in PZ.

Proof. The function x→ −x is a bijective function in Fun(Z,Z), so the result
is a trivial consequence of Theorem 3.7.10.

The previous corollary entails that there are injectively partition regular
polynomials P (x1, ..., xn) on Z, with partial degree 1, such that Red(P ) is
not partition regular: consider, e.g., the polynomial
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P (x1, x2, x3, x4, x5, x6) : x1x2x3 + x4x2x3 − x5x6;

as a consequence of Theorem 3.5.13, this polynomial is injectively parti-
tion regular on N so, in particular, it is injectively partition regular on Z.
So, the polynomial

Q(x1, x2, x3, x4, x5, x6) = P (−x1,−x2,−x3,−x4,−x5,−x6) :
−x1x2x3 − x4x2x3 − x5x6

is injectively weakly partition regular on Z, while its reduct

Red(Q)=−y1 − y2 − y3

is not.
The second corollary regards partition regular polynomials on Q:

Corollary 3.7.12. A polynomial P (x1, ..., xn) is in PQ if and only if the
polynomial P ( 1

x1
, ..., 1

xn
) is in PQ.

Proof. Let inv : Q \ {0} → Q \ {0} be the function that maps every rational
number q into q−1; inv is a bijection, so the thesis is a trivial consequence of
Theorem 3.7.10.

Our last corollary involves the partition regularity on R:

Corollary 3.7.13. Let z 6= 0 be an integer, and R>0 = {r ∈ R | r > 0}.
Then a polynomial P (x1, ..., xn) is in PR>0 if and only if P (xz1, ..., x

z
n) is in

PR>0.

Proof. For every integer z 6= 0, the function fz : R>0 → R>0 such that
fz(x) = xz is a bijection, so the thesis is a straightforward consequence of
Theorem 3.7.10.

E.g., for every natural numbers n,m with n+m ≥ 3 and for every integer
z 6= 0, the polynomial (

∑
i≤n x

z
i ) − (

∏
j≤m y

z
j ) is in PR>0 , as (

∑
i≤n xi) −

(
∏

j≤m yj) is injectively partition regular on N.
A particular case of this result are the polynomials

Pn(x, y, z) : xn + yn − zn
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that are injectively weakly partition regular on R while, for n ≥ 3, as a
consequence of Fermat's Last Theorem, they are not weakly partition regular
on N (as they do not admit any solution in N). The problem of the partition
regularity of x2+y2−z2 on N is still open; we conclude this chapter observing
that this polynomial is in PN if and only if there is a Schur ultra�lter in ΘSq,
where

Sq = {n ∈ N | ∃m ∈ N n = m2}.
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Chapter 4

Finite Embeddability and

Functional Relations

In this chapter we study the notion of �nite embeddability and its gen-
eralizations, that have some interesting combinatorial properties. The �nite
embeddability is de�ned as follows: given subsets A,B of N, A is �nitely
embeddable in B if for every �nite subset F of A there is a natural number
n such that n+ F ⊆ B. This notion can be generalized to ultra�lters: given
ultra�lters U ,V on N, U is �nitely embeddable in V if for every set B in V
there is a set A in U such that A is �nitely embeddable in B.
In Section One we present the idea that generated the study of the �nite
embeddability.
Section Two is dedicated to recalling some basic facts about pre-orders, that
will be used throughout the chapter.
Sections Three, Four and Five are dedicated to the study of the �nite embed-
dability de�ned on subsets of N and on βN. In particular, we prove that the
�nite embeddability is a pre-order with maximal elements, and that these
maximal elements have interesting combinatorial properties.
The de�nition of �nite embeddability can be reformulated in terms of trans-
lations, and it can be generalized by replacing the translations with arbitrary
sets of functions. In Sections Six, Seven and Eight we study this generalized
notion, called �nite mappability, with a particular attention to its combina-
torial properties.
In Section Nine we consider the particular case of the �nite mappability un-
der a�nities, proving that it is related with Van der Waerder ultra�lters.
Finally, in Section Ten, we present two possible future directions of our re-
search.
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4.1 The Initial Idea

In [Bei11] Mathias Beiglböck introduced the concept of "ultra�lter-shift":

De�nition 4.1.1. Let U be an ultra�lter on Z and let A be a subset of Z.
The U-shift of A is the set

A− U = {z ∈ Z | (A− z) ∈ U}.

This concept was used as a tool to give a short proof to the following
theorem of Renling Jin (see [Ji02]):

Theorem 4.1.2 (Jin). Let A,B be subsets of N with positive Banach density.
Then A+B = {a+ b | a ∈ A, b ∈ B} is piecewise syndetic.

Inspired by Beiglböck's proof, in [DN12] Mauro Di Nasso introduced the
notion of �nite embeddability for subsets of N, and used it to improve on
Jin's Theorem.

De�nition 4.1.3. Given subsets A,B of N, A is �nitely embeddable in
B (notation A ≤fe B) if and only if for every �nite subset F of A there is a
natural number n such that n+ A ⊆ B.

Finite embeddability has a nice nonstandard characterization and turns
out to be closely related to the ultra�lter-shifts of Beiglböck on N. In the
result below, as in the rest of this chapter, we suppose that the hyperex-
tension ∗N satis�es the c+-enlarging property and we recall that, given an
hypernatural number α, Uα is the ultra�lter on N such that, for every subset
A of N, A ∈ Uα ⇔ α ∈∗A.

Proposition 4.1.4. Let A,B be subsets of N. The following three conditions
are equivalent:

1. A is �nitely embeddable in B;

2. there is an hypernatural number α in ∗N such that α + A ⊆∗B

3. A is included in some ultra�lter shift of B on N.

Proof. (1) ⇒ (2) Suppose that A is �nitely embeddable in B, and let F be
a �nite subset of A. Let SF

SF = {n ∈ N | n+ F ⊆ B}.
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The family {SF}F∈℘fin(A) (where ℘fin(A) denotes the set of �nite subsets
of A) has the �nite intersection property, since SF1 ∩ SF2 = SF1∪F2 for every
�nite subsets F1, F2 of A.
By c+−enlarging property, it follows that

T =
⋂
F∈℘fin(A)

∗SF 6= ∅.

Observe that, for every �nite set F ⊆ N,
∗SF = {α ∈∗N | α+∗F ⊆∗B} = {α ∈∗N | α + F ⊆∗B},

since F =∗F . If α is any hypernatural number in T , then α+A ⊆∗B as,
by construction, α + F ⊆∗B for every �nite subset F of A.
(2) ⇒ (1) Let α be an hypernatural number in ∗N with α + A ⊆∗B, and
suppose that A is not �nitely embeddable in B. Take a �nite subset F of A
such that, for every natural number n, the translation n+ F is not included
in B. By transfer it follows that for every hypernatural number η the set
η + F is not included in ∗B, and this is absurd since α + F ⊆ α + A ⊆∗B.
So A is �nitely embeddable in B.
(2) ⇒ (3) Consider the ultra�lter U = Uα. As α + A ⊆∗B, for every a ∈ A
α ∈ (∗B − a) =∗(B − a), so

B − a ∈ Uα for every a ∈ A.

This entails that A ⊆ B − Uα.
(3) ⇒ (2) Let U = Uα be an ultra�lter such that A ⊆ B − U . Observe that
B − Uα = {n ∈ N | B − n ∈ Uα} = {n ∈ N | α ∈∗B − n} = {n ∈ N |
α + n ∈∗B}. Since A ⊆ {n ∈ N | α + n ∈∗B}, it follows that α + A ⊆∗B.

Another interesting property of �nite embeddability involves the Banach
density of subsets of N (that has been introduced in Section 3.1):

Proposition 4.1.5. Let A,B be subsets of N with A ≤fe B. Then BD(A) ≤fe
BD(B).

Proof. We recall the nonstandard characterization of Banach density intro-
duced in Section 3.1:

BD(A) ≥ a if and only if there are α ∈∗N, β ∈∗N \ N such that
st( |

∗A∩[α,α+β)|
β

) ≥ a.

As A ≤fe B, by Proposition 4.1 there is an hypernatural number γ with
γ + A ⊆∗B; by transfer it follows that
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∗γ+∗A ⊆∗∗B.

Observe that

|∗A∩ [α, α+β)| = |(∗γ+∗A)∩ [∗γ+α,∗γ+α+β)| ≤ |∗∗B∩ [∗γ+α,∗γ+α+β)|

so

BD(A) ≤ st( |
∗A∩[α,α+β)|

β
) ≤ st( |

∗∗B∩[∗γ+α,∗γ+α+β)|
β

) ≤ BD(B).

As suggested by the above results, the combinatorial properties of the
relation of �nite embeddability deserve to be studied in more detail. This
chapter is dedicated to the study of this relation and of its generalizations.

Convention: Throughout this chapter we assume that the hyperexten-
sion ∗N satis�es the c+-enlarging property, and we work in •N.

This is done since, as usual, we want to have nonempty sets of generators
for all ultra�lters U in βN.

4.2 Partial Pre�Orders

In this chapter we use some general features of partial pre-orders:

De�nition 4.2.1. Let S be a set, and ≤ a binary relation on S. (S,≤) is
a partial pre-ordered set if the relation ≤ is transitive and re�exive on S,
i.e. if for every x, y, z is S the following two conditions hold:

1. x ≤ y, y ≤ z ⇒ x ≤ z;

2. x ≤ x.

In this case we also say that ≤ is a partial pre-order on S.
The pre-order is total if, for every x 6= y in S, x ≤ y or y ≤ x.
A pre-order ≤ is an order if ≤ is antysimmetric, i.e. if for every x, y in S,
if x ≤ y and y ≤ x then x = y. In this case, we say that (S,≤) is a partially
ordered set if ≤ is a partial order, and that (S,≤) is a totally ordered set
if ≤ is a total order.

When dealing with partially pre-ordered sets, we are usually interested
in particular elements:
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De�nition 4.2.2. Let (S,≤) be a partially pre-ordered set, A a subset of S,
and let x be an element in S. Then

• x is the greatest element of (S,≤) if for every element y in S, y ≤ x;

• x is maximal if for every element y in S, if x ≤ y then y ≤ x;

• x is an upper bound of A is a ≤ x for every element a ∈ A.

The upper cone generated by x is the set C(x) = {y ∈ S | x ≤ y}.

An important sort of substructures of pre-ordered sets are the chains:

De�nition 4.2.3. Let (S,≤) be a partially pre-ordered set. A sequence
〈xi | i ∈ I〉 of elements in S is a chain if

1. (I,�) is a totally ordered set;

2. xi ≤ xj whenever i ≺ j in (I,�).

Chains are fundamental in relation with Zorn's Lemma:

Lemma 4.2.4 (Zorn). Let (S,≤) be a partially ordered set. Suppose that
every chain in (S,≤) has an upper bound in S. Then the set S contains at
least one maximal element.

Let (S,≤) be a partially pre-ordered set. There is a general technique to
construct a partially ordered set associated with this pre-order. First of all,
we consider the ≤-equivalence classes:

De�nition 4.2.5. Two elements x, y ∈ S are ≤-equivalent (notation x ≡
y) if x ≤ y and y ≤ x.

Observe that ≡ is actually an equivalence relation: it is symmetrical by
de�nition, and it is transitive and re�exive as ≤ is a pre-order.
The pre-order ≤ can be induced on the set of ≤-equivalence classes:

De�nition 4.2.6. Let (S,≤) be a partially ordered set. Given two ≤-equivalence
classes [x], [y] in S/≡, we pose [x] ≤ [y] if and only if x ≤ y.

We observe that (S/≡ ,≤) is a partially ordered set: the relation ≤ is
trivially transitive and re�exive on S/≡ . It is also antisymmetrical: suppose
that [x] ≤ [y] and [y] ≤ [x]. Then it follows that x ≤ y and y ≤ x, so [x] = [y].

Convention: Throughout this chapter, whenever we deal with a partial
pre-ordered set (S,≤), we reserve the notation (S/≡ ,≤) to denote the partial
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ordered set constructed as exposed above.

Observe that every chain in (S,≤) as an upper bound if and only if every
chain in (S/≡ ,≤) as an upper bound.
In this chapter we deal with pre-orders that are �ltered:

De�nition 4.2.7. Let (S,≤) be a partially pre-ordered set. The pre-order ≤
is �ltered if for every elements a, b in S there is an element c in S such that
a ≤ c and b ≤ c.

Observe that the pre-order ≤ is �ltered on S if and only if the order ≤ is
�ltered on S/≡ .
The property of �ltration is particularly important when dealing with par-
tially ordered sets that satisfy the hypothesis of Zorn's Lemma:

Theorem 4.2.8. Let (S,≤) be a partially ordered set such that every chain
in S has an upper bound. The following two conditions are equivalent:

1. there is a greatest element in (S,≤);

2. the order ≤ is �ltered.

