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Professor Pasquina Marzola, Università degli Studi di Verona
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Introduction

Motivation and key findings

Radiomics is a technique of medical image analysis that has started to be developed in the
last years, with focus in oncology. The term refers to the extraction of quantitative fea-
tures from standard-of-care images, including Computed Tomography (CT), Positron
Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), that are part of
the diagnostic process and follow-up in oncologic patients. Thousands of ”synthetic
biomarkers” can be calculated starting from the grey level intensities in each voxel en-
closed within the tumoural region, providing a description of the tumour heterogeneity
and texture. These biomarkers, called radiomic features, have been investigated as they
can be predictive of specific clinical outcomes, e.g. the choice of a treatment strategy, the
prognosis or patients’ stratification, and thus they can be a useful support for the process
of decision-making in healthcare.
The application of radiomics in MRI is particularly challenging, given the number of
variables included in the process of image acquisition, reconstruction, processing and in-
terpretation. Recently, the literature has been enriched with many promising studies on
MRI-based radiomics applied to various anatomical districts and cancer diseases. How-
ever, the majority of the published studies lack of standardisation in the radiomic process
and the following analysis. The harmonisation of the radiomic workflow, from the im-
age acquisition to the building of predictive models for clinical support, is one of the
goal of present radiomics. The validation of the findings on extended clinical database
is another important gap in the current state of MRI radiomics, and it is necessary for
bringing it into daily clinical practice in the near future. In addition, the investigation
on the quality of the radiomic features extracted from the medical images is of major im-
portance, to ensure the robustness and generalisability of the derived predictive models.
Part of the open issues in MRI-based radiomics might be fulfilled with phantom studies,
which offer the possibility for multiple acquisitions in a controlled experimental setup.
Nevertheless, the phantoms already available in medical centres for quality controls in
MRI are not suitable for radiomic investigations, as they lack the heterogeneity typical
of the investigated tumours.

xiii



xiv Thesis overview

The present thesis work was performed in this framework, with the aim to provide use-
ful indications towards the extraction of robust radiomic features with a well-defined
and optimised protocol for image handling and analysis. The work was carried out in
collaboration with two cancer centres: the European Institute of Oncology (IEO, Milan)
and the Champalimaud Centre for the Unknown (CCU, Lisbon), with the clinical inter-
est focused on malignancies in the female pelvis (e.g. carcinoma of the cervix) and, for
the last part of the thesis and the ongoing studies, on breast cancer. The primary objec-
tive of the thesis was the fabrication of ad hoc MRI radiomic phantoms that could mimic
the radiomic properties of a set of real patients and that could be used for the assessment
of the radiomic features robustness in clinical-like scenarios. A secondary objective was
the evaluation of the radiomic features repeatability and reproducibility in the context
of diagnostic MRI for female pelvic cancer. As a third objective, this thesis proposed to
assess the impact of the choice of a specific software for the features extraction on the
feature values themselves.
The described objectives have resulted in the fabrication of two innovative phantoms for
MRI-based radiomics. The first phantom reproduces the abdomen of a patient affected
by a pelvic tumour and was built with materials and compositions capable of mimick-
ing the relaxation times and texture properties of human tissues as observed in a set of
patients. Such phantom was exploited in a multicentric investigation on the stability of
the radiomic features, considering three different MRI scanners. The considered scenar-
ios included a study on the repeatability of the features with scanner-induced variations
and repositioning-induced variations. The features reproducibility when changing the
scanner type, the field strength or the acquisition parameters was evaluated as well. The
results showed that a consistent percentage of features were not repeatable or not repro-
ducible, suggesting that clinical studies performed on inhomogeneous dataset should
be conducted with awareness and caution, after an acquainted assessment of the fea-
tures stability in the specific scenario through phantom studies. Moreover, this inves-
tigation allowed the establishment of a well-defined procedure to identify repeatable,
reproducible and informative radiomic features. Another contribution of this work in
the field of MRI-based radiomics consisted in the development of a second phantom.
The first prototype of a breast phantom, including an insert to mimic the signal and
radiomic properties of a real tumour, was designed coupling a research on innovative
materials and the 3D-printing technology. In addition, the analysis of different radiomic
software allowed to identify the main sources of discrepancies which cause the features
to differ if extracted with different tools, hindering the robustness and generalisation of
results.
An overview of the thesis content and structure is given in the next Section.

Thesis overview

In Chapter 1 the physical principles of Nuclear Magnetic Resonance (NMR) will be sum-
marised, both with classical and quantum approaches. The Bloch equations describing
the temporal evolution of the magnetisation will be recalled, with focus on the relaxation
times T1 and T2. In addition, the main techniques for relaxometry experiments will be
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explained. The translation of the NMR phenomenon into the MRI technique will be pre-
sented, with particular attention to the imaging parameters affecting the MR signal and
the way to obtain images with different contrast. The concepts of field gradient and k

space will be illustrated, introducing the slice selection, the frequency and the phase en-
coding.
Chapter 2 will focus on radiomics. The fundamentals of this technique will be covered,
including the rationale of its application on medical images of cancer patients and its
potentiality. The radiomic workflow will be illustrated, in the context of the big data an-
alytics and with connections to genomics. Special attention will be given to the texture
analysis, including a mathematical description of the main categories of texture features
considered in this work. The challenges and open issues of radiomics will be explained,
with focus on the radiomic analysis of MR images. The need for methodological studies
for the harmonisation and strengthening of the radiomic analysis will be highlighted,
with particular emphasis on the potentiality of radiomic phantom studies. A review
of the literature on the major results of MRI-based radiomics in pelvic and breast can-
cer will be discussed, including a description of the state of the art of both clinical and
methodological studies.
In Chapter 3 the results concerning the comparison of three freely available radiomic
software, namely IBEX, LIFEx and PyRadiomics, will be illustrated. The investigation
aimed at evaluating the compatibility of the value of the radiomic features when ex-
tracted from the same set of MR images with different packages and similar initial con-
ditions. The main properties of the three tools will be presented and the procedure for
the image acquisition and segmentation, the radiomic feature selection and extraction
will be explained in detail. Finally, the major sources of discrepancies among the results
obtained with the three software will be identified and discussed.
Chapter 4 will deal with the results on the development of a dedicated pelvic phan-
tom for MRI-based radiomic analysis and the radiomic experiments performed on such
phantom. The Chapter will be divided in two parts. The first part will cover the reali-
sation of the phantom, from the initial design concept to the production and validation,
including the measurement of the relaxation times T1 and T2 in vivo on a set of patients
affected by pelvic cancer. In the second part, the results of the radiomic experiments
performed on the phantom will be illustrated. The tests were carried out on three dif-
ferent MRI scanners of two medical centres and aimed at evaluating the repeatability (in
the case of both 2D and 3D acquisitions) and the reproducibility of the radiomic features
in a clinical-like scenario. The reproducibility of the features will be evaluated in a set
of possible scenarios, including different magnetic field strengths, different vendors or
variable imaging parameters. The ability of the radiomic features to distinguish differ-
ent textures will be briefly discussed in relation to the size of the region of interest from
which the features were extracted. In addition, the dependency of the texture features
on the shape features will be assessed, to obtain useful information on the quality of the
extracted features.
In Chapter 5 the preliminary results on the realisation of a phantom to support MRI ra-
diomics applied to breast cancer will be presented. The phantom design and production
in its first prototype will be illustrated, with particular attention on the insert reproduc-
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ing the MR signal and texture of a real tumour. The preliminary validation and the
schedule for the following prototype will be presented, along with the radiomic exper-
iments to be performed on the breast phantom in the near future and its application to
two identified clinical scenarios.



CHAPTER 1

Nuclear magnetic resonance and its application in medical
imaging

This Chapter has two main purposes. Firstly, the physical principles of Nuclear Mag-
netic Resonance (NMR) will be introduced, including the definition of the typical relax-
ation times T1 and T2 and the description of the main experimental techniques used to
measure them in this thesis work. Secondly, the basic concepts in Magnetic Resonance
Imaging (MRI) will be summarised, focusing on the transition from an NMR experiment
to an MR image reconstruction.

1.1 Fundamentals of Nuclear Magnetic Resonance

The NMR phenomenon was discovered by Purcell [1] and Bloch [2] in 1946 and studies
the temporal evolution of the nuclear magnetisation in a set of nuclei, due to the hyper-
fine interactions in which the nuclei are involved. For the purpose of this Chapter, the
summary presented in this Section will be focused on the interaction between the nu-
clear magnetic moments of the nuclei and an external magnetic field [3].

1.1.1 The precessional motion: classical approach

Each of the probe nuclei, used in an NMR experiment, has a nuclear magnetic moment
defined as:

~µ = γ~~I (1.1)

where γ is the gyromagnetic ratio, equals to 2π· 42.576 MHz · T−1 for protons, and ~I is the
nuclear spin. From a macroscopic point of view, the observed spin population generates
a resultant magnetisation, given by:

~M =
∑
i

~µi (1.2)

Let ~H0 be an external magnetic field oriented along the ẑ axis of the laboratory frame
S. In the absence of an external field, the total magnetisation is ~M = 0, because the
magnetic moments are randomly oriented. After the application of ~H0, the magnetic

1



2 1.1 Fundamentals of Nuclear Magnetic Resonance

moments are preferably aligned along the external field direction, thus a non-null resul-
tant magnetisation is observed. Following the classical approach, the temporal evolution
of the magnetisation, when ~H0 is applied, is given by the equation of motion:

d ~M

dt
= γ ~M × ~H0 (1.3)

Equation 1.3 describes a clockwise precessional motion (Figure 1.1) of the vector ~M about
~H0, with an angular velocity given by the Larmor law:

~ω0 = −γ ~H0 (1.4)

Let S′ be a new reference frame, with axis ẑ′ ≡ ẑ ‖ ~H0 and x̂′ and ŷ′ axes rotating in the

Figure 1.1: Clockwise precession of the magnetisation ~M in the presence of an applied external
field in the laboratory reference frame S.

plane with an angular velocity ~ω (Figure 1.2). The equation of motion in S′ is then:

d ~M

dt
= γ ~M ×

(
~H0 +

~ω

γ

)
(1.5)

which means that in the rotating frame S′, the magnetisation has a precessional motion
about an effective magnetic field

~Heff = ~H0 +
~ω

γ
(1.6)

If ~ω = ~ω0 = - γ ~H0, then d ~M
dt = 0. This means that if S′ is rotating at the Larmor frequency,

the magnetisation ~M is constant in the rotating reference frame, enabling us to study the
interactions of the nuclei, beyond the precessional motion.
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Figure 1.2: Comparison of the laboratory reference frame S and the rotating reference frame S′

with ẑ′ along the external field direction and x̂′ and ŷ′ rotating in the x̂-ŷ plane at ~ω.

1.1.2 The NMR signal

Let ~H1 be a magnetic field oriented along the ẑ’ axis of the frame S′, which we now
consider to be rotating at ~ω = ~ω0 (resonance condition). ~H0 is a constant static field, on
the contrary ~H1 is an oscillating radiofrequency (rf) field much weaker than ~H0 and
perpendicular to it [4]. The oscillating field is generated by a coil in which an alternating
current flows. Under these conditions, in S′:

d ~M

dt
= γ ~M × ~H1 (1.7)

Equation 1.7 describes a precessional motion of ~M about ~H1 with angular velocity ~ω1 =
γ ~H1. The motion is represented in Figure 1.3. At t = 0 the magnetisation ~M is oriented
along ẑ’ and for t > 0, ~M starts to rotate around ~H1. Thus, by applying ~H1, it is possible
to guide the magnetisation out of the ẑ’ direction by an angle α, which is called flip angle
and is given by:

α = γH1δt (1.8)

where δt is the interval in which the rf field ~H1 is applied. If δt is long enough to produce
α = π

2 , the rf field application is referred to as a 90◦ pulse. Similarly, if α = π, a 180◦ pulse
was applied.
After the application of the oscillating field ~H1, in the reference frame S the magnetisa-
tion ~M describes a spiral motion around the ẑ axis. Due to the electromagnetic induction,
the transverse componentMxy of the magnetisation generates an electric signal detected
by the receiver coil and referred to as Free Induction Decay (FID).
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Figure 1.3: Precessional motion of the magnetisation about the radiofrequency field ~H1 in the
reference frame S′. At t = 0 the magnetisation ~M is oriented along ẑ’ and for t > 0, ~M starts to
rotate around ~H1.

1.1.3 Quantum approach

From the quantum mechanics point of view, the interaction of the spin population with
an external field ~H0 = H0ẑ is described by the Zeeman hamiltonian:

H = −γ~~I · ~H0 = −γ~IzH0 (1.9)

For the nuclei with I = 1
2 , like protons, the Zeeman effect generates two energy levels in

the spin population, given by the energy eigenvalues:

E↑ = −1

2
~ω0 (1.10)

and
E↓ = +

1

2
~ω0 (1.11)

as represented in Figure 1.4.
The number N↑ of spin parallel and N↓ anti-parallel to the external field in the two en-
ergy levels can be calculated according to the Boltzmann statistics:

N↑
N↓

= e

(
∆E
KBT

)
(1.12)

where ∆E is the difference in the energy levels, given by

∆E = E↓ − E↑ = ~ω0, (1.13)

KB is the Boltzmann constant, and T is the absolute temperature. At room temperature,
for a 1 T magnetic field, N↑N↓ = 1.000007 [5]. This indicates a small excess of protons in the
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Figure 1.4: The Zeeman energy levels for a proton
(
I = 1

2

)
when an external magnetic field ~H0

is applied. The Zeeman effect generates two energy levels in the spin population, given by the
energy eigenvalues E↑ and E↓.

lower energy level and, consequently, it is possible to observe a resultant magnetisation
~M 6= 0.

In quantum terms, the application of the rf field ~H1 generates an excited states in the
energy levels of the system. For example, after the application of a 90◦ pulse, the mag-
netisation is in the x̂-ŷ plane andMz

(
π
2

)
= 0. This implies that the mean statistical value

of Iz is null, i.e. the two Zeeman energy levels are equipopulated. From Equation 1.12,
if N↑/N↓ = 1, than T → ∞. In other words, the 90◦ pulse causes the temperature of
the spin system to rise, bringing them in an excited state. After the rf pulse, the system
evolves to a condition of thermal equilibrium through transitions from the excited state to
the ground level.

1.1.4 Bloch equations

To describe the temporal evolution of the magnetisation after the application of an rf
field, in the 1940s Bloch modified Equation 1.3, by adding two phenomenological terms.
The temporal evolution of the longitudinal component ~Mz = Mz ẑ and the transverse
component ~Mxy = Mxx̂+My ŷ is given respectively by Equations 1.14 and 1.15, referred
to as Bloch equations.

dMz

dt
= γ

(
~M × ~H0

)
z

+
M0 −Mz

T1
(1.14)

dMxy

dt
= γ

(
~M × ~H0

)
xy

+
Mxy

T2
(1.15)

In Equation 1.14,M0 is the magnetisation value at equilibrium and T1 is called spin-lattice
relaxation time and it is the typical time describing the regrowth of ~Mz to the equilibrium
value, after the perturbation introduced by the rf field. The solution for Equation 1.14 is
shown in Figure 1.5 and is given by:

Mz (t) = M0

(
1− e−

t
T1

)
(1.16)
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Figure 1.5: The regrowth of the longitudinal magnetisationMz (t) with the typical time T1 accord-
ing to the first Bloch equation.

Figure 1.6: The decay of the transverse magnetisation Mxy (t) with the typical time T2 according
to the second Bloch equation.
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In Equation 1.15, Bloch introduced the parameter T2, called spin-spin relaxation time, to
describe the exponential decay of ~Mxy , as shown by the plot in Figure 1.6. The solution
of the second Bloch equation is:

Mxy (t) = M0e
− t
T2 (1.17)

The decay is correlated to variations or inhomogeneities in the local magnetic field expe-
rienced by each magnetic moment in the system, causing local precessional frequencies
slightly different from the Larmor one. This process is referred to as dephasing and causes
the decay of the resultant transverse magnetisation.

1.1.5 Relaxometry

By the means of an NMR spectrometer, relaxometry experiments aim at measuring the
relaxation times T1 and T2 of a sample, using different excitation sequences, i.e. charac-
teristic series of rf pulses. In this Section, the experimental techniques used for this work
will be described.

Measurement of the transverse relaxation time T2

Equation 1.17 has been obtained under the assumption that the static field ~H0 is homo-
geneous on all the volume occupied by the sample. From an experimental point of view,
this condition is not fulfilled and the dephasing effect of the transverse components is
enhanced. As a consequence, the transverse magnetisation Mxy decays with a time con-
stant T ∗2 , which is given by both the spin-spin interaction (T2) and the dephasing caused
by the field inhomogeneities (T2’) :

1

T ∗2
=

1

T2
+

1

T ′2
(1.18)

To recover the effects of the field inhomogeneities, Hahn proposed the Spin Echo (SE)
sequence [6]. This sequence includes a first π/2 pulse, followed by a π pulse after a time
interval τecho. The second pulse has a refocusing effect and at time 2τecho it is possible
to observe the so-called signal of spin echo. The echo signal results to be attenuated,
according to Equation 1.17:

Mxy (2τecho) = M0e
− 2τecho

T2 (1.19)

Equation 1.19 holds when the T ∗2 effects are negligible. In case of diffusion inside the
sample (especially in liquid samples), the spins dephasing is recovered only partially,
causing a loss of signal. To limit the effect of diffusion in T2 measurements, the Carr-
Purcell-Meiboom-Gill (CPMG) sequence [7] [8] was developed. As shown in Figure 1.7,
after the refocusing pulse of the SE sequence, the CPMG sequence includes a train of π
pulses, each separated of 2τCP . As a result, for t = 2nτCP , an echo signal is generated
and the Mxy decay is reconstructed. It can be shown that the relaxation of the transverse
magnetisation, when measured with a CPMG sequence, is given by:

Mxy(t) = M0e
− t
T2 e−γ

2G2D(2τCP )2 t
12n2 (1.20)
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Figure 1.7: CPMG sequence. This sequence includes a first π/2 pulse, followed by a train of π
pulses. The signal attenuation (green line) follows an exponential decay with a typical time T2

(see Equation 1.17).

where G is a field gradient taken as a model for the inhomogeneities, D is the diffusion
coefficient typical of the sample and n is the number of refocusing π pulses. Equation
1.20 holds when the T ∗2 effects are negligible and shows that the effect of diffusion may
be neglected by increasing n.
The CPMG sequence was used in this work to measure the transverse relaxation time
of MnCl2 solutions, during the process of the pelvic phantom development. The experi-
mental results will be given in Section 4.1.2.

Measurement of the longitudinal relaxation time T1

The longitudinal relaxation time is usually measured with a Saturation Recovery (SR) or
an Inversion Recovery (IR) sequence. Both sequences were tested in this work on some
samples, providing compatible results. Thus, the SR technique was chosen for two main
reasons: (i) the total acquisition time is less for the SR than for the IR; (ii) the electronics of
the spectrometer is more precise on shorter pulses (π/2) than on longer ones (π). In fact,
an SR sequence usually comprises two pulses: an excitation pulse and a reading pulse, to
read the signal. The excitation is performed with a π/2 pulse, to bring the magnetisation
in the xy plane. After a certain time interval t, a π/2 reading pulse or a SE sequence is
used to read the signal and to detect the magnetisation restored along the ẑ axis. The
magnetisation Mz can be obtained by varying the interval t between the excitation and
the reading pulses and inverting Equation 1.16.
In the relaxometry experiment performed to measure the longitudinal relaxation time of



Nuclear magnetic resonance and its application in medical imaging 9

MnCl2 solutions (see Section 4.1.2), the excitation of the system was carried out through
a series of three π/2 pulses, aiming at saturating the absorption line. The scheme of the
sequences used in this work to measure T1 and T2 is shown in Figure 1.8.

Figure 1.8: Diagrams of pulse sequences used to measure T1 (SR-SE) and T2 (CPMG) in this thesis
work.

1.2 Physical principles of Magnetic Resonance Imaging

This Section will describe how the NMR technique can be exploited to obtain medical
images. Magnetic Resonance Imaging (MRI) was introduced in the 1980s and nowadays
is increasingly being used in healthcare for its excellent soft tissue contrast and the non-
involvement of ionizing radiation.

1.2.1 MRI signal and contrast images

When an MR image is acquired, the signal detected can be expressed as:

S(t) ∝ ρ
(

1H
)
e
−TE
T∗2

(
1− e

−TR
T1

)
e−bD (1.21)

where ρ
(

1H
)

is the proton density in the sample, TE is the time of echo, defined as the
time interval between the first pulse in a sequence and the the signal acquisition, TR is
the repetition time, defined as the time interval between the first pulse of the sequence
and the the same pulse of the following repeated sequence, b is the diffusion weighting
factor (which depends on the gradient amplitudes and timings) and D is the diffusion
coefficient. ρ

(
1H
)
, T1, T ∗2 andD are intrinsic parameters (i.e. they depend on the sample

- or tissue - under investigation), on the contrary b, TE and TR can be controlled by the
experiment operator. If Equation 1.21 describes the signal in each point of the sample,
it is possible to obtain different contrast images of the sample, by varying the operator-
dependent parameters. This technique is exploited in clinics to enhance different tissues
or lesions both for diagnostic and follow-up purposes.
Neglecting the diffusion term in Equation 1.21, a spin density-weighted image can be
achieved by minimising the dependence on T1 and T ∗2 , selecting TE much shorter than
the shortest T ∗2 in the sample and TR much longer than the longest T1:

e
−TE
T∗2 → 1⇔ TE � T ∗2 (1.22)
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e
−TR
T1 → 0⇔ TR� T1 (1.23)

If both conditions 1.22 and 1.23 are satisfied, then from expression 1.21 one has S(t) ∝
ρ
(

1H
)

and the corresponding image is mainly based on the differences in proton density
in each tissue involved.
To obtained a T1-weighted (T1-w) image, TE has to be chosen much shorter than the short-
est T ∗2 in the sample (condition 1.22) and TR has to be on the order of the T1 values in
the sample:

TR ' T1 (1.24)

In a similar way, a T ∗2 -weighted (T ∗2 -w) image can be achieved with TR much longer than
the longest T1 in the sample (condition 1.23) and TE on the order of the T ∗2 values in the
sample:

TE ' T ∗2 (1.25)

An example of different image contrast on the brain is given in Figure 1.9.

Figure 1.9: (a) Spin density-weighted image, (b) T2-weighted image and (c) T1-weighted image
of the brain, obtained with a SE sequence with variable parameters. Reprinted from [4], with
permission from John Wiley and Sons.
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1.2.2 1D imaging Equation and frequency encoding

In the previous Section, the possibility of generating MR images with different weighting
has been illustrated. The transition from the NMR signal to an image will be summarised
in this Section, pointing out the major physical principles behind it.
The NMR is a volumetric technique, since the detected signal is given by all the resonant
nuclei (protons for the purpose of this description) in the sample. In order to generate an
image of the sample, it is necessary to distinguish the spatial origin of the signal inside
it, i.e. to spatially identify each proton. This task can be achieved by applying magnetic
field gradients along each direction x, y and z, to make the field linearly variable and, as
a consequence, to make the resonance frequency of the protons unique point by point of
the sample.
Considering a 1D problem, letGz(t) be a field gradient applied along the direction of the
static field ~H0 = H0ẑ. The resulting field is given by:

Hz (z, t) = H0 + zGz(t) (1.26)

where

Gz(t) ≡
∂Hz

∂z
(1.27)

Correspondingly, the resulting angular frequency of the protons is:

ω (z, t) ≡ ω0 + ωG (z, t) (1.28)

with
ωG (z, t) = γzGz(t) (1.29)

Equation 1.29 allows to link the precessional frequency of the spins with their positions
along the field direction and it is referred to as frequency encoding.
The application of the gradient induces a dephasing in the spins frequency. The accu-
mulated phase at time t can be expressed as:

φG (z, t) = −
∫ t

0

dt′ωG (z, t′) = −γz
∫ t

0

dt′Gz (z, t′) = −γzGzt (1.30)

Consequently, the signal S(t) in the reference frame rotating at ω = ω0 can be written as:

S(t) =

∫
dzρ(z)eiφG(z,t) (1.31)

where

ρ(z) ≡
∫ ∫

dx dy ρ (~r) (1.32)

is the effective spin density along z and ~r is the spatial variable.
Let k(t) be the spatial frequency variable, defined as:

k(t) =
γ

2π

∫ t

0

dt′G(t′) (1.33)



12 1.2 Physical principles of Magnetic Resonance Imaging

The signal in Equation 1.31 can thus be expressed as:

S (k(t)) =

∫
dzρ(z)e−i2πkz (1.34)

Equation 1.34 is referred to as 1D imaging equation and it contains the basic concept for
the images reconstruction in MRI. In other words, when a linear field gradient is applied,
the signal S(k) is the Fourier transform (FT) of the spin density of the sample. Being S(k)

and ρ(z) two variables linked by the FT, the spin density can be obtained with the inverse
FT of 1.34:

ρ (z) =

∫
dkS(k)e+i2πkz (1.35)

In conclusion, the MRI technique consists in acquiring a signal S(k) in the domain of the
spatial frequencies (which intrinsically depends on time and allows the identification of
the spins position in the sample) and taking the FT of this signal to obtain the effective
density of spins, i.e. the image.

1.2.3 Slice selection and phase encoding

In order to unequivocally identify the spatial position of each resonant proton in the
sample, in an MRI scanner three pairs of gradient coils are placed each in a direction of
the set (x̂, ŷ, ẑ). Usually the frequency encoding, introduced in the previous Section, is
chosen as the x̂ direction and it is also called readout gradient.
The gradient along ẑ is usually referred to as slice selection gradient and allows to uni-
formly excite a slice of the sample ∆z, so that after the pulse all the spins in the slice
have the same phase and the precessional frequency f = ω/2π is linear with the position
along the ẑ axis:

f(z) = f0 +
γ

2π
Gzz (1.36)

where f0 = γ
2πH0 is the Larmor frequency at z = 0. An rf pulse has a certain bandwidth

in the frequency domain BWrf ≡ ∆f . To excite a slice of thickness
(
z0 − ∆z

2 ; z0 + ∆z
2

)
,

the rf pulse has to be:
BWrf =

γ

2π
Gz∆z (1.37)

as shown in Figure 1.10. The profile of the selective rf pulse is a sinc function in the
time domain. By taking the FT of this profile, it is possible to show that in the frequency
domain the pulse is a boxcar function.
After identifying the slice to be imaged with the gradient along ẑ, a linear gradient is
applied along ŷ. It is usually referred to as phase encoding gradient and introduces a de-
phasing in the spins according to their position along ŷ axis (as seen in Equation 1.30).
Finally, a readout gradient along x̂ introduces an additional dephasing, allowing the spa-
tial identification of each spin in the matrix. The effect of the phase encoding and the the
readout gradients on the spins in a 3x3 matrix is shown in the central picture and in the
right picture of Figure 1.11, respectively.
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Figure 1.10: Slice selection gradient along the ẑ axis. A magnetic field gradient generates a linear
relation between the spatial location of the excited slice and the Larmor frequency.