Proof. (1)⇒ (2) Let m be the greatest element in (S,≤). Then a ≤ m and
b ≤ m for every a, b in S, so the order ≤ is �ltered.
(2)⇒ (1) Suppose that ≤ is �ltered. By Zorn's Lemma, since every chain in
S has an upper bound, there are maximal elements in (S,≤). Suppose that
m1, m2 are two maximal elements. Then, as ≤ is �ltered, there is an element
m such that m1 ≤ m and m2 ≤ m. Since m1, m2 are maximal, it follows that
m1 = m and m2 = m, hence m1 = m2: there is only one maximal element,
that is the greatest element in (S,≤).

We also observe that, if (S,≤) is a �ltered partially pre-ordered set, then
an element s ∈ S is maximal if and only if its equivalence class [s] is the
greatest element in (S/≡ ,≤). The proof of this fact is trivial.

4.3 Finite Embeddability for Subsets of N
In this section we study the relation of �nite embeddability.

Note: We assume that 0 ∈ N so, e.g., if A,B are subsets of N and A ⊆ B,
then A ≤fe B.
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Proposition 4.3.1. The relation ≤fe is a partial pre-order on ℘(N).

Proof. We have to prove that ≤fe is transitive and re�exive.
Transitive: Let A,B,C be subsets of N with A ≤fe B and B ≤fe C, and F a
�nite subset of A. As A ≤fe B, there is a natural number a with a+F ⊆ B;
since a+ F is a �nite subset of B and B ≤fe C, there is a natural number b
with b + a + F ⊆ C. If c = a + b, by construction c + F ⊆ C. This proves
that A is �nitely embeddable in C.
Re�exive: for every �nite subset F ⊆ A, 0 + F = F ⊆ A so A is trivially
�nitely embeddable in A.

The relation ≤fe is not antisymmetric, so it is not a partial order. E.g,
if O denote the set of odd natural numbers and E the set of even natural
numbers then O ≤fe E and E ≤fe O, as 1 +O ⊆∗E and 1 +E ⊆∗O. Notice
also that the relation of �nite embeddability is not a total pre-order: e.g., if
A = {1, 3} and B = {2, 5} then A and B are incomparable.

De�nition 4.3.2. Given A,B subsets of N, A is fe-equivalent to B (notation
A ≡fe B) if A ≤fe B and B ≤fe A. For every set A in ℘(N), we denote by
[A] the equivalence class of A respet to ≡fe:

[A] = {B ∈ ℘(N) | A ≡fe B}.

As a consquence of the general results about partial pre-orders exposed in
Section 4.2, the relation ≡fe is an equivalence relation, and (℘(N)/≡fe ,≤fe)
is a partially ordered set.

Fact: [N] is the greatest element in (℘(N)/≡fe ,≤fe).

This is evident, as every subset A of N is �nitely embeddable in N.

De�nition 4.3.3. A subset A of N is fe-maximal if B ≤fe A for every set
B in ℘(N).

Observe that by the de�nition it follows that a set A is fe-maximal if and
only if [A] is the greatest element in (℘(N)/≡fe ,≤fe) if and only if N ≤fe A.
We recall that a subset A of N is thick if it contains arbitrarily long intervals.

Proposition 4.3.4. Let A be a subset of N. The following two conditions
are equivalent:

1. A is fe-maximal;
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2. A is thick.

Proof. (1) ⇒ (2) Suppose that N ≤fe A. Let n be a natural number, and
consider the �nite subset {0, ..., n} of N. As N ≤fe A, there is a natural
number m such that {m, ...,m+ n} ⊆ A, so A contains an interval of length
n. Since this is true for every natural number n, it follows that A contains
arbitrarily long intervals, so A is thick.
(2) ⇒ (1) Suppose that A contains arbitrarily long intervals: let F be a
�nite subset of N, and pose n = maxF . As A contains an interval of length
n, there is a natural number m such that m + {0, ..., n} ⊆ A; in particular,
m+ F ⊆ m+ {0, ..., n} ⊆ A, so N is �nitely embeddable in A.

An important feature of �nite embeddability is the fact that it is "up-
ward closed under additively invariant formulas" (that have been introduced
in Section 3.3). We recall that, given a �rst order formula φ(x1, ..., xn),
E(φ(x1, ..., xn)) denotes the existential closure of φ(x1, ..., xn), which is the
sentence ∃x1, ..., xn(x1, ..., xn).

Proposition 4.3.5. Let φ(x1, ..., xn) be an additively invariant formula, and
let A,B be subsets of N. If A satis�es E(φ(x1, ..., xn)) and A ≤fe B then
also B satis�es E(φ(x1, ..., xn)).

Proof. If A satis�es E(φ(x1, ..., xn)) then there are a1, ..., an ∈ A such that
φ(a1, ..., an) holds. Let F = {a1, ..., an}. As A ≤fe B there is a natural
number m such that m + F ⊆ B. Since φ(x1, ..., xn) is additively invariant,
φ(a1, ..., an) implies φ(a1+m, ..., an+m), where a1+m, ..., an+m are elements
in B. So B satis�es E(φ(x1, ..., xn)).

As a corollary, e.g., if A contains a lenght 5 arithmetic progression, and
A ≤fe B, then B contains a lenght 5 arithmetic progression as well. So, if A
satis�es Van der Waerden's property, i.e. if A contains arbitrarily long arith-
metic progressions, then B contains arbitrarily long arithmetic progressions
as well.

Proposition 4.3.6. Let Φ be the set of additively invariant existential sen-
tences satis�ed by N. Then every thick subset A of N satis�es all the sentences
E(φ(x1, ..., xn)) ∈ Φ.

Proof. If E(φ(x1, ..., xn)) is a sentence in Φ, as N ≤fe A, by Proposition 4.3.5
it follows that A satis�es E(φ(x1, ..., xn)).
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Another important feature of �nite embeddability is that every set that
is ≤fe-above a piecewise syndetic set is piecewise syndetic as well (the notion
of piecewise syndetic set has been introduced in Section 1.1.5):

Proposition 4.3.7. Let A be a piecewise syndetic subset of N, and let A ≤fe
B. Then B is piecewise syndetic.

Proof. Since A is piecewise syndetic, there is a natural number n such that
the set A− [0, n] = {m ∈ N | ∃i ≤ n with i+m ∈ A} is thick.

Claim: B − [0, n] is thick.

The claim trivially entails that B is piecewise syndetic.
Let F = {a1, ..., ak} be a �nite subset of A− [0, n]. By hypothesis, there are
natural numbers i1, ..., ik ≤ n such that F ′ = {a1 + i1, ..., ak + ik} ⊆ A. Since
A ≤fe B, there is a natural number nF such that nF +F ′ ⊆ B. So, for every
index j ≤ k,

nF + aj + ij ∈ B.

In particular, nF + aj ∈ B− [0, n] for every index j ≤ k, hence nF +F ⊆
B − [0, n]. This proves that A− [0, n] ≤fe B − [0, n] and, as A is thick, this
entails by maximality that B − [0, n] is thick.

The �nite embeddability for subsets of N can also be characterized in
terms of ultra�lters:

Proposition 4.3.8. Given subsets A,B of N, the following two conditions
are equivalent:

1. A is �nitely embeddable in B;

2. there is an ultra�lter V on N such that, for every ultra�lter U on N, if
A ∈ U then B ∈ U ⊕ V.

Proof. (1)⇒ (2) : Suppose that A is �nitely embeddable in B, and let α be
an hypernatural number in ∗N with α + A ⊆∗B. By transfer it follows that

(i) ∗α+∗A ⊆∗∗B.

Consider the ultra�lter V generated by α, let U be any ultra�lter in βN with
A ∈ U , and let β ∈∗N be a generator of U . By (i) it follows that

∗α + β ∈∗∗B,
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so B ∈ U∗α+β, and the conclusion follows because Uβ+∗α = Uβ⊕Uα = U ⊕V .
(2)⇒ (1) : Let V be an ultra�lter as in the hypothesis, and α ∈∗N a generator
of V . For every element a ∈ A, A is an element of the principal ultra�lter
Ua so, by hypothesis, B ∈ Ua ⊕ Uα = Ua+α. This entails that a + α ∈∗B
for every a ∈ A, so α + A ⊆∗B, and by Proposition 4.1.4 this entails that
A ≤fe B.

This result originates a question: can the relation of �nite embeddability
be extended to ultra�lters? We address this question in next section.

4.4 Finite Embeddability for Ultra�lters

4.4.1 Basic properties of the relation of �nite embed-

dability for ultra�lters

In this section we study the properties of the extension of the �nite em-
beddability to ultra�lters (introduced in [BDN]). This extension is denoted
by Efe. There are at least three possible ways to extend �nite embeddability
of sets to ultra�lters. Namely, given ultra�lters U ,V in βN, we could de�ne

1. U Efe V if for every set A in U , for every set B in V , A ≤fe B;

2. U Efe V if for every set A in U there is a set B in V with A ≤fe B

3. U Efe V if for every set B in V there is a set A in U with A ≤fe B.

De�nitions (1) and (2) have undesired properties: since A = N is an
element of every ultra�lter, a consequence of de�nition (1) is that for every
ultra�lters U and V , U Efe V if and only if every element B in V is maximal
respect to ≤fe, i.e. if B is thick. But there are no ultra�lters that only
contain thick sets. A consequence of de�nition (2) is that for every U ,V
ultra�lters, U Efe V , as A ≤fe N for every subset A of N.
We choose de�nition number three, which has nice properties.

De�nition 4.4.1. Given ultra�lters U ,V in βN, we say that U is �nitely
embeddable in V (notation U Efe V) if for every set B in V there is a set
A in U with A ≤fe B.

Proposition 4.4.2. Let U ,V be ultra�lters on N. Then:

1. if U is principal and V is nonprincipal, U is �nitely embeddable in V
while V is not �nitely embeddable in U ;
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2. if U is the principal ultra�lter generated by n and V is the principal
ultra�lter generated by m then U Efe V if and only if n ≤ m.

Proof. (1) Suppose that U is generated by the natural number n, and let A
be an element of V . Since V is nonprincipal, A is in�nite, so in A there is an
element m greater than n; in particular, {n} ≤fe A, as (m− n) + {n} ⊆ A.
So U Efe V .
Conversely, suppose that V E U , where U is the principal ultra�lter generated
by n. The singleton {n} is an element of U so, by de�nition, there is an
element A in V with A ≤ {n} but, as V is nonprincipal, A is in�nite, and
an in�nite set is not �nitely embeddable in a �nite set. So we get an absurd,
and V is not �nitely embeddable in U .
(2) Suppose that U Efe V , and consider the element {m} in V . By de�nition,
there is an element A in U and a natural number a with a+A ⊆ {m}. And
this is true if and only if A is a singleton, and the only singleton in U is {n}.
So a+ n = m, in particular n ≤ m.
Conversely, suppose that n ≤ m, and take an element A in V . As n ≤
m, m − n is a natural number, and (m − n) + {n} = {m}; in particular,
(m−n) + {n} ⊆ A and, as {n} is an element of U , this proves that U Efe V .

If we identify as usual each natural number n with the corresponding
principal ultra�lter Un, the above proposition states that:

Fact: N forms an initial segment of (βN,Efe).

Similarly to the relation of �nite embeddability for subsets of N, �nite
embeddability for ultra�lters is "upward closed with respect to additively
invariant existential sentences":

Proposition 4.4.3. Let φ(x1, ..., xn) be an additively invariant formula. If U
is an E(φ(x1, ..., xn))-ultra�lter, and U Efe V, then also V is an E(φ(x1, ..., xn))-
ultra�lter.

Proof. Let U be an E(φ(x1, ..., xn))-ultra�lter and V an ultra�lter such that
U Efe V . Let A be any element of V . Since U Efe V , there is a setB in U with
B ≤fe A. As U is an E(φ(x1, ..., xn))-ultra�lter, B satis�es E(φ(x1, ..., xn))
and, by Proposition 4.3.5, it follows that A satis�es E(φ(x1, ..., xn)) as well.
So every set A in V satis�es E(φ(x1, ..., xn)), and V is an E(φ(x1, ..., xn))-
ultra�lter.
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E.g.: if U is a Van der Waerden ultra�lter, and V an ultra�lter such that
U Efe V , then also V is a Van der Waerden ultra�lter; in fact, for every
natural number n, U is an APn-ultra�lter (the sentences APn have been
introduced in Section 3.4, and are additively invariant and existential), so V
is an APn-ultra�lter for every natural number n, in particular it is a Van der
Waerden's ultra�lter.

De�nition 4.4.4. Let ∆ denote the set of ultra�lters U in βN such that, for
every set A in U , A has positive Banach density:

∆ = {U ∈ βN | ∀A ∈ U , BD(A) > 0}.

The notation has been chosen keeping the one introduced in [HS98].

Proposition 4.4.5. Let U ,V be ultra�lters in βN with U ∈ ∆. If U is �nitely
embeddable in V then V ∈ ∆.

Proof. Let U be an element of ∆, V an ultra�lter such that U Efe V , and A
a set in V . Since U Efe V , there is a set B in U with B Efe A and, since
BD(B) > 0, by Proposition 4.1.5 it follows that BD(A) > 0. Since this
holds for every set A in V , V ∈ ∆.

Corollary 4.4.6. There are nonprincipal ultra�lters U ,V with ¬(U Efe V).

Proof. Let U be an ultra�lter in BD>0 and V a nonprincipal ultra�lter in
∆c. Then by Proposition 4.4.5 it follows that U is not �nitely embeddable
in V .

In Section 4.3 we proved that (℘(N),≤fe) is a partially pre-ordered set.
The question is whether this property can be generalized to (βN,Efe). The
answer is a�rmative:

Proposition 4.4.7. (βN,Efe) is a partially pre-ordered set.

Proof. We have to prove that Efe is transitive and re�exive.
Transitive: Suppose that U Efe V and V Efe W . Let A be a set inW . Since
V Efe W , there exists B in V with B ≤fe A and, since B ∈ V , there exists
C in U with C ≤fe B. By transitivity of the relation ≤fe on ℘(N) we get
that C ≤fe A, so U Efe W .
Re�exive: For every ultra�lter U and for every set A in U , A ≤fe A, so
U Efe U .
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Similarly to ≤fe, Efe is not antisymmetric (a simple proof of this fact
is given in Corollary 4.4.30). Following the procedure introduced in Section
4.2, we introduce the following de�nition:

De�nition 4.4.8. Two ultra�lters U ,V in βN are equivalent respect to
�nite embeddability (notation U ≡fe V) if U Efe V and V Efe U . For ev-
ery ultra�lter U we denote its equivalence class respect to �nite embeddability
by [U ]:

[U ] = {V ∈ βN | U ≡fe V}.

By the general theory of pre-orders it follows that ≡fe is an equivalence
relation on βN and that (βN/≡fe

,Efe) is a partial ordered set.
Next subsection is dedicated to the study of this partial ordered set: the
most important result is that in (βN/≡fe

,Efe) there is a greatest element.

4.4.2 The partial ordered set (βN/≡fe
,Efe).

In our opinion, the property of Efe with the most important consequences
is the following:

Proposition 4.4.9. If U ,V are ultra�lters in βN, then both U and V are
�nitely embeddable in U ⊕ V.

Proof. Let A be an set in U ⊕ V ; by de�nition,

A ∈ U ⊕ V ⇔ {n ∈ N | {m ∈ N | n+m ∈ A} ∈ V} ∈ U .

Consider the set

B = {n ∈ N | {m ∈ N | n+m ∈ A} ∈ V}

and, for every n ∈ B, consider the set

Cn = {m ∈ N | n+m ∈ A}.

Claim: B ≤fe A and Cn ≤fe A for every n ∈ B.

From the claim it follows that U Efe U ⊕ V and V Efe U ⊕ V , and this
proves the thesis. To prove the �rst part of the claim, let F = {n1, ..., nk} be
a �nite subset of B; consider

CF =
⋂k
i=1Cni =

⋂k
i=1{m ∈ N | m+ ni ∈ A} = {m ∈ N | m+ F ⊆ A}.
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Since B is in U , Cni ∈ V for every index i ≤ k, so CF is in V . In particular,
CF is not empty; if m is a natural number in CF , by construction

m+ F ⊆ A;

this proves that for every �nite subset F of B there is a natural number
(in CF ) such that n+ F ⊆ A so, by de�nition, B ≤fe A.
To prove the second statement in the claim we observe that, if n is an element
of B, by de�nition n+Cn ⊆ A; in particular, for every �nite subset F of Cn,
n+F ⊆ A, and this entails that Cn ≤fe A for every natural number n in B.

Two important consequences of this result in the study of (βN,Efe) and
(βN/≡fe

,Efe) are:

Corollary 4.4.10. For every ultra�lters U ,V in βN there is an ultra�lter
W ∈ βN such that U and V are �nitely embeddable in W.

Proof. This is a straightforward consequence of Proposition 4.4.9: just con-
sider W = U ⊕ V .

Corollary 4.4.11. For every equivalence classes [U ], [V ] in βN/≡fe
there is

an equivalence class [W ] such that [U ] and [V ] are �nitely embeddable in [W ].

Proof. If W is any ultra�lter in βN such that U ,V Efe W , then [U ].[V ] Efe
[W ].

One other important feature of the �nite embeddability is that every chain
in (βN,Efe) has an upper bound. In this context, the chains in (βN,Efe)
are called fe-chains and the upper bounds are called fe-upper bounds.

Theorem 4.4.12. Every fe-chain 〈Ui | i ∈ I〉 of elements in βN has an
fe-upper bound U .

Proof. For every element i ∈ I consider the set

Gi = {j ∈ I | j ≥ i}.

The family {Gi}i∈I has the �nite intersection property, so there is an ul-
tra�lter V on I that extends this family. Observe that the ultra�lter V is
principal and generated by an element i ∈ I if and only if i is the greatest
element of I. In this case, the thesis is trivial, since Ui is an fe-upper bound
for the chain. So we assume that V is non principal.
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In this case we observe that for every element A in V and for every element
i ∈ I there is an element j in A with j > i.
In fact, suppose that there exists a set A in V and an element i in I such
that A does not contain elements greater than i. Then A ∩ Gi contains at
most i and, since A and Gi are in V , the intersection A ∩ Gi is nonempty,
so A ∩ Gi = {i}, and V is the principal ultra�lter generated by i, while we
supposed V nonprincipal.

Claim: The ultra�lter

U = V − limI Ui ∈ βN

is an fe-upper bound for the fe-chain 〈Ui | i ∈ I〉.

To prove that Ui Efe U for every index i, let A be an element of U . By
de�nition,

A ∈ U ⇔ IA = {i ∈ I | A ∈ Ui} ∈ V .

IA is a set in V so, as we observed, there is an element j > i in IA. But

j ∈ IA if and only if A ∈ Uj,

so, in particular, A ∈ Uj. Now, by de�nition of fe-chain, Ui Efe Uj, and
since A ∈ Uj, there exists an element B in Ui with B ≤fe A. This proves
that, for every index i ∈ I, Ui Efe U , so U is an upper bound for the fe-chain
〈Ui | i ∈ I〉.

Corollary 4.4.13. For every fe-chain 〈[Ui] | i ∈ I〉 of equivalence classes in
βN/≡fe

there is an upper bound [U ].

Proof. This corollary is a particular case of a general fact, observed in Section
4.2: if in a partially ordered set (S,≤) every chain has an upper bound, the
same property holds for the quotient set (S/≡ ,≤).

Theorem 4.4.14. In (βN/≡fe
,Efe) there is a greatest element.

Proof. (βN/≡fe
,Efe) is a �ltered ordered set (by Corollary 4.4.10), and every

fe-chain admits an upper bound (by Corolary 4.4.13). By Theorem 4.2.8 it
follows that in (βN/≡fe

,Efe) there is a greatest element.
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De�nition 4.4.15. An ultra�lter U ∈ βN is fe-maximal if [U ] is the greatest
element in (βN/≡fe

,Efe), i.e. if for every ultra�lter V, V Efe U .

Theorem 4.4.16. Let U be an ultra�lter on N. The following conditions are
equivalents:

1. U is fe-maximal;

2. ∀V ∈ βN V ⊕ U Efe U or V ⊕ U Efe U ;

3. ∀V ∈ βN U ⊕ V Efe U ;

4. ∀V ∈ βN V ⊕ U Efe U ;

5. ∀V ∈ βN U ⊕ V Efe U and V ⊕ U Efe U .

Proof. Observe that, trivially (5)⇒ (4)⇒ (2) and (5)⇒ (3)⇒ (2).
(1) ⇒ (5) Since U is fe-maximal, for every ultra�lter W ∈ βN we have
W Efe U . In particular, taking W = U ⊕ V and W = V ⊕ U , we get the
thesis.
(2) ⇒ (1) Suppose that U is not maximal. Then there is an ultra�lter V
such that ¬(V E U). As V Efe U ⊕ V and V Efe V ⊕ U , since the �nite
embeddability is transitive then ¬(U ⊕ V Efe U) and ¬(V ⊕ U Efe U), and
this is a contradiction.

Important properties of maximal ultra�lters are exposed in Section 4.4.4:
crucial concepts in the study of these ultra�lters are the properties of the
fe-cones

Cfe(U) = {V ∈ βN | U Efe U}.

Next section is dedicated to the study of these sets.

4.4.3 The cones Cfe(U)

De�nition 4.4.17. Given an ultra�lter U in βN, with Cfe(U) we denote the
upper cone of U in (βN,Efe), i.e. the set of ultra�lters in βN in which U is
�nitely embeddable:

Cfe(U) = {V ∈ βN | U Efe V}.
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Fact: For every ultra�lters U ,V in βN, if U ≡fe V then Cfe(U) = Cfe(V).

For every ultra�lter U in βN, the set Cfe(U) has interesting topological
and algebraical properties:

Proposition 4.4.18. For every ultra�lter U in βN, Cfe(U) is closed in the
Stone topology.

Proof. To prove that Cfe(U) is closed we show that, given a sequence 〈Ui |
i ∈ I〉 of elements in Cfe(U) and an ultra�lter V on I, the limit

W = V − limI Ui

belongs to Cfe(U). This fact, as proved in Section 1.1.6, entails that
Cfe(U) is closed.
Let A be an element of W . By de�nition of limit of ultra�lters, the set of
indexes i ∈ I such that A ∈ Ui is in V ; in particular, it is nonempty. Let i be
an index such that A ∈ Ui. Since U Efe Ui (because Ui ∈ Cfe(U)), there is a
set B in U with B ≤fe A; this proves that, for every set A inW , there is a set
B in U such that B ≤fe A, so U Efe W , and this entails that W ∈ Cfe(U).

The above theorem characterizes topologically the set Cfe(U). The next
proposition shows an important algebraical feature of Cfe(U):

Proposition 4.4.19. For every ultra�lter U in βN, the set Cfe(U) is a two-
sided ideal of (βN,⊕).

Proof. Let V be an ultra�lter in Cfe(U), and W an ultra�lter in βN. By
Proposition 4.4.9 it follows that V Efe W ⊕ V and V Efe V ⊕W . Then, as
U Efe V , by transitivity it follows that U Efe W ⊕ V and U Efe V ⊕W ; in
particular, W⊕V ,V ⊕W ∈ Cfe(U), so Cfe(U) is a bilateral ideal in (βN,⊕).

Corollary 4.4.20. For every ultra�lter U , the set Cfe(U) contains the close

sets {U ⊕ V | V ∈ βN} and {V ⊕ U | V ∈ βN}.

Proof. From Proposition 4.4.19, since Cfe(U) is a bilateral ideal in (βN,⊕)
that contains U , it follows that

{U ⊕ V | V ∈ βN} ⊆ Cfe(U) and {V ⊕ U | V ∈ βN} ⊆ Cfe(U).

As Cfe(U) is closed, the thesis follows taking the closures on both sides
of the inclusions, and observing that {V ⊕ U | V ∈ βN} is closed.
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The result exposed in Corollary 4.4.20 can be improved to characterize
Cfe(U). To this end we need the following two lemmas:

Lemma 4.4.21. Let B be a subset of N, and U an element of βN. The
following two conditions are equivalent:

1. there is an element A in U such that A is �nitely embeddable in B;

2. there is an ultra�lter V on N such that B in U ⊕ V

Proof. (1)⇒ (2) This follows by Proposition 4.3.8, that states that if A ≤fe
B then there is an ultra�lter V such that, for every ultra�lter W , if A ∈ W
then B ∈ W ⊕ V , and the conclusion follows by choosing W = U .
(2)⇒ (1) This is a consequence of Proposition 4.4.9, since if B ∈ U ⊕ V , as
U Efe U ⊕ V there is an element A in U such that A ≤fe B.

Lemma 4.4.22. Let U ,V be ultra�lters in βN. The following two conditions
are equivalent:

1. U is �nitely embeddable in V;

2. for every element B of V there is an ultra�lter W in βN such that
B ∈ U ⊕W.

Proof. (1) ⇒ (2) Suppose that U Efe V , and take any element B of V . By
de�nition of Efe, there is an element A of U with A ≤fe B; by Lemma 4.4.21,
this entails that there is an ultra�lter W in βN with B ∈ U ⊕W .
(1) ⇒ (2) Let B be an element of V . By hypothesis, there is an ultra�lter
W such that B ∈ U ⊕W and, as by Proposition 4.4.9 U Efe U ⊕ V , there
exists A in U with A ≤fe B.

Given the above two lemmas, we can characterize the cones Cfe(U):

Theorem 4.4.23. For every ultra�lter U in βN, Cfe(U) is the closure in the
Stone topology of the set {U ⊕ V | V ∈ βN}:

Cfe(U) = {U ⊕ V | V ∈ βN}.