Figure 1.11: The application of the phase encoding gradient Gy (central image) to a matrix 3x3
of spins (left image) introduces a dephasing in the spins precession according to their position
along the ŷ axis. The application of the frequency encoding gradient Gx (right image) causes an
additional dephasing along x̂ axis, allowing to spatially identify the position of each spin unequiv-
ocally.





CHAPTER 2

State of the art in MRI radiomics

The aim of this Chapter is to offer an overview of the current status of the radiomic anal-
ysis in MRI of the pelvis and breast, that represent the main anatomical sites of interest
for the present work. In the first part of the Chapter, the basic concepts in radiomics will
be introduced, from its rationale and definition to the advantages that this discipline can
provide. The workflow of the radiomic analysis will be explained, focusing on its main
operational phases. The challenges and open issues of this ongoing technique will be
highlighted. In the second part of the Chapter, the most recent results of the radiomic
analysis in both pelvic and breast MRI will be discussed.

2.1 Fundamentals of radiomics

2.1.1 Rationale and potentiality

A tumour is a complex and dynamic ecosystem. Its growth involves different spatial
and temporal scales, from the molecular to the whole-organ level. When a tumour origi-
nates, the non-linear interactions happening at the genomic level result in intra-tumoural
heterogeneity affecting its physiology and anatomy. Tumours with higher heterogene-
ity are thought to be associated with a worse prognosis [9], thus complicating clinical
workflows, from diagnosis to treatment selection and response assessment. On this ba-
sis, medical imaging plays a key role in the investigation of spatial variations in the
tumoural tissue and its surrounding (Figure 2.1).
Specifically, quantitative imaging of the tumour anatomy has been proposed as a means
to investigate the underlying gene expression patterns in order to infer information on
the tumour functional and progression mechanisms [10].
In this frame, the practice of converting medical images into minable high-dimensional
data in order to support clinical decisions has emerged and it is referred to as radiomics
[11]. To go beyond the visual interpretation made by the physician, each digital image is
exploited for its quantitative nature. In fact, a Computed Tomography (CT), a Magnetic
Resonance (MR) or a Positron Emission Tomography (PET) image can be read as a ma-
trix of pixels (or voxel for 3D acquisitions), each associated with a number representing a
certain grey level intensity. Mathematical formulas applied on these numbers allow the
extraction of many parameters, called radiomic features, describing the tumour in terms
of its intensity, shape, size, volume and texture properties. The radiomic features can be

15
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Figure 2.1: Different modalities of medical imaging can investigate biological systems at increasing
levels of organisation, form the genome to the anatomy. Reprinted from [9], with permission from
Elsevier.

correlated with specific clinical outcomes and can be helpful in early assessment of ther-
apy response, recurrence probability and/or prognosis, patients stratification and choice
of treatment strategy. In this sense, the radiomic features can be interpreted as ”syn-
thetic biomarkers”, that can be integrated with other -omics data, including genomics,
transcriptomics, proteomics and metabolomics for a more comprehensive understand-
ing of the pathophysiology of the tumour. The mining of these data, i.e. the procedure
of recognising relationships and correlations among them, covers a pivotal role in the
most recent innovations in medical imaging analysis, towards the achievement of a pre-
dictive, preventive and personalised medicine [12]. Specifically, the correlation between
radiomic and genomic data has been called radiogenomics. In presence of demonstrated
correlation between radiomic and genomic data, the extraction of radiomic features from
medical imaging could potentially allow to assess gene expression patterns in a non-
invasive way (Figure 2.2).
The very big number of parameters involved puts the radiomics discipline in the frame-
work of the Big data analytics, which is becoming more and more popular in many differ-
ent fields, including healthcare, thanks to the collection of huge amount of data and the
availability of fast and efficient computational tools for handling them. Big data have
been defined through the five ”Vs” [13]: Volume, referring to the considerable size of
the datasets required for the investigation; Variety, which refers to the collection of data
from different sources; Velocity in the data generation and collection; Veracity, which
deals with the quality of the data collected and Value, which refers to the potentiality of
the Big data analysis to actively support the decison-making process.
The strength of radiomics lies in its application to standard-of-care medical images, that
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are included in the usual diagnostic workflow in oncology and are easily available on the
PACS (Picture Archiving and Communication System). Another advantage is that the
features extracted from the clinical images are able to describe the whole tumour hetero-
geneity. As explained, deep knowledge of the tumour spatial organization is essential
in all the clinical phases of the pathology assessment and treatment. In this sense, ra-
diomics represents a powerful non-invasive way to inspect the tumour heterogeneity, as
a valid alternative to an invasive biopsy. Moreover, it allows a description of the whole
tumour instead of a partial one, as offered by biopsy [14].

Figure 2.2: Comparison between the bioptic and the radiomic paradigm. The radiomic approach
may represent a non-invasive alternative to biopsy for the assessment of the tumour molecular
properties, based on the existing link between the macroscopic aspect of the imaged tissue and the
underlying gene expression patterns. Reprinted from [14], with permission from Springer Nature.

2.1.2 Workflow

The identification of a clinical scenario of interest for the desired radiomic study, includ-
ing the choice of an imaging protocol and the definition of a predictive target, precedes
the operational phases of the radiomic analysis [14]. After that, the radiomic workflow
is composed of four main steps, illustrated in Figure 2.3. In this Section, each phase will
be analysed and discussed.

(i) Image acquisition and reconstruction

First of all, high-quality images of the patients are acquired and reconstructed. The
typical imaging modalities involved in oncology are CT, PET, MRI and ultrasound, de-
pending on the specific pathology and tumour site. The examination can be performed
at different stages of the disease assessment and treatment, including diagnosis, treat-
ment planning and follow-up [15]. Focusing on MRI, it has been less extensively inves-
tigated than CT or PET for use in radiomics. The main reason lies in the complexity of
MRI, where the numerous variables involved are optimised in light of the clinical needs
and equipment capacities, resulting in a wide variety of MRI protocols. Moreover, the
lack of a standard intensity scale for MR images necessitates the use of additional pre-
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processing, such as intensity normalisation [16]. Eventual inhomogeneity of the mag-
netic field could represent an additional issue.

(ii) Segmentation

On each image, one or more Volumes Of Interest (VOIs) are selected with a manual con-
touring by expert physicians or with computer-based segmentation tools, identifying the
regions considered to be relevant for the radiomic analysis. The VOI typically includes
the whole tumour volume or some of its subregions. Manual segmentation remains the
most popular technique, but it is affected by intra- and inter-operator variability and it
is very time-consuming when dealing with the large datasets required for a radiomic
analysis. On the other hand, although many semi-automatic or automatic software for
contouring are available, there is a lack of standardisation in their application [17]. In
addition, the majority of the semi-automatic tools requires a manual correction by the
operator in complex cases. The automatic packages have been developed for a limited
number of districts, mainly the ones with high contrast, and the majority are for research
only. These systems are rarely integrated in the radiomic software.

Figure 2.3: The radiomics analysis includes four main phases. (i) The patients undergo a medical
imaging examination. (ii) The physician identifies on each image the Volume Of Interest (VOI)
relevant for the radiomic analysis. (iii) The radiomic features are extracted from the VOI through a
dedicated software. (iv) The radiomic features are correlated with other clinical data of the patients
to build predictive models for the treatment outcomes or for prognostic purposes. Figure from [15]
1.

(iii) Feature extraction

Consequently, a very big amount of quantitative parameters are extracted from the se-
lected volumes through a dedicated software. The radiomic features aim at quantifying
different properties of the tumour, including the shape, the distribution of voxel values,

1The reproduction of one figure from an article in British Journal of Radiology is allowed in a PhD thesis
providing the original source article is cited. For additional information visit this link.

https://www.birpublications.org/page/permissions
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and the texture, assessing the intensity heterogeneity, the correlation of intensity levels
between neighbour pixels and the directionality of intensity distribution. Specifically,
the radiomic features can be classified into four main categories, described in detail be-
low: morphological, histogram-based (or first-order statistics), textural (or second-order
statistics) and filtering features [18], [19], [20], [21].

• Morphological features

Morphological features characterise the three-dimensional shape and size of the
VOI. Features describing to what degree the tumour is spherical, rounded or elon-
gated are included, along with parameters indicating the volume, the surface area
and the minimum/maximum diameter.

• Histogram-based features (first order statistics)

The features of this group aim at describing the frequency histogram (or first or-
der histogram) of the intensity values corresponding to the voxels included in the
VOI. The histogram is obtained after discretising the original intensity values in
the VOI into intensity bins. The features of the first order statistics do not provide
information regarding the relative position of the intensity levels over the VOI.
Typical features of this category describe the shape of this histogram and include
mean, median and minimum/maximum value, skewness (asymmetry), kurtosis
(flatness), range and percentiles. Histogram-based features with a less intuitive
meaning include: energy, measuring the magnitude of voxel values in the VOI;
entropy, evaluating the randomness of the intensity values, and uniformity, de-
scribing the homogeneity of the intensity distribution.

• Textural features (higher order statistics)

The higher order analyses give information about the spatial inter-voxel relation-
ships, including textural features, which identify specific patterns in the intensity
distribution. Textural features are extracted with mathematical formulas from spe-
cific matrixes, calculated from the original image considering only the voxels in-
cluded in the VOI. The main matrixes considered in the present work are described
below.

Grey Level Co-Occurence Matrix

Let Ng be the total number of grey levels in which the VOI intensity values have
been discretised, i = 1, ..., Ng and j = 1, ..., Ng . The index i will appear with the
same meaning also in the definition of the other matrixes below. The Grey Level
Co-Occurence Matrix (GLCM) is aNg xNg matrix in which the (i, j)th element rep-
resents the number of times the combination of levels i and j occurs in two voxels
at Chebyshev distance 2 δ along a predefined direction θ in the VOI. Figure 2.4

2The Chebyshev distance between two points x and y, with coordinates xi and yi respectively, is defined
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shows an example of the calculation of a GLCM for δ = 1, i.e. considering adjacent
voxels, and θ = 0◦, i.e. reading the rows of the image starting from the top left
corner and going in horizontal direction. The image given in the example will be
also used as a reference image for the calculation of the following matrixes.

Figure 2.4: GLCM calculation. (a) 4 x 4 pixel given image. (b) The image discretised into four
grey levels. (c) GLCM of the given image (δ = 1; θ = 0◦). The occurrences of the couple (i, j)

of adjacent voxels is counted and allocated in the co-occurrence matrix. The blue element of the
GLCM indicates the number of times the combination (i, j) = (1, 2) appears in the discretised
image, along horizontal direction.

Grey Level Run Length Matrix

The Grey Level Run Length Matrix (GLRLM) quantifies the run lengths in the VOI
intensity mask. A run is defined as a sequence of consecutive voxels along a cer-
tain direction, all with the same grey level. Let Nr be the maximum length of a run
observed in the image, r = 1, ..., Nr and i = 1, ..., Ng . The GLRLM is a Ng x Nr
matrix in which the (i, r)th element represents the number of times the run of grey
level i and length r occurs in the image along a direction θ. Figure 2.5 shows the
GLRLM for θ = 0◦ obtained from the 2D image considered as reference example.

Grey Level Size Zone Matrix

In 2D, a pixel is defined as connected to one of its eight first neighbour pixels if they
show the same grey level. Similarly, in 3D it is considered a 26-connectedness. A
zone is defined as a set of connected pixels or voxels. The Grey Level Size Zone Ma-
trix (GLSZM) describes the number of zones in the VOI. Let Nz be the maximum
zone size of any group of connected voxels observed in the image, z = 1, ..., Nz
and i = 1, ..., Ng . The GLSZM is a Ng x Nz matrix in which the (i, z)th element rep-
resents the number of times the zone of grey level i and size z occurs in the image.
Figure 2.6 shows the GLSZM obtained from the 2D reference image.

as δ(x, y) := max
i

(|xi − yi|).
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Figure 2.5: GLRLM calculation. (a) The reference image discretised into four grey levels. (b)
GLRLM of the given image (θ = 0◦). The blue cell of the matrix indicates the number of runs with
grey level 1 and run length 1 (single pixels). The pink cell gives the number of runs with grey level
1 and run length 2 (two adjacent pixels of grey level 2).

Figure 2.6: GLSZM calculation. (a) The reference image discretised into four grey levels. (b)
GLSZM of the given image. The pink cell of the matrix indicates the number of zones of the image
with grey level 1 and zone size 1 (a pixel with grey level 1 with no connected pixels with grey level
1). The yellow cell gives the number of zones with grey level 1 and zone size 3 (three connected
pixels with grey level 1). The blue cell gives the number of zones with grey level 2 and zone size 5
(five connected pixels with grey level 2).

Neighbourhood Grey Tone Difference Matrix

Let Ad,v be the discretised grey level of a voxel at position ~v = (vx, vy, vz) in the
VOI. The average grey level within a neighbourhood centred at (vx, vy, vz) and
within a Chebyshev distance δ is

Āv =
1

W

δ∑
mz=−δ

δ∑
my=−δ

δ∑
mx=−δ

Ad (vx +mx, vy +my, vz +mz) (2.1)

with (mx,my,mz) 6= (0, 0, 0) to exclude the central voxel of reference and W is
the size of the neighbourhood and it is defined as W = (2δ + 1)

3 − 1 in 3D and
W = (2δ + 1)

2 − 1 in 2D (i.e. for δ = 1 in a 2D image a pixel is surrounded by 8
pixels).
The element si in the Neighbourhood Grey Tone Difference Matrix (NGTDM) in-
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dicates the sum of grey level differences of voxels with grey level i = 1, ..., Ng and
the average grey level Āv of neighbouring voxels within a distance δ:

si =

N∑
k

∣∣i− Āv∣∣ (2.2)

with the conditions that the grey levelAd,z of voxel v is equal to i and the voxel has
a valid neighbourhood (i.e. for δ = 1 it is surrounded by 26 voxels in 3D; in 2D and
for δ = 1, a pixel has a valid neighbourhood when it is surrounded by 8 pixels). In
Equation 2.2, N is the number of voxels in the VOI. An example of the procedure
to obtain the main quantities involved in calculating the NGTDM-based features
is shown in Figure 2.7. In this example, the voxels with a valid neighbourhood
are the four central pixels, of grey levels 2 and 3. Thus the s1 and s4 entries of the
NGTDM are zero. To calculate s2, the two pixels with grey level 2 has to be consid-
ered separately to calculate the average grey value of their surrounding pixels. For
example, the 2 in the blue cell has an average value of the neighbourhood given
by Equation 2.1: (2+1+3+3+3+2+1+2)/8 = 17/8. A similar calculation for the pink
2 gives 15/8. Thus, from Equation 2.2, s2 = |2− 17/8| + |2− 15/8| = 0.250. In
the same way, s3 = |3− 22/8| + |3− 21/8| = 0.625. The definition of the NGTDM

Figure 2.7: NGTDM calculation. (a) The reference image discretised into four grey levels. The
Nn pixels with a valid neighbourhood (and thus considered for the matrix calculation) are located
within the red box. (b) Parameters for the NGTDM calculation from the given image. ni is the
number of voxels of grey level i and with a valid neighbourhood. pi = ni/Nn is the grey level
probability. si is a matrix element of the NGTDM.

in the literature was given originally by Amadasun and King for 2D image [22].
The identification of the pixels with a valid neighbourhood in order to build the
NGTDM causes some limitations for the radiomic analysis, since the voxels on the
edge of the VOI mask have to be disregarded. To include them in the analysis,
a valid neighbourhood is considered to exist if there is at least one neighbouring
voxel included in the VOI mask [18]. This deviation from the original matrix defi-
nition holds also for the Grey Level Dependence Matrix.

Grey Level Dependence Matrix
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The Grey Level Dependence Matrix (GLDM) quantifies the coarseness of the voxel
intensities within the VOI. As for the NGTDM matrix, the concept of neighbour-
hood (in its radiomic acception, as introduced in the previous matrix) of a pixel
or voxel is involved, along with the concept of dependency. The grey levels of a
central voxel v at position ~v and a neighbouring voxel w at position ~v + ~w are de-
fined as dependent if |Ad(~v)−Ad(~v + ~w)| ≤ α, where α ∈ Z and α ≥ 0. Let Nk be
the maximum dependence observed in VOI intensity mask and i = 1, ..., Ng . The
GLDM is a Ng x Nk matrix in which the (i, k)th element represents the number
of neighbourhoods with a center voxel of grey level i and a neighbouring voxel
dependence k, for a certain value of α and fixed Chebyshev distance δ. Figure 2.8
shows the GLDM obtained from the 2D image considered as reference example,
for δ = 1 and α = 0. The condition δ = 1 means to consider, in a 2D image, adja-
cent voxels in all possible directions. The condition α = 0 means that two voxels
are dependent if they have the same grey level.

Figure 2.8: GLDM calculation. (a) - (c) The reference image discretised into four grey levels. (d)
GLDM of the given image for δ = 1 and α = 0. The blue cell of the matrix indicates the number of
times a pixel with grey level 1 appears in the image surrounded by no pixels of the same intensity
(dependence 0, as highligthed in blue in image (a)). The pink cell indicates how many times in the
image a pixel with grey level 1 has in its neighbourhood (represented by the red box) 2 pixels of
grey level 1 (dependence 2). Each of the 3 pixels of the image contributing to the count in the pink
cell of the matrix is shown respectively in (a), (b) and (c).

• Filtering approaches

The filtering features are extracted from images obtained by applying a transformation
on the original images. The main filters applied in this study are listed below (and de-
scribed in detail in the PyRadiomics documentation and in [23]).

https://pyradiomics.readthedocs.io/en/latest/customization.html
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Exponential: when applying this filter, the intensities in the resulting image are the ex-
ponential of the original intensities.

Laplacian of Gaussian: the filtered image is obtained by convolving the original image
with the second derivative (Laplacian) of a Gaussian kernel, enhancing the areas of grey
level change (e.g. edges of a defined region) in the original image.

Local Binary Pattern: applying this transformation, a reference pixel/voxel is compared
with its neighbours. If an adjacent pixel has a grey level greater than the reference pixel,
it is assigned the value 1 and it is considered 0 otherwise. Once all the neighbouring
pixels have been assigned a value (0 or 1), a binary number is obtained and assigned to
the reference pixel. For example, the reference pixel in a 2D Local Binary Pattern image
is represented by a binary number with 8 digits, with each digit indicating one of the 8
surrounding pixels.

Logarithm: when applying this filter, the intensities in the resulting image are the loga-
rithm of the absolute original intensities + 1.

Square: the intensities in the resulting image are the square of the original intensities.

Square Root: the intensities in the resulting image are the square root of the original
intensities.

Wavelet: Wavelet transform decomposes the original image in low and high frequency
images, which can be separately analysed. Such decomposition, schematised in Figure
2.9, allows the decoupling of textural properties of the input image.

After the application of the Exponential, Logarithm, Square and Square Root filters, the
intensity range is rescaled to match the original image range and negative original val-
ues are stored as negative also in the filtered image.
Many dedicated software packages, both open-source and commercial, are available for
image handling and features extraction, differing for the number of features extracted
(ranging from a few tens to more than one thousand), and the possibility to perform one
or more image pre-processing. The main tools used in this work are IBEX [24], LIFEx
[25] and PyRadiomics [26], all freely available. One of the goal of this thesis is to com-
pare the algorithms implementation across these radiomics software. This analysis will
be covered in Chapter 3, where a detailed description of each software will be included.

(iv) Model building

After the extraction, a selection of the most informative features is performed to exclude
redundant features and to avoid overfitting, by reducing the problem dimensionality.

3The reproduction of the image is allowed from the license available at this link.

https://creativecommons.org/licenses/by-nc-nd/3.0/
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Figure 2.9: Schematic of 3D level Wavelet decomposition. By directional low-pass (L) and high-
pass (H) filtering, the original image X is replicated into 8 decompositions. Figure from [19], Sup-
plementary Material.3

An accepted rule is to have at least ten patients/subjects for each feature used in the
model [27]. The set of the identified features is integrated in a database, along with the
results of clinical and/or genomic analyses. These data are analysed, with the final goal
of building predictive models for the clinical outcome of interest, for example the re-
sponse to a specific treatment or prognosis among others. The model building can be
performed with various techniques, depending on the nature of the initial clinical ques-
tion to investigate, on the quality of the available data and on the size of the available
sample. If the outcome to be predicted is a continuous variable, regression methods,
including Linear, Cox and Lasso, can be exploited. If the target is a discrete variable,
classification methods, including Support Vector Machines and Random Forest, can be
used [28]. Both traditional statistical analysis and machine learning methods can be ex-
ploited to carry out the analysis. Correction methods for the false discovery rate are
commonly used.
One of the requirement for a robust model lies in a proper data management. The data
should be divided into three groups: the training, the validation and the testing sets.
The training set is used to train the model; the validation set is dedicated to the optimi-
sation of the model parameters; the testing set is used to assess the performance of the
optimised model on different data, involved neither in the training nor in the validation
procedure [29]. According to the TRIPOD guidelines [30], external data are preferable to
internal ones for the testing investigation.
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2.1.3 Challenges and open issues

Early clinical demonstrations of radiomics potential in MRI have been seen for various
pathologies and anatomical districts. An insight into the main results obtained for pelvis
and breast studies will be provided in the next Sections. In the literature, the amount of
publications associated with the keyword ’radiomics’ has increased exponentially in the
last years, with a great variability of the procedures followed in the radiomic workflow.
This variability makes comparison between studies challenging and hinders generali-
sation of results between centers [15], [31]. Thus, before bringing radiomics into daily
clinical practice, a process of methods standardisation, benchmarking, and validation is
essential [32].
The main challenges that radiomics is currently facing are summarised in [33] and are
related to each phase of the radiomic approach, from the image acquisition to the study
reporting. In this Section, the main open issues in each step of the radiomic analysis are
illustrated.

The image acquisition protocols, especially in MRI, vary among centres and are opti-
mised on each scanner, according to the clinical question under investigation. To under-
stand the sensitivity of radiomic models to differences between scanners and scanning
protocols, a comprehensive investigation on the influence of different image acquisition
settings (involving variations in MR sequences parameters, scanner, field strength, ven-
dor and/or centre) on radiomic features is warranted. Establishing a well-defined, stan-
dard procedure for supporting radiomic analyses is also advisable in view of prospective
clinical studies [34]. More in detail, repeatability and reproducibility studies of the ra-
diomic features needs to be performed for a more complete and deep understanding of
the features trend in different settings. Repeatability is ”the magnitude of measurement
error under a set of repeatable conditions”, including the same experimental setup and
procedure, same system and operator, ”over a reasonably short interval” [35]. The re-
peatability of the radiomic features is evaluated through a test-retest analysis, a compar-
ison between the features value extracted from images acquired in the same conditions
within a short time (in this work typically 10-15 minutes). Reproducibility demonstrates
the ability of a quantitative imaging biomarker ”to obtain the same measurement when
made on the same experimental unit under different experimental conditions” [35]. For
example, a reproducibility experiment can be performed extracting the features from
images acquired on the same scanner with the same scanning protocol, but varying one
of the imaging parameter in a certain range, during repeated acquisitions. Accepted
metrics to evaluate the repeatability and the reproducibility measures include the Intra-
class Correlation Coefficient (ICC) and the Concordance Correlation Coefficient (CCC),
respectively [36]. The repeatability and reproducibility of radiomic features have been
extensively investigated during this thesis project and will be covered in Chapter 4.

The radiomic features can also be influenced by the segmentation method [37], underly-
ing the need of a study on the impact of intra- and inter-observer variability (when using
manual and semi-automatic segmentation) on the radiomic features stability.
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Another source of influence on the radiomic models robustness is represented by the
choice of a specific radiomics software for the image processing and features extrac-
tion. Before extracting the features, the MR images necessitate the normalisation and
discretisation of their intensities. Both these techniques are far from being universal,
with plenty of possible solutions to be applied.
Some of the radiomics software offer options for the normalisation process. Otherwise,
the user has to implement an in-house code or to rely on other specific tools for nor-
malisation. This is crucial for the radiomic features stability, as it has been shown that
the choice of image intensity normalisation technique has a strong impact on the re-
producibility of radiomic features, evaluated on T2-weighted MR images of the pelvic
region [38].
The main intensity discretisation techniques are the fixed bin-count and the fixed bin-
width. These methods allow to establish the number of bins or the bin-width of each
bin for the discretisation of voxel intensity, respectively. In the literature, there is not a
consensus about the optimum method to choose. In addition, it has been demonstrated
that the choice of a certain discretisation method can influence the radiomic features re-
producibility [39].
Since the beginning of radiomics, the availability of many software for the features extrac-
tion - many of which are in-house codes developed on purpose - has made the compar-
ison and generalisation of results challenging. In fact, each software follows its own li-
braries for features definitions and formulas and there has not been for long a shared list
of accepted and well-defined features of reference. This issue has been partially solved
by the efforts of the Imaging Biomarker Standardisation Initiative (IBSI) [18], which has
the goal to provide the features nomenclature and their mathematical definitions, along
with benchmark data sets.

Regarding the model building phase, one of the main challenges is the size of the sam-
ple used in a study. Many radiomics papers involved few patients with respect to the
number of features on which the model is based. A limited dataset decreases the predic-
tive power of a model and increases the risk of overfitting of the data. Another crucial
point is the necessity of a more extensive validation of the models, possibly through ex-
ternal data, as previously discussed. This task can be reached also by promoting data
sharing and accessibility towards a multi-disciplinary collaboration [40], [41]. To quanti-
tatively evaluate the robustness and reliability of a radiomic study, the Radiomics Qual-
ity Score (RQS) has been proposed [14]. The RQS is composed of sixteen criteria that, if
fulfilled by the radiomic study under evaluation, allow to assign a number of points to
the study. The higher the score, the higher the quality of the study. The RQS can help
in the standardisation of the reporting guidelines for radiomic studies; an example of its
application during the different phases of the radiomic analysis is shown in Figure 2.10.