Proof. The inclusion {U ⊕ V | V ∈ βN} ⊆ Cfe(U) has been proved in Corol-
lary 4.4.20.
For the reverse inclusion, in Lemma 4.4.22 it has been proved that, if an ul-
tra�lterW is in Cfe(U), and A is an element ofW , then there is an ultra�lter
V with A ∈ U ⊕ V . Reformulating this observation from a topological point
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of view, this proves that for every element A in V there is an ultra�lter Z in
{U ⊕ V | V ∈ βN} with A ∈ Z. This property holds, in the Stone topology,
if and only if W ∈ {U ⊕ V | V ∈ βN}, so Cfe(U) ⊆ {U ⊕ V | V ∈ βN}.

Recall that Cfe = {U ⊕ V | V ∈ βN} is a bilateral ideal in (βN,⊕). So it
is readily seen that

Fact: Cfe(U) is the minimal closed right ideal in (βN,⊕) containing U .

In next section we show how the sets Cfe(U) can be used to characterize
the set Mfe of ultra�lters such that their class of ≡fe-equivalence is the
greatest element of (βN/≡fe

,Efe). Surprisingly, this set is related to the
minimal bilateral ideal K(βN,⊕) of (βN,⊕).

4.4.4 Mfe is the closure of the minimal bilater ideal of

(βN,⊕)

De�nition 4.4.24. If M is the greatest element in (βN/≡fe
,Efe), withMfe

we denote its equivalence class

Mfe = {U ∈ βN | [U ] = M}.

The ultra�lters inMfe are called maximal.

Observe that an ultra�lter U in βN is maximal if and only if, for every
ultra�lter V in βN, V Efe U .
In this section we prove that

Mfe = K(βN,⊕).

The results needed to prove this equality have been already exposed in
this chapter, except for these two lemmas:

Lemma 4.4.25. For every right ideal R of (βN,⊕), R is a right ideal of
(βN,⊕).

Proof. Let U be an element ofR, and V an ultra�lter in βN. As a consequence
of a well-known characterization of closed sets in the Stone topology, proving
that U ⊕ V is in R is equivalent to prove that, for every element A ∈ U ⊕ V ,
there is an ultra�lter Z ∈ R with A ∈ Z.
Let A be an element of U ⊕ V . By de�nition, the set
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B = {n ∈ N | {m ∈ N | n+m ∈ A} ∈ V}

is an element of U . Since U is in R and B is in U , there is an ultra�lter
W in R such that B ∈ W . In particular, since B ∈ W , A ∈ W ⊕ V , and
W⊕V is an element of R since R is a right ideal andW is in R. This proves
that R is a right ideal.

Lemma 4.4.26. For every maximal ultra�lter U in βN, Cfe(U) =Mfe.

Proof. The inclusionMfe ⊆ Cfe(U) holds for every ultra�lter U in βN.
Conversely, if U is maximal, the reverse inclusion Cfe(U) ⊆ Mfe holds as
well because, if V is an element in Cfe(U) and W is any ultra�lter then,
as W Efe U (by maximality of U) and U Efe V (by de�nition of Cfe(U)),
W Efe V , so V is maximal, and Cfe(U) ⊆Mfe.

Theorem 4.4.27. Let K(βN,⊕) denote the smallest bilateral ideal of (βN,⊕).
Then, for every minimal right ideal R,

Mfe = R;

in particular,

Mfe = K(βN,⊕).

Proof. Let R be a right ideal included inK(βN,⊕). K(βN,⊕) is the smallest
bilateral ideal of (βN,⊕) and, as for every ultra�lter U in βN, Cfe(U) =Mfe

is a bilateral ideal in (βN,⊕), it follows that

R ⊂ K(βN,⊕) ⊆ Cfe(U)

for every ultra�lter U ∈ βN. In particular, if U is maximal, since by
Lemma 4.4.26Mfe = Cfe(U) it follows that

(†) R ⊆ K(βN,⊕) ⊆Mfe.

As Mfe is closed (since Mfe = Cfe(U) for every maximal ultra�lter U ,
and Cfe(U) is closed), if we take the closures in (†) it follows that

(1) R ⊆ K(βN,⊕) ⊆Mfe.

For the reverse inclusions, let U be an ultra�lter in R. Since R is a right
ideal, by Lemma 4.4.25 it follows that R is a closed right ideal containing U .
Since we already proved that R is included inMfe, it follows that U is inMfe

and, as we proved in Lemma 4.4.26, Mfe = Cfe(U), which is the minimal
closed right ideal containing U . So
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(2) Mfe ⊆ R.

Considering (1) and (2), it follows that

Mfe = R = K(βN,⊕)

and this concludes the proof.

This result has three interesting corollaries. The �rst one is a known fact
in the topology of βN:

Corollary 4.4.28. If R is a right minimal ideal in (βN,⊕) then

R = K(βN,⊕).

Proof. Trivial, since by Theorem 4.4.27 it follows thatR =Mfe andK(βN,⊕) =
Mfe.

Corollary 4.4.29. An ultra�lter U is maximal if and only if every element
A of U is piecewise syndetic.

Proof. This follows from this well-known characterization of K(βN,⊕) (that
we exposed in Chapter One): an ultra�lter U is in K(βN,⊕) if and only if
every element A of U is piecewise syndetic .

Corollary 4.4.30. The relation Efe is not antysimmetric on βN.

Proof. We just need to observe that, whenever U ,V are two di�erent ultra-
�lters in K(βN,⊕), by Theorem 4.4.27 it follows that U Efe V and V Efe U .

4.5 A Direct Nonstandard Proof ofMfe = K(βN,⊕)
In this section we give a nonstandard proof of the equality Mfe =

K(βN,⊕) by showing, in an alternative way, that there is an intimate con-
nection between maximal ultra�lters and piecewise syndetic sets:

Theorem 4.5.1. Let U be an ultra�lter in βN. The following conditions are
equivalent:

1. U is maximal in (βN,Efe);
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2. ∀A ∈ U , A is piecewise syndetic.

Proof. (1)⇒ (2) Suppose that U is maximal, and let V be an ultra�lter such
that every set B in V is piecewise syndetic (the ultra�lter V exists since the
family of piecewise syndetic sets is partition regular). Let A be any set in
U . Since U is maximal, V Efe U , so there is a set B in V with B ≤fe A. As
B is piecewise syndetic, by Proposition 4.3.7 it follows that A is piecewise
syndetic. Since this holds for every set A in U , we have the thesis.
(2)⇒ (1) Let A be a set in U , and V an ultra�lter in βN. Since A is piecewise
syndetic, there is a natural number n such that

T =
⋃n
i=1A+ i

is thick. By transfer it follows that there are hypernatural numbers α ∈∗N
and η ∈∗N\N such that the interval [α, α+η] is included in ∗T . In particular,
since η is in�nite, α + N ⊆∗T .
For every i ≤ n consider

Bi = {n ∈ N | α + n ∈∗A+ i}.

Since
⋃n
i=1Bi = N, there is an index i such that Bi ∈ V .

Claim: Bi ≤fe A.

In fact, by construction α +Bi ⊆∗A+ i, so

(α− i) +Bi ⊆∗A.

By Proposition 4.1.4, this entails that Bi ≤fe A, and this proves that V Efe U
for every ultra�lter V . Hence U is maximal.

4.6 Finite Mappability of Subsets of N

4.6.1 The generalization of �nite embeddability

Our aim in this section is to generalize the relation of �nite embeddabil-
ity for subsets of N. Our idea of generalization is grounded on the following
observation: the core in the de�nition of �nite embeddability are the trans-
lations. In fact, if T denotes the set of translations in N:

T = {fn : N→ N | n ∈ N and fn(m) = n+m for every m in N}
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then the de�nition of �nite embeddability can be reformulated in this way:

Fact: Given subsets A,B of N, A is �nitely embeddable in B if and only if
for every �nite subset F of A there is a function fn in T such that fn(F ) ⊆ B.

We generalize �nite embeddability by substituting the set of translations
T with other sets of functions F ∈ Fun(N,N) (we recall that, whenever A,B
are sets, with Fun(A,B) we denote the set of functions with domain A and
range included in B):

De�nition 4.6.1. Let F be a subset of Fun(N,N), and A,B subsets of N.
A is F-�nitely mappable in B (notation A ≤F B) if and only if for every
�nite subset F of A there is a function f in F such that f(F ) ⊆ B.

From now on, to be coherent with the notation just introduced, we de-
note the relation of �nite embeddability as ≤T, where T is the above set of
translations.
We summarize some basic observations in the following proposition:

Proposition 4.6.2. Let A,A1, A2, B,B1, B2 be subsets of N and F , F1,
F2,...,Fk subsets of Fun(N,N). The following properties hold:

1. If F = {f} then A ≤{f} B if and only if f(A) ⊆ B;

2. If A ≤F1∪F2 B then A ≤F1 B or A ≤F2 B;

3. If A ≤F1∪....∪Fk B then there is an index i ≤ k such that A ≤Fi B;

4. If F = {f1, ..., fk} then A ≤{f1,...,fk} B if and only if there is an index
i ≤ k such that fi(A) = B;

5. If F1 ⊆ F2 and A ≤F1 B then A ≤F2 B;

6. If A1 ⊆ A2 and A2 ≤F B then A1 ≤F B;

7. If B1 ⊆ B2 and A ≤F B1 then A ≤F B2;

8. If A1 ≤F B and A2 ≤F B then A1 ∩ A2 ≤F B;

9. If A ≤F B1 and A ≤F B2 then A ≤F B1 ∪B2.

Proof. 1) Suppose that A ≤{f} B; by de�nition, whenever F is a �nite subset
of A the set f(F ) is included in B. This entails that f(A) ⊆ B.
Conversely, if f(A) ⊆ B then, for every �nite subset F of A, f(F ) ⊆ B; in
particular, A ≤{f} B.
2) Suppose that A ≤F1∪F2 B. For every natural number n let An be the set
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An = A ∩ [0, n].

There are two possibilities:

1. for arbitrarily large natural numbers n there is a function fn ∈ F1 such
that fn(An) ⊆ B;

2. there is a natural number n such that, for every m ≥ n, for every
f ∈ F1, f(Am) is not included in B.

In case (1), we claim that A ≤F1 B: in fact, for every �nite subset F of
A there is a function f ∈ F1 with f(F ) ⊆ B since, if m = maxF , and n is a
natural number greater than m such that there is a function fn in F1 with
fn(An) ⊆ B, since F ⊆ An then fn(F ) ⊆ B; in particular, A ≤F1 B.
In case (2), we claim that A ≤F2 B: let N be the natural number such that,
for every m ≥ N , for every function f ∈ F1, f(Am) is not included in B.
Since, by hypothesis, A ≤F1∪F2 B, for every natural number m ≥ N there is
a function gm in F2 such that gm(Am) ⊆ B. Then, for every �nite subset F
of A, if M = max{max(F ), N}, as N ≤ M there is a function g in F2 with
g(AM) ⊆ B; in particular, as F ⊆ AM , g(F ) ⊆ B, and A ≤F2 B.
3) It follows by induction from (2).
4) By (3), there is an index i ≤ k such that A ≤fi B and by (1) it follows
that fi(A) ⊆ B.
5) Suppose that A ≤F1 B. By de�nition of F1-�nite mappability, for every
�nite subset F of A there is a function f in F1 such that f(F ) ⊆ B. In
particular, as F1 ⊆ F2, for every �nite subset F of A there is a function f in
F2 such that f(F ) ⊆ B, so A ≤F2 B.
6) We have only to observe that, as A1 ⊆ A2, every �nite subset of A1 is also
a �nite subset of A2.
7) We have only to observe that, for every �nite subset F of A, for every
function f ∈ F , if f(F ) ⊆ B1 then f(F ) ⊆ B2.
8) This is a particular case of the result (6).
9) This is a particular case of the result (7).

Similarly to the relation of �nite embeddability, the relation of �nite
mappability can be reformulated in a nonstandard fashion:

Proposition 4.6.3. Let A,B be subsets of N, and F a subset of Fun(N,N).
The following two conditions are equivalent:

1. A ≤F B;

2. there is a function ϕ in ∗F such that ϕ(A) ⊆∗B.
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Proof. (1) ⇒ (2) Suppose that A ≤F B and, for every �nite subset F of A,
consider the set

SF = {f ∈ F | f(F ) ⊆ B}

As A ≤F B, for every �nite subset F of A SF 6= ∅, and the family
{SF}F∈℘fin(A) has the �nite intersection property, since

SF1 ∩ SF2 = SF1∪F2 .

By c+-enlarging property,
⋂
F∈℘fin(A)

∗SF 6= ∅; let ϕ be a function in
this intersection. By construction and transfer, ϕ has the following two
properties:

1. ϕ ∈∗F ;

2. ϕ(∗F ) ⊆∗B for every �nite subset F of A.