As pointed out by Lambin et al. [14], some of the illustrated open issues can be ful-
filled through phantom studies. The phantoms provide many advantages, including a
controlled experimental setting and the possibility for repeated measurements. In addi-
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Figure 2.10: Application of the Radiomics Quality Score (RQS) to evaluate the quality of a radiomic
study. The RQS consists in a set of criteria to be met by a radiomic paper. The higher the number of
fulfilled criteria, the higher the points assigned to the study. Reprinted from [14], with permission
from Springer Nature.

tion, the use of a phantom, in which biological processes are not present (rectal/bladder
filling, peristalsis, breathing, tissue diffusion and perfusion), allows the assessment of
the reproducibility issues caused by different imaging scenarios (e.g. comparing two
different scanner types or vendors). The methodological studies performed on phan-
toms can allow the identification of repeatable and reproducible features and can serve
as an initial feature selection method that ensures the development of reliable biomark-
ers and models.
The phantoms currently available for quality control testing of MR scanners, however,
are not suitable for radiomic investigation. In fact, they tend to lack the heterogeneity
that serves to differentiate radiomic features between tissues. Phantoms designed for
routine quality assurance usually consist of a container filled with homogeneous aque-
ous solutions in which are embedded objects of specific shape and variable size (com-
monly plastic homogeneous inserts) to assess individual aspects of scanner performance
in terms of geometry, distortion, spatial resolution, contrast and contrast resolution [42].
In particular situations, other solutions have been investigated, including jelly-like ma-
terials to provide tissue-equivalent phantoms [43], phantom created with fruits to simu-
late different texture [44] and anthropomorphic and multimodal phantoms that approx-
imate in vivo anatomy and imaging appearance [45]. Some efforts have also pursued
digital phantoms, mainly for brain applications. Yang, Ford et al. [46], [47] made use of
a digital MR phantom to confirm that the radiomic features are influenced by the image
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acquisition process and reconstruction algorithm. They also underlined the need for a
physical phantom for experimental validation of their preliminary results. Although the
available MRI phantoms are increasingly specialized across a widening range of appli-
cations, to date there is still none optimised for radiomic purposes. Physical phantoms
specifically dedicated to the evaluation of radiomic features reliability and robustness in
CT [48] and PET [49] have recently been reported. An overview of the existing designs is
given in [50]. At the beginning of this thesis work, a physical MRI phantom dedicated to
radiomic analysis had not been designed yet. To meet this demand, two MRI phantoms
(simulating pelvic and breast cancer respectively, for radiomic purposes) have been de-
signed for methodological studies to support clinical decisions. A detailed description
of the phantoms realisation will be given in Chapters 4 and 5.

2.2 MRI-derived radiomics in pelvic oncology

This Section has the aim to provide an overview of the main MR radiomic studies on
pelvic cancer in the last years. The literature search was conducted in two ways: firstly,
focusing on the clinical studies; secondly, pointing out methodological studies. The Sec-
tion structure, being divided into two parts, follows the literature search.

2.2.1 Clinical studies

The clinical applications of MRI-based radiomic models in pelvic oncology have been
summarised in some recent reviews, and can be classified according to the cancer type
and location.

• Prostate cancer

The radiomic features in prostate cancer (PCa) are extracted from T2-weighted,
diffusion-weigthed and dynamic contrast-enhanced images, included in the usual
clinical protocols for PCa diagnosis [51]. The radiomic models have been investi-
gated at the histopatological level, for their application to tumour characterisation.
The association with tumour biology (e.g. cancer aggressiveness or classification)
has also been tested and compared with the traditional Gleason score system [52].
Other studies used radiomics for diagnostic and prognostic purposes, and to pre-
dict the response to a certain treatment. These applications include the prediction
of extracapsular extension and the correlation with biochemical recurrence after
different treatments (e.g. radiotherapy) [29]. The first radiogenomic investigations
have shown evidence of an association between the radiomic features extracted
from the tumour volume and the correlated genetic variations.

• Gynaecological cancer

Promising results have been seen in gynaecological malignancies, including cervi-
cal, endometrial and ovarian cancer. Preoperative radiomic features were seen to
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be predictive of lymph-vascular space invasion [53] and of the presence of lymph
node metastasis [54] in cervical cancer patients. The potential role of radiomics in
the prediction of recurrence in advanced cervical cancer patients treated with con-
current chemoradiotherapy has also been evidenced [55].

• Colorectal cancer

MRI-based radiomics of patients with rectal cancer has shown potential both to
predict the tumour response to therapy (including neoadjuvant chemoradiother-
apy) [56], [57], [29], [58], [59], [60], and to non-invasively evaluate tumour differen-
tiation and other biological properties [61]. An interesting approach by Cusumano
et al. [62] consisted in the identification of tumour subpopulations in rectal cancer
patients and their characterisation through fractal analysis, with the aim to predict
the pathological response after therapy. Jalil et al. [63] used texture analysis on T2-
weighted images to predict long-term survival of patients affected by advanced
rectal cancer and treated with chemoradiotherapy.

• Bladder cancer

MRI-based radiomics in bladder cancer has been investigated for tumour classi-
fication and grading, prognostic purposes or to predict the response to a selected
therapy [64]. Some radiomic features were found to be correlated with the tumour
biology and aggressiveness and were useful for the tumour detection, by differ-
entiating the normal bladder wall from cancerous tissue. Radiogenomic studies
showed that the radiomic features can be correlated with some genetic mutations
correlated with bladder cancer [65].

2.2.2 Methodological studies

Gourtsoyianni et al. [66] studied the repeatability of MRI features extracted from pri-
mary rectal cancer. They found that the repeatability was higher for first-order and frac-
tal features than for second and other higher-order statistical features. Fiset et al. [67]
studied the repeatability and reproducibility of MRI-based radiomic features on cervical
cancer. The reproducibility was assessed in two settings: (i) between diagnostic MRI
and simulation MRI; (ii) among three operators who performed the tumour segmenta-
tion. The (ii) setting offered the highest number of reproducible features. Both setting
(i) and test-retest studies showed low performance in terms of features reproducibility
and repeatability, respectively. Only 5.6% of features showed an excellent repeatability
and reproducibility (ICC≥0.9) in all the three scenarios. More recently, Schwier and col-
leagues [68] investigated the repeatability of radiomic features on small prostate tumors,
assessing various normalisation schemes, image pre-filtering, and bin-widths for image
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discretisation. Despite this thorough inspection, they did not find consistent improve-
ments in repeatability across the different approaches.
Several clinical studies were conducted with variable acquisition parameters, known to
affect the tissue contrast, while the influence of such changes in radiomic features was
investigated to some extent by Mayerhoefer et al. [69] and Chirra et al. [70]. In the
first study, the authors investigated the sensitivity of texture features to acquisition pa-
rameters (including TE ranging from 20 to 125 ms and TR in the range 900-4500 ms)
at different spatial resolution on T2-weighted images acquired on a 3 T scanner. They
found that the imaging parameters influenced the values of features, with this influence
increasing with spatial resolution. In the second study, prostate T2-weighted images of
147 patients from four different sites were used to assess cross-site reproducibility by
performing multivariate cross-validation and assessing preparation-induced instability.
The results showed that most of the Haralick features were reproducible in over 99% of
all cross-site comparisons.

2.3 MRI-derived radiomics in breast oncology

Following an approach similar to the previous Section, representative studies in the re-
cent literature about MR-based radiomics in breast cancer are presented here.

2.3.1 Clinical studies

Some reviews have systematically collected the main findings in MRI-based radiomics of
breast cancer (BC) in the last decade. Valdora et al. [71] reviewed the studies of radiomics
in BC, assigning to each article the RQS to evaluate their quality. Codari et. al [72]
and, more recently, Sheth et al. [73] summarised the applications of artificial intelligence
(including some radiomics methodologies) for breast MRI. Chitalia et al. [74] explained
the use of texture analysis in breast MRI and Reig et al. [75] presented machine learning
applications in breast MRI. Following the approach by Reig and colleagues, the MRI-
based radiomic studies on BC can be classified according to the initial clinical question
under investigation, reporting some illustrative results.

• Lesion classification (benign vs. malignant)

Radiomic features were tested with promising results for discriminating malig-
nant from benign lesions [76]. Bickelhaupt et al. [77] studied this aspect on im-
ages acquired with an unenhanced diffusion-weighted protocol, finding a good
discriminating power. In [78], the radiomic features were investigated for lesion
classification and for their association with breast tissue biology.

• Lymph node status and tumour aggressiveness

Liu et al. [79] studied the prediction of sentinel lymph node metastasis in BC
with radiomic features extracted from the primary tumour region on the dynamic



32 2.3 MRI-derived radiomics in breast oncology

contrast-enhanced images. Dong and colleagues showed that textural features ex-
tracted from anatomical and functional MR images improved the prediction of the
presence of sentinel lymph node metastasis [80]. The tumour aggressiveness is also
associated to Ki-67 status. The correlation between radiomic features and Ki-67 ex-
pression has been investigated in various studies, like [81].

• Predicting prognosis and recurrence

The role of radiomics in predicting the risk of BC recurrence was studied, for ex-
ample, in [82]. Dietzel et al. [83] found that radiomic analysis of breast cancer vas-
cularization improved the survival prediction in primary breast cancer. In another
study, Koh et al. [84] evaluated the radiomic features as prognostic parameters to
predict recurrence in triple-negative BC.

• Radiogenomics

The radiomic features extracted from MR images of BC patients showed good per-
formance in discriminating BC subtypes [85], [86]. The discriminating power could
be improved including features extracted from the surrounding parenchyma, as
shown in [87]. A study on the The Cancer Genome Atlas (TCGA) and The Cancer
Imaging Archive (TCIA) datasets pointed out a correlation between radiogenomic
features and tumour staging, lymph node metastasis and status of different recep-
tors involved in the pathology [88]. The same datasets were used to extract multi-
omics data to study the association between quantitative MRI tumour character-
istics and underlying molecular properties (e.g. gene expression patterns) [89].
Figure 2.11 shows the main correlations found by the authors. Radiogenomic fea-
tures were also studied on dynamic contrast enhanced MRI of BC patients [90].

• Response to therapy

Reig et al. [91] reviewed the role of MRI to evaluate the response to neoadjuvant
therapy in BC, including radiomics and radiogenomics studied. In their study, Bra-
man et al. [92] showed that combining intratumoural and peritumoural radiomics
on dynamic contrast-enhanced images it was possible to predict the response to
neoadjuvant chemotherapy.

2.3.2 Methodological studies

Few studies investigated the robustness of radiomic features in BC and they were mainly
on mammography. Robinson et al. [93], for example, focused on the reproducibility of

4This is an open access article distributed under the terms of the Creative Commons CC BY license, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited. For additional information visit this link.
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Figure 2.11: Nodes schematic showing the associations between MRI-based radiomic phenotypes
of 91 breast invasive carcinomas and their corresponding molecular profiles. The node size indi-
cates the amount of connections of a node with respect to other nodes in the category. Figure from
[89]. 4

features considering mammograms acquired on two systems of different vendors. Re-
garding MRI, Duron et al. [39] studied the reproducibility of MRI-based radiomic fea-
tures when extracted from 30 breast lesions, varying the grey-level discretisation method
and evaluating the inter-observer variability. Saha and colleagues [94] investigated the
impact of the scanner vendor, the magnetic field strength and the slice thickness on both
breast lesions and fibroglandular tissue. The research was conducted on MR images of
272 BC patients and showed that 38.9% to 58.2% of the features were highly affected by
the choice of one of the three variables considered. In addition, they showed that the
features extracted from the fibroglandular tissue seemed to be the most sensitive to the
scanner parameters.





CHAPTER 3

Comparison of radiomics software

Since the raising of the radiomics discipline, many software packages have been devel-
oped for the radiomic features extraction and handling. The available tools often differ
on the mathematical definition and the computation of the features, suggesting the need
for a comparison towards a standardisation process. Recently, the Image Biomarker
Standardisation Initiative (IBSI) [18] has started to address this issue, providing a list
of reference features (both regarding the nomenclature and formulas) and benchmark
datasets. In this framework, one of this thesis objectives was to compare the features
computed with three freely available radiomics software on the same set of MR images,
also in light of the IBSI recommendations. The results of this investigation are reported
in this Chapter.

3.1 Software packages

In this Section, the main properties of the three tools used for the radiomic features ex-
traction will be illustrated.

3.1.1 IBEX

IBEX (Imaging Biomarker EXplorer) [24] was developed in MATLAB and c/c++ envi-
ronments and allows both DICOM and Pinnacle image format as input. It runs on Win-
dows only and it is available in two versions: one stand-alone (version 1.0β, used in this
work) and another open-source, both freely downloadable.
The opening screen of IBEX is shown in Figure 3.1. The workflow starts with importing
the patients’ images and visualising them in the dataset tool, where it is also possible to
add, draw and modify VOIs on the images. The next step is the creation of a feature set,
selecting from an available list the radiomic features to be extracted from the VOIs. In the
feature set window, a preprocess module (e.g. a filter) can be added and the specific pa-
rameters for each feature class can be tuned starting from the default settings. Examples
of these parameters are the number of bins or of grey levels for the histogram calculation
or the directions for the GLCM and the GLRLM matrixes computation. Some settings
relate to all the features in a certain category, others are specific for a single feature. Fi-
nally, in the results section the feature set and the dataset can be selected for the features
extraction and the results saving. The output is an XLS file with each row corresponding
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Figure 3.1: IBEX opening screen, which allows to import patients’ images and masks, create
datasets and feature sets and give instruction for the results calculation.

to a patient and each column representing a radiomic feature. The list of radiomic fea-
ture categories available in IBEX is shown in Table 3.1. A total of about 400 features can
be extracted with this software. The matrixes Grey Level Co-Occurrence Matrix, Grey
Level Run Length Matrix and Neighbor Intensity Difference can be calculated both in
2D (category ”25”) and 3D (category ”3”). In the first case, the matrix is computed slice
by slice and then averaged on all the slices in the selected mask.

3.1.2 LIFEx

LIFEx [25] is a Java freeware, developed for Windows, Linux and Mac systems. The
supported image formats include DICOM and non-DICOM files (e.g. NIFTI). For this
work, LIFEx version 4.90 was exploited. It offers a similar workflow as IBEX, starting
with the import of images and masks. The VOIs can also be directly drawn in the tool,
by a manual or a semi-automatic segmentation, including region growth and threshold
techniques. Before extracting the features, the user can set the parameters regarding the
spatial resampling (to tune the voxel dimension), the intensity discretisation (number of
grey levels and bin size) and the intensity rescaling (absolute or relative). The available
features in LIFEx are listed in Table 3.1. The total number of features that can be calcu-
lated with this software is about 60 (depending on the image type: MR, PET, CT). The
output consists in a CSV or XLS file, similarly to IBEX.
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Table 3.1: List of the feature categories available in the three software under investigation (IBEX
version 1.0β, LIFEx version 4.90 and PyRadiomics version 2.2.0). The number of available features
in each software is indicated in the last row of the Table.

IBEX LIFEx PyRadiomics
Shape First Order Features - Shape Shape
Intensity Histogram First Order Features - Histogram First Order Statistics
Grey Level Co-Occurrence Matrix 25 Grey Level Co-Occurrence Matrix Grey Level Co-Occurrence Matrix
Grey Level Co-Occurrence Matrix 3
Grey Level Run Length Matrix 25 Grey Level Run Length Matrix Grey Level Run Length Matrix
Neighbor Intensity Difference 25 Neighborhood Grey Level Different Matrix Neighbouring Grey Tone Difference Matrix
Neighbor Intensity Difference 3

Grey Level Zone Length Matrix Grey Level Size Zone Matrix
Gradient Orient Histogram
Intensity Direct
Intensity Histogram Gauss Fit

Conventional Indices
Grey Level Dependence Matrix

∼ 400 ∼ 60 ∼ 1000

3.1.3 PyRadiomics

PyRadiomics [26] has been implemented in Python and it can be used in two ways,
through a front-end interface in 3D Slicer [95] or through a back-end interface. In this
thesis, the second option has been chosen and PyRadiomics version 2.2.0 was used. The
first step is the creation of an input file, i.e. a text file indicating the images and the corre-
sponding masks of interest for the features extraction. Then, the settings for the features
extraction have to be indicated in a parameter file (in YALM format), including bin count
or bin width, eventual image normalisation, image filters and feature classes. The list of
the available feature categories in PyRadiomics is reported in Table 3.1. The number of
features that can be calculated with this software is about 80 per each image type (origi-
nal or filtered image), with a total up to a thousand or more (depending for example on
the choice of a 2D or 3D extraction and the number of wavelet decomposition).

3.2 Methods

3.2.1 Image acquisition

For this study, a pelvic phantom expressly assembled for radiomic studies was used.
The phantom design and its construction has represented one of the tasks of this thesis
work and will be described in Chapter 4. Two versions of the phantom were prepared:
the first one reproducing the relaxation times T1 of the pelvis as derived from a set of
representative patients and the second one mimicking the relaxation times T2. MR im-
ages of the phantom were acquired at the IEO (European Institute of Oncology, IRCCS,
Milan) on a 1.5 T scanner (Optima MR450w, General Electric) with a 24 channels anterior
body array coil and a combined 24 channels spinal coil. All images were acquired on the
axial plane. The acquisitions were performed following the clinical protocol for pelvic
diagnostic imaging used at the Institute, that includes the following sequences:

• T1-weighted (T1-w): 354 ms repetition time (TR), 9 ms echo time (TE), 5 mm slice
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thickness, 5 mm slice spacing, 320x320 mm2 field of view (FoV), 320 x 320 acquisi-
tion matrix (AM);

• T2-weighted (T2-w): 729 ms TR, 141 ms TE, 5 mm slice thickness, 5.5 mm slice
spacing, 320x320 mm2 FoV, 320 x 224 AM.

The first version of the phantom was acquired with the T1-w sequence, the second one
was imaged with the T2-w acquisition. After the first image series, the phantom (each
version) was repositioned and a second acquisition was acquired with an identical pro-
tocol.

3.2.2 VOIs

The VOIs were drawn on the images of the first acquisition with the tool 3D Slicer [95]
version 4.10.1. The pelvic-shaped phantom includes (in each of its version) four cylin-
drical inserts, each with a specific texture. The inserts aim to mimic the tumour in a
patient affected by a pelvic cancer and thus represent the object of interest for the ra-
diomic analysis. For each insert, four circular contours were drawn, for a total of sixteen
segmentations per each images series. In this way, the feature extraction was performed
from volumes or areas segmented on the same insert/tissue but of different sizes. The
masks were segmented on 3 consecutive slices on the T2 dedicated phantom (identify-
ing sixteen VOIs), while on the T1 phantom it was possible to draw the masks only on a
single slice, due to the different preparation of the inserts (identifying sixteen ROIs). The
biggest VOI follows the edge of the insert (diameter 24 mm) and the others are concentric
and with diameters 75% of the main one (diameter 18 mm), 50% (diameter 12 mm) and
25% (diameter 6 mm). The ROIs are shown in Figure 3.2, where the T1-w phantom im-
ages and masks have been loaded in LIFEx. The segmentations were exported in NIFTI
format to be used as input masks for LIFEx and PyRadiomics. The NIFTI files were then
converted to MAT files to create the input masks for IBEX, which does not support the
NIFTI format.

3.2.3 Radiomic features selection

Analysing Table 3.1, it is evident that each software offers its own features to be extracted
from the VOIs and only some of them have their corresponding in the other software. In
fact, some of the features may have different names in other platforms or they may have
the same name but a different mathematical definition. In order to compare the feature
values when extracted with different software, it is necessary to identify and select for
the analysis only the features shared among the three packages. With this aim, the docu-
mentation of each software was studied and compared with the others. The definition of
IBEX features was not as easily accessible as in the other software, since to trace back the
formulas it was necessary to collect and consult the references cited by IBEX developers.
On the contrary, both LIFEx and PyRadiomics offer a list of the available features with the
corresponding definition. The lists can be consulted at this address for LIFEx and at this
address for PyRadiomics.

https://lifexsoft.org/index.php/resources/19-texture/radiomic-features
https://pyradiomics.readthedocs.io/en/latest/features.html
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Figure 3.2: The phantom image and corresponding VOIs (in different colours) imported in LIFEx.

The feature definitions were also compared with the nomenclature and formulas pro-
posed by the IBSI, which is becoming the reference in the development of radiomics.

3.2.4 Preprocessing and settings

Intensity rescaling and discretisation

The various options offered by the three packages in terms of preprocessing (resampling,
discretisation, rescaling) were analysed and compared. An intensity rescaling method
shared among the tools was not identified. This consideration, along with the necessity
to make the results comparable, led to the decision of rescaling all the images in the range
of intensities [0, 100] before using them as input to IBEX, LIFEx and PyRadiomics. The
images were rescaled using the filter Rescale Intensity provided by Simple ITK [96]. The
intensity range was then discretised, fixing the bin-width to 1. In this way, 101 bins were
obtained. The choice of the bin-width was driven by the suggestion to have a number of
bins in the range [30, 130], that has shown good performance and reproducibility in the
literature [97].

Software settings

With the aim to perform the feature extraction on equal terms in each software, the fol-
lowing settings were set up. The settings mainly regard the intensity discretisation (in-
tensity range [0, 100], bin-width 1) and the offset for the GLCM (i.e. the distance between
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neighbouring voxels), that was set to 1 (i.e. only adjacent voxels are considered for the
matrix calculation). The extraction was performed on a 2D level (and not on 3D level),
since the image voxel was not isotropic and the downsampling/upsampling to isotropic
voxels could introduce a bias. In fact, the downsampling may cause a loss of informa-
tion on the acquisition plane. On the contrary, the upsampling may artificially create
new voxel data that may have an impact on the features [18].

• IBEX
Intensity histogram: NBins 101, Range Fix 0;
GLCM25: AdaptLimitLevel 1, Offset 1, Symmetric 1;
GLRLM25: GrayLimits 0 100, NumLevels 101;
NID25: AdaptLimitLevel 1.

• LIFEx
Intensity Discretization: Nb of grey levels = 101.0, Size of bins = 1.0;
Intensity Rescaling: absolute, min bound 0.0, max bound 100.0;
Advanced: GLCM: 1.

• PyRadiomics
Normalize: false; Distances: [1];
PreCrop: true;
Force2D: true;
Force2Dimension: 0;
GeometryTolerance: 1.e+4;
BinWidth: 1;
VoxelArrayShift: 0;
Label: 1;
ImageType: Original: ;
FeatureClass: shape, firstorder, glcm, glrlm, ngtdm.

3.2.5 Statistical analysis

The statistical analysis was performed following the approach proposed by Foy et al.
[98], who considered four radiomics software for a comparison on the algorithm imple-
mentation. All the analysis were carried out with RStudio version 1.2.1335. Firstly, the
Shapiro-Wilk test [99] was used to assess the normality of the data. The null hypothe-
sis was that the data followed a normal distribution. The significance was assessed at
α = 0.05. Since the majority of the data showed a significant deviation from a normal
distribution, the non-parametric Friedman test [100] was performed to detect differences
among the feature value when extracted with different software. The null hypothesis
was that a feature was the same across the radiomics software. As before, the consid-
ered significance level was α = 0.05. The Bonferroni correction was applied to take
into account the multiple comparisons (p < 0.00208). In addition, the correlation among
the three feature values (one for each software) was evaluated both pairwise, with the
Concordance Correlation Coefficient (CCC) [101] to enhance eventual similarities and
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correlations between two software, and globally, through the Overall Concordance Cor-
relation Coefficient (OCCC) [102], in order to identify the features showing the highest
stability across the packages.

3.3 Results

3.3.1 Radiomic features selection

Only twenty-four radiomic features were common in all the three packages and they are
shown in Table 3.2. For completeness, the mathematical definition of these features is re-
ported in Appendix A. In the IBEX column, the suffix 25 refers to the matrixes computed
in 2D slice by slice. In the same column, the suffix 333 refers to the feature obtained as
the mean of the values calculated for each default angle separately. In fact, the output file
of IBEX includes both the feature calculated from each angle separately and the mean
value, which is the one of interest for the comparison, since the other software give in
the output only the mean value. By definition, four directions are included for the com-
putation of the GLCM and the GLRLM in 2D (eight neighbour pixels). This holds for all
the packages for the GLCM but it is true for the GLRLM for LIFEx and PyRadiomics only.
On the contrary, IBEX supports only two directions for the GLRLM computation (0◦ and
90◦). In addition, the definition of the feature ”(excess) discretised intensity kurtosis” is
the same in the three packages but it differs from the IBSI definition by a factor three, as
in Equation A.2.2. In IBSI, the Fisher correction is applied to the kurtosis definition.

3.3.2 Software comparison

Table 3.3 shows the results of the Shapiro-Wilk normality test performed on the features
extracted with the three software from both the T1-w and T2-w images. When a feature
showed exactly the same value on all the sixteen VOIs and for both the repeated acqui-
sitions, the test could not be performed. The missing values in Table 3.3 correspond to
these cases. The test showed that the distribution of the feature values was significantly
different from a normal distribution. Thus, the Friedman test was chosen to assess dif-
ferences among the features obtained with the three software. The results of the test
performed on each feature are shown in Table 3.4, along with the corresponding OCCC
values. The results are listed for both the T1-w and T2-w image series. The values of
the features obtained with the different packages are shown in Figure 3.3 (morpholog-
ical features), Figure 3.4 (intensity histogram-based features), Figure 3.5 (GLCM-based
features), Figure 3.6 (GLRLM-based features) and Figure 3.7 (NGTDM-based features).
In each plot, the thirty-two lines represent the sixteen values of the feature (one for each
VOI) in the first acquisition and the sixteen values of the feature in the second acquisi-
tion (after phantom repositioning).
All features, except ”(Excess) discretised intensity kurtosis” and ”Discetised intensity
skewness”, showed significant differences among the packages. Nine (eight) out of
twenty-four features showed an OCCC > 0.726 in the T1-w (T2-w) experiment, sug-
gesting a correlation among the features, despite the significant differences in their ab-
solute values among the packages. The features showing a correlation in both T1-w and
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T2-w series included ”Volume (voxel counting)” within the shape category, ”(Excess)
discretised intensity kurtosis” within the intensity histogram group, and ”Inverse dif-
ference”, ”Angular second moment”, ”Contrast”, ”Joint Entropy” and ”Difference Aver-
age”, which all belong to the GLCM-based features.
Regarding the shape features, surprisingly ”Sphericity” showed significant differences
among software and an OCCC close to zero. This is an unexpected result, since the for-
mula indicated by the packages is the same (see Equation A.1.1). The calculation of this
feature involves the surface area and the volume of the VOI. Thus, a possible explana-
tion for the disagreement could reside in the choice of the volume (number of voxels
in the VOI, number of voxels multiplied by the volume of a voxel, mesh volume) or
in the way the area is obtained. In fact, the surface area is calculated through a trian-
gulation process. LIFEx states that the calculation of the surface area is based on the
Delaunay triangulation, but it is not clear is this is the same method used by the other
software. Concerning the feature ”Volume (voxel counting)”, the Friedman test showed
p < 0.0002. The feature had the same values in PyRadiomics and LIFEx, but it showed
some differences in the IBEX output. This can be due to a different method for voxel
counting at the edges of the VOI. Despite this small deviations, the OCCC for this fea-
ture show that the values from the software are highly correlated.
The feature ”Discetised intensity skewness” showed an OCCC close to zero for the T2-w
acquisition, despite the Friedman test indicating a perfect agreement among the codes.
This unexpected result is due to an outlier value of the feature when extracted from IBEX
in only one of the VOIs, probably caused by a bug in the code. In fact, after removing the
outlier, it results OCCC = 0.981. Similarly, ”Contrast (NGTDM)” showed an OCCC close
to zero only for the T1-w acquisition. Also in this case, an outlier was identified in the
data from IBEX. As expected, by removing the outlier, it can be obtained OCCC = 0.960.
Once such corrections were applied, the Friedman test and the OCCC evaluation indi-
cated that the results of the features comparison are independent from the MR sequence
used to acquire the images under investigation. Nevertheless, the feature ”Correlation”
showed OCCC = 1.000 when the feature was extracted from the T1-w images, but OCCC
= 0.301 for the T2-w acquisition, suggesting that this feature could depend on the se-
quence used to acquire the images.

Table 3.3: Results of the Shapiro-Wilk normality test. The test statistic W and the corresponding
p-value are reported, for the features extracted from both the T1-w and T2-w images. The test was
performed on the feature values extracted from the three software. For each feature in the table,
the first row shows the results of the test on the LIFEx value (L), the second row the results on
the PyRadiomics value (P) and the third row the results on the IBEX value (I). The missing results
correspond to the feature that had the same value in all the VOIs and for both image acquisitions.
In the Table, p-values ≥ 0.05 were highlighted in red.

Feature
T1-w T2-w

W p-value W p-value
Sphericity L - - 0.80 < 0.05

P 0.88 < 0.05 0.83 < 0.05
I 0.91 < 0.05 0.91 < 0.05

Volume (voxel counting) L 0.83 < 0.05 0.83 < 0.05
P 0.83 < 0.05 0.83 < 0.05
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I 0.83 < 0.05 0.83 < 0.05
(Excess) discretised intensity kurtosis L 0.89 < 0.05 0.91 < 0.05

P 0.89 < 0.05 0.91 < 0.05
I 0.89 < 0.05 0.93 < 0.05

Discetised intensity skewness L 0.91 < 0.05 0.97 0.40
P 0.91 < 0.05 0.97 0.40
I 0.91 < 0.05 0.18 < 0.05

Inverse difference L 0.97 0.43 0.87 < 0.05
P 0.97 0.43 0.85 < 0.05
I 0.97 0.44 0.84 < 0.05

Angular second moment L 0.92 < 0.05 0.71 < 0.05
P 0.92 < 0.05 0.70 < 0.05
I 0.92 < 0.05 0.70 < 0.05

Contrast L 0.86 < 0.05 0.93 < 0.05
P 0.86 < 0.05 0.92 < 0.05
I 0.86 < 0.05 0.91 < 0.05

Correlation L 0.90 < 0.05 0.98 0.79
P 0.90 < 0.05 0.93 < 0.05
I 0.17 < 0.05 0.87 < 0.05

Joint entropy L 0.92 < 0.05 0.90 < 0.05
P 0.92 < 0.05 0.89 < 0.05
I 0.91 < 0.05 0.86 < 0.05

Difference average L 0.95 0.19 0.95 0.17
P 0.95 0.19 0.93 0.05
I 0.95 0.19 0.91 < 0.05

Short run emphasis L 0.97 0.39 0.79 < 0.05
P 0.97 0.39 0.77 < 0.05
I 0.75 < 0.05 0.71 < 0.05

Long run emphasis L 0.98 0.86 0.74 < 0.05
P 0.98 0.86 0.72 < 0.05
I 0.84 < 0.05 0.83 < 0.05

Low grey level run emphasis L 0.78 < 0.05 0.91 < 0.05
P 0.73 < 0.05 0.88 < 0.05
I - - - -

High grey level run emphasis L 0.99 0.96 0.93 < 0.05
P 0.98 0.82 0.94 0.08
I - - - -

Short run low grey level emphasis L 0.84 < 0.05 0.92 < 0.05
P 0.76 < 0.05 0.90 < 0.05
I 0.37 < 0.05 0.47 < 0.05

Short run high grey level emphasis L 0.97 0.61 0.93 < 0.05
P 0.98 0.74 0.94 0.06
I 0.75 < 0.05 0.71 < 0.05

Long run low grey level emphasis L 0.67 < 0.05 0.89 < 0.05
P 0.65 < 0.05 0.81 < 0.05
I 0.84 < 0.05 0.83 < 0.05

Long run high grey level emphasis L 0.99 0.95 0.93 < 0.05
P 0.97 0.60 0.96 0.29
I 0.84 < 0.05 0.83 < 0.05

Grey level non-uniformity L 0.91 < 0.05 0.88 < 0.05
P 0.91 < 0.05 0.91 < 0.05
I 0.76 < 0.05 0.76 < 0.05

Run length non-uniformity L 0.86 < 0.05 0.88 < 0.05
P 0.86 < 0.05 0.86 < 0.05



Comparison of radiomics software 45

I 0.74 < 0.05 0.68 < 0.05
Run percentage L 0.97 0.42 0.80 < 0.05

P 0.97 0.42 0.78 < 0.05
I 0.76 < 0.05 0.76 < 0.05

Coarseness L 0.75 < 0.05 0.72 < 0.05
P 0.75 < 0.05 0.73 < 0.05
I 0.94 0.05 0.18 < 0.05

Contrast (NGTDM) L 0.81 < 0.05 0.91 < 0.05
P 0.81 < 0.05 0.94 0.10
I 0.17 < 0.05 0.94 0.06

Busyness L 0.96 0.25 0.77 < 0.05
P 0.92 < 0.05 0.75 < 0.05
I 0.27 < 0.05 0.27 < 0.05

Table 3.4: Results of the Friedman test (with Bonferroni correction) performed among the feature
values when extracted with the three software and OCCC values assessing agreement among
packages.

Category Feature
T1-w T2-w

p-value OCCC p-value OCCC
Morphological Sphericity < 0.002 < 0.001 < 0.002 0.019

Volume (voxel counting) < 0.002 0.999 < 0.002 0.999
Intensity histogram (Excess) discretised intensity kurtosis 1.000 1.000 1.000 0.947

Discetised intensity skewness 1.000 1.000 1.000 < 0.001
GLCM based Inverse difference < 0.002 1.000 < 0.002 0.855

Angular second moment < 0.002 0.997 < 0.002 0.925
Contrast < 0.002 1.000 < 0.002 0.726
Correlation < 0.002 1.000 < 0.002 0.301
Joint entropy < 0.002 0.987 < 0.002 0.947
Difference average < 0.002 1.000 < 0.002 0.813

GLRLM based Short run emphasis < 0.002 0.001 < 0.002 0.004
Long run emphasis < 0.002 < 0.001 < 0.002 < 0.001
Low grey level run emphasis < 0.002 0.004 < 0.002 < 0.001
High grey level run emphasis < 0.002 < 0.001 < 0.002 < 0.001
Short run low grey level emphasis < 0.002 0.018 < 0.002 0.049
Short run high grey level emphasis < 0.002 < 0.001 < 0.002 0.135
Long run low grey level emphasis < 0.002 < 0.001 < 0.002 < 0.001
Long run high grey level emphasis < 0.002 < 0.001 < 0.002 < 0.001
Grey level non-uniformity < 0.002 0.257 < 0.002 0.289
Run length non-uniformity < 0.002 0.272 < 0.002 0.276
Run percentage < 0.002 0.003 < 0.002 0.007

NGTDM based Coarseness < 0.002 < 0.001 < 0.002 < 0.001
Contrast (NGTDM) < 0.002 < 0.001 < 0.002 0.756
Busyness < 0.002 0.146 < 0.002 0.309

The CCC coefficient was calculated pairwise for each feature, to compare two soft-
ware at a time. The resulting CCC values are shown in Table 3.5, for both the T1-w
and the T2-w images. Regarding the T1-w sequence, the best agreement was obtained
by comparing PyRadiomics and LIFEx, with sixteen out of twenty-four radiomic features
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Table 3.5: Pairwise CCC values assessing agreement between two packages. Software P , I and L
stand for PyRadiomics, IBEX and LIFEx, respectively. The missing results correspond to the feature
that had the same value in all the VOIs, not allowing the calculation of the CCC.

Feature
P vs. I L vs. I P vs. L

T1-w T2-w T1-w T2-w T1-w T2-w
Sphericity 0.142 0.038 - 0.006 - 0.041
Volume (voxel counting) 0.999 0.999 0.999 0.999 1.000 1.000
(Excess) discretised intensity kurtosis 1.000 0.921 1.000 0.921 1.000 1.000
Discetised intensity skewness 1.000 0.972 1.000 0.972 1.000 1.000
Inverse difference 1.000 0.949 1.000 0.830 1.000 0.775
Angular second moment 0.996 0.930 0.996 0.955 1.000 0.895
Contrast 1.000 0.838 1.000 0.693 1.000 0.685
Correlation 1.000 0.928 1.000 0.187 1.000 0.223
Joint entropy 0.980 0.927 0.980 0.953 1.000 0.960
Difference average 1.000 0.903 1.000 0.784 1.000 0.760
Short run emphasis < 0.001 < 0.00 < 0.001 < 0.001 1.000 0.572
Long run emphasis < 0.001 < 0.001 < 0.001 < 0.001 1.000 0.529
Low grey level run emphasis - - - - 0.046 0.141
High grey level run emphasis - - - - 0.169 0.436
Short run low grey level emphasis 0.002 0.004 0.008 0.007 0.038 0.137
Short run high grey level emphasis 0.188 0.004 0.040 0.013 0.159 0.445
Long run low grey level emphasis 0.309 0.018 0.011 < 0.001 0.081 0.141
Long run high grey level emphasis < 0.001 < 0.001 < 0.001 < 0.001 0.257 0.373
Grey level non-uniformity < 0.001 < 0.001 < 0.001 < 0.001 1.000 0.969
Run length non-uniformity < 0.001 < 0.001 < 0.001 < 0.001 1.000 0.984
Run percentage 0.001 < 0.001 0.001 < 0.001 1.000 0.556
Coarseness < 0.001 < 0.001 < 0.001 < 0.001 1.000 0.817
Contrast (NGTDM) 0.936 0.884 0.936 0.718 1.000 0.714
Busyness 0.001 0.002 0.004 0.002 0.575 0.966

showing CCC > 0.7. For the same acquisition, the comparison between PyRadiomics and
IBEX gave ten out of twenty-four features showing CCC> 0.7. The same holds for LIFEx
if compared to IBEX. Similarly, on the T2-w images the best agreement is between PyRa-
diomics and LIFEx, but the number of features showing CCC > 0.7 decreased to twelve.
This could suggest a dependence of the results on the choice of the sequence for image
acquisition. This hypothesis can be further investigated with the following analysis of
the feature distributions across the packages, focusing on the comparison of the feature
distribution when changing the MR sequence.

Morphological features

The feature ”Sphericity” (Figure 3.3 a) could be calculated only with PyRadiomics and
IBEX on the T1-w images, since the VOI was drawn only on one slice and LIFEx support
the calculation only on a number of slices greater than one. The results are shown in a
different colour on the basis of the corresponding VOI size (blue = diameter 24 mm, red
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= diameter 18 mm, green = diameter 12 mm, black = diameter 6 mm). The plot showed a
trend inversion when comparing the results from PyRadiomics and IBEX: in PyRadiomics,
the highest sphericity matched the smallest VOI and the lowest sphericity matched the
biggest VOI. In IBEX, the trend was the other way around. The results from the T2-w
images (b) showed a more linear trend, despite the values being significantly different
among software. Being the sphericity a 3D feature, the OCCC value close to zero in (a)
could be associated with the software not functioning properly with a VOI drawn on
a single slice. However, this is not true for (b), where the VOI was identified on three
consecutive slices. The OCCC was still close to zero in the T2-w images, suggesting that
this feature (surprisingly, a morphological one) was not stable in this experiment.
Figure 3.3 (c) and (d) show the values of the feature ”Volume (voxel counting)” on the
T1-w and T2-w images, respectively. The data were presented based on VOI size, as
in the previous feature. The trend was stable in both acquisitions, but the OCCC was
not exactly one, being the IBEX values slightly smaller than the others. This could be
associated with a round down counting of the number of voxels at the edges of the VOI.

(a) (b)

(c) (d)

Figure 3.3: Distribution of the morphological features. (a-b) Sphericity; (c-d) Volume (voxel count-
ing). The plots on the left (right) show the features extracted from the T1-w (T2-w) images.
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Intensity histogram features

The feature ”(Excess) discretised intensity kurtosis” showed a complete agreement (OCCC
= 1) among packages when extracted from the T1-w images, as shown in Figure 3.4 (a).
The results were presented based on acquisition: blue lines are the sixteen values in the
corresponding VOIs in the first acquisition, and the red lines refer to the data of the sec-
ond acquisition (after phantom repositioning). A shift of the values between the two
acquisitions was observed. In (b) the results of the extraction from the T2-w images are
reported. The plot shows that, in the second acquisition, some of the IBEX values di-
verge as compared to the other two software, causing the OCCC coefficient to decrease
at 0.947. A similar behaviour was observed for the feature ”Discetised intensity skew-
ness”, as shown in 3.4 (c) and (d). These results suggest that in the T2-w acquisition, the
phantom repositioning affected the stability of the histogram-based features in IBEX, in
contrast with the T1-w acquisition.

(a) (b)

(c) (d)

Figure 3.4: Distribution of the intensity histogram-based features. (a-b) (Excess) discretised inten-
sity kurtosis; (c-d) Discetised intensity skewness. The plots on the left (right) show the features
extracted from the T1-w (T2-w) images.
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GLCM-based features

The values of the GLCM-based features are shown in Figure 3.5. This class of features,
being a descriptor of the VOI texture, is of particular interest for the radiomic analysis.
In all plots, the data were grouped by insert. Inserts 3 had a finer texture, inserts 1 and
4 had a medium texture and insert 2 was characterised by a coarser texture. A detailed
description of the inserts design and content will be provided in the next Chapter. The
data from the first and second acquisition were represented by a solid and a dashed line,
respectively.
Subfigures (a) and (b) show the feature ”Inverse difference”. The agreement among soft-
ware was maximum for the T1-w images (OCCC = 1.000), while it decreased to OCCC =
0.855 for the T2-w images. In (b), the feature had the same value in PyRadiomics and IBEX
for the first acquisition, with divergence increasing for the second acquisition. In both
(a) and (b), differences were observed between the feature value at the first acquisition
(solid lines) and after phantom repositioning (dashed lines). In (b), the feature allowed
to identify the inserts, having different values according to the different texture. In par-
ticular, the feature values from inserts 1 and 4 overlapped as expected, since the two
inserts had a similar texture. This behaviour was not observed in the T1 plot, probably
due to the VOI being drawn only on one slice of the phantom.
Similar considerations hold for the features ”Angular second moment” and ”Contrast”.
As shown in the plot (f), insert 3 exhibited the lowest contrast value, as expected. In fact,
insert 3 had the finer texture, resulting in a small variation of grey levels in neighbouring
voxels and a low contrast.
The feature ”Correlation” showed a perfect agreement among software (OCCC = 1.000)
when extracted from the T1-w images, but a scarce agreement on the T2-w images, with
the best accordance between the PyRadiomics and IBEX packages. Similar considerations
can be applied to the feature ”Difference average”. As regards ”Joint entropy”, in both
plots (i) and (j) an overestimation by IBEX was observed with respect to the results of
PyRadiomics and LIFEx.
All the GLCM features considered in this analysis, except for ”Correlation”, were able to
discriminate the texture of the different inserts, with particularly good performance in
distinguishing insert 3 from the others, when extracted from the T2-w images.

GLRLM-based features

Figure 3.6 shows the distribution of the GLRLM-based radiomic features. The compar-
ison is shown only for the features calculated with PyRadiomics and LIFEx, since the
values from IBEX were in disagreement in all the cases and not even comparable for the
order of magnitude, as confirmed by the pairwise CCC values in Table 3.5.
Three features (”Short run emphasis”, ”Long run emphasis”, and ”Run percentage”)
showed a perfect agreement between the software when extracted from the T1-w im-
ages. They showed a more modest agreement on the T2-w images, where they were able
to clearly discriminate the different texture (plots (b), (d), and (v)). As expected, the val-
ues in inserts 1 and 4, which had a similar content, overlapped.
The majority of the GLRLM-based features had no agreement between the values ex-
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tracted with PyRadiomics and LIFEx, neither on the T1-w images nor on the T2-w images.
These features are: ”Low grey level run emphasis”, ”High grey level run emphasis”,
”Short run low grey level emphasis”, ”Short run high grey level emphasis”, ”Long run
low grey level emphasis”, and ”Long run high grey level emphasis”.
The features ”Grey level non-uniformity” and ”Run length non-uniformity” showed a
maximum CCC on the T1-w acquisitions (plots (q) and (s)) as well as a very good agree-
ment on the T2-w images (plots (r) and (t)). However, they showed a scarse ability to
distinguish the four inserts.

NGTDM-based features

The values of the NGTDM-based radiomic features considered in this analysis are shown
in Figure 3.7. As before, in all plots the data was grouped by insert and the values from
the first and second acquisition were represented by a solid and a dashed line, respec-
tively.
For the feature ”Coarseness” only the results from PyRadiomics and LIFEx are repre-
sented, as the feature values in IBEX were out of the same order of magnitude and
showed no agreement with the other software. Both plots (a) and (b) demonstrated
a perfect agreement between PyRadiomics and LIFEx on the T1-w images and a good
agreement on the T2-w images, as confirmed by the corresponding CCC values.
The feature ”Contrast” had the maximum agreement among all packages in the category
of the NGTDM-based features. The comparison resulted in an OCCC > 0.7 in both the
T1 and the T2 assessment.
The values of the feature ”Busyness” were comparable if considering PyRadiomics and
LIFEx, but in disagreement with IBEX, resulting in low OCCC in both (e) and (f).
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k) (l)

Figure 3.5: Distribution of the GLCM-based features. (a-b) Inverse Difference; (c-d) Angular sec-
ond moment; (e-f) Contrast; (g-h) Correlation; (i-j) Joint entropy; (k-l) Difference average. The
plots on the left (right) show the features extracted from the T1-w (T2-w) images. The results of
the first and second acquisition are represented as a solid and dashed line, respectively.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k) (l)
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(m) (n)

(o) (p)

(q) (r)
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(s) (t)

(u) (v)

Figure 3.6: Distribution of the GLRLM-based features. (a-b) Short run emphasis; (c-d) Long run
emphasis; (e-f) Low grey level run emphasis; (g-h) High grey level run emphasis; (i-j) Short run
low grey level emphasis; (k-l) Short run high grey level emphasis; (m-n) Long run low grey level
emphasis; (o-p) Long run high grey level emphasis; (q-r) Grey level non-uniformity; (s-t) Run
length non-uniformity; (u-v) Run percentage. The plots on the left (right) show the features ex-
tracted from the T1-w (T2-w) images. The results of the first and second acquisition are represented
as a solid and dashed line, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Distribution of the NGTDM-based features. (a-b) Coarseness; (c-d) Contrast (NGTDM);
(e-f) Busyness. The plots on the left (right) show the features extracted from the T1-w (T2-w)
images. The results of the first and second acquisition are represented as a solid and dashed line,
respectively.
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3.4 Discussion

In this Chapter, the results about the comparison among three software for the extraction
of radiomic features were presented.
Firstly, the features shared (same mathematical definition) among the packages were
identified to ensure comparable results. Only twenty-four features (among the tens or
hundreds available in the different software) were selected for this analysis, pointing out
how a standardisation is needed but still not reached in the field. The IBSI proposed a
list of the features with nomenclature and formulae, but many software are still not in
accordance with them. Inevitably, this lack of standardisation hinders the generalisabil-
ity of the results of a radiomic study, also considering the availability of an increasing
number of radiomic software, many of which developed in-house.

The analysis demonstrated that the majority of the features had significant differences
among their values when extracted with the three tools, despite implementing the same
mathematical formula. In fact, the Friedman test showed that only the histogram-based
features were the same across the radiomics software. Surprisingly, even the considered
shape features showed instability in this assessment. Despite the mathematical formula
being the same, the algorithm implementation was software-specific and could differ
for the counting of the number of voxels at the edge of the VOI or for the calculation of
the surface area (by using different triangulation systems), generating variations in the
calculation of the shape features. The results of the Friedman test and the OCCC analy-
sis were in almost all the cases independent from the MR sequence used to acquire the
images (T1-w and T2-w acquisitions).
Although the significant differences among the absolute values, many features showed a
significant correlation (OCCC> 0.7) among the packages. As proposed by Foy et al. [98],
this suggests that the variations in the software implementation are sufficiently high to
result in significant differences among a feature value but, at the same time, sufficiently
small respect to the value of the feature itself to result in a high OCCC. Among the
texture features, the GLCM-based features showed the highest correlation and stability
among the packages, along with the feature ”Contrast” of the NGTDM category.
The majority of the GLRLM-based features showed poor correlation. To explain this
result, two main sources of error in the software comparison were identified. The first
one is that in PyRadiomics and LIFEx the GLRLM is calculated along four directions, but
only two directions are available for the calculation in IBEX (0 and 90◦). The second rea-
son lies in the different calculation of the GLRLM indices performed in PyRadiomics and
LIFEx. More in detail, in PyRadiomics the grey levels of the GLRLM are cropped between
the minimum and maximum level observed in the image and the run length is cropped
to the maximum run length. This results in a shift of the matrix indexes (i, r), that does
not occur in the calculation made by LIFEx. As a matter of fact, in LIFEx documentation,
the reader is warned about this difference and invited to perform with care an eventual
comparison of the texture results among software. From one side, this warning helps the
researchers in radiomics to take extra care in the choice of the radiomics software for a
specific study and to know that the results will probably be dependent on the software
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used. From another side, the warning encloses an open issue: if the results of a radiomic
analysis are dependent on the software used, how can the results be generalisable? Sec-
ondly, if the radiomic features are not robust, how can the corresponding correlations
with the clinical outcomes be reliable? In this framework, the IBSI initiative should help
in the harmonisation and standardisation of radiomics, providing a benchmark for the
features definition and the feature values if extracted from a digital phantom of refer-
ence. However, if different software give comparable features on the digital phantom, it
is not immediate that this result will hold on all clinical images, as it could be texture-
dependent.
In general, apart from variations in the software algorithms, another possible explana-
tion for the differences obtained with the three software could be an incorrect setting of
the initial parameters and offset in the tools. It is not straightforward to understand how
to adjust the parameters to ensure an extraction in exactly the same conditions among
the packages. Thus, the user cannot be sure to be operating in equal terms. Evidently, a
standardisation in the protocols for the feature extraction, also with respect to the setting
of the initial conditions, is a goal in the near future radiomics.
Given the previous considerations, an ideal solution in perspective of a well-established
radiomics could be the convergence of the scientific community towards a ”universal
radiomic software”. Alternatively, a comprehensive investigation on the comparison of
the most diffused radiomics software in the clinical studies should be carried out with
the aim to identify a set of calibration functions among them.

In order to assess the agreement between each software pair, the CCC was calculated
as well. The results showed that PyRadiomics and LIFEx had the best agreement, espe-
cially on the T1-w series. In fact, it seemed that the repositioning of the phantom (and
the consequent co-registration of the images between the two acquisitions) had an im-
pact on the agreement of the two software results extracted from the T2-w images. This
result is particularly significant, as some clinical studies selected for a radiomic analysis
include multiple acquisitions (also with different imaging type, e.g. PET and CT) and
the co-registration of the images is a common practice.
In addition to the previous reasons, the fact that IBEX showed less agreement with the
other packages could be related also with the conversion of the VOIs mask into MAT
files which was necessary only for this tool, given the limited file type supported. More-
over, it was noticed that for some features and specific VOIs, IBEX provided values that
were evidently misaligned with the other values and had to be treated as outliers. How-
ever, it is possible that not all these exceptions were identified given the amount of data,
influencing the final comparison.
Another consideration, rising from the plots showing the distribution of each feature in
the three software, is about the ability of the radiomic features to discriminate different
textures. As explained, the inserts included in the phantom under investigation were
prepared to simulate different textures in a certain range. The majority of the GLCM-
based features extracted from the T2-w images showed a good performance in distin-
guishing the inserts, especially regarding insert 3, that had the finer texture. Only three
out of eleven GLRLM-based features showed this ability.
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Summarising, the analyses presented in this Chapter show that it is difficult to compare
different radiomic software, as they offer different features to be extracted and different
user-dependent parameters. Further discrepancies can emerge due to the implementa-
tion of different software algorithms. The major sources of divergences identified in this
study are shown in Figure 3.6. The texture features showing the best agreement among
all the considered packages were the GLCM-based features, which revealed also a good
ability in distinguishing different textures and thus were identified as the most robust
features in this analysis.

Table 3.6: Major sources of differences in the values of radiomic features extracted with the three
packages considered in this study.

Identified sources of divergences
Software-specific algorithm implementation
Customised directions for matrixes calculation (e.g. GLRLM)
User-independent settings for matrixes calculation
Incorrect adjustment of user-dependent parameters
to operate the software in identical initial conditions
Conversion of mask files in other format
to make them readable from all packages

In the next Chapter, the extraction of the radiomic features will be performed with the
software PyRadiomics, which is widely used in many scientific papers and turned out to
be the closest to the IBSI recommendations.



CHAPTER 4

PETER PHAN: the pelvis phantom

This Chapter consists in two main Sections. The first one provides a detailed description
of the phantom creation, from the design to the production and validation. The phan-
tom, called PETER PHAN (PElvis TExtuRe PHANtom), was developed to simulate, for
radiomic purposes, the pelvis of female patients affected by pelvic malignancies. The
investigations performed on the MR images of the phantom aimed at the optimisation
of the radiomic workflow, in support of clinical studies. The second Section shows the
results of the radiomic experiments performed on the phantom itself, including the as-
sessment of the radiomic features repeatability and reproducibility.

4.1 Phantom design and realisation

This Section has been adapted from [103].
The image acquisition were performed at the IEO (European Institute of Oncology, IR-
CCS, Milan).

The characteristics desired of a phantom suitable for supporting clinical MRI-based ra-
diomic studies of tumours located in female pelvis include: being pelvis-shaped, con-
structed of MR-safe materials, providing relaxation times similar to human tissues and
containing regions of different textures, similar to those found in vivo for the tumoural
tissue. As described in the following paragraphs, these design criteria were addressed
through a series of experimental steps regarding:

• measurements of in vivo longitudinal relaxation time (T1) and transverse relaxation
time (T2) of pelvic tissues on both patients and healthy volunteers;

• choices of materials and formulations to reproduce the relaxation times measured
in vivo;

• investigation of means to incorporate different textures into the phantom;

• validation of the assembled phantom through comparison of relaxation times and
texture with the in vivo reference values.