As ∗F = F for every �nite subset of N, by condition (2) it follows that
ϕ(A) ⊆∗B.
(2) ⇒ (1) Let ϕ be a function in ∗F such that ϕ(A) ⊆∗B, and suppose
that A is not F -�nitely mappable in B. As a consequence, there is a �nite
subset F of A such that, for every function g ∈ F , g(F ) is not included
in B. By transfer it follows that, for every function g ∈∗F , g(∗F ) is not
included in ∗B, and this is absurd since, as we observed before, ∗F = F , and
ϕ(F ) ⊆ ϕ(A) ⊆∗B. By assuming that A is not F -�nitely mappable in B it
follows an absurd, so A ≤F B.

From now on, a central tool in the study of the relations ≤F are the
hyperextensions ∗ϕ of internal functions ϕ in Fun(∗N,∗N); in particular, in
this context we need this particular property:

Proposition 4.6.4. Let ϕ be an internal function in Fun(∗N,∗N), and α, β
be hypernatural numbers in ∗N. If α ∼u β then (∗ϕ)(α) ∼u (∗ϕ)(β).

Proof. To prove the thesis we have to show that, if α ∼u β, then for every
subset A of N (∗ϕ)(α) ∈∗∗A if and only if (∗ϕ)(β) ∈∗∗A.
Observe that, by transfer, ∗{n ∈ N | ϕ(n) ∈∗A} = {η ∈∗N | (∗ϕ)(η) ∈∗∗A}.
As {n ∈ N | ϕ(n) ∈∗A} is a subset of N, and α ∼u β, the following equivalence
holds:

α ∈∗{n ∈ N | ϕ(n) ∈∗A} if and only if β ∈∗{n ∈ N | ϕ(n) ∈∗A}.

From this observation, we obtain the chain of equivalences:
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(∗ϕ)(α) ∈∗∗A⇔ α ∈ {η ∈∗N | (∗ϕ)(η) ∈∗∗A} =∗{n ∈ N | ϕ(n) ∈∗A} ⇔

⇔ β ∈∗{n ∈ N | ϕ(n) ∈∗A} = {η ∈∗N | (∗ϕ)(η) ∈∗∗A} ⇔ (∗ϕ)(β) ∈∗∗A;

and hence the thesis.

The above proposition can be restated in this way: if α ∼u β are hyper-
natural numbers in ∗N, and ϕ :∗N→∗N is an internal function, then

(†) if Uα = Uβ then U(∗ϕ)(α) = U(∗ϕ)(β).

With this observation, we can prove the following important result:

Proposition 4.6.5. Given subsets A,B of N and a subset F of Fun(N,N),
the following two conditions are equivalent:

1. A ≤F B;

2. there is a function ϕ ∈∗F such that, for every ultra�lter U in βN with
A ∈ U , for every generator α ∈∗N of U , B ∈ U(∗ϕ)(α).

Proof. We already proved that A ≤F B if and only if there is a func-
tion ϕ ∈∗F such that ϕ(A) ⊆∗B. By transfer, ϕ(A) ⊆∗B if and only if
∗ϕ(∗A) ⊆∗∗B. So we have the following chain of equivalences:

A ≤F B ⇔ (∃ϕ ∈∗F)(∗ϕ(∗A) ⊆∗∗B)

⇔ (∃ϕ ∈∗F)(∀α ∈∗N)(α ∈∗A⇒∗ϕ(α) ∈∗∗B)⇔

⇔ (∃ϕ ∈∗F)(∀α ∈∗N)(A ∈ Uα ⇒ B ∈ U∗ϕ(α)),

and this proves the thesis.

4.6.2 Well-structured sets of functions

The question that we want to answer is wheter the relation ≤F is an order
or not. We already know that, in general, ≤F is not an order, as we have
proved in Section 4.3 that ≤T is not antisymmetric.
The problem is that, in general, ≤F is not even transitive nor re�exive. In
fact:

Proposition 4.6.6. For every subset F of Fun(N,N), the relation ≤F is

1. transitive if and only if for every �nite subset F of N, for every func-
tions f, g in F there is a function h in F such that h(F ) ⊆ (g ◦ f)(F );
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2. re�exive if and only if for every �nite subset F of N there is a function
f in F such that f(F ) ⊆ F .

Proof. (1) Suppose that ≤F is transitive, and let F be a �nite subset of N
and f, g functions in F . By de�nition of F -�nite mappability:

F ≤F f(F ) and f(F ) ≤F g(f(F ))

and, since ≤F is transitive by hypothesis, F ≤F (g◦f)(F ). As F is �nite,
this happens if and only if there is a function h in F with h(F ) ⊆ (g ◦ f)(F ).
Conversely, let A,B,C be subsets of N with A ≤F B and B ≤F C, and let F
be a �nite subset of A. Since A ≤F B, there is a function f in F such that
f(F ) ⊆ B and, since B ≤F C, there is a function g in F with g(f(F )) ⊆ C.
By hypothesis, there is a function h in F such that h(F ) ⊆ g(f(F )) ⊆ C.
This proves that, for every �nite subset F of A, there is a function h in F
such that h(F ) ⊆ C and so, by de�nition, A ≤F C.
(2) Suppose that ≤F is re�exive; for every F �nite subset of N, as F ≤F F ,
there is a function f in F with f(F ) ⊆ F .
Conversely, let A be a subset of N, and let F be a �nite subset of A. By
hypothesis, there is a function f in F such that f(F ) ⊆ F ⊆ A: by de�nition
of F -�nite mappability, this proves that A ≤F A.

We present two trivial corollaries of Proposition 4.6.6:

Corollary 4.6.7. If F is a set of functions closed under composition then
≤F is transitive; and if the identity map i is in F , then ≤F is re�exive.

Corollary 4.6.8. If ≤F1 is re�exive, and F1 ⊆ F2, then also ≤F2 is re�exive.

Since we are mainly interested in relations of F -�nite mappability that
are pre-orders, i.e. satisfying transitivity and re�exivity, we introduce the
following notion:

De�nition 4.6.9. A set of functions F ⊆ Fun(N,N) is well-stuctured if
the relation of F-�nite mappability is a pre-order, i.e. if it satis�es both the
transitivity and re�exivity properties.

Observe that, by de�nition, when F is well-structured the pair (F ,≤F)
is a partially pre-ordered set.

De�nition 4.6.10. Given A,B subsets of N, and a set of functions F ⊆Fun(N,N),
A is F−equivalent to B (notation A ≡F B) if and only if A ≤F B and
B ≤F A.
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By the general properties of pre-orders it follows that, when F is well-
structured, the relation ≡F is an equivalence relation and that (℘(N)/≡F ,≤F)
is a partial ordered set.
Observe that, for every nonempty subset F of Fun(N,N) and for every subset
A of N, A is F -�nitely mappable in N. When F is well structured, the F -
equivalence class of N is the maximal element in ℘(N)/≡F .

De�nition 4.6.11. Given a nonempty subset F of Fun(N,N), and a subset
A on N, A is F-maximal if, for every subset B of N, B ≤F A. The set of
F-maximal subsets of N is denoted by SF :

SF = {A ⊆ N | A is F−maximal}.

Fact: If ≤F is transitive, SF consists of the subsets A of N that are
F -equivalent to N:

SF = {A ∈ N | A ≡F N} = {A ∈ N | N ≤F A}.

In fact, if A is F -maximal, in particular N ≤F A, so

SF ⊆ {A ∈ N | N ≤F A};

conversely, if ≤F is transitive, and N ≤F A, since for every subset B of N
B ≤F N, by transitivity B ≤F A, so

{A ∈ N | N ≤F A} ⊆ SF ,

in particular SF = {A ∈ N | A ≡F N} = {A ∈ N | N ≤F A}

Proposition 4.6.12. Let F be a well-structured subset of Fun(N,N), and A
a subset of N. Then A is F-maximal if and only if for every natural number
n there is a function fn in F such that fn(m) ∈ A for every m ≤ n.

Proof. Just observe that A ∈ SF if and only if N ≤F A if and only if, for
every natural number n, there is a function fn such that fn([0, n]) ⊆ A.

Similarly to the relation of �nite embeddability, the relations of F -�nite
mappability can be generalized to ultra�lters. In next section we expose
some important properties of these generalized relations.
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4.7 Finite Mappability of Ultra�lters on N
In this section, we de�ne the relations of F -�nite mappability for ultra-

�lters, and we study their properties; the idea is to follow the same steps as
we made with the relation of �nite embeddability for ultra�lters. In particu-
lar, we shall study under what hypotheses the results obtained for the �nite
embeddability can be generalized in this more general context.

De�nition 4.7.1. Given ultra�lters U ,V on N and a set of functions F ⊆Fun(N,N),
we say that U is F-�nitely mappable in V (notation U EF V) if and only
if for every set B in V there is a set A in U such that A ≤F B.

In this proposition we present some basic properties of the relation EF :

Proposition 4.7.2. If U ,V are ultra�lters on N and F ,F1,F2, ...,Fk are
subsets of Fun(N,N), then the following properties hold:

1. if F = {f} then U EF V if and only if V = f(U);

2. if F = F1 ∪ F2 then U EF V if and only if U EF1 V or U EF2 V;

3. if F = F1 ∪ ... ∪Fk then U EF V if and only if there is an index i ≤ k
such that U EFi V;

4. if F = {f1, ..., fk} then U EF V if and only if there is an index i ≤ k
such that V = fi(U);

5. if F1 ⊆ F2 and U EF1 V, then U EF2 V.

Proof. (1) Suppose that U E{f} V . By de�nition, for every set B in V there
is a set A in U such that A ≤{f} B; as we proved in Proposition 4.6.2, this
entails that f(A) ⊆ B so, in particular, f−1(B) ∈ U for every set B ∈ V : by
de�nition, this entails that V = f(U).
Conversely, if V = f(U), then for every set B in V the set f−1(B) is in U ,
and f−1(B) ≤f B. This proves that U E{f} f(U) = V .
2) Suppose that U EF1∪F2 V . There are only two possibilities:

1. For every set B in V there is a set A in U such that A ≤F1 B;

2. There is a set B in V such that, for every set A in U , A is not F1-�nitely
mappable in B.

In case (1), by de�nition U EF1 V .
In case (2), every subset of B, and in particular every subset S ⊆ B with
S ∈ V , satis�es this property:
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For every set A in U , A is not F1-�nitely mappable in S.

Claim: U EF2 V .

Let Y be a set in V . Then the intersection Y ∩ B has the following two
properties:

1. Y ∩B is in V ;

2. Y ∩B is a subset of B.

By property (1), since by hypothesis U EF1∪F2 V , it follows that there is
an element A in U such that A is F1 ∪ F2-�nitely mappable in Y ∩ B. By
property (2) it follows that A is not F1-�nitely mappable in Y ∩ B; and by
Proposition 4.6.2, these two conditions together entails that A ≤F2 Y ∩B.
Since Y ∩ B ⊆ Y , and A ≤F2 Y ∩ B, it follows that A ≤F2 Y ; this proves
that U ≤F2 V .
3) This follows, by induction, from point (2).
4) This is an immediate consequence of points (3) and (1).
5) By hypothesis, for every set B in V there is a set A in U such that
A ≤F1 B. As F1 ⊆ F2, by Proposition 4.6.2 it follows that A ≤F2 B; in
particular, U EF2 V .

A question that arises naturally is how principal and nonprincipal ultra-
�lters are related with respect to F -�nite mappability.

Proposition 4.7.3. Let U ,V be the principal ultra�lters generated by n and
m respectively, and let F be a subset of Fun(N,N). The following two condi-
tions are equivalent:

1. U EF V;

2. there is a function f in F such that f(n) = m.

Proof. (1) ⇒ (2) Consider the set {m} in V . Since U EF V , there is a set
A ∈ Un such that A ≤F {m}. Since U is the principal ultra�lter generated
by n, then n ∈ A and by de�nition there is a function f in F such that
f({n}) ⊆ {m}, and this happens if and only if f(n) = m
(2) ⇒ (1) Let B be a set in V , and f a function in F such that f(n) = m.
In particular, as m ∈ B (since V is the principal ultra�lter generated by m),
f({n}) ⊆ B. So {n} ≤F B for every set B in V , and U EF V .
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Proposition 4.7.4. Given a subset F of Fun(N,N), the following two con-
ditions are equivalent:

1. Every principal ultra�lter U is F-�nitely embeddable in every nonprin-
cipal ultra�lter V;

2. For every natural number n, for every in�nite subset A of N there is a
function f in F such that f(n) ∈ A.

Proof. (1)⇒ (2): Let A be an in�nite subset of N, n a natural number and
V a nonprincipal ultra�lter such that A ∈ V . By hypothesis, as Un EF V ,
there is a set B in the principal ultra�lter Un and a function f in F such
that f(B) ⊆ A. In particular, since n ∈ B, this proves that f(n) ∈ A.
(2)⇒ (1): Let V be a nonprincipal ultra�lter and Un the principal ultra�lter
generated by the natural number n. For every set A in V , by hypothesis
{n} ≤F A, as A is in�nite; so Un EF V for every natural number n, and this
proves the thesis.