61
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4.1.1 In vivo T1 and T2 mapping

19 healthy volunteers (22-53 yrs, mean 35) and 5 patients with a pelvic tumour (29-57
yrs, mean 47) were imaged with dedicated MR sequences for in vivo assessment of T1

and T2 relaxation times of healthy tissue (muscle) and pelvic tumour. Written informed
consent to undergo the examination, and to the use of anonymised clinical and imaging
data for scientific and/or educational purposes, was obtained from all subjects involved.
Clinical characteristics of patients are listed in Table 4.1. Inclusion criterion for patients
was the presence of a lesion visible on MR images, with a minimum tumour diameter 18
mm.

Table 4.1: Characteristics of the patient cohort.

Patient Age (years) Pathology Tumour site
1 57 Vulvar cancer Inguinal lymph nodes
2 47 Carcinoma of cervix Uterine cervix
3 50 Adenocarcinoma of the rectum Rectum
4 29 Carcinoma of cervix Uterine cervix
5 54 Submucous myoma of the uterus Endometrium

Image acquisition was carried out using a 1.5 T MR scanner (Optima MR450W, General
Electric Healthcare, Waukesha, USA) with a 24 channels anterior body phased array coil
and a 24 channels spine array coil.
Maps of T1 can be obtained with various approaches, including Inversion Recovery
(IR) pulse sequence [104] and novel techniques like Magnetic Resonance Fingerprinting
[105], although the last one is far from being clinically validated and confirmed by stud-
ies in a sizeable number of different centers. In this study in vivo T1 mapping made use
of the variable flip angle (VFA) spoiled gradient recalled echo (SPGR) technique [106].
Three axial scans were acquired, each with a different flip angle (5, 10 or 20◦), keeping
the other parameters fixed: repetition time (TR) 6.7 ms, echo time (TE) 4.2 ms, slice thick-
ness 3 mm, slice spacing 3 mm, field of view (FoV) 220x220 mm2.
T2 mapping was based on a dedicated 2D multi-echo spin-echo pulse sequence which
ran under research mode (granted by GE Healthcare) and could read up to 16 echoes.
The sequence parameters were: TR 5000 ms, min TE 7.5 ms, max TE 119.8 ms, echo spac-
ing 7.5 ms, slice thickness 5 mm, slice spacing 6.5 mm, FoV 220x220 mm2.
After the acquisition, the DICOM images were anonymised and exported for processing.
The VFA data were processed with the NOVIFAST [107] algorithm (version 1.0.0.3, Uni-
versity of Antwerp, Belgium) to calculate T1 maps. T2 maps were generated by fitting a
mono-exponential curve to the 16-echo spin-echo data on a voxel-by-voxel basis, using
a MATLAB (version R2018b, The MathWorks, Inc., USA) script developed in-house.
Volumes of interest (VOIs) in the gluteus maximus muscle were drawn manually on
the T1 and T2 maps of all subjects. In addition, an expert radiologist drew a VOI for
the tumour on the axial T2-w images obtained as part of the routine clinical protocols.
The tumour VOI was then transferred onto the relaxation time maps. For each VOI, the
subject-wise mean values of T1 and T2 were extracted.
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The range of T1 and T2 values obtained for the tissues of interest are summarised in the
upper part of Table 4.2 and examples of the in vivo T1 and T2 maps are given in Fig-
ure 4.1. The values reported are the mean over all the patients and the minimum and
maximum values.

(a)

(b)

Figure 4.1: (a) T1 and (b) T2 maps of a patient with cervical cancer. The tumour site VOI is high-
lighted with a red contour and the muscle VOI contour in black.

4.1.2 Relaxometry of MnCl2 solutions

Conventional MR phantoms are based on solutions of paramagnetic contrast agents,
which are easily soluble in water. The solutions obtained are stable in time and mimic
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Table 4.2: Relaxation times of human tissues measured at 1.5 T in vivo (upper) and of background
and inserts measured in PETER PHAN V1 and V2 (lower). *mean (range)

T1 [ms]* T2 [ms]*
in vivo mapping Muscle 1128 (806 - 1378) 51 (40 - 65)

Tumour 1637 (1396 - 2121) 94 (79 - 101)
Phantom validation MnCl2 1277 (768 - 2120) 57 (55 - 59)

INS1 1366 (6 - 1999) 137 (106 - 183)
INS2 1345 (22 - 2000) 123 (101 - 192)
INS3 1525 (16 - 1996) 117 (101 - 150)
INS4 1447 (19 - 2000) 120 (89 - 167)

the typical relaxation times of human tissues well [108]. The paramagnetic ion man-
ganese chloride (MnCl2) was chosen for this study due to its availability and low cost.
A Fourier Transform spectrometer (Apollo, Tecmag, Houston, USA) for pulsed Nuclear
Magnetic Resonance (NMR) was used to measure T1 and T2 of water solutions with
increasing MnCl2 concentration (range 0.1 - 1.2 mM, in steps of 0.1 mM). The measure-
ments were performed at room temperature (25◦) with an operating proton resonance
frequency of 63.86 MHz, corresponding to a 1.5 T static magnetic field, the same used
for T1 and T2 mapping in vivo. T1 (longitudinal relaxation time) measurements were
performed with a Saturation Recovery (SR) Spin-Echo (SE) sequence, composed of three
saturation π/2 pulses - aimed at saturating the absorption line - followed by an SE se-
quence [6] for reading the signal. T2 (transverse relaxation time) was evaluated with a
Carr-Purcell-Meiboom-Gill (CPMG) sequence [7], [8]. The physical principles of these
sequences were explained in Chapter 1. The time between π/2 pulse and the first pulse,
referred to as τ , was chosen as short as possible to reduce the effects of diffusion and
a high number of echoes was used in order to follow the entire relaxation process. Se-
quences diagrams and parameters are reported in Figure 1.8 and Table 4.3. The NMR

Table 4.3: Parameters set on the NMR spectrometer for the SR - SE and CPMG sequences.

SR - SE CPMG
(π/2)sat τsat π/2 τecho π π/2 τ π

5.3 µs 200 ms 5.1 µs 1 ms 10.2 µs 5.1 µs 50 µs 10.2 µs

raw data were analysed with the in-house QtNMR software and with OriginPro (ver-
sion 8.1, OriginLab Corporation, Northampton, USA) software. The signal from the SR-
SE experiment, performed on each sample with different MnCl2 concentration, describes
the temporal evolution of the longitudinal nuclear magnetisation Mz(t), as in Equation
1.16. From this equation, the following quantity can be defined:

e−
t
T1 =

M0 −Mz (t)

M0
≡ Y (4.1)

that was fitted with a mono-exponential function to evaluate the spin-lattice relaxation
time T1.
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Similarly, the signal form the CPMG (Equation 1.17) describes the temporal evolution for
the transverse magnetizationMxy . A mono-exponential fit function was used to evaluate
T2 from the experimental data. Combining the errors due to electronics and software in
the data collection phase with the errors on model fitting, the maximum total a priori
error was estimated to be 10% of the measured values.
The relaxation times obtained from the samples were plotted as a function of the MnCl2
concentration in order to build two calibration curves, one for T1 and one for T2. The
two set of experimental points were fitted with the function:

Ti (C) =
a

C + b
(4.2)

with i = (1, 2), C as the concentration and (a, b) as fitting parameters. The optimal fit
for the experimental data was obtained with a MATLAB script developed in-house. The
concentration - relaxation time curves were used for the selection of concentrations that
produce relaxation times matching the values measured for tissues in the previous phase
of the work.
The obtained calibration curves, linking the concentration of the MnCl2 solution with its
relaxation times, are reported in Figure 4.2. The chi-square values confirm that the data
are well described by the hypothesized model.

4.1.3 Phantom design and assembly

To approximate the shape of the pelvis, the NEMA IEC Body Phantom SetTM (Spec-
trum Corporation, Durham, USA) was used as an abdomen-shaped container made of
MR compatible materials. This phantom is routinely used for quality assurance on ra-
dionuclide imaging devices and is constructed entirely of solid plastics. It consists of
an external plastic container, that serves as a background compartment, and an empty
internal cylinder exploited to assemble PETER PHAN.
Two versions of the phantom were prepared: version one (V1) in which the T1 relaxation
time of tissues were reproduced, and version two (V2), with matching of T2 relaxation
times. In each version, the background compartment of the phantom was filled with
a solution of MnCl2 to reproduce the relevant (T1 or T2) relaxation time of muscle. To
reproduce the lesion, which represents the target for radiomic studies, four cylindrical
inserts (48 mm diameter, 72 mm height) were placed inside the phantom. The role of
the inserts was twofold: to mimic the MR average signal of a tumour and to provide a
selection of textures for identifying a possible simulant for tumours. These paired de-
mands were fulfilled by filling the inserts with a mixture of polystyrene spheres and agar
gel, using the recipe introduced for the PSAG phantoms [109] as a starting point. The
four inserts for each phantom were prepared with a 0.1% water solution of agar (Sigma-
Aldrich, St. Louis, USA) which was heated to 100◦ and poured over the spheres, adding
1 ml of 0.1% NaN3 per 1 L of agar as antiseptic. The first and second inserts (INS1-INS2)
were filled with the medium-sized (3-4 mm) spheres, INS3 contained only small (1 mm)
spheres and INS4 was prepared with a mixture of spheres of small, medium and large
(7-8 mm) diameter spheres.
The difference among the inserts of phantom V1 and V2 was in the amount of spheres
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(a)

(b)

Figure 4.2: (a) T1 and (b) T2 relaxation times for solutions with different MnCl2 concentrations.
Black dots are the experimental data. The red line represents the fitted model. The χ2 values
quantify the goodness of the fit.

filling the inserts. The number of spheres per unit volume affected the T1 and T2 val-
ues of the spheres and gel mixture, so it was varied experimentally until the contrast
between the T1 (or T2) values of the inserts and the background compartment solution
(the last reproducing the muscle T1 or T2) matched the contrast between tumour tissue
and muscle observed in patients’ images. This procedure was chosen due to the fact that
a direct measurement of T1 and T2 of the mixture in the NMR spectrometer was not fea-
sible. The four inserts were fixed to the main NEMA cylinder in a central position inside
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the phantom, via a purpose-built plastic support.
To test the long-term stability of the phantom inserts, six months after their production
PETER PHAN V1 and V2 were imaged on the same MR scanner with the same imaging
parameters of T1-w and T2-w sequences described in the following paragraph. Between
evaluations, the inserts were kept refrigerated at 4 ◦C. The visual inspection showed no
deterioration of the object structures, confirmed by the comparison of the phantom im-
ages at the time of the main experiment and after six months. Additional evaluations on
the phantom stability for longer periods of time are ongoing.
Pictures in Figure 4.3 show the inserts used to simulate lesions with different texture
(V2) and the assembled PETER PHAN. Based on the fitted model of T1 relaxation as a
function of MnCl2 concentration, a 0.15 mM MnCl2 solution was chosen to fill the back-
ground of PETER PHAN V1 to reproduce the muscle T1. Similarly, the phantom V2 was
prepared with a 0.4 mM solution of MnCl2 to reproduce the muscle T2.

4.1.4 Validation

The validation process included two verifications: (i) check the agreement between the
relaxation times obtained in the phantom and the in vivo relaxation times; (ii) verify the
compatibility of the textures offered by the phantom inserts with the ones observed in
the patients’ lesions.

Relaxation times

To meet the first task, T1 and T2 mapping acquisitions were performed on PETER PHAN
V1 and V2 respectively, in order to verify that the phantom adequately reproduced the
range of relaxation times of muscle and tumour tissue. The relaxation time mapping ac-
quisitions were performed with the same MRI sequences and settings as used above for
in vivo T1 and T2 mapping. T1 and T2 maps of PETER PHAN V1 and V2 can be seen in
Figure 4.4. The mean relaxation time values inside the four inserts and in the surround-
ing background are summarised in the lower part of Table 4.2. For the background
solution representing the muscle, the values are the average of the results obtained on
four identical ROIs identified in different positions on the fluid-filled region to assess
the homogeneity of the relaxation time maps. Comparing the phantom with patients’
results, the agreement between muscle and MnCl2 is within 13% for T1 mean values and
12% for T2 mean values. The measurements performed on the inserts showed the fol-
lowing absolute percentage variations (T1, T2) with respect to the tumour mean value:
INS1 (17%, 46%), INS2 (18%, 31%), INS3 (7%, 24%) and INS4 (12%, 28%).
Additionally, PETER PHAN V1 and V2 were imaged with the routine T1-w and T2-w
sequences used for clinical pelvis diagnostic imaging. More in detail, the acquisition of
PETER PHAN V1 was performed with a series of axial T1-w images, with TR 354 ms, TE
8.8 ms, slice thickness 5 mm, spacing 5 mm, 512x512 matrix, whereas PETER PHAN V2
was acquired with an axial T2-w sequence, with TR 3723 ms, TE 107 ms, slice thickness
5 mm, spacing 6 mm, matrix 512x512. Such images were visually compared with the
clinical images of patients listed in Table 4.1, acquired on the same scanner with the fol-
lowing parameters: TR 541 ms, TE 8.1 ms, slice thickness 5.5 mm, spacing 5 mm, matrix
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(a)

(b)

Figure 4.3: (a) Inserts prepared for PETER PHAN V2, representing tumours with various textures.
(b) Axial view of PETER PHAN assembled.

512x512 for the T1-w acquisition; TR 7771 ms, TE 105 ms, slice thickness 5 mm, spacing
5.5 mm, matrix 512x512 for the T2-w series. Figure 4.5 offers a comparison of images of
the phantom and a patient obtained with the clinical T1-w and T2-w sequences. These
results showed that the inserts well reproduced a typical lesion in terms of its relaxation
times.

Texture properties

The second verification consisted in a quantitative comparison of the texture features in
the patients’ lesions and the phantom inserts. PETER PHAN images acquired with the
T1-w and T2-w sequences of the clinical protocol described in the previous paragraph
were exploited for a preliminary radiomic assessment. Sixteen cylindrical VOIs of four
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(a)

(b)

Figure 4.4: (a) T1 map of PETER PHAN V1. An example of VOI in the background compartment
is highlighted with a red contour. (b) T2 map of PETER PHAN V2. An example of VOI drawn
inside one of the inserts is highlighted with a red contour.

sizes were drawn on the four phantom inserts for the first acquisition images (the same
procedure for the VOIs identification was explained in detail in Chapter 3) using 3D
Slicer [95] (version 4.10.1, Brigham and Women’s Hospital, Harvard University, Boston,
USA) and considering three consecutive slices. PyRadiomics software [26] (version 2.2.0,
Brigham and Women’s Hospital, Harvard Medical School, Boston, USA) was exploited
for images normalisation and to extract the radiomic features. The normalisation func-
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(a) (b)

(c) (d)

Figure 4.5: (a-b) T1-w image of PETER PHAN V1, representing tumours with various textures,
and of a patient with cervical cancer. In (a) selected VOIs of four sizes identified on the phantom
inserts for radiomic analysis are shown (yellow d = 12 mm; blue d = 24 mm; green d = 36 mm, red
d = 48 mm). In (b) the tumour site in highlighted in red. (c-d) T2-w image of PETER PHAN V2
and of the same patient.

tion was

f(x) =
s (x− µx)

σx
(4.3)

where x is the original intensity, f(x) the normalised intensity, µx and σx the mean and
the standard deviation of the image intensity values, s is a scaling factor which was set
to 100 in this study. The radiomic features extracted from each VOI belonged to the cat-
egories: Shape, First Order, GLCM, GLRLM, GLSZM, NGTDM, GLDM. The extraction
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was performed on both original images and images filtered with the following kernels:
Laplacian of Gaussian, Wavelets, Exponential, Logarithm, Square and Square Root. The
filter width σ used for the Gaussian kernel was set to 6.0 mm and one level was used for
the wavelet decompositions. The fixed-bin width was chosen as grey level discretisation
technique. The bin width was optimised for each extraction to obtain a number of bins
in the range (30-130). Its value was set to 2 and 8 for the T1-w and T2-w images of the
phantom respectively.
Following an approach similar to the one proposed by Samei et al. [110], the range of the
features values in the phantom and in a set of patients was compared. The procedure
described for extracting the features from the phantom images was used to extract the
radiomic features from the tumour volume on the patients’ images (both T1-w and T2-w
acquisitions. Patients listed in Table 4.1), with 3 as bin width. A statistical test of com-
patibility between the two samples (the values extracted from the phantom images and
those obtained from the patients’ images), was performed to test the hypothesis that the
two populations have equal means.
After verifying that the data were not normally distributed using the Shapiro-Wilk test
[99], the non-parametric Mann-Whitney U test [111] was performed to detect whether
the features extracted from the phantom and the patients had the same distribution. The
null hypothesis was that the distribution of a feature was the same in both samples. Out
of 944 features, the Mann-Whitney U test confirmed the null hypothesis in 456 (T1-w)
and 359 (T1-w) features. In these cases, the inserts were representative of the patients’
lesions in terms of its texture properties.
As an example, the distribution of five representative features of different classes are
represented as a box plot in Figure 4.6 (PETER PHAN V1) and Figure 4.7 (PETER PHAN
V2). These features are ’Energy’ (first-order), ’RunLengthNonUniformity’ (GLRLM),
’GrayLevelNonUniformity’ (GLSZM), ’SizeZoneNonUniformity’ (GLSZM) and ’Depen-
denceNonUniformity’ (GLDM). As shown in the plots and confirmed by the Mann-
Whitney U test, the radiomic features in the phantom inserts were in agreement with
the features extracted from the patients’ lesions.

4.1.5 Discussion

In developing PETER PHAN, the first phase of the work was the measurement of the
relaxation times of both muscle (normal tissue) and tumoural tissue in the case of female
patients affected by a pelvic tumour. The maps performed on patients and healthy vol-
unteers indicate a muscle (normal tissue) T1 to be in the range 806-1378 ms, and T2 in
the range 40-65 ms. As mapping of T1 and T2 is not commonly included in the clinical
protocols, T1 and T2 reference values are limited and not easily available. However, a
comparison can be made with the values published by Kato et al. [112], that for mus-
cle are in the range 797-1206 ms for T1 and 31-47 ms for T2. For the tumour the results
obtained in this work are in the range of 1396-2121 ms for T1 and 79-101 ms for T2. The
values reported in the same reference for miscellaneous tumours and fibrosarcoma are
in the range 1011-1083 ms for T1 and 65-87 ms for T2. The range indicated do not overlap
with the results of the present study and the reason can reside in the different nature of
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(a) (b)

(c) (d)

(e)

Figure 4.6: Each plot (a-e) shows the comparison of the selected radiomic features values extracted
(left) from the tumour site of the patients and (right) from the sixteen VOIs identified on the phan-
tom inserts. All the images were acquired with a T1-w sequence typically included in the clinical
protocol for pelvis diagnostic imaging. On each box, the red line indicates the median, and the
bottom and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The
black whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually in red using the ’+’ symbol.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Each plot (a-e) shows the comparison of the selected radiomic features values extracted
(left) from the tumour site of the patients and (right) from the sixteen VOIs identified on the phan-
tom inserts. All the images were acquired with a T2-w sequence typically included in the clinical
protocol for pelvis diagnostic imaging. On each box, the red line indicates the median, and the
bottom and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The
black whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually in red using the ’+’ symbol.
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the tumours considered for the analysis. Precisely because this work was specifically
focused on pelvis tumours, it was decided to measure the relaxation times on patients to
obtain the reference values for the phantom development.

The MnCl2 solution concentrations chosen to simulate the muscle tissue resulted in T1

and T2 values within 13% and 12% of the corresponding average in vivo values. In ad-
dition, inserts with different textures were incorporated to mimic both the mean signal
and the texture observed for lesion during in vivo clinical imaging. INS3, consisting of
1 mm diameter polystyrene beads and agar, was the closest in reproducing both these
properties, as can be also seen visually in both T1-w and T2-w images shown in Figure
4.5. Although INS1, INS2 and INS4 were characterised by textures less similar to the
clinical images considered in this study, they were introduced with the aim to test the
radiomic features ability to distinguish different textures. Moreover, they could be use-
ful for reproducing more heterogeneous lesions observed in populations different from
the one considered for this study.

Selecting five representative radiomic features, it was proved that they showed the same
order of magnitude when extracted from the phantom inserts and the tumour volume
of the patients considered. Despite the number of patients used for this assessment was
limited, this first quantitative evaluation confirmed that both phantom versions (V1 and
V2) adequately reproduce, for the purpose of a radiomic study, not only the average sig-
nal of healthy tissue and tumour, but also the texture seen in a female pelvic tumour.
Summing up, a phantom that mimics the female pelvis and lesions to inspect radiomic
properties was successfully created.

The radiomic investigation performed on the present version of PETER PHAN, as well as
its future developments, may allow the exploration of the complex binomial radiomics-
MRI in pelvis imaging, contributing to the achievement of a robust methodology to be
included in the clinical research. PETER PHAN could be easily assembled and acquired
on different scanners and/or at different centres, in order to compare the radiomic re-
sponse in relation to the scanner vendor, scanner type and magnetic field strength. The
radiomic features extracted from the phantom images will be studied not only for their
repeatability but also reproducibility, potential dependence on the MR sequence param-
eters and on the process of image acquisition in its entirety. Different approaches in
image processing will be compared (algorithms for image normalisation or correction
for magnetic field inhomogeneity) and different options for the choice of parameters in
the features extraction phase will be tested. The possibility to probe the relationship be-
tween the VOI volume and the features stability is offered along with the chance to assess
the features ability to discriminate between different textures. Parts of these tasks were
addressed in this work thesis and will be presented in the second part of this Chapter.
PETER PHAN represents also a test object to be used for a comparison in the perfor-
mance of platforms available for the extraction of the radiomic features, as seen in the
previous Chapter.
Despite it was originally thought for reproducing the female pelvis, the phantom can
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easily be extended to the application in male pelvis studies, upon dedicated T1 and T2

measurement of male pelvis tumours, or more generally to other cancers occurring in
the pelvis.

A limitation of the phantom is that it was separately optimized for T1 and T2. The com-
bined use of two paramagnetic agents may allow the simultaneous matching of T1 and
T2, which would simplify the use of the phantom. Modifying the relaxation times of the
agar gels with similar relaxation agents may also improve the modest agreement with
in vivo tumour values, seen for T2 values of interest. Instead, it was decided to match
image contrast by adjusting the concentration of the polystyrene spheres.
Future versions of the phantom could include inserts with combinations of other sizes
of spheres, in order to widen the range of textures reproduced and cover the variability
seen in patients. In operational terms, starting from the partial overlap shown in Figure
4.6, a new edition of PETER PHAN V1 will aim at reaching a complete overlap of the
texture features range offered by the phantom inserts with the range seen in the patients’
lesions. Furthermore, the number of patients considered for this evaluation will be in-
creased to make the phantom more representative of the patients’ population. From this
perspective, also PETER PHAN V2, already showing an optimum overlap with the pa-
tients considered, could be optimised.
Additionally, in a recent paper, R. Rai et al. [113] presented a work about an MR texture
phantom produced with 3D printing technology, which could be considered for further
development and refinement on PETER PHAN inserts, guaranteeing the possibility to
realise a variety of tumour-like shapes and textures, in a more reproducible way. The
employment of this strategy requires additional investigation on the relaxation times of
the materials used as printer ink, in order to develop a potential material (not yet avail-
able) that properly reproduces the relaxation of the tumoural tissue of our interest as
achieved, despite in a hand-crafted fashion, in PETER PHAN.

4.2 Radiomics experiments on PETER PHAN

This Section has been adapted from [114].

In this Section, the results of the radiomics experiments performed on PETER PHAN
are presented. This part of the thesis work was carried out in collaboration with the Eu-
ropean Institute of Oncology (Milan) and the Computational Center for the Unknown,
Champalimaud Foundation (Lisbon).

4.2.1 Study design

In a clinical study, the database used for a radiomic investigation can include images
acquired on different scanners and/or with different imaging protocols. The robustness
of the radiomic features in some of these possible scenarios was investigated.
In this multicenter study (schematized in Figure 4.8), three scanners of two manufactures
and two magnetic field strengths were used to assess repeatability and reproducibility
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of radiomic features. Phantom images were acquired in a test-retest study to investi-
gate the repeatability of the features on each scanner. The acquisitions were performed
with a 2D T2-w sequence, optimised on each scanner for pelvic imaging. Between the
two repeated scans, the phantom was either kept fixed or repositioned, to evaluate also
the repeatability after repositioning. Additionally, repeatability was investigated on 3D
features extracted from images acquired using a 3D T2-w sequence on scanner B, to inter-
pret and strengthen the result obtained for the repeatability of features on each scanner
for 2D acquisitions.

Figure 4.8: Study design schematic showing repeatability and reproducibility experiments and
additional experiments executed to bring understanding to the repeatability and reproducibility
results. * - clinical T2-w MRI sequence was shared between scanner B and C. FS refers to the
magnetic Field Strength.

The reproducibility of the radiomic features was evaluated in three different scenarios:
(1) reproducibility at fixed imaging parameters on two scanners of same field strength,
but different manufacturers; (2) reproducibility at fixed imaging parameters on two scan-
ners of the same manufacturer, but different field strengths (1.5 T and 3 T); (3) repro-
ducibility with varying TE and TR imaging parameters on a fixed scanner. Study (1) was
performed on scanner A (1.5 T Optima MR450W, General Electric Healthcare, Waukesha,
USA) and scanner B (1.5 T Ingenia, Philips Healthcare, Best, the Netherlands). The se-
quence parameters used for pelvic diagnostic imaging on scanner A were replicated on
scanner B, and the phantom was imaged on both scanners. The replication of the same
sequence in scanners of different vendors was not exact, as MR sequences are vendor-
specific, and not all the parameters are accessible to users. However, considering that
some radiomics retrospective studies made use of images acquired on different scanners,
a similar situation in ideal conditions (in phantom study) was mimicked to quantify the
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robustness of features in this scenario and to give useful indications for prospective stud-
ies. Study (2) was carried out on scanner B and C (3 T Ingenia, Philips Healthcare, Best,
the Netherlands). In this case, it was possible to replicate the same sequence parameters
on both scanners. Doubling the magnetic field strength, the MR signals - and, thus, the
images obtained - are different, as they are influenced by the relaxation times T1 and
T2, which depend on the field strength. As a consequence, the radiomic features were
expected to vary as well. However, this scenario could be part of a clinical radiomic
study and would necessitate the assessment of the reproducibility of features between
field strengths. Study (3) was conducted on scanner B (which offered more accessibility
due to scheduling and technical reasons), varying TE or TR in the range commonly used
when imaging patients for pelvic investigations.
Besides these assessment, the correlation between texture and shape features was eval-
uated, to identify whether the excellent performance in terms of repeatability and re-
producibility might be ascribable to high correlation with shape information rather than
robust quantification of a texture property.