Note that, in general, it is possible that a nonprincipal ultra�lter U is
F -�nitely mappable in a principal ultra�lter Un. For example, let

F = {fn},

where fn is the constant function with value n. Then every ultra�lter U
in βN is F -�nitely mappable in Un.
The question that arises is if EF is, or is not, an order. We know that this in
general is false as ET is not an order on βN. There is also one other problem:
EF , similarly to ≤F , is not, in general, re�exive or transitive.

Proposition 4.7.5. If ≤F is a pre-order then EF is a pre-order.

Proof. We have to prove that EF is transitive and re�exive.
Transitive: suppose that U ,V ,W are ultra�lters in βN such that U EF V
and V EF W , and let C be a set in W . Since V EF W , there is a set
B in V such that B ≤F C and, since U EF V , there is a set A in U such
that A ≤F B. Since ≤F is transitive (as we supposed F well-structured),
A ≤F C, so U EF W .
Re�exive: for every ultra�lter U in βN, for every set A in U , A ≤F A (as F
is well-structured), so U EF U .

To obtain an antysimmetric relation, we follow the general procedure for
pre-orders exposed in Section 4.2:
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De�nition 4.7.6. Let F be a well-structured subset of Fun(N,N). Given
ultra�lters U ,V on N, U is F-equivalent to V (notation U ≡F V) if and
only if U EF V and V EF U .

Observe that ≡F is an equivalence relation on βN.

De�nition 4.7.7. If F is a well-structured subset of Fun(N,N), for every
ultra�lter U we denote by [U ]F the F-equivalence class of U :

[U ]F = {V ∈ βN | U ≡F V}.

When there is no danger of confusion, we simply denote [U ]F as [U ].

By the general facts about pre-orders it follows that:

Theorem 4.7.8. (βN/≡F
,EF) is a partially ordered set whenever F is a

well-structured subset of Fun(N,N).

This theorem shows that, at least when F is well-structured, by consid-
ering the quotient space we obtain a partial ordered set, similarly to the case
of �nite embeddability. In next section we study more closely the structure
of (βN/≡F

,EF).

4.7.1 The partially ordered set (βN/≡F
,EF)

In this section we study the partially ordered set (βN/≡F
,EF); in par-

ticular, the question we want to answer is the following: is there a greatest
element in (βN/≡F

,EF)?

De�nition 4.7.9. The chains in (βN/≡F
,EF) and in (βN,EF) are called

F-chains. Similarly, the upper bounds of subsets in (βN/≡F
,EF) and in

(βN,EF) are called F-upper bounds.

Proposition 4.7.10. Every F-chain 〈Ui | i ∈ I〉 of ultra�lters has an F-
upper bound U .

Proof. The proof is analogue to that of Theorem 4.4.12.
If I has a greatest element i, then the ultra�lter Ui is trivially an upper bound
for the chain.
Otherwise, suppose that I has not a greatest element, an let V be an ultra-
�lter on I such that, for every i ∈ I, the set

Gi = {j ∈ I | j ≥ i}
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is in V (as already proved in Theorem 4.4.12, the family Gi has the �nite
intersection property, so such an ultra�lter V exists, and it is nonprincipal
since I has not a greatest element).

Claim: The ultra�lter U = V− limi∈I Ui is an upper bound for the chain.

In fact, let B be an element of U , and consider the ultra�lter Ui. Since
B ∈ U , by de�nition of limit of ultra�lters the set

IB = {i ∈ I | B ∈ Ui}

is in V ; as V contains the family {Gi}i∈I , in IB there is an element j with
i ≤ j. In particular, B ∈ Uj. As 〈Ui | i ∈ I〉 is an F−chain, Ui EF Uj, so
in Ui there is a set A such that A ≤F B; this proves that Ui EF U for every
index i ∈ I, so U is an upper bound for the chain.

Observe that, in the previous proposition, we did not assume that F is
well-structured. When F is well-structured the above result can be extended
to the partially ordered set (βN/≡F

,EF):

Corollary 4.7.11. Let F be a well-structured subset of Fun(N,N), and let
〈[Ui] | i ∈ I〉 be an F-chain in βN/≡F

. Then there is an upper bound [U ] for
the chain.

Proof. When F is well-structured, (βN,EF) is a partially pre-ordered set, so
this result follows by the analogue general property of pre-orders.

Corollary 4.7.12. If F is well-structured there are maximal elements in
(βN/≡F

,EF).

Proof. This follows by Zorn's Lemma because every F -chain in βN/≡F
has

an upper bound.

In Section 4.4.2 we used a result analogous to Corollary 4.7.12 to prove
the existence of a greatest element in βN/≡T

. The proof used an important
property of ET, namely the fact that ET is �ltered (see de�nition 4.2.7).

Proposition 4.7.13. If F is a well-structured subset of Fun(N,N), the fol-
lowing two conditions are equivalent:

1. the relation EF is �ltered on βN;
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2. the relation EF is �ltered on βN/≡F .

As observed in Section 4.2, the above property holds for all pre-orders.

Proposition 4.7.14. If F1,F2 are subsets of Fun(N,N) such that F1 ⊆ F2

and EF1 is �ltered, then also EF2 is �ltered.

Proof. Observe that, for every ultra�lters U ,V in βN, if U EF1 V then, as
F1 ⊆ F2, U EF2 V .
In particular, let W be an ultra�lter such that U EF1 W and V EF1 W .
From the observation it follows that U EF2 W and V EF2 W . This proves
that for every ultra�lters U ,V there is an ultra�lter W with U EF2 W and
V EF2 W , so EF2 is �ltered.

De�nition 4.7.15. A subset F of Fun(N,N) is �ltered if EF is �ltered on
βN (equivalently, if EF is �ltered on βN/≡F

).

Theorem 4.7.16. Let F be a well-structured subset of Fun(N,N). The fol-
lowing two conditions are equivalent:

1. there is a greatest element in (βN/≡F
,EF);

2. the order EF is �ltered.

The above result is a consequence of the analogue general property of
pre-orders proved in Section 4.2 (Theorem 4.2.8).
Filtered sets of functions can be characterize in nonstandard terms. This
characterization follows by the properties of the cones CF(U) in (βN,EF),
and these are the structure that we study in next section.

4.7.2 The cones CF(U)

De�nition 4.7.17. Given an ultra�lter U in βN, we denote by CF(U) the
upper cone of U in (βN,EF), i.e. the set of ultra�lters in βN in which U is
F-�nitely mappable:

CF(U) = {V ∈ βN | U EF V}.

In Section 4.4.3 we have studied and characterized the sets Cfe(U) that,
following the de�nition 4.7.17, we denote from now on as CT(U). In this sec-
tion we try to generalize the results obtained for the sets CT(U) in this more
general context:
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Fact: If F is well-structured, and U , V are F -equivalent ultra�lters, then
CF(U) = CF(V).

This fact follows by the transitivity of EF .

Proposition 4.7.18. For every ultra�lter U in βN and for every nonempty
subset F of Fun(N,N) the set CF(U) is closed in the Stone topology.

Proof. We use the characterization of closed subsets of βN given in terms of
limit ultra�lters: to prove that CF(U) is closed we show that, given a family
〈Ui | i ∈ I〉 of elements in CF(U) and an ultra�lter V on I, the ultra�lter

W = V − limI Ui

is in CF(U).
To prove this, let A be an element of W . By de�nition, this means that the
set

AI = {i ∈ I | A ∈ Ui}

is nonempty, as it is in V . Let i be an element of AI ; this entails that
A ∈ Ui. Since Ui is an element of CF(U), U EF Ui, so there is a set B in U
with B ≤F A. This proves that for every set A in W there is a set B in U
with B ≤F A, so U EF W and W ∈ CF(U).

When F = T we proved that CT(U) = {U ⊕ V | V ∈ βN}; is there a
similar characterization for a generic cone CF(U)?

Lemma 4.7.19. Let U be an ultra�lter in βN, α ∈∗N a generator of U , F a
subset of Fun(N,N) and B a subset of N. The following two conditions are
equivalent:

1. there is a set A in U such that A ≤F B;

2. there is a function ϕ in ∗F such that B ∈ U(∗ϕ)(α).

Proof. (1) ⇒ (2): Since A ≤F B, A ∈ U , and α ∈∗N is a generator of U ,
then by Proposition 4.6.5 it follows that there is a function ϕ in ∗F such that
B ∈ U(∗ϕ)(α).
(2)⇒ (1): Let ϕ be a function in ∗F such that (∗ϕ)(α) ∈∗∗B. By transfer it
follows that

{µ ∈∗N | (∗ϕ)(µ) ∈∗∗B} =∗{n ∈ N | ϕ(n) ∈∗B},
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and, as α ∈ {µ ∈∗N | (∗ϕ)(µ) ∈∗∗B}, it follows that A = {n ∈ N |
ϕ(n) ∈∗B} is in U , since U = Uα and α ∈∗A. By construction, ϕ(A) ⊆∗B
and, as ϕ is a function in F , by Proposition 4.6.3 this entails that A ≤F B.
As A ∈ U , this proves the thesis.

Note 1: As a consequence of Proposition 4.6.4, the above lemma do not
depend on the choice of α in GU , since whenever α, β ∈∗N are generators of
U then U(∗ϕ)(α) = U(∗ϕ)(β).

Note 2: Given a function ϕ in Fun(∗N,∗N), let ϕ denote this function in
Fun(βN, βN): for every ultra�lter U , if α is any generator of U with h(α) ≤ 1,
de�ne

ϕ(Uα) = U(∗ϕ)(α).

This de�nition not only is similar to the de�nition of f for a function
f ∈ Fun(N,N), but it can be seen as its extention to nonstandard functions.
In fact we have the following property:

Proposition 4.7.20. Let g be a function in Fun(N,N), and ϕ the function
ϕ =∗g in Fun(∗N,∗N). Then

ϕ = g.

Proof. For every ultra�lter U in βN, for every generator α of U with h(α) ≤ 1,
as we proved in Chapter Two we have

g(Uα) = U(∗g)(α),

and (∗g)(α) = ϕ(α) = (∗ϕ)(α) since we have this property

For every natural number n ∈ N, ϕ(n) = (∗g)(n) = g(n),

so, by transfer, we have

For every hypernatural number η ∈∗N, (∗ϕ)(η) = (∗∗g)(η) = (∗g)(η),

and this shows that ∗g(Uα) = g(Uα) for every function g in Fun(N,N).

De�nition 4.7.21. For every function ϕ in Fun(∗N,∗N), we denote by ϕ the
function in Fun(βN, βN) such that, for every ultra�lter U in βN, if α ∈∗N is
a generator of U then ϕ(U) = U(∗ϕ)(α).
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We can now characterize the sets CF(U):

Theorem 4.7.22. Let F be a subset of Fun(N,N), U an ultra�lter in βN,
and α ∈∗N a generator of U . Then

CF(U) = {U(∗ϕ)(α) | ϕ ∈∗F} = {ϕ(U) | ϕ ∈∗ F}.

Proof. We repeatedly use the result of Lemma 4.7.19.
Let V be an element in CF(U); by de�nition, for every set B in V there is a set
A in U such that A ≤F B. As α ∈∗N is a generator of U , Lemma 4.7.19 entails
that there is a function ϕ in ∗F such that B ∈ U(∗ϕ)(α); in the Stone topology,
this is equivalent to say that V is in the closure of {U(∗ϕ)(α) | ϕ ∈∗F}, so

CF(U) ⊆ {U(∗ϕ)(α) | ϕ ∈∗F}

Conversely, let V be an element in {U(∗ϕ)(α) | ϕ ∈∗F}. In the Stone topol-
ogy, this is equivalent to say that for every set B in V there is a function ϕ
in ∗F such that B ∈ U(∗ϕ)(α); by Lemma 4.7.19, this entails that there is a
set A in U such that A ≤F B; in particular, U EF V , so V ∈ CF(U) and

{U(∗ϕ)(α) | ϕ ∈∗F} ⊆ CF(U).

Since we proved both inclusions, the two sets are equal, and this proves the
thesis.

To give an example of application of this theorem, we consider the case
F = T.
First of all, since

T = {tn ∈ Fun(N,N)| (n ∈ N) ∧ (∀m ∈ N tn(m) = m+ n)},

then, by transfer,

∗T = {tµ ∈ Fun(∗N,∗N) | (µ ∈∗N) ∧ (∀η ∈∗N tµ(η) = µ+ η)}.

Observe that, for every function tµ in ∗T, for every hypernatural number
α in ∗N,

(∗tµ)(α) =∗µ+ α.

So, by Theorem 4.7.22, for every hypernatural number α ∈∗N, if U = Uα
then
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CT(U) = {U∗µ+α | µ ∈∗N}.

As we proved in Chapter Two, U∗µ+α = Uα ⊕ Uµ for every hypernatural
number µ; so

CT(U) = {Uα ⊕ Uµ | Uµ ∈ βN} = {U ⊕ V | V ∈ βN},

as expected.

4.7.3 Characterizations of �ltered functional pre�orders

In this section we give a nonstandard and a standard characterization
of �ltered sets of functions. By Theorem 4.7.2 we know that, given an
ultra�lter U = Uα and a generical ultra�lter V , U EF V if and only if
V ∈ {U∗ϕ(α) | ϕ ∈∗F}.
This can be equivalently restated in this way:

(†)Uα EF V ⇔
⋂
ϕ∈∗F U∗ϕ(α) ⊆ V .

This is a particular case of the following general property of the Stone
Topology:

Proposition 4.7.23. Let S be a subset of βN, and U an ultra�lter on N.
The following two conditions are equivalent;

1. U ∈ S;

2.
⋂
V∈S V ⊆ U .

Proof. In the Stone-Topology, U ∈ S if and only for every set A in U there
is an ultra�lter V in S such that A ∈ S. We use this property to prove the
equivalence of (1) and (2).
(1)⇒ (2) Suppose that there is a set A in

⋂
V∈S V with A /∈ U . Then Ac ∈ U

and, since U ∈ S, this entails that Ac ∈ V for some ultra�lter V ∈ S, and
this is absurd since A ∈ V for every ultra�lter V ∈ S. So

⋂
V∈S V ⊆ U .

(2) ⇒ (1) Suppose that U /∈ S. This entails that there is a set A in U such
that, for every ultra�lter V in S, A /∈ V . So Ac ∈

⋂
V∈S V , hence Ac ∈ U ,

which provides a contradiction. So U ∈ S.

De�nition 4.7.24. For every hypernatural number α, let Fα denote the �lter

Fα =
⋂
ϕ∈∗F U∗ϕ(α).
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By de�nition it follows that Fα is closed under superset, and that a set
A is in the �lter Fα if and only if, for every function ϕ in ∗F , ∗ϕ(α) ∈∗∗A.
Also, as a consequence of (†), it follows that an ultra�lter V is in the cone
CF(Uα) if and only if Fα ⊆ V .
We are now ready to characterize the �ltered sets of functions:

De�nition 4.7.25. We say that a set F of functions satis�es the condition
(F ) if the following condition holds:

(F ): ¬(∃α, β ∈∗N,∃A ⊆ N such that A ∈ Fα, A
c ∈ Fβ).

Theorem 4.7.26. Let F ⊆ Fun(N,N) be a set of functions. The two follow-
ing conditions are equivalent:

1. F satis�es condition (F );

2. F is �ltered.

Proof. (1)⇒ (2) Let Uα,Uβ be ultra�lters on N. By condition (F) it follows
that for all sets A ∈ Fα and B ∈ Fβ the intersection A ∩ B is non empty.
In fact, suppose by contrast that there are sets A ∈ Fα, B ∈ Fβ such that
A ∩ B = ∅. Then consider the set Ac. Ac is a superset of B, so Ac ∈ Fβ,
while A ∈ Fα, and this is absurd.
So Fα ∪ Fβ is a �lter, and every ultra�lter W that extends Fα ∪ Fβ is, by
construction, greater (respect to EF) than Uα and Uβ. So F is �ltered.
(2) ⇒ (1) Let EF be �ltered, and suppose by contrast that F does not
satisfy condition (F). Then there are α, β ∈∗N, and a subset A of N such
that A ∈ Fα and Ac ∈ Fβ. Consider Uα and Uβ, and let V be an ultra�lter
such that Uα EF V , Uβ EF V . Then Fα ⊆ V and Fβ ⊆ V , and this is absurd,
because it follows that A ∈ V and Ac ∈ V .

With the above characterization we can reprove that ET is �ltered. In
fact, T satis�es condition (F ): suppose, by contrast, that there are α, β ∈∗N
and a subsets A of N such that, for every function ϕ ∈∗T, ∗ϕ(α) ∈∗∗A and
∗ϕ(β) ∈∗∗Ac.
As T ⊆∗T, for every natural number n the translation by n is in ∗T. Since
A ∈ Fα, this entails that:

∀n ∈ N, n+ α ∈∗∗A.

Since n, α ∈∗N, the above property can be reformulate as follows:

∀n ∈ N, n+ α ∈∗A.
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By transfer we have:

∀η ∈∗N, η+∗α ∈∗∗A.

Hence, choosing η = β, it follows that β+∗α ∈∗∗A. Observe that β+∗α =∗tα(β),
where tα is the translation such that, for every hypernatural number η,
tα(η) = η + α. Since tα ∈ T, as Ac ∈ Fβ it follows that ∗tα(β) ∈∗∗Ac,
so

∗tα(β) ∈∗∗Ac and ∗tα(β) ∈∗∗A,

and this is absurd.
This proves that T satis�es the condition (F ), and this is one other proof of
the �ltration of T.

We end this section by translating Theorem 4.7.26 in standard terms.
First of all, we introduce the following de�nition:

De�nition 4.7.27. A subset A of N is F-uniformly maximal if there is
an ultra�lter U such that, for every ultra�lter V ∈ CF(U), A ∈ V.

Observe that a set A is F -uniformaly maximal if and only if there is
an hypernatural number α such that A ∈ Fα, and that if A is F -uniformly
maximal and A ⊆ B then B is F -uniformly maximal as well.

Proposition 4.7.28. Given a set F ⊆ Fun(N,N) of functions, the following
two conditions are equivalent:

1. F satis�es condition (F);

2. for every F-uniformly maximal set A the set Ac is not F-uniformly
maximal.

Proof. We have just to observe that condition (F) does not hold if and only if
there are hypernatural numbers α, β and a subset A of N such that A ∈ Fα,
Ac ∈ Fβ if and only if there is an F -uniformly maximal set A such that Ac

is F -uniformly maximal.

By considering Theorem 4.7.26 and Proposition 4.7.28, we get this stan-
dard characterization of �ltered families of functions:

Theorem 4.7.29. Let F ⊆ Fun(N,N) be a set of functions. The following
two conditions are equivalent:

1. F is �ltered;

2. for every subset A of N, if A is F-uniformly maximal then Ac is not
F-uniformly maximal.
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4.7.4 Generating functions

For particular subsets F of Fun(N,N) the cones CF(U) have simple alge-
braical characterizations:

De�nition 4.7.30. Let G be a function in Fun(N × Nk,N), and let S be a
subset of Nk. The set of functions generated by (G,S) is the set

F(G,S) = {fa1,...,ak(n) ∈ Fun(N,N) | (a1, ..., ak ∈ S) ∧ (∀n ∈ N
fa1,...,ak(n) = G(n, (a1, ..., ak)))}.

The function G is called generating function of F(G,S), and S is
called set of parameters of F(G,S).

When S = Nk, the family F(G,Nk) is simply denoted by F(G). In the
following table is shown that some important sets of functions F are gener-
ated by an appropriate pair (G,S):

Sets of Functions Generating Functions, Sets of Parameters

Translations G(n,m) = n+m, S = N

Proper Translations G(n,m) = n+m, S = N \ {0}

Non-zero Homoteties G(n,m) = n ·m, S = N \ {0}

{fm(n) = nm | m > 0} G(n,m) = nm, S = N \ {0}

{fm(n) = mn | m > 1} G(n,m) = mn, S = N \ {0, 1}

Non-constant A�nities G(n, (a, b)) = an+ b, S = N2 \ {(0, b) | b ∈ N}

Non-constant Polynomials G(n, (a0, ..., am)) =
∑m

i=0 ain
i,

with degree m S = Nm+1 \ {(a0, 0, 0, ..., 0) | a0 ∈ N}

When the set F of functions is generated by a pair (G,S), we can alge-
braically characterize the sets CF(U):

Theorem 4.7.31. Let G be a function in Fun(N × Nk,N), S a nonempty
subset of Nk, U an ultra�lter on N and consider F = F(G,S). Then

CF(U) = {G(U ⊗ V) | V ∈ βS}.
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Proof. As a consequence of Theorem 4.7.22, we know that

CF(U) = {U(∗ϕ)(α) | ϕ ∈∗ F},

where α is a generator of U with h(α) = 1. By de�nitions and transfer,

∗F =∗F(G,S) =∗{fa1,...,ak ∈ Fun(N,N)| a1, ..., ak ∈ S and, for every natural
number n, fa1,...,ak(n) = G(n, (a1, ..., ak))} =

={ϕα1,...,αk ∈ Fun(∗N,∗N) | α1, ..., αk ∈∗S and, for every hypernatural
number α ∈∗N, ϕα1,...,αk(α) =∗G(α, (α1, ...αk))}.

Observe that, for every ultra�lter V in β(Nk), we have

V ∈ βS if and only if there is a k-tuple (α1, ..., αk) in ∗Sk such that
V = U(α1,...,αk).

Claim: For every k-tuple (α1, ..., αk) in ∗S

U(∗ϕα1,...,αk )(α)
= G(Uα ⊗ U(α1,...,αk)).

Suppose that the claim has been proved. Then

{U(∗ϕ)(α) | ϕ ∈∗F} = {G(U ⊗ V) | V ∈ βS},

and, since CF(U) = {U(∗ϕ)(α) | ϕ ∈∗ F}, the thesis follows.
To prove the claim, let A be a subset of N. We have this chain of equivalences:

A ∈ G(Uα ⊗ U(α1,...,αk)) if and only if

{n ∈ N | {(a1, ..., ak) ∈ Nk | G(n, (a1, ..., ak)) ∈ A} ∈ U(α1,...,αk)} ∈ Uα if and
only if

{n ∈ N | (α1, ..., αk) ∈∗{(a1, ..., ak) ∈ Nk | G(n, (a1, ..., ak)) ∈ A}} ∈ Uα if
and only if

{n ∈ N |∗G(n, (α1, ..., αk)) ∈∗A} ∈ Uα if and only if

α ∈∗{n ∈ N |∗G(n, (α1, ..., αk)) ∈∗A} if and only if

∗∗G(α,∗(α1, ..., αk)) ∈∗∗A if and only if

(∗ϕα1,...,αk)(α) ∈∗∗A if and only if

A ∈ U(∗ϕα1,...,αk )(α)
.
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4.8 Maximal Ultra�lters in (βN,EF)
In this section we study the setMF of maximal ultra�lters in (βN,EF),

with particular attention to the connections betweenMF and the set SF of
F -maximal subsets of N.

De�nition 4.8.1. Given a subset F of Fun(N,N) and an ultra�lter U in βN,
U is F-maximal if, for every ultra�lter V in βN, V is F-�nitely mappable
in U . The set of F-maximal ultra�lters is denoted byMF :

MF = {U ∈ βN | U is F-maximal}.

Proposition 4.8.2. If F is a �ltered and well-ordered subset of Fun(N,N),
an ultra�lter U is F-maximal if and only if [U ] is the greatest element in
(βN/≡F

,EF), and

MF = {U ∈ βN | [U ] is the greatest element (βN/≡F
,EF)}.

Proof. The hypotheses on F ensures that E is a �ltered pre-order. Then the
result follows since it is a particular case of a property that holds for every
pre-order.

Proposition 4.8.3. If F1, F2 are subsets of Fun(N,N) and F1 ⊆ F2, then
MF1 ⊆MF2.

Proof. For every ultra�lters U ,V in βN, if U EF1 V then U EF2 V , so every
F1-maximal ultra�lter is also a F2-maximal ultra�lter.

Proposition 4.8.4. Let S be a weakly partition regular family of subsets
of N, and suppose that S is ≤F -upward closed (i.e., whenever A ∈ S and
A ≤F B, B ∈ S). Then SF ⊆ S.

Proof. We just have to observe that, if A is a set in S and M is a set in SF ,
since A ≤F M then M ∈ S. So SF ⊆ S.

A �rst correlation between SF andMF is the following:

Proposition 4.8.5. Let F be a subset of Fun(N,N) such that ≤F is transi-
tive, and suppose that the family SF of F-maximal elements in (℘(N),≤F)
is weakly partition regular. ThenMF 6= ∅, and
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MF = {U ∈ βN | U ⊆ SF}.

Proof. In Section 1.2 we proved that every weakly partition regular family
contains an ultra�lter. Since SF is weakly partition regular by hypothesis,
let U be an ultra�lter contained in SF ; U is F -maximal since, for every set
A ∈ U , as U ⊆ SF A ∈ SF , so N ≤F A; in particular, if V is an ultra�lter in
βN, this proves that V EF U . This shows that

(1) {U ∈ βN | U ⊆ SF} ⊆ MF .