4.2.2 Methods

2D repeatability and reproducibility between scanners

Images acquisition and segmentation T2-w images of the phantom were acquired on
scanners A, B, and C, using different pelvic imaging setups. The parameters of the MR
sequences are listed in Table 4.4. To study the repeatability on scanners B and C, and the
reproducibility between these scanners, the filling solution was replaced with oil (Spec-
trasyn 4 phantom oil, Philips Heathcare, Best, the Netherlands - T1=230 ms and T2=194
ms at 3T) that has a lower dielectric constant than water allowing to avoid dielectric
artifacts intensified at higher fields. To discuss the reproducibility results, contrast-to-
noise ratio (CNR) was calculated using equation 4.4 [115], [116], where the mean signal
intensity of A, µSIA , was measured in the green region of interest (ROI) in Figure 4.9
(insert content), the mean signal intensity of B, µSIB , was measured in the yellow ROI
(main phantom compartment) and the standard deviation of the signal intensity of back-
ground air, σSIair , was measured in the red ROI. CNR values are reported in Table 4.4.

CNR =
µSIA − µSIB

σSIair
(4.4)

To test the short-term repeatability of the radiomic features, the acquisition was repeated
twice on each scanner without changing the setup nor moving the phantom. Then, the
phantom was removed and repositioned, and the acquisition was repeated. Sixteen
cylindrical VOIs of four sizes were drawn on the phantom inserts for the first acqui-
sition images using 3D Slicer [95] version 4.10.1, with the same procedure explained in
the first part of the Chapter for the phantom validation measurements. Each VOI was
drawn on a total of three consecutive slices. The VOIs for the images acquired after
phantom repositioning were obtained by applying to the original VOIs segmentation
the rigid transformation that allowed to align the initial images with the images of the
repositioned phantom.
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Figure 4.9: Representation of ROIs placement for calculation of contrast-to-noise ratio. Green
ROI was used to measure the mean signal intensity of region A, the yellow ROI was used to
measure the mean signal intensity of region B, and the red ROI was used to determine the standard
deviation of the signal intensity of background air region.

Extraction of radiomic features The package PyRadiomics [26] version 2.2.0 was used
to normalise the images and to extract 2D radiomic features (included categories: Shape,
First Order, GLCM, GLRLM, GLSZM, NGTDM, and GLDM) from each VOI, on both
original and filtered images (Laplacian of Gaussian - LoG -, Wavelet, Square, Square
Root, Logarithm, and Exponential). The set of parameters used for the extraction were
the same described in paragraph 4.1.4. PyRadiomics normalisation was applied by setting
the images mean signal intensity to 300 and standard deviation to 100. This normalisa-
tion was used to reduce the effect of different MR image intensity ranges on different
scanners due to the lack of a standard intensity scale in MRI. The bin-width was opti-
mized for each extraction in order to obtain a number of bins in the range 30 to 130, as
explained earlier. In Table 4.5, the main settings used for the feature extraction are listed.
The corresponding parameter files are available in the dedicated GitHub repository. In
Tables 4.6 and 4.7, the list of features extracted from each category is reported.

Repeatability and reproducibility assessment The repeatability of the radiomic fea-
tures was quantified by computing the Intraclass Correlation Coefficient (ICC) [35], [117],
[36]. ICC (2, 1), equation 4.5, was calculated pairwise (between repeated acquisitions) for
each radiomic feature to test repeatability, with and without phantom repositioning.

ICC(2, 1) =
MSR −MSE

MSR + (k − 1)MSE + k
n (MSC −MSE)

(4.5)

The suffix (2, 1) indicates the ICC form computed considering two-way random effects
for absolute agreement and single rater/measurement. In equation 4.5, MSR corre-

https://github.com/ReliabilityRadiomicsIEOFC/PhantomStudy
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Table 4.5: Settings in the parameter files used for the radiomic features extraction with the package
PyRadiomics.

Setting Value
normalize true
normalizeScale 100
preCrop true
force2D true (2D extraction)

false (3D extraction)
force2Ddimension 0 (2D extraction only)
geometryTolerance 1.e+4
binwidth 10 (scanner A)

5 (scanners B and C)
voxelArrayShift 300
imageType Original:

LoG: ’sigma’: [6]
Wavelet: ’level’: 2
Square:
SquareRoot:
Logarithm:
Exponential:

featureClass Shape:
firstorder:
glcm:
glrlm:
glszm:
ngtdm:
gldm:

sponds to the mean square for VOIs, MSE corresponds to the mean square for error,
MSC corresponds to the mean square for repeated measures, n is the number of VOIs,
and k is the number of repeated acquisitions.
To assess reproducibility, the concordance correlation coefficient (CCC) [101] was cal-
culated pairwise for the features extracted from the images acquired on two different
scanners (scanner A vs. B, scanner B vs. C), with the same imaging sequence. In equa-
tion 4.6, σ2

1 and σ2
2 are the variances of a feature for each acquisition, µ1 and µ2 are the

feature means, and ρ12 is the correlation coefficient between the acquisitions.

CCC =
2σ1σ2ρ12

σ2
1 + σ2

2 + (µ1 − µ2)
2 (4.6)

The features were classified into four groups based on the ICC or CCC values (Table
4.8). The most robust features for the particular scenario considered (across three scan-
ners, including two manufacturers and two magnetic field strengths) were identified by
intersecting the sets of features showing both excellent repeatability and excellent repro-
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ducibility.

Table 4.8: Classes of stability of radiomic features.

Repeatability/Reproducibility ICC or CCC value
Excellent ICC or CCC > 0.9
Good 0.75 < ICC or CCC ≤ 0.9
Moderate 0.5 < ICC or CCC ≤ 0.75
Poor ICC or CCC ≤ 0.5

On this last set of features, a study on their ability to discriminate between different tex-
tures was performed. This ability was investigated for different VOI sizes, to test the
hypothesis that a texture descriptor may lose its meaning below a certain threshold for
the tumour volume (or the VOI volume identified on the inserts in this study). This
hypothesis was advanced by Brooks and Grigsby [118] [119], who found that some tex-
ture quantifiers depended on the tumour volume on PET images, being unreliable when
considering very small tumours. In addition, the dependence on the VOI volume can
be intrinsic to the mathematical definitions of some texture features, as underlined by
some recent studies [120] [121]. To remove the intrinsic volume dependence on the set
of features selected for the texture discrimination study, the corrected algorithms pro-
posed by these authors were applied a posteriori to the extracted feature values. After
that, the trend of the selected features as a function of the VOI volume was studied. The
investigation was carried out on three datasets, namely the test-retest images (without
phantom repositioning) acquired on each scanner (A, B and C) for the previous repeata-
bility assessment. Besides the VOIs already described, the radiomic features were ex-
tracted from two additional VOIs (per each insert), one smaller and one bigger than the
previous ones. Both VOIs were centered in each insert, one with a 6 mm diameter and
the other with 60 mm diameter. The former was added to mimic a very small tumour,
whilst the latter simulated the case of a VOI including a portion of surrounding tissue in
addition to the tumour volume, mimicking an imprecise delineation of the VOI. For this
analysis, only INS1, INS3 and INS4 were considered. INS2 was disregarded as it had a
texture similar to INS1. All the VOIs considered for the texture discrimination study are
shown in Figure 4.10. For each selected feature, the Repeatability Coefficient (CR) [122]
was calculated with the formula

CR = 1.96

√∑n
i=1 (d2,i − d1,i)

2

n
(4.7)

where n = 18 is the number of available VOIs, d1 is the vector of the feature values in
the 18 VOIs on the test images and d2 is the vector of the feature values in the 18 VOIs on
the retest images. CR represents the value below which the absolute difference between
each feature repeated measure may be expected to lie with a probability of 95%. This
metric can be used to assess the ability to differentiate two different inserts, e.g., if, for a
certain feature and a certain VOI size, the absolute difference between the values from
insert x and y is greater than 2*CR, the feature is considered to be able to differentiate
these two inserts.
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Figure 4.10: VOIs considered for the features extraction in the texture discrimination assessment.
The VOIs were drawn on three consecutive slices and had the following volumes: blue 42.3 cm3,
pink 27.1 cm3, green 15.3 cm3, 6.8 red cm3, yellow 1.7 cm3 and cyan 0.4 cm3.

Reproducibility under varying TE or TR

In this experiment, the features reproducibility under variation of the TE and TR param-
eters was investigated. T2-w images of PETER PHAN were acquired on scanner B using
different TE and TR values (Table 4.4), varied in the range of the usual setting for clinical
diagnostic imaging. First, the values of TE were varied between 80 and 120 ms, with a
step size of 5 ms for a fixed TR of 5000 ms. Then, to investigate the influence of TR in a
T2-w sequence, the Philips scanner mode of TR range (TR: 4000 ms to 6000 ms), which
selects the optimal TR within the predefined range, was used to acquire an image with
TE of 100 ms and an automatically selected TR of 4405 ms. The phantom inserts were
segmented, and the radiomic features extracted as previously described in the other ex-
periments. CCC values were calculated pairwise between the features extracted from
images obtained with all possible combinations of TEs and for the images acquired with
TR/TE as 5000/100 and 4405/100 to test the features reproducibility.

Repeatability at 3D level

The repeatability and reproducibility of the radiomic features may be affected by the
type of feature extraction performed (2D or 3D level). The majority of clinical MRI
acquisitions are 2D, and the downsampling to isotropic voxels - to allow the features
extraction in 3D - will likely cause a considerable loss of information in the plane of ac-
quisition. In opposition, the upsampling to isotropic voxel will artificially create new
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voxel data that may have an impact on the features [18]. Thanks to several technologi-
cal advances, the acquisition of 3D sequences is becoming a real possibility; therefore, it
is interesting to investigate whether 3D features have a better performance in terms of
rotation invariance as compared to 2D features, which would result in improved repeata-
bility after phantom repositioning. To investigate this issue, the rotational invariance of
1316 3D features was assessed. The features were extracted from images acquired with
a 3D T2-w sequence on scanner B with an isotropic voxel 1 mm x 1 mm x 1 mm. The
imaging parameters are listed in Table 4.4. The difference in the number of extracted
features between 2D and 3D is a consequence of the increased number of wavelet de-
compositions in 3D feature extraction. PETER PHAN was scanned with this sequence
twice, repositioning the phantom between the acquisitions. The radiomic features were
extracted from the 16 VOIs obtained with the procedure explained in the experiment
to assess the 2D repeatability. The extraction was performed at 3D level, disabling the
”force2D” function on the PyRadiomics parameters file (available in the GitHub reposi-
tory). The evaluation of the rotational invariance of the features was assessed through
the ICC (2, 1), calculated pairwise for each feature, comparing its value in the first and
the second acquisition.

Assessment of shape information in non-shape radiomic features

Besides repeatability and reproducibility issues, a recent study showed other vulnerabil-
ities of radiomic features by assessing the performance of previously defined models on
the same datasets but where images had their voxel intensities randomly shuffled and
found that 3 out of 3 non-shape features constituting the model were actually captur-
ing the tumour volume [123]. Following this result, an investigation on the non-shape
features was performed, aiming at identifying the radiomic features that were robust
because of their high correlation with shape features, but were not extracting the infor-
mative content their mathematical definition was expected to quantify. This behaviour
could be due to an intrinsic dependence on the volume in the mathematical definition
(as explained before) or, after the correction of this dependence, to an inadequate image
quality or an inadequate sampling of the intensity distribution. To this purpose, two
consecutive analyses were carried out.
Firstly, the subset of non-shape features that were highly correlated with shape were
identified, through a pairwise-correlation analysis between shape and non-shape ra-
diomic features, evaluated with the Spearman correlation coefficient. Non-shape fea-
tures showing Spearman’s correlation above 0.8 were considered as highly correlated
with shape features. Other shape metrics besides volume [24] were included, since char-
acteristics like maximum diameter [124], roundness [125] and spiculation [126], [127],
among others, are important oncological diagnostic and prognostic factors.
Secondly, starting from the first acquisitions performed on the three scanners (for scan-
ner B the same sequence used for the repeatability study was considered), three addi-
tional sets of images were created by shuffling the voxel intensities of each original im-
age. The radiomic features were extracted from the shuffled intensities datasets, follow-
ing the procedure described above for the segmentation and the calculation of features.

https://github.com/ReliabilityRadiomicsIEOFC/PhantomStudy
https://github.com/ReliabilityRadiomicsIEOFC/PhantomStudy
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An example of an original image and the corresponding image with randomly shuffled
intensities is shown in Figure 4.11. ICC (2, 1) was calculated between the original fea-
tures and the corresponding features extracted from images that had their intensities
randomly shuffled. Features showing ICC > 0.9 were considered texture uninformative
since they could not distinguish the original image from the shuffled-intensities one in
radiomic terms.
Intersecting the results of the two analyses, it was possible to identify a set of features to
exclude a priori from an eventual radiomic model since they were both highly correlated
with shape and not carrying texture information.

Figure 4.11: Example of original axial image (left) and of corresponding randomly shuffled in-
tensities axial image (right). The green overlay exemplifies one of the 16 cylindrical volumes of
interest delineated for the extraction of features.

4.2.3 Results

2D repeatability and reproducibility between scanners

Repeatability assessment A total of 944 features were extracted. Repeatability results
for the three scanners, with and without phantom repositioning, are shown in Figure
4.12. Without repositioning, on scanner A, 910 (96.4%) features showed excellent, 29
(3.1%) good, 3 (0.3%) moderate, and 2 (0.2%) poor repeatability. Similar results were ob-
tained on scanner B, with 869 (92.1%), 58 (6.1%), 8 (0.8%), and 9 (1.0%) features showing
respectively excellent, good, moderate, and poor repeatability. The features extracted
from the images acquired on scanner C showed less repeatability, with the percentage
of features with excellent ICC decreasing to 754 (79.9%), and the percentage of features
showing ICC ≤ 0.9 increasing to 190 (20.1%). When considering phantom repositioning,
a consistent reduction of repeatability was evident across all the scanners. The numbers
were 740 (78.4%), 138 (14.6%), 49 (5.2%), 17 (1.8%) (scanner A), 806 (85.4%), 76 (8.1%),
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42 (4.4%), 20 (2.1%) (scanner B) and 106 (11.2%), 199 (21.1%), 215 (22.8%), 462 (44.9%)
(scanner C) features showing excellent, good, moderate, and poor repeatability.

Figure 4.12: Repeatability of radiomic features. The results are reported for repeatability without
phantom repositioning on scanners A, B, and C, and with phantom repositioning (repos.).

Reproducibility assessment Reproducibility was assessed both in terms of variations
between the features extracted from scanners of different manufacturers and equal mag-
netic field strength and acquisition parameters (A vs. B, Figure 4.13) and between fea-
tures extracted from scanners of the same manufacturer but different magnetic field
strengths (B vs. C, Figure 4.13). The CCC values of A vs. B and B vs. C, and corre-
sponding confidence intervals are available in the GitHub repository.
The analysis of the features extracted from the images acquired on scanners A and B
showed that 830 (87.9%) features had poor reproducibility. Only 43 (4.6%) features ex-
hibited excellent reproducibility; 29 (3.1%) showed good, and 42 (4.4%) moderate repro-
ducibility.
In terms of reproducibility of the features extracted from images obtained with the same
sequence parameters on scanners B (1.5 T) and C (3 T), 147 (15.6%), 295 (31.2%), 321
(34.0%), and 181 (19.2%) of them exhibited excellent, good, moderate, and poor repro-
ducibility.

Overall repeatability and reproducibility In order to identify the most stable radiomic
features in this study, the ones showing both excellent repeatability and reproducibility
were selected. A total of 31 (3.3%) features showed excellent repeatability (ICC > 0.9)
and reproducibility (CCC> 0.9) across all different scenarios studied (repeatability: with
and without phantom repositioning; reproducibility: across manufacturers and field

https://github.com/ReliabilityRadiomicsIEOFC/PhantomStudy
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strengths). Apart from shape features, expected to be independent of the experiment
settings 1, the 20 (2.1%) remaining features are listed in Table 4.9.

Figure 4.13: Reproducibility of radiomics features for scanners of equal magnetic field strength
(1.5 T) and acquisition parameters, but different manufacturers (A vs. B) and for scanners of the
same manufacturer but different magnetic field strengths - 1.5 T and 3 T - (B vs. C).

Texture discrimination assessement The analysis of the features ability to distinguish
between different textures was performed on the features shown in Table 4.9. Firstly,
the features for which the literature evidenced an intrinsic dependence of the feature
value on the number of voxels Nv in the VOI were corrected. Specifically, the features
”Energy”, ”Total Energy” and ”Run Length Non Uniformity” were divided by Nv , ac-
cording to the correction proposed by [120]. The feature ”Coarseness” was multiplied by
Nv , as suggested by [121]. Secondly, the absolute difference of the value of each corrected
feature in two different inserts was calculated and compared with the corresponding CR
value. The number of features showing absolute differences (between the feature value
when extracted from two different inserts) greater than 2*CR are listed in Table 4.10. For
the images acquired on scanner A, the majority of the features considered were able to
distinguish inserts 1-3 and 1-4, independently of the VOI size. The same holds for scan-
ner B and inserts 1-3. On the contrary, on scanner A the number of features distinguish-
ing inserts 3-4 decreased by decreasing the VOI size. Only 7 out of 20 features extracted

1The reproducibility of the shape features shape Flatness, shape LeastAxisLength, and shape Sphericity
being 3D features, can be affected by differences in the through-place spacing.
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Table 4.9: List of features showing excellent repeatability with and without phantom reposition-
ing and excellent repeatability across manufacturers and magnetic field strengths (Shape features,
expected to be independent of the experiment settings, are not reported in this Table). Each feature
is indicated in the form: ImageType Class FeatureName.

Repeatable and reproducible features
log.sigma.6.mm.3D firstorder TotalEnergy
exponential firstorder Energy
exponential firstorder TotalEnergy
logarithm glrlm RunLengthNonUniformity
original glrlm RunLengthNonUniformity
square firstorder Energy
square firstorder TotalEnergy
squareroot glrlm RunLengthNonUniformity
wavelet.HH firstorder Energy
wavelet.HH firstorder TotalEnergy
wavelet.HH ngtdm Coarseness
wavelet.HL firstorder Energy
wavelet.HL firstorder TotalEnergy
wavelet.HL glrlm RunLengthNonUniformity
wavelet.HL ngtdm Coarseness
wavelet.LH firstorder Energy
wavelet.LH firstorder TotalEnergy
wavelet.LH glrlm RunLengthNonUniformity
wavelet.LH ngtdm Coarseness
wavelet.LL glrlm RunLengthNonUniformity

from the images acquired on scanner B showed ability to distinguish inserts 1-4 in the
biggest VOI. These results suggests that for small VOIs or VOIs including background
some texture feature may stop to be informative on the VOI texture, not allowing to dis-
tinguish two different tissue (e.g tumoural and normal tissues). This preliminary result
seems to confirm the dependence of some imaging biomarkers on the VOI volume, as
found by other authors on PET images [118] [119], at least for some of the scanners used
in this evaluation. In fact, a similar result was obtained for scanner C, inserts 1-4. For
the same scanner, the number of features able to differentiate inserts 1-3 decreased when
considering the largest VOI (42.3 cm3), while it is almost constant for the others VOI
sizes. The general trend seems to suggest a greater difficulty of the features in discrim-
inating inserts 3-4 than the other couples. This could indicate that the radiomic feature
ability of quantifying a texture property and differentiating different textures depends
on the specific textures involved. Evidently, a feature will differentiate more easily two
textures which present very different properties than two similar textures. The plots of
the 20 features considered in this assessment as a function of the VOI size are shown in
Figure 4.14. The features in the plots were extracted from the images acquired on scanner
B, which was taken as an example. The error bars were calculated as feature value± CR.
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The feature ”original RunLengthNonUniformity” (e) showed overlap among the three
inserts when extracted from the smallest VOIs (0.4 and 1.7 cm3) and the biggest one (42.3
cm3). The overlap between inserts 3-4 is more evident. The features ”Square Energy” (f),
”square TotalEnergy” (g), ”wavelet.HH Energy” (i), ”wavelet.HH TotalEnergy” (j) and
”wavelet.LL RunLengthNonUniformity” (t) were not able to differentiate the inserts at
VOI size 42.3 cm3. The features ”Wavelet.HL Energy” (l), ”wavelet.HL TotalEnergy”
(m), ”wavelet.LH Energy” (p), ”wavelet.LH TotalEnergy” (q) and
”wavelet.LH RunLengthNonUniformity” (r) showed overlap for inserts 3-4 at VOI size
0.4 cm3.
Summarising, from the plots it seems that below 0.5 cm3 some of the considered ra-
diomic features were not able to distinguish two similar (but different) textures. The
features which did not differentiate two distinct textures, independently of the VOI size,
were: exponential Energy, exponential TotalEnergy, squareroot RunLengthNonUniformity,
wavelet.HL Coarseness and wavelet.LH Coarseness.

Table 4.10: Numbers of features (out of 20) able to differentiate two inserts with different textures.
The evaluation was performed on the features in Table 4.9, which were the most repeatable and
reproducible. The results are presented for each scanner (A, B and C) and each couple of inserts
considered in this experiment (inserts 1, 3 and 4).

VOI size [cm3] 1 vs. 3 1 vs. 4 3 vs. 4
A B C A B C A B C

42.3 18 16 10 16 7 5 20 8 5
27.1 17 14 15 17 12 11 20 10 4
15.3 17 15 14 18 12 12 12 8 5
6.8 17 14 14 17 12 10 13 10 6
1.7 17 16 16 19 15 12 10 10 10
0.4 19 16 15 18 18 11 11 7 5
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Figure 4.14: Distribution of the 20 most repeatable and reproducible texture features as a function
of the VOI size, for the phantom inserts 1, 3 and 4. The features were extracted from the images
acquired on scanner B. The results are presented as feature value ± CR.
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Reproducibility under varying TE or TR

Figure 4.15 shows the percentage of radiomic features presenting (A) excellent, (B) good,
(C) moderate, and (D) poor reproducibility between different TE values (according to
the CCC thresholds in Table 4.8). Focusing on Figure 4.15(a), 82.4% to 94.9% of features
showed excellent absolute agreement between TEs 5 ms apart for TEs ranging between
80-120 ms (first diagonal on the left). Increasing the TE interval between two experi-
ments, the percentage of features showing excellent reproducibility decreased progres-
sively. When considering a TE interval of 40 ms, the reproducible features were 19.8% of
the total.
When changing from a TR of 5000 ms to a TR of 4404 ms, out of the 944 features, 856
(90.7%) showed excellent, 64 (6.8%) good, 22 (2.3%) moderate, and 2 (0.2%) poor repro-
ducibility.

Repeatability at 3D level

Out of the 1316 3D features, 446 (33.9%) showed excellent, 394 (29.9%) good, 359 (27.3%)
moderate, and 117 (8.9%) poor repeatability. Although we cannot directly compare with
the 2D repeatable features, we observe that only a relatively small number of 3D features
showed excellent repeatability after repositioning and, therefore, rotational invariance.
The 13 features showing rotational invariance in more than 80% of the image types (orig-
inal or filtered images) are presented in Table 4.11. Of these, 2 features were First Order, 4
GLCM-based, 2 GLRLM-based, 2 GLSZM-based, 1 NGTDM-based, and 2 GLDM-based.

Table 4.11: Repeatable 3D features. List of 3D radiomic features showing excellent repeatability in
more than 80% of the image filters.

Feature name Number of features (%)
firstorder Energy 14 (100)
firstorder TotalEnergy 14 (100)
glcm Correlation 12 (86)
glcm Idn 12 (86)
glcm Imc1 13 (93)
glcm Imc2 12 (86)
gldm DependenceNonUniformity 14 (100)
gldm GrayLevelNonUniformity 12 (86)
glrlm GrayLevelNonUniformity 13 (93)
glrlm RunLengthNonUniformity 13 (93)
glszm GrayLevelNonUniformity 14 (100)
glszm SizeZoneNonUniformity 12 (86)
ngtdm Coarseness 14 (100)
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Figure 4.15: Reproducibility of radiomic features with varying TEs. Reproducibility was assessed
for all possible combinations of TEs between 80 ms and 120 ms in 5 ms intervals (as indicated
in red). (a) Percentage of features with excellent reproducibility; (b) Percentage of features with
good reproducibility; (c) Percentage of features with moderate reproducibility; (d) Percentage of
features with poor reproducibility.

Assessment of shape information in non-shape radiomic features

In this analysis, two subsets of radiomic features were identified: (i) the subset of non-
shape features that were highly correlated with shape; (ii) the subset of features showing
a high correlation between their value when extracted from the original image and when
extracted from the shuffled-intensities image.
In set (i), out of 930 features, 155 (16.7%), 144 (15.5%), and 158 (17.0%) non-shape features
were highly correlated with shape features in scanners A, B, and C, respectively. The
discrepancy across scanners in non-shape features showing dependence with shape may
be due to differences in contrast between scanners. A total of 99 (10.6%) features were
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shared among all scanners.
The subset (ii) was made up of 27 (2.9%), 28 (3.0%), and 27 (2.9%) features for scanners
A, B, and C, respectively.
When intersecting the features in subsets (i) and (ii) common to all the scanners, 19 (2.0%)
features were obtained. In this way, we identified the set of features nominally belonging
to texture but providing only shape information, listed in Table 4.12.

Table 4.12: List of texture features showing, across all scanners, high correlation with shape fea-
tures (Spearman correlation coefficient > 0.8) and uninformative about texture. Each feature is
indicated in the form: ImageType Class FeatureName.

Uninformative texture features
log.sigma.6.mm.3D firstorder Energy
log.sigma.6.mm.3D firstorder TotalEnergy
log.sigma.6.mm.3D ngtdm Coarseness
wavelet.LH firstorder Energy
wavelet.LH firstorder TotalEnergy
wavelet.LH glrlm RunLengthNonUniformity
wavelet.HL firstorder Energy
wavelet.HL firstorder TotalEnergy
wavelet.HL glrlm RunLengthNonUniformity
wavelet.HH firstorder Energy
wavelet.HH firstorder TotalEnergy
wavelet.HH glrlm RunLengthNonUniformity
wavelet.HH ngtdm Coarseness
wavelet.LL glrlm RunLengthNonUniformity
square firstorder Energy
square firstorder TotalEnergy
square glszm GrayLevelNonUniformity
exponential firstorder Energy
exponential firstorder TotalEnergy

4.2.4 Discussion

Clinically meaningful radiomic signatures, providing not only high performance, but
also good generalisability, should be constructed using high-quality, reliable features.
Therefore, it is essential to understand and incorporate the factors affecting the reliabil-
ity of such features. This study focused on several aspects that may influence the values
of the radiomic features, as it was designed to provide information on: repeatability;
reproducibility at fixed imaging parameters; shape information in non-shape features;
influence of acquisition parameters (TE and TR).