To prove the reverse inclusion, let U be a maximal ultra�lter, and V an
ultra�lter included in SF . Since, my maximality, U EF V , for every set A
in V there is a set B in U such that B ≤F A. But, as B is maximal and
B ≤F A, by transitivity it follows that A is in SF : this proves that every set
A in V is included in SF , so:

(2)MF ⊆ {U ∈ βN | U ⊆ SF}.

Putting togheter (1) and (2), we obtainMF = {U ∈ βN | U ⊆ SF}.

Corollary 4.8.6. If F is a subset of Fun(N,N) such that ≤F is transitive
and SF is strongly partition regular then for every maximal set A in SF there
is a F-maximal ultra�lter U such that A ∈ U . In particular,

SF =
⋃
MF .

Proof. By Theorem 1.2.3 it follows that, since SF is strongly partition regu-
lar, then it is an union of ultra�lters, so

(1) SF =
⋃
{U ∈ βN | U ⊆ SF}.

Since every strong partition regular family of subsets of N is, in particular,
weakly partition regular, by Proposition 4.8.5 it follows that

(2) {U ∈ βN | U ⊆ SF} =MF .

As a consequence, SF =
⋃
MF .

Corollary 4.8.7. If the family SF is weakly partition regular and F is well-
structured then the order EF is �ltered.

Proof. If SF is weakly partition regular, then there is some maximal ultra-
�lter U in βN, so there is a greatest element in (βN/≡F ,EF); in particular,
as a consequence of Proposition 4.2.8, the relation EF is �ltered.
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Theorem 4.8.8. If F is �ltered and well-structured then SF ⊆
⋃
MF .

Proof. First of all we observe that, by hypothesis, there are F -maximal ul-
tra�lters.
Let A be a set in SF , and suppose by contradiction that for every maximal
ultra�lter U the set A is not in U , i.e. that the complement Ac is in U . Let
U be a maximal ultra�lter, and let α ∈∗N be a generator of U . In particular,
α ∈∗(Ac).
Since A is in SF , Ac ≤F A so, by Proposition 4.6.5, there is a function ϕ in
∗F with ϕ(Ac) ⊆∗A. By transfer, this implies that

(∗ϕ)(∗Ac) ⊆∗∗ A.

As α ∈∗Ac, this entails that (∗ϕ)(α) ∈∗∗A, so A ∈ U(∗ϕ)(α). But, by
Theorem 4.7.22, Uα EF U(∗ϕ)(α) for every function ϕ in ∗F and, since Uα
is maximal, this entails that U(∗ϕ)(α) is maximal. This is absurd, since A ∈
U(∗ϕ)(α).

By combining the results proved in this section, we obtain the following
theoremt:

Theorem 4.8.9. For every well-structured and �ltered set of functions F ⊆
Fun(N,N) the following two conditions are equivalent:

1. SF is weakly partition regular;

2. SF is strongly partition regular.

Proof. (1) ⇒ (2) Suppose that SF is weakly partition regular. Since EF
is �ltered and well-structured, the previous proposition ensures that SF ⊆⋃
MF , while Proposition 4.8.5 ensures that

⋃
MF ⊆ SF . So

SF =
⋃
MF

and this shows that the family SF is an union of ultra�lters, and this is
a condition equivalent to state that SF is strongly partition regular.
(2) ⇒ (1) Every strongly partition regular family is, in particular, weakly
partition regular.

A �rst corollary is that:

Corollary 4.8.10. If F ⊆ Fun(N,N) is a well-structured and �ltered set of
functions and SF is weakly partition regular, then an ultra�lter U is inMF
if and only if U ⊆ SF .
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Proof. Simply observe that the previous theorem tells that SF is strongly
partition regular, and apply Theorem 1.2.3.

One other way to formulate the previous corollary is to say that whenever
the class SF is weakly partition regular, with F well-structured and �ltered,
then an ultra�lter U is F -maximal if and only if it is made of maximal sets
with respect ≤F or, equivalently, that a set is maximal in (℘(N),≤F) if and
only if it is contained in some maximal ultra�lter U in (βN,EF).
Since we gave in Proposition 4.6.12 a condition, for a set A, to be in SF , we
get:

Proposition 4.8.11. Let F ⊆ Fun(N,N) be a well-structured and �ltered set
of functions and let SF be weakly partition regular. Then an ultra�lter U is
maximal if and only if for every A ∈ U , for every natural number n ∈ N,
there is a function fn in F with fn([0, n]) ⊆ A.

In next section we will give an example of application of Theorem 4.8.9
by proving that the class of subsets of N that contains arbitrarily long arith-
metical progressions in strongly partition regular.

4.9 Finite Mappability Under A�nities

In this section we consider the set of a�nities A:

A = {f(a,b) ∈ Fun(N,N) | ((a, b) ∈ N2) ∧ (a 6= 0) ∧ (∀n ∈ N
f(a,b)(n) = an+ b)}.

We show that, as consequences of results already proved in this chapter,
the relation EA has some important properties.

Proposition 4.9.1. The set of a�nities is well-structured and �ltered.

Proof. A is closed under composition since, for every (a, b), (c, d) in N2,

f(a,b) ◦ f(c,d) = f(ac,ad+b).

Moreover, the function f(1,0) ∈ A is the identity function. So by Corollary
4.6.7 A is well-structured.
A is �ltered since it contains the family T of traslations, which is �ltered,
and in 4.6.8 we proved that if a set of functions F is a superset of a �ltered
set of functions then F is �ltered as well.
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In consequence there are maximal EA-ultra�lters.
As a corollary of Proposition 4.6.12, we get that:

Proposition 4.9.2. A subset A of N is A-maximal if and only if it contains
arbitrarily long arithmetic progressions.

Proof. As a consequence of Proposition 4.6.12, a set A is A-maximal if and
only if for every natural number n there are a, b in N such that f(a,b)([1, ..., n]) ⊆
A. As f(a,b)([1, ..., n]) is an arithmetic progression of lenght n, it follows that
a subset A of N is A-maximal if and only if it contains arbitrarily long arith-
metical progressions.

Van der Werden's Theorem states that the family SA of subsets of N
that contains arbitrarily long arithmetical progressions is weakly partition
regular; by Theorem 4.8.9 it follows that:

Proposition 4.9.3. The family of subsets of N that contains arbitrarily long
arithmetical progressions is strongly partition regular.

Also, from Proposition 4.8.5 it follows that

Proposition 4.9.4. An ultra�lter U is A-maximal if and only if it is a Van
der Waerden's ultra�lter.

Moreover, since T is a subset of A, every ET-maximal ultra�lter is also
A-maximal: since the set of ET-maximal ultra�lters is K(βN,⊕), from this
it follows that:

Proposition 4.9.5. Every ultra�lter U in K(βN,⊕) is a Van der Waerden's
ultra�lter.

Observe that the multiplicative analogue of T is the set of homoteties H:

H = {fa ∈ Fun(N,N) | (a ∈ N \ {0}) ∧ (∀n ∈ N fa(n) = an)},

and, by essentially the same argumetns we used for the relation ET, we
could prove that

MH = K(βN,�).

So an ultra�lter is H-maximal if and only if it is in the closure of the
minimal bilater ideal of (βN,�). Since H ⊆ A, from this it follows that

Proposition 4.9.6. Every ultra�lter U in K(βN,�) is a Van der Waerden's
ultra�lter.
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Now we consider the cones CA(U). Recall that A is the set of functions
generated by G : N× N2 → N, where

G(n, (a, b)) = an+ b for every natural number n in N,

and with set of parameters S = N2 \ {(0, n) | n ∈ N}. By Theorem 4.7.28
it follows that, for every ultra�lter U in βN,

M(U ,A) = {G(U ⊗ V) | V ∈ βS}.

Observe that, for every ultra�lter V in βS, G(U ⊗V) is the ultra�lter on
N de�ned by the following condition: if A is a subset of N, then

A ∈ G(U ⊗ V) if and only if {n ∈ N | {(a, b) ∈ N2 | an+ b ∈ A} ∈ V} ∈ U .

We conclude by observing that, if U is any ultra�lter in K(βN,⊕) (e.g., if
U is a minimal additive idempotent) then, as CA(U) =MA by A-maximality
of U , it follows that

MA = {G(U ⊗ V) | V ∈ βN}.

4.10 Further Studies

In this section we indicate two possible directions for further studies on
�nite mappability.

4.10.1 Relations between di�erent sets of maximal ul-

tra�lters

In Section 4.9 we proved that the Van der Waerden's ultra�lters are ex-
actly the maximal ultra�lters respect the relation of A-�nite mappability,
where A denotes the set of a�nities, and we showed that as a consequence
the minimal bilateral ideal of both (βN,⊕) and (βN,�) consist of Van der
Waerden's ultra�lters.

Question: Is it possible to characterize other important subsets of βN
as sets of F -maximal ultra�lters for appropriate sets of functions F?

A particularly interesting case, in our opinion, is that of polynomials: if

Pd = {f(a0,...,ad) ∈ Fun(N,N) | (a0, ..., ad ∈ N) ∧ (ad 6= 0) ∧ (∀n ∈ N
f(a0,...,ad)(n) = adn

d + ad−1n
d−1 + ...+ a1n+ a0)},
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then P =
⋃
d≥1Pd

Observe that A = P1.

Question: Is there a correlation betweenMP and the partition regular-
ity of equations?

4.10.2 Orderings on the hyperextension ∗N
Two important and well-known relations on a generical hyperextension

∗N are the Puritz and the Rudin-Keisler pre-orders, that we shortly recall.

De�nition 4.10.1. Let U ,V be two ultra�lters on N. U is Rudin-Keisler
above V (notation V ≤RK U) if there is a function f in Fun(N,N) such that
f(U) = V (i.e. if A ∈ V ⇔ f−1(A) ∈ U).
The relation ≤RK is called Rudin-Keisler preorder.

Observe that, since for every functions f, g in Fun(N,N), f ◦ g = f ◦ g,
the Rudin-Keisler preorder is transitive (and the re�exivity is immediate), so
it is actually a preorder. A well-known fact about this relation is:

Proposition 4.10.2. For every ultra�lters U ,V on N, the following two
properties are equivalent:

1. U ≤RK V and V ≤RK U ;

2. there is a bijection f in Fun(N,N) with f(U) = V.

If we denote with ≡RK the equivalence relation such that U ≡RK V
if and only if U ≤RK V and V ≤RK U , the induced order ≤RK on the
quotient space is the Rudin-Keisler order. This has been extensively studied
in literature (see e.g. [HS98,Cap 11]). Here we are not interested in the
speci�cal properties of this order; we just want to show that, if we translate
it in the context of sets of generators of ultra�lters, one obtains a well-known
and studied relation that re�nes it, namely the Puritz pre-order.

De�nition 4.10.3. Let ∗N be a hyperextension of N, and α, β two hypernat-
ural numbers in ∗N. We say that α is Puritz above β (notation β ≤P α) if
there is a function f in Fun(N,N) with ∗f(α) = β.

Since ∗f◦∗g =∗(f ◦ g) for every functions f, g ∈ Fun(N,N), the relation
β ≤P α is a pre-order; similarly to the Rudin-Keisler case, it can be proved
that

Proposition 4.10.4. For every α, β in ∗N, the following two conditions are
equivalent:
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1. α ≤P β and β ≤P α;

2. there is a bijection f in Fun(N,N) with ∗f(α) = β.

Denote by ∼P (and call P -equivalence) the equivalence relation such that,
for every α, β ∈∗N, α ∼P β if and only if α ≤P β and β ≤P α. The induced
relation ≤P on the set of equivalence classes of ∼P (that are called constel-
lations in the literature) is an order, which is called the Puritz order for
constellations. This order, and its relation with the Rudin-Keisler order, are
studied, e.g., in [NR01].
In a precise sense, the Puritz pre-ordering is a re�nement of the Rudin-Keisler
pre-ordering: in fact, Uα ≤RK Uβ whenever α ≤P β, while the converse is
false, since Uα ≤RK Uβ implies only α ≤P β′ for some β′ ∼u β.
From the characterization of CF(U) it follows that there is a similarity be-
tween the relations EF and the Rudin-Keisler pre-order. This similarity seem
to be particularly interesting from the point of view of the hyperextension
•N (more generally, from the point of any hyperextension with at least the
c+-enlarging property). As for the F -�nite embeddability, when F is well-
structured, by the characterization of CF(U) for a generical ultra�lter U in
βN it follows that the relation EF can be translated in nonstandard terms
by posing, for generical α, β in ∗N,

α EF β ⇔ β ∈ {∗ϕ(α) | ϕ ∈∗F}∩∗N,

where the closure in ∗∗N is taken in the S-Topology.

Question: Are there connections between the Rudin-Keisler pre-order,
the Puritz pre-order and the F -�nite embeddability in the nonstandard con-
text for suitable families F?
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