Two types of 2D repeatability were investigated, offering measures on scanner-induced
variations (without phantom repositioning) and repositioning-induced variations across
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different scanners. Without repositioning, it is possible to observe that 92.1% to 96.4%

of the features showed excellent repeatability in both 1.5 T scanners. The percentage
decreased to 79.9% when considering the features extracted from the images acquired
at 3 T. The decrease in repeatability at 3 T may be due to the artifacts more frequently
affecting images acquired at a higher field strength. Instead, when considering reposi-
tioning, a reduction in the number of features with excellent repeatability was observed:
78.4% of features showing excellent repeatability on scanner A, 85.4% on scanner B, and
11.2% on scanner C. Possible causes for the relatively small reduction observed with
scanners A and B may be the rotational invariance of some features and some degree of
misalignment of the acquisition after repositioning. As for the larger reduction observed
with scanner C, after visual inspection of the images, it was possible to observe that the
chemical shift artifact was considerably larger than with scanners A and B, as expected,
being proportional to the magnetic field strength. Additionally, as chemical shift arti-
facts occur in the frequency encoding direction due to the coexistence of water and lipid
protons in a voxel, a slight change in the positioning of the phantom will be translated
into a change in these artifacts.
The repeatability in 3D MRI acquisition was assessed as well. Only 33.9% of 3D radiomic
features showed excellent repeatability after repositioning. As these features were ex-
tracted from isotropic images, this represents an unexpected result. In fact, the percent-
age of 2D features showing excellent repeatability with phantom repositioning for scan-
ner B was much higher (85.4%). This seems to suggest that a 3D extraction from isotropic
voxels does not increase the repeatability performance if compared with a 2D extraction.
A possible explanation may be that the 3D feature extraction on 3D acquisitions, by be-
ing able to offer more detail in the through-plane, may result in more unstable features,
as the planning after repositioning does not ensure perfect alignment between acquisi-
tions. In fact, a coarser spacing may not affect the performance of radiomic models and
may even improve them as features become less susceptible to noise, repositioning, and
other artifacts. These considerations justify the stability observed on the 2D features ex-
tracted from the 2D acquisitions.

The reproducibility of the features was assessed by comparing radiomic features ex-
tracted from images acquired on scanners of different manufacturers with equal mag-
netic field strength and acquisition parameters, and scanners of the same manufacturer
and different magnetic field strengths. In the first case, only 4.6% of the features showed
excellent reproducibility. A similar trend was found in the second case, where 15.6%

of the features exhibited excellent reproducibility, and most of the features, 53.2%, had
moderated or poor reproducibility. The results showed a higher reproducibility when
comparing two scanners of field strength 1.5 T and 3 T from the same manufacturer
(even though the relaxation times T1 and T2 affecting the MR signal are dependent on
the field strength), than comparing two scanners of 1.5 T with same acquisition param-
eters but from different vendors. Regarding reproducibility between different vendors
at fixed imaging parameters, we observed that the images acquired on the two scanners
exhibited different CNR values. Despite the basic principles of the sequence being the
same, these differences can be caused by various sources, that cannot be controlled by
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the user. A first factor is the type of systems, including the digital versus analog and the
location of the analog-to-digital converter. As a matter of fact, Philips converts the sig-
nal to digital directly on the coil while GE makes it on the magnet. Other factors consist
of different preparation and calibration phases, including distinct power optimizations,
frequency determination, shimming, and coils tune.
Despite not being focused on radiomic features, previous studies on the inter-scanner
and intra-scanner variability, considering both 1.5 T and 3 T images, on a set of organ-
specific measures [128] and proton density fat function measurements [129] showed that
disagreement could be seen when comparing scanners of different vendors. Given this,
this study allowed to highlight that even in the presence of unavoidable differences be-
tween images acquired with two scanners of different manufacturers (quantified for ex-
ample by CNR), a subset of features turned out to be reproducible.
In this illustrative study, a controlled pelvic imaging scenario was considered, resulting
in only 31 radiomic features (3.3% of the total number of features extracted) showing ex-
cellent robustness in the two repeatability settings and the two reproducibility settings.
Of these, 11 were shape features. The other 20 features, after correction for an intrinsic
dependence on the VOI volume, were analysed for their ability to differentiate the dif-
ferent textures offered by the phantom inserts. This preliminary investigation showed
that some texture features depend on the VOI size. In particular, for very small VOIs (be-
low 0.5 cm3) the some features were not able to distinguish two inserts. A similar result
was obtained on VOIs drawn around the inserts, including a portion of background. The
interesting results obtained will be the basis for an investigation extended to all the avail-
able radiomic features rather than a selected subset. In fact, it is crucial to understand
which is the volume threshold below which the features lose their descriptive power in
terms of texture properties. The scenarios of clinical studies may be different from the
one herein considered, but an analogous procedure could be applied, focusing on the
phantom inserts that better simulate the texture properties of the tissues under investi-
gation. This is of particular importance in clinical studies involving very small tumours
(like lymphnode metastasis or lung nodules).

As demonstrated in the study by Welch and colleagues [123], some features may ex-
hibit dependencies on volume. However, these dependencies may be extended to other
shape features that may also contain diagnostic and prognostic information. Therefore,
it is crucial to understand if non-shape features may be repeatable and reproducible due
to shape information they may contain. A total of 19 non-shape features common to all
three scanners appeared to contain only shape information or were heavily dependent
on shape. These features showed both a high correlation with shape features and ex-
cellent agreement between features extracted from the original images and images with
randomly shuffled intensities. Excluding the identified uninformative features (Table
4.12) from the list of the features resulted to be highly repeatable and reproducible (Ta-
ble 4.9), only five features remained:

• log.sigma.6.mm.3D Energy;

• log.sigma.6.mm.3D Coarseness;
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• wavelet.LH RunLengthNonUniformity;

• wavelet.HH RunLengthNonUniformity;

• square GrayLevelNonUniformity.

All the results discussed so far used images acquired with fixed MR sequence parame-
ters. However, the need for a large quantity of data to implement radiomic models may
lead to the creation of inhomogeneous databases as used in several MRI clinical radiomic
studies. This inhomogeneity, also due to the optimisation of imaging parameters on each
scanner, might affect the values of radiomic features and, consequently, the performance
of models [16], [130]. The preliminary investigation on the influence of different TE
and TR within this study demonstrated that the majority of the features showed excel-
lent reproducibility when the difference in TE was 5 ms. However, the reproducibility
decreased as the TE interval increased, as seen in Figure 4.15. This corroborated the ex-
pectations for a T2-w MRI sequence, as a different TE changes the weighting in T2 and
CNR, which will lead to variations of T2-w signal intensity depending on the underly-
ing tissue and pathophysiology. As texture depends on contrast, but since TE-induced
differences are non-linear, the dependence on contrast is not removed during image nor-
malization. Similarly, when assessing changes in TR, it was observed that 90.7% of the
features showed excellent reproducibility between acquisitions with a TR of 5000 ms and
with a TR of 4405 ms.
These results suggest that radiomic studies should be conducted with standardised imag-
ing protocols or making use of the features showing excellent reproducibility in the inter-
val of TEs and TRs used, ensuring this way that the observed results are not associated
with differences in the acquisition parameters. Following this consideration, multicen-
ter retrospective studies (involving different scanners with variable protocols) should be
coupled with methodological studies to understand the relationship between the vari-
ability range of the radiomic features and the variation of each sequence parameter sep-
arately. Moreover, given the differences observed between Philips and GE technologies,
the investigation of the TE/TR impact on scanners from different vendors will be con-
sidered as a natural extension of the present study in future developments.

A few previous studies have assessed the stability of radiomic features in different MRI
settings. Mayerhoefer and colleagues [69] investigated the sensitivity of texture features
to acquisition parameters (including TE ranging from 20 to 125 ms and TR in the range
900-4500 ms) on T2-w images acquired on a 3 T scanner. They found that the imaging
parameters influenced the values of features, with this influence increasing with spatial
resolution. Although different spatial resolutions were not compared in this study, the
present investigation performed on a 1.5 T scanner extends the findings of those authors
to a lower field strength, while making use of a phantom design for patient imaging, as it
was proved that the texture features values are dependent on the TE and TR parameters.
In another study by Chirra et al. [131], prostate T2-w MRI images of 147 patients from
four different sites were used to assess cross-site reproducibility by performing mul-
tivariate cross-validation and assessing preparation-induced instability. The authors
found that most of the Haralick features were reproducible in over 99% of all cross-site
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comparisons. However, that study uses different patient populations on each site and
assesses non-tumoral regions under the assumption that these should have a similar tex-
ture. Besides, part of their pre-processing involves image upsampling, in some cases by
a factor of ∼11 times in the image through-plane. Such choices make the comparison
with the results obtained in this thesis difficult.

The limitations of the experiments described in this Section are highlighted below. Firstly,
the use of a phantom cannot include all the effects that exist in real clinical scenarios,
such as patient motion, rectal/bladder filling, peristalsis, breathing, tissue diffusion and
perfusion, intra-patient tissue variability. Undeniably, a phantom, as such, cannot be
exhaustively representative of all tumours (with substantial differences in terms of di-
mension, internal structure, texture, shape, etc.), so it cannot identify all the trustable
and robust features for patient image analysis. On the other hand, contrarily to the clin-
ical reality, the use of a phantom allows repeating as many acquisitions as desired, to
compare results, and to assess the influence of many parameters. In particular, the use
of an inhomogeneous phantom allowed the implementation of a procedure for the iden-
tification of features that may not be trustworthy and robust. Furthermore, the use of
a phantom, in which biological processes are not present, allows the assessment of the
reproducibility issues caused by different system types, e.g., digital vs. analog, coils
used, and other sequence parameters, which are translated into distinct image proper-
ties like the contrast-to-noise ratio that may have an impact on the values of radiomic
features as well. Having this in mind, the experiments conducted in this study provide
excellent baseline assessments, under very controlled environments, of the stability of
features, and allow avoiding rough misleading results that could be derived without an
acquainted input selection before the statistical analysis.
Another limitation was the use of data acquired on a restricted number of scanners (two
field strengths, two manufacturers) and the focus on the investigation of the radiomics
stability on T2-w MRI images, as part of the clinical diagnostic protocol for pelvic imag-
ing. Conversely, this can represent the starting point for further extension. Thus, the
imaging data, parameter files, and analysis scripts are made available in order to al-
low other researchers to perform similar analyses and incorporate new experimental
paths. Following these results, it might be interesting to make use of the phantom in an
extended multicenter study using different clinically optimized sequences, for a more
comprehensive investigation.

In conclusion, this study investigated the robustness of 2D and 3D radiomic features
extracted from T2-w images of a pelvic phantom created for MR radiomic analyses. The
methodological investigation quantified the stability and quality of radiomic features in
different MRI settings, enlightening important issues towards robust and reliable mod-
els. Based on a workflow designed to test repeatability and reproducibility, features
showing the highest performance were identified. Importantly, many of these repeat-
able and reproducible features turned out to be inadequate for radiomic analysis, e.g.,
being non-informative or affected by the image acquisition process. This, or similar,
procedure should be applied to strengthen and support each clinical radiomic study.



CHAPTER 5

BREATH: the breast phantom

The aim of this Chapter is to show the preliminary results of the feasibility study on
a breast phantom to support radiomic analysis on MR images of patients affected by
breast cancer. The design of the phantom, called BREATH (BREAst Texture pHantom),
is presented in its preliminary version, along with the search of materials and validation.
The potential of BREATH will be explained in the context of ongoing activities and future
developments, which represent a natural extension of this thesis.
This part of the thesis work was performed in collaboration with the European Institute
of Oncology (IEO, Milan), the Champalimaud Centre for the Unknown (CCU, Lisbon)
and the Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa,
Milan).

5.1 Phantom design and realisation (first prototype)

The main focus of BREATH, as radiomic phantom, was to reproduce the texture and MR
signal of the tumour and surrounding tissues observed in a representative set of patients
with breast cancer. The pelvic phantom, implemented earlier, provided a model for the
development of the breast phantom. In addition, in designing BREATH attempts have
been made to overcome the limitations observed in PETER PHAN, mainly with the aim
to create more reproducible inserts and facilitate the usage of the phantom by a wider
number of operators and/or centres. In this Section, the operative steps for the phantom
design and realisation will be covered, starting from the external structure to the internal
compartments and finally the description of the insert reproducing the tumour.

5.1.1 The shell

A breast-shaped shell has been produced as external container of the phantom. It con-
sists of two main parts: the support base and two jars, which mimic the breast. The
support base and the jars, shown in Figure 5.1, are separated modules, that can be as-
sembled as an interlocking system. The phantom is of simple assembling and disassem-
bly for an easy transport. Plastic jars of different size and shape can be used to fit the
clinical scenario of interest. They were easily found in a home good store and were cho-
sen as containers with a lid, to facilitate the incorporation of the artificial tumour, that
will be described later, and the filling with a liquid solution. The support base was built
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on purpose in plexiglass, as this material is MR-safe and does not interfere with the MR
signal by causing artifacts on the image. Moreover, it is easily processable, cheap and
light. A handle was carved in the base, to hang it when not used, and plastic screws
were exploited to help a stable positioning of the phantom inside one of the available
breast coils, as shown in Figure 5.2 (a). The positioning of the phantom and dedicated
coil on the bed of the MR scanner is shown in Figure 5.2 (b).

(a) (b) (c)

(d)

Figure 5.1: (a-b-c) Jars of different sizes to mimic the breast shape. (d) Jars and support base
assembled to build the shell of BREATH.

With the aim of a future multicentric study with BREATH, another solution was devel-
oped if the support base did not fit other coil models. Instead of using the plexiglass
support, the jars could be inserted in a rigid sponge which can be easily modeled to fit
the coil and at the same time can guarantee the mechanical stability of the jars during
the image acquisition. This alternative setup is shown in Figure 5.3.
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(a) (b)

Figure 5.2: (a) The phantom shell positioned in the dedicated breast coil. (b) Overview of the
phantom shell positioned inside the coil on the bed of the MR scanner.

(a) (b)

Figure 5.3: Alternative setup for a different breast coil. The green sponge can easily be cut to fit
the coil and can keep the jars still during the experiments.
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5.1.2 The phantom compartments

Each jar hosted a smaller cup (48 mm diameter, 72 mm height), creating two separated
compartments, as shown in Figure 5.4. The smaller cups were filled with peanut oil,
which reproduces the adipose tissue of breast, giving a similar MR signal [132], [133].
The external compartment was filled with water in the preliminary version of the phan-
tom. In the future versions, it could be filled with a solution of MnCl2 or other ions, to
control the relaxation times of the solution and tune it for a specific setting.

(a)

(b)

Figure 5.4: BREATH assembled. (a) Picture of the jars before inserting them in the coil. (b) Sketch
of the setup. The artificial tumour is represented in black. The peanut oil mimics the adipose tissue
surrounding the tumour.

An artificial tumour, described below, was embedded in one of the jar, to simulate the
texture and signal of a set of representative patients with breast cancer for radiomic pur-
poses.
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5.1.3 The artificial tumour

In this Section, the procedure for the realisation of the artificial tumour will be illustrated.
The general approach was the following: (i) starting from a set of selected patients with
breast cancer, a representative model of a tumour was identified; (ii) the model was ex-
ploited to create a tumour-shaped virtual object; (iii) on the basis of the virtual model, the
shell of the artificial tumour was 3D-printed; (iv) a test material was injected inside the
shell and expanded to create an artificial heterogeneous tissue. In the next paragraphs,
these experimental steps and choices will be explained in detail.

The geometrical choices The shape and volume of the artificial tumour were selected
to be representative of a retrospective database of breast cancer patients, candidate to
a radiomic study at the IEO. The dataset (database 1, Table 5.1) included 84 patients
affected by non-metastatic breast cancer, not previously treated, with a preatment MRI
scan followed by NAT (neoadjuvant therapy = chemotherapy, hormonotherapy and/or
anti-HER2 therapy) and surgery. The patients underwent a basal MRI scan, including

Table 5.1: Datasets of patients and healthy volunteers involved in the breast phantom study.

Database Number of subjects Age (years) Inclusion criteria
1 (NAT) 84 27-79 (mean 48) (i) confirmed non-metastatic breast cancer

(ii) pre-treatment MRI + NAT + surgery
2 (mapping in vivo) 11 (healthy volunteers) 26-54 (mean 38) -
2 (mapping in vivo) 6 (patients) 25-65 (mean 46) presence of a breast lesion

(diagnostic MRI for suspected cancer)
3 (surgery) 183 29-84 (mean 52) (i) histologically-confirmed breast cancer

(ii) pre-operative MRI + surgery

a T2-w morphologic sequence, a diffusion-weighted sequence and a dynamic T1-w se-
quence, with the injection of a paramagnetic contrast agent (DOTAREM). Written in-
formed consent to undergo the examination, and to the use of anonymised clinical and
imaging data for scientific and/or educational purposes, was obtained from all subjects
involved. After the acquisition, the DICOM images were anonymised and exported for
processing. An expert radiologist segmented the tumoural region on the images of the
first arterial phase after the injection of the contrast agent (dynamic sequence). The imag-
ing parameter of this sequence were: 7.39 ms TR, 3.44 ms TE, 1.4 mm slice thickness, 0.7
mm slice spacing, 350x350 mm2 FoV, 352 x 352 AM. The VOIs were segmented with a
semi-automatic threshold technique on ITK-SNAP [134], as shown in Figure 5.5.
The analysis of the obtained VOIs across the considered patients showed a wide variety
of shapes and volumes. Some of the different shapes are represented in Figure 5.6 and
included both complex structures and more simple volumes (rounded/spherical or elon-
gated). The surfaces were often irregular and granular. In some cases the VOI included
non-continuous structures. The analysed tumours had volumes in the range 0.3-400
cm3. Apart from few massive tumours, ∼74% of the VOIs had a volume within 15 cm3,
as shown in the histogram 5.7. These results, along with the experimental choice to select
a sufficiently simple shape for the preliminary phantom version, led to the identification

www.itksnap.org
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Figure 5.5: Example of a T1-w image (axial view on the left and sagittal view on the right) of
a patient with breast cancer and the corresponding tumoural region (in red) segmented on ITK-
SNAP. The segmentation was performed on all the slices which included the tumour. This Figure
shows only one slice.

of a representative shape and volume to be mimicked in the phantom. The selected tu-
mour volume is shown in Figure 5.8. It has a spherical shape, an irregular surface and
a 6 cm3 volume. The .stl file of the volume has been extracted from ITK-SNAP to serve
as input for a 3D printer used to print the mould for the external shell of the artificial
tumour, as explained later.

The choice of materials After the identification of the shape and volume of the tumour
model, a research was carried out to identify the materials to exploit for the production
of the artificial tumour. The aim of the artificial tumour is to mimic the MR signal (in
terms of intensity and relaxometry properties) and the texture of the selected model tu-
mour (Figure 5.8) on the images obtained with the T1-w sequence (first arterial phase
post-injection), which is the one involved in the future radiomic analysis of the consid-
ered patients’ database.
For these purposes, the intensity histogram of the real tumour (used as a model) has
been extracted from the images obtained with the selected sequence (Figure 5.9). In ad-
dition, on a set of volunteers and selected patients with a breast malignancy, an in vivo
T1 and T2 mapping was performed, using a procedure similar to the one used for the
pelvic phantom, to obtain the range of relaxation times to mimic in the phantom.
11 healthy volunteers (26-54 yrs, mean 38) and 6 patients with a breast tumour (25-65 yrs,
mean 46) (database 2, Table 5.1)were imaged with dedicated MR sequences for in vivo as-
sessment of T1 and T2 relaxation times of healthy tissue (fat) and breast tumour. Written
informed consent to undergo the examination, and to the use of anonymised clinical and
imaging data for scientific and/or educational purposes, was obtained from all subjects
involved. Image acquisition was carried out using a 1.5 T MR scanner (Optima MR450W,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.6: Examples of representative tumour shape in 2D (right) and 3D (left) for some of the
breast cancer patients in the database considered for this study.
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Figure 5.7: Distribution of the tumour volume in the set of breast cancer patients considered in
this study.

(a) (b)

Figure 5.8: The tumour of the patient in 2D (right) and 3D (left) selected as model for the artificial
tumour to be included in BREATH.

General Electric Healthcare, Waukesha, USA). In vivo T1 mapping made use of the vari-
able flip angle (VFA) spoiled gradient recalled echo (SPGR) technique [106]. Three axial
scans were acquired, each with a different flip angle (5, 10 or 20◦), keeping the other
parameters fixed: repetition time (TR) 6.6 ms, echo time (TE) 4.2 ms, slice thickness 3
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Figure 5.9: Normalised intensity histogram of the tumour volume selected as a model for the
artificial tumour. The y axis is the frequency of number of voxels in the tumour volume.

mm, slice spacing 3 mm, field of view (FoV) 256x256 mm2. T2 mapping was based on a
dedicated 2D multi-echo spin-echo pulse sequence which ran under research mode and
could read up to 16 echoes. The sequence parameters were: TR 5000 ms, min TE 7.5 ms,
max TE 119.8 ms, echo spacing 7.5 ms, slice thickness 4 mm, slice spacing 5.5 mm, FoV
256x256 mm2.
After the acquisition, the DICOM images were anonymised and exported for processing.
The VFA data were processed with the NOVIFAST [107] algorithm to calculate T1 maps.
T2 maps were generated by fitting a mono-exponential curve to the 16-echo spin-echo
data on a voxel-by-voxel basis, using a MATLAB (version R2018b) script developed in-
house. Volumes of interest (VOIs) in the adipose tissue were drawn manually on the T1

and T2 maps of all subjects. In addition, an expert radiologist drew a VOI for the tumour
on the axial T1-w images obtained as part of the routine clinical protocols. The tumour
VOI was then transferred onto the relaxation time maps. For each VOI, the subject-wise
mean values of T1 and T2 were extracted. The range of T1 and T2 values obtained for
the tissues of interest are summarised in Table 5.2 and examples of the in vivo T1 and T2

maps are given in Figure 5.10. The values reported are the mean over all the patients
and the minimum and maximum values.
BREATH aimed at reproducing a patient’s breast when scanned with a T1-w dynamic
sequence. In this terms, the artificial tumour should mimic the T1 range found in vivo
and have a distribution of intensities similar to the histogram 5.9. As regards the adipose
tissue, it has been simulated with peanut oil, which has similar relaxometry properties.
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(a)

(b)

Figure 5.10: (a) T1 and (b) T2 maps of a patient with breast cancer. The tumour site is highlighted
with a black arrow and the fat ROI contour in red.
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Table 5.2: Relaxation times of human tissues measured in vivo at 1.5 T. *mean (range)

T1 [ms]* T2 [ms]*
Adipose tissue 251 (211 - 339) 151 (134 - 164)
Tumour 1322 (981 - 1712) 86 (64 - 112)

In addition, the artificial tumour should have a texture similar to the model tumour.
Attempts have been made to fulfill all these requirements by designing the artificial tu-
mour as an external plastic shell, with the same shape of the model tumour, filled with
a mixture of two components: (i) a matrix of expanded epoxy resin soaked in (ii) a solu-
tion of MnCl2 to control the MR signal (Figure 5.11). To produce the tumour phantom a
manufacturing approach combining 3D printing using photo-reactive resins and mold-
ing of soft polymers was adopted. This implied the additive fabrication of a 3D mould
provided with a cavity reproducing the morphology of the tumour model, surrounded
by a shell having the same surface profile. This structure was designed starting from the
solid model represented in Figure 5.8 using a dedicated software. After printing, a poly-
meric foam was casted into the manufactured part to completely fill the mould after the
expansion, resulting into a porous material with a characteristic morphological hetero-
geneity typical of that of the malignancy. The experimental details of the manufacturing
procedure are reported here below.

The tumour-shaped shell

The tumor mould was 3D-printed using Stereolithography (SLA). This technique relies
on the use of a focused laser beam to selectively polymerise a photo-reactive resin, fab-
ricating a solid object additively layer-by-layer. The machine used was a Form 2 (Form-
Labs), equipped with a 405 nm laser (nominal laser spot diameter around 140 µm). The
photopolymer employed was a translucent resin (FormLabs Clear), which solidifies into
a tough and stiff plastic material after processing. The virtual model of the mould was
generated by building a 2 mm thick shell around the tumor model reported in Figure
5.8 using the software MeshMixer (Autodesk). The design of this hollow structure (the
tumour-shaped cell) was further modified by adding a fluidic port, fitting commercial
syringes, for the injection of the test material and the liquid solution. The refined model
was then printed with the Form 2 using the machine dedicated software, optimising the
orientation of the printed part to favor the process.

The internal compartment

The fabricated mould was subsequently filled using the test material (an expanded epoxy
resin from ProChima) according to a custom-made protocol developed empirically. This
hydrophobic compound was prepared by mixing the prepolymer and catalyzer in a ratio
equal to 1:1 vol/vol. The obtained viscous solution presents a creaming time of about 30
seconds and expands four to five times its original volume. After injection (the volume
injected was 3 ml, around half of the mould volume), the foaming process took place into
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(a) (b)

(c) (d)

Figure 5.11: The first prototype of the artificial tumour. Pictures of the artificial tumour (a-b),
which consists of two main parts: the external shell with a small cavity to allow the injection of
the MnCl2 solution and (c) the epoxy resin which fills the internal part. (d) Sketch of the main
components.

a vacuum chamber to enhance the material porosity. The expanded resin fully occupied
the volume encased by the shell. Complete polymerization of the material took place in
60 minutes.
The epoxy resin serves as a matrix of porous material which creates a fine heterogeneous
texture on the T1-w image. This specific material for the realisation of the artificial tu-
mour has been identified after a test on 28 different materials, described in Appendix B.
After the foaming, an aqueous solution of MnCl2 was injected inside the shell through
the port, which then was closed with a stopper, to isolate the internal artificial tumour
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from the peanut oil in which will be immersed. The first prototype of the artificial tu-
mour was filled with a 0.1 mM MnCl2 solution. The ion concentration was established
on the basis of the calibration curves described in Section 4.1.2 to obtain the spin-lattice
relaxation time of the tumour T1 = 1322 ms, as in Table 5.2.

5.2 Preliminary validation and ongoing studies

The first assembled prototype of BREATH was positioned inside a phased array breast
coil (8 channel) with the usual setup of breast imaging. It was scanned with the T1-w
dynamic sequence with the following imaging parameters: 7.39 ms TR, 3.44 ms TE, 1.4
mm slice thickness, 0.7 mm slice spacing, 350x350 mm2 FoV, 352 x 352 AM. A compari-
son between the obtained images of the phantom and the images of the reference patient
(affected by the tumour taken as a model for the phantom) are shown in Figure 5.12.
From a visual inspection of the images, the artificial tumour is able to offer inhomoge-
neous subregions with different grey level intensities, as desired. However, comparing
the artificial and the real tumour on the image, it is evident that the artificial case shows
more areas with low MR signal (black) than the real case. This observation can be quan-
tified comparing the normalised intensity histograms of the two VOIs, shown in Figure
5.13.
The histogram has been extracted from the VOI segmented with ITK-SNAP. The ratio
between the counts in the first peak (red arrow) and the second one (black arrow) is ∼3
for the real tumour and ∼15 for the artificial case, confirming that the artificial object
does not create enough voxels with brighter intensities on the MR image. The reason for
this result was the difficulties encountered during the injection of the MnCl2 solution in
the matrix of resin. In fact, the resin was very thick and the syringe needle struggled to
go through the sponge. It was not possible to fill the internal part of the insert that were
most distant from the cavity in which the syringe was inserted. Consequently, the ion
solution was concentrated in the middle of the insert and closer to the cavity, that in fact
resulted to be the brighter zones in the MR images.
To face this problem, the realisation of a second prototype of the artificial tumour is
ongoing. The new prototype will have more than one cavity on the plastic surface, to
facilitate the injection from several sides. Moreover, a reduced quantity of resin will be
poured in the shell, with the final expected result of a less dense porose matrix.
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(a)

(b)

Figure 5.12: T1-w image of (a) the reference breast cancer patient and (b) the first prototype of the
BREATH phantom. The images are axial (left) and sagittal (right).
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(a)

(b)

Figure 5.13: Normalised intensity histogram of (a) the real tumour and (b) the artificial tumour.
The y axis is the frequency of number of voxels. The arrows indicate the peaks considered for the
analysis.
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5.3 Future planning

5.3.1 Validation

After the realisation of the new version of the artificial tumour, the second prototype of
BREATH will be reassembled and will undergo a validation process, similar to the one
applied in the case of the pelvic phantom, including:

• comparison of the artificial and real tumour in terms of intensity histogram on the
MR images acquired with the T1-w dynamic sequence;

• acquisition of relaxation times maps of the phantom and comparison with the re-
laxation times found in vivo on the healthy volunteers and patients (database 2,
Table 5.1), 17 subjects);

• extraction of the radiomic features from the artificial tumour and evaluation of
compatibility with the features extracted from the patients’ images (database 1,
Table 5.1), 84 subjects).

If the second version of BREATH will give positive results during the validation process
(i.e. good agreement with the texture properties and MR signal of the patients) it will be
exploited for the optimisation of the radiomic analysis in breast MRI, as described below.
Otherwise, other versions of the artificial tumour will be planned to make the phantom
the most representative of a real patient for radiomic purposes.

5.3.2 Repeatability and reproducibility of the radiomic features

The validated BREATH version will be scanned on different MR scanners, to test the re-
peatability of the radiomic features in fixed experimental conditions. The experimental
design will be similar to the one planned for PETER PHAN (Figure 4.8). The repeatabil-
ity will be tested on each scanner involved, including the three scanners already used for
the pelvic phantom experiments and possibly additional scanners. The breast phantom
will be scanned in a test-retest experiment with the identified MR sequence for the spe-
cific clinical scenario which the phantom study will support. The impact of the phantom
repositioning between acquisitions will be investigated.
In parallel, the reproducibility of the radiomic features varying the scanner or the imag-
ing parameters will be studied. In particular, the parameters will be varied in the range
identified on the clinical images in the database of interest. The set of the most unstable
features (non-repeatable and/or non-reproducible) will be identified and the selected
features will be excluded a priori from the analysis on the clinical database.
In addition, a study on the ability of the radiomic features to properly quantify the tex-
ture under a certain volume threshold will be performed. In fact, some features may lose
their meaning (according to their mathematical definition) when extracted from small
volume lesions. This property will be investigated on the breast phantom and could
be useful to guide the feature selection process and/or prove useful criteria for patient
enrollment when designing clinical studies.
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5.3.3 Application to two clinical scenarios

The methodological studies on BREATH (described in the previous paragraph) will be
coupled with two planned clinical studied, currently ongoing at the IEO.
The first study is on database 1 (Table 5.1), described in 5.1.3. The primary aim of the
study is to investigate the association between the radiomics biomarkers extracted from
the breast lesion and the pathological response to the neoadjuvant therapy. The sec-
ondary aim is to study the association between the radiomic features and the biological
profile of the tumour, obtained from the surgical specimen. A tertiary endpoint of the
study is the investigation of the prognostic value of the radiomic parameters when ex-
tracted from the MRI executed before and, when available, after the neadjuvant treat-
ment. The radiomic features will be extracted from the images acquired with a T1 dy-
namic sequence (first arterial phase after the contrast agent injection).
The second study in on database 3 (Table 5.1), which is a retrospective dataset including
183 breast cancer patients who underwent a breast MRI before surgery. The primary
aim is to investigate the correlation between the breast tumour subtypes (in terms of the
expression of ER, PR, and HER2 receptors and evaluation of Ki-67) and the radiomic
features extracted from the lesion segmented on the MR images (diffusion contrast en-
hanced sequence with contrast agent injection). The secondary aim is to verify if, in
presence of secondary lesions, the radiomic features would be able to differentiate the
patients in two subgroups: (i) the patients in which all the lesions have the same bi-
ological and histological parameters and (ii) the patients in which the biological and
histological parameters of the principal lesion are different from the parameters of the
satellite lesions.
In both these studies, a parallel investigation on the breast phantom will ensure the
robustness of the radiomic analysis, serving as first feature selection method and pro-
viding indications on the volume threshold under which some features may be unstable
or unreliable.





Conclusions and future perspectives

In this thesis work, the application of radiomics to MRI was investigated under vari-
ous methodological aspects. A dedicated phantom to support MRI-based radiomics on
pelvic cancer was developed and validated. The phantom, called PETER PHAN (PElvis
TExtuRe PHANtom), included inserts mimicking the texture and the MR signal (in terms
of the relaxation times T1 and T2) of a set of identified patients, overcoming in this way
the limitations of already existing homogeneous phantoms for MRI. PETER PHAN was
the first MRI phantom dedicated to radiomic analysis of the pelvis, meeting the demand
of the present MRI-based radiomics [14]. The procedure for assembling the phantom
was published to extend its use in the radiomics community, towards the harmonisation
and standardisation of the procedure [31].
The phantom was exploited for an initial analysis on three available radiomic software,
namely IBEX, LIFEx, and PyRadiomics, that were tested to assess the impact of the choice
of a specific package on the value of the radiomic features extracted from T1-w and
T2-w images. Only 24 radiomic features were found to be defined the same (consider-
ing both nomenclature and mathematical formulas) in the three packages. Despite the
same nominal definition, consistent discrepancies were found in the results obtained
with different software and they were attributable to different identified sources of er-
ror, including software-specific algorithm implementation, customised settings for tex-
ture matrixes calculation (especially the Grey Level Run Length Matrix), variability in
the user-dependent parameters (for image preprocessing and discretisation) and incom-
patibility in the readable file format. The findings extend the study performed by Foy et
al. [98] on the variation in algorithm implementation across others radiomic software.
The results suggested that not all the available radiomic software show agreement on
the mathematical definition and calculation of the radiomic features. As a consequence,
the choice of a radiomic package should be conducted with awareness and guided by
the IBSI indications, being constantly updated. This preliminary investigation was use-
ful also to identify a single tool (PyRadiomics) that was exploited for all the following
radiomic analysis.
Afterwards, PETER PHAN was used in a multicentric study to assess the radiomic fea-
tures repeatability when extracted from T2-w images acquired on three different scan-
ners (two vendors -GE and Philips- , two magnetic field strengths -1.5 T and 3 T-). The
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results showed a decrease in the number of highly repeatable features when the phantom
was repositioned before the second acquisition in a test-retest study. The percentage of
repeatable features (ICC > 0.9) after phantom repositioning varied from 11.2% to 85.4%

depending on the considered scanner. The reproducibility of the features at fixed imag-
ing parameters and varying the field strength or the vendor was evaluated as well, with
a consistent number of features resulting not reproducible. Based on the specific con-
sidered scenario, 19.2% to 87.9% of the features showed poor reproducibility, i.e. CCC
≤ 0.5. The features identified as most stable in this study included Energy and Total
Energy among the first order features, the Run Length Non Uniformity of the GLRLM-
based features and the Coarseness of the NGTDM-based features. The variation of the
Time of Echo (TE) or the Repetition Time (TR) in the range of clinical imaging when ac-
quiring T2-w images of the phantom resulted to have an impact on the reproducibility of
the radiomic features. A decrease in the features reproducibility was particularly evident
when increasing the gap in TE, in the range 80-120 ms, of two compared T2-w images.
All these observations highlighted the need for a phantom study to be coupled with a
specific clinical scenario of interest, in order to identify and exclude the non-repeatable
or non-reproducible radiomic features before building a prediction model. This thesis
explored few clinical scenarios, providing a well-defined workflow for the identification
of non-robust radomic features, that can be adapted for specific clinical needs.
The dependence of the texture features on shape features was investigated in a prelimi-
nary study on selected MR images, leading to identify a subset of 20 features nominally
belonging to the texture features but not carrying the informative content they were ex-
pected to quantify. In addition, an investigation on the dependence of the feature values
on the dimension of the volume of interest was carried out. The preliminary results sug-
gested that some features tended to loose their ability to distinguish different textures
below a volume threshold of 0.5 cm3. Both these last investigations, despite limited to a
specific scenario, allowed to identify a set of low-quality texture features that should be
excluded a priori in a clinical study. The specific identified features may not be universal,
but a similar procedure can be adapted in other scenarios.
The last part of the thesis work was dedicated to the development of a breast phantom
specifically designed for MRI-based radiomics, not previously described in the litera-
ture. The potential and novelty of such phantom include the closeness to an in vivo
situation, reached by fabricating an object which mimics the geometry, MR signal and
texture properties of a real breast with a tumour. These characteristics optimise and
push forward the attempts already made by exploiting fruits as test objects to study the
radiomic features robusteness in MRI [135]. Moreover, with respect to previous fruit
phantoms, it can be easily shared among medical centres to guarantee reproducibility
and promote a comprehensive multicentric investigation on an identical object. The first
prototype of the phantom, called BREATH (BREAst Texture pHantom), is already avail-
able and made use of a breakthrough material, namely expanded epoxy resin, to mimic
the texture of a breast tumour, encased in a 3D-printed mould based on a virtual model
obtained from an MRI scan of a real tumour. This phantom will be used for the opti-
misation of radiomic protocols in breast MRI, following an approach similar to the one
used with the pelvic phantom.
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Future perspectives

Regarding the pelvic phantom, the extension of the repeatability and reproducibility
studies to different scenarios will be considered, including the acquisition of images on
others MRI scanners and the variation of other imaging parameters besides TE and TR. A
comprehensive investigation on the impact of the dimension of the volume of interest on
the radiomic features value is planned, along with an extended study on the dependence
of the texture features on the shape properties. All these studies might be performed also
considering pulse sequences different from the ones already tested. The software com-
parison could be extended considering other tools, possibly commercial packages that
should adhere more closely to the IBSI indications for the harmonisation of the features
extraction.
Concerning the breast phantom, a new prototype of the artificial tumour is being tested
and the assembled phantom in its second version will be validated in the near future.
BREATH will be acquired on different scanners, with a schedule similar to the study de-
sign presented for the radiomic experiments on PETER PHAN. Comparable analysis will
be carried out to identify the most repeatable and reproducible high-quality radiomic
features. These methodological studies will be performed in support of two planned
radiomic analyses, involving two distinct database of breast cancer patients, that have
been already identified.
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APPENDIX A

Definition of selected radiomic features

This Appendix provides the definitions of the radiomic features used in Chapter 3 for
the investigation on the compatibility of the feature values when extracted from different
software packages. The nomenclature and formulas are recommended by the IBSI [18]
in the reference manual version v9 (accessible at this address).

A.1 Morphological features

Morphological features describe the shape and geometrical properties of the Volume of
Interest (VOI). Let V be the volume of the VOI, A the surface area of the VOI, Nv the
number of voxels in the VOI and Vk the volume of voxel k. On this basis, the following
features can be defined.

A.1.1 Sphericity

Sphericity express the degree of roundness of the considered VOI.

Sphericity =

(
36πV 2

) 1
3

A
(A.1.1)

A.1.2 Volume (voxel counting)

This feature indicates how many voxels compose the VOI.

V olume(vox.count) =

Nv∑
k=1

Vk (A.1.2)

A.2 Intensity histogram features

The features of this subset quantitatively describe the intensity histogram obtained after
discretising the intensity values of the voxels in the VOI into intensity bins. Let ~Xd =
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(Xd,1, Xd,2, ..., Xd,Nv ) be the set of Ng grey levels in which the VOI intensties have been
discretised. The mean discretised intensity µ is given by:

µ =
1

Nv

Nv∑
k=1

Xd,k (A.2.1)

Thus, the following features can be introduced.

A.2.1 (Excess) discretised intensity kurtosis

This feature, along with skewness described below, aims at quantifying the shape of the
intensity histogram. In particular, kurtosis refers to the ”peakedness” of the distribution.
A higher value of kurtosis indicates that the contribution of the tails is greater with re-
spect to the mean value. On the other hand, a lower kurtosis describes a distribution
concentrated around the mean value.

Kurtosis =
1
Nv

∑Nv
k=1 (Xd,k − µ)

4(
1
Nv

∑Nv
k=1 (Xd,k − µ)

2
)2 − 3 (A.2.2)

A.2.2 Discretised intensity skewness

Skewness quantifies the asymmetry of the intensity distribution inside the VOI. A distri-
bution can be symmetrical or either have a positive or negative skewness, depending on
the weight of the right or left tail, respectively.

Skewness =
1
Nv

∑Nv
k=1 (Xd,k − µ)

3(
1
Nv

∑Nv
k=1 (Xd,k − µ)

2
)3/2

(A.2.3)

A.3 Grey level co-occurence based features

The Grey Level Co-occurrence Matrix (GLCM) has been defined in Chapter 2 and quanti-
fies how many times a pair of voxels with a certain grey level and at fixed distance occurs
in the VOI. LetNg be the total number of grey levels in which the VOI intensity mask has
been discretised, i = 1, ..., Ng and j = 1, ..., Ng . Let pij be the normalised co-occurrence
matrix of the VOI, pi. =

∑Ng
j=1 pij the row marginal probability and p.j =

∑Ng
i=1 pij the

column marginal probability. Let pi−j,l =
∑Ng
i=1

∑Ng
j=1 pij be the diagonal probabilities,

with l = |i− j| and l = 0, 1, ..., Ng − 1. The following GLCM-based features can be
extracted.
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A.3.1 Inverse difference

Inverse difference quantifies the local homogeneity in the VOI intensities. The higher the
feature value the higher the homogeneity (i.e. locally same grey levels).

Inv. Difference =

Ng∑
i=1

Ng∑
j=1

pij
1 + |i− j|

(A.3.1)

A.3.2 Angular second moment

The Angular second moment, called also Energy, is another measure of homogeneity in the
VOI. The higher the energy the higher the occurrences of pairs (i, j) in the VOI.

Angular second moment =

Ng∑
i=1

Ng∑
j=1

(pij)
2 (A.3.2)

A.3.3 Contrast

Contrast quantifies the local variations of intensity levels within the VOI, with a higher
value associated to greater variations of grey levels in neighbouring voxels.

Contrast =

Ng∑
i=1

Ng∑
j=1

(i− j)2
pij (A.3.3)

A.3.4 Correlation

Correlation is a measure of the linear dependency of grey levels within the VOI.

Correlation =
1

σi.σ.j

−µi.µ.j +

Ng∑
i=1

Ng∑
j=1

ijpij

 (A.3.4)

where µi. =
∑Ng
i=1 ipi. and σi. =

(∑Ng
i=1(i− µi.)2pi.

)1/2

are the mean and standard devi-
ation of pi.. Similarly, µ.j and σ.j are the mean and standard deviation of p.j .

A.3.5 Joint entropy

Joint entropy gives an indication on the randomness of grey levels in neighbouring voxels.

Joint entropy = −
Ng∑
i=1

Ng∑
j=1

pij log2 pij (A.3.5)
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A.3.6 Difference average

Difference average quantifies the variation in grey levels, with a higher value indicating a
greater disparity in neighbouring voxels.

Difference average =

Ng−1∑
l=0

l pi−j,l (A.3.6)

A.4 Grey level run length based features

The Grey Level Run Length Matrix (GLRLM) has been defined in Chapter 2 and com-
putes the run lengths in the VOI. Let Nr be the maximum length of a run observed in
the image, i = 1, ..., Ng and j = 1, ..., Nr. Let rij be the element of the GLRLM of the VOI
and Ns =

∑Ng
i=1

∑Nr
j=1 rij . Let ri. and r.j be defined as: ri. =

∑Nr
j=1 rij and r.j =

∑Ng
i=1 rij .

The following GLRLM-based features can be extracted.

A.4.1 Short run emphasis

Short run emphasis quantifies the short run lengths in the VOI. A higher value is associ-
ated with a fine-grained texture.

Short run emphasis =
1

Ns

Nr∑
j=1

r.j
j2

(A.4.1)

A.4.2 Long run emphasis

Long run emphasis quantifies the long run lengths in the VOI. A higher value is associated
with a coarse texture.

Long run emphasis =
1

Ns

Nr∑
j=1

j2r.j (A.4.2)

A.4.3 Low grey level run emphasis

Low grey level run emphasis emphasises the low intensity levels in the VOI. A higher value
indicates a higher occurrence of low grey levels.

Low grey level run emphasis =
1

Ns

Ng∑
i=1

ri.
i2

(A.4.3)
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A.4.4 High grey level run emphasis

High grey level run emphasis emphasises the high intensity levels in the VOI. A higher
value indicates a greater occurrence of high grey levels in the VOI.

High grey level run emphasis =
1

Ns

Ng∑
i=1

i2ri. (A.4.4)

A.4.5 Short run low grey level emphasis

Short run low grey level emphasis emphasis the GLRLM cells characterised with both short
run and low grey levels.

Short run low grey level emphasis =
1

Ns

Ng∑
i=1

Nr∑
j=1

rij
i2j2

(A.4.5)

A.4.6 Short run high grey level emphasis

Short run high grey level emphasis emphasis the GLRLM cells characterised with both short
run and high grey levels.

Short run high grey level emphasis =
1

Ns

Ng∑
i=1

Nr∑
j=1

i2rij
j2

(A.4.6)

A.4.7 Long run low grey level emphasis

Long run low grey level emphasis emphasis the GLRLM cells characterised with both long
run and low grey levels.

Long run low grey level emphasis =
1

Ns

Ng∑
i=1

Nr∑
j=1

j2rij
i2

(A.4.7)

A.4.8 Long run high grey level emphasis

Long run high grey level emphasis emphasis the GLRLM cells characterised with both long
run and high grey levels.

Long run high grey level emphasis =
1

Ns

Ng∑
i=1

Nr∑
j=1

i2j2rij (A.4.8)



134 A.5 Neighbourhood grey tone difference based features

A.4.9 Grey level non-uniformity

Grey level non-uniformity quantifies the distribution of runs over the grey levels. A lower
value indicates that the runs are evenly distributed over the grey levels.

Grey level non uniformity =
1

Ns

Ng∑
i=1

r2
i. (A.4.9)

A.4.10 Run length non-uniformity

Run length non-uniformity quantifies the distribution of runs over the run lengths. A
lower value indicates that the runs are evenly distributed over the run lengths.

Run length non uniformity =
1

Ns

Nr∑
j=1

r2
.j (A.4.10)

A.4.11 Run percentage

Run percentage quantifies the coarseness of a texture, being defined as the ratio of number
of effective runs and total number of possible runs in the VOI.

Run percentage =
Ns
Nv

(A.4.11)

A.5 Neighbourhood grey tone difference based features

The Neighbourhood Grey Tone Difference Matrix (NGTDM) has been defined in Chap-
ter 2 and is based on the difference of grey level between one voxel and its surrounding
neighbours. Let si be a matrix element of the NGTDM, Nn the number of voxels with a
valid neighbourhood, ni the number of voxels of grey level i and with a valid neighbour-
hood, and pi = ni/Nn the grey level probability. Let Ng,p ≤ Ng be the number of grey
levels with pi > 0 and Nv,c =

∑
ni the number of voxels with at least one neighbour.

The following NGTDM-based features can be extracted.

A.5.1 Coarseness

Coarseness quantifies the spatial rate of the change in intensity values within the VOI. A
higher value of this feature is associated with a more uniform texture.

Coarseness =
1∑Ng

i=1 pisi
(A.5.1)
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A.5.2 Contrast

A high Contrast is typical of a VOI showing large differences between the grey level of a
voxel and the levels of its neighbours.

Contrast =

 1

Ng,p (Ng,p − 1)

Ng∑
i=1

Ng∑
j=1

pipj(i− j)2

 1

Nv,c

Ng∑
i=1

si

 (A.5.2)

with pi 6= 0 and pj 6= 0.

A.5.3 Busyness

Busyness indicates how much the texture in the VOI is busy. A texture is busy when there
are large differences between the grey level of a voxel and the levels of its neighbours.

Busyness =

∑Ng
i=1 pisi∑Ng

i=1

∑Ng
j=1 |ipi − jpj |

(A.5.3)

with pi 6= 0 and pj 6= 0.





APPENDIX B

Selection of the material for the artificial breast tumour

This Appendix describes the tests performed on samples of different materials, to iden-
tify the one suitable for the realisation of the porous matrix inside the artificial breast
tumour. The desired material should be non-homogeneous and should create a pattern
of grey levels on the MR images acquired with a selected sequence.

B.1 Preliminary test

The materials tested were provided by the Interdisciplinary Centre for Nanostructured
Materials and Interfaces (CIMaINa, Milan) and are listed in Table B.1. The samples con-
sisted in cylindrical objects with a ∼2 cm diameter and ∼1 cm height. They were fixed
on two bottle-shaped phantoms usually exploited for the quality controls on the consid-
ered MR scanner (1.5 T Optima MR450W, General Electric Healthcare), available at the
European Institute on Oncology, Milan. The setup is shown in Figure B.1. The bottle-
shaped phantoms contained 3.75 g NiSO4 x 6 H2O and 5 g NaCl per 1000 g distilled
H2O. Four samples were attached to each bottle (two for opposite sides of the bottle)
and the procedure repeated for all the available test objects. To easily identify the objects
on the MR image, a silicone marker was added as a reference on one side of the bottle.
The two bottles were then positioned inside the breast coil normally used in the setup
for breast imaging on the MR scanner. The images were acquired with a T1-w sequence,
with imaging parameters TR 560 ms, TE 20 ms, slice thickness 5.5 mm, slice spacing 5.9
mm, FoV 400x400 mm, and with a T2-w sequence with TR 3126 ms, TE 93 ms, slice thick-
ness 5.5 mm, slice spacing 5.9 mm, FoV 400x400 mm. Examples of the obtained MR T1-w
and T2-w images are shown in Figure B.2. From this test, only 6 materials gave a visible
signal on the obtained MR images: the expanded epoxy resin (19), the silicon rubber
(20) and some of the polyurethane foams and elastomers (26, 27, 28, 29). The remaining
materials were transparent on the images.

B.2 Targeted test

A second experiment was performed on materials 19, 20 and 28 (selected as representa-
tive of the polyurethane foams) in a geometry more similar to the breast phantom that
had to be realised (closer to a real patient). The samples were immersed in two cups
(20-28 in the same cup, material 19 in the other) filled with a 0.1 mM MnCl2 solution,
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Table B.1: List of materials tested on the MR scanner. Materials from 23 to 28 are commercial
polyurethane foams and elastomers.

Sample number Material
1 Polymethylmethacrylate (PMMA)
2 High molecular weight polyethylene (HMW-PE)
3 Glass-filled nylon
4 Polyvinyl chloride (PVC 1)
5 Polyvinyl chloride (PVC 3)
6 Polyvinyl chloride (PVC 4)
7 ABS natural 250 ◦C 100 % infill
8 ABS natural 250 ◦C 25 % infill
9 ABS clear 250 ◦C 100 % infill
10 ABS clear 250 ◦C 25 % infill
11 PET clear 230 ◦C 100 % infill
12 PET clear 230 ◦C 25 % infill
13 TPU clear 230 ◦C 100 % infill
14 TPU clear 230 ◦C 25 % infill
15 Form2 STD GREY 100% infill
16 Form2 Tough 100% infill
17 Polyurethane foam
18 Expanded silicon rubber
19 Expanded epoxy resin
20 Silicon rubber
21 Poli(HEMA-co-AN) - 1
22 Poli(HEMA-co-AN) - 2
23 Smooth-On pmc 780 dry
24 Smooth-On ecoflex 00-20
25 Smooth-On vytaflex 30
26 Smooth-On ecoflex 00-10
27 Smooth-On moldstar 15
28 Smooth-On ecoflex 00-30

as shown in B.3 (a). The cups were positioned inside the breast coil, as in the previous
setup, and scanned with the T1-w dynamic sequence included in the usual protocol for
breast imaging. This sequence was chosen as it was the one of interest for acquiring the
final breast phantom. The imaging parameters were TR 7.2 ms, TE 3.44 ms, slice thick-
ness 1.4 mm, slice spacing 0.7 mm, FoV 350x350 mm. One of corresponding Maximum
Intensity Projection (MIP) image is shown in B.3 (b). From this experiment, the expanded
epoxy resin (19) showed an heterogeneous signal on the MR images (B.3b), also favored
by its intrinsic porosity, whilst the other materials gave a homogeneous response. Thus,
the resin resulted to be the most suitable material for the realisation of the artificial breast
tumour.
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(a)

(b)

Figure B.1: Experimental setup. (a) The samples of different materials were fixed on the surface of
preexisting phantoms. A silicone marker (attached between the two samples) was added to easily
locate and distinguish the test objects on the MR images. (b) Each phantom was positioned inside
the breast coil in the usual setup for diagnostic imaging.
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(a)

(b)

Figure B.2: Coronal (a) T1-w and (b) T2-w image of the tested materials attached on the bottle-
shaped phantoms. The sample number is indicated in red.
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(a)

(b)

Figure B.3: (a) Experimental setup for the targeted test. (b) MIP image of the phantom in the new
configuration. The sample number is indicated in red.
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Un ringraziamento davvero speciale è sicuramente per Alfio: non solo hai reso possibile
questo lavoro, ma l’hai fatto con entusiasmo e reale interesse. Se mai dovessi aprire una
fabbrica di fantocci, sicuramente saresti mio socio. Grazie anche a Stefano per avermi
accolta in radiofarmacia.



Acknowledgements 161

Grazie Gennaro per i consigli e per avermi regalato i barattoli del frullatore, parte essen-
ziale dell’esperimento!

Un ringraziamento speciale al comitato pavese della Croce Rossa Italiana, che mi ha
accolta proprio negli anni del dottorato, ha nutrito la mia anima e ha dato valore al mio
essere umana, attribuendo un significato più profondo alle mie azioni: ”Mais les femmes
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