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Abstract: In the last years, there is a growing interest in the application of nanoscaled materials in
cancer therapy because of their unique physico-chemical properties. However, the dark side of their
usability is limited by their possible toxic behaviour and accumulation in living organisms. Starting
from this assumption, the search for a green alternative to produce nanoparticles (NPs) or the discovery
of green molecules, is a challenge in order to obtain safe materials. In particular, gold (Au NPs) and
silver (Ag NPs) NPs are particularly suitable because of their unique physico-chemical properties,
in particular plasmonic behaviour that makes them useful as active anticancer agents. These NPs
can be obtained by green approaches, alternative to conventional chemical methods, owing to the
use of phytochemicals, carbohydrates, and other biomolecules present in plants, fungi, and bacteria,
reducing toxic effects. In addition, we analysed the use of green and stimuli-responsive polymeric
bio-inspired nanovesicles, mainly used in drug delivery applications that have revolutionised the
way of drugs supply. Finally, we reported the last examples on the use of metallic and Au NPs as
self-propelling systems as new concept of nanorobot, which are able to respond and move towards
specific physical or chemical stimuli in biological entities.

Keywords: noble metals NPs; green synthesis; bio-inspired NPs; nanomedicine; cancer therapy

1. Introduction

NPs are characterised by unique physical and chemical properties because of their high surface
area and nanoscale size [1]. They are constituted by different types of materials that make them
convenient platforms in different application fields. Among these, the nanomedicine offers different
opportunities in order to develop nanovectors as drug delivery agents or active therapeutic systems
in different diseases [2–5]. Literature shows numerous examples of synthetic routes, in particular
physical or chemical procedures, which in general, require the use of toxic solvents and expensive
laboratory equipment with high-energy consumption. The nanomaterials obtained by these methods
can be highly toxic for the environment or living organisms [6], without the possibility to have specific
regulations for users, as there are for the chemicals or drugs.

For these reasons, the chemistry of nanoscaled materials moves towards green procedures in
order to reduce the waste production and, at the same time, to increase their safety [7]. Green routes
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are eco-friendly, low cost and do not require expensive instrumentations [8,9] because the reducing
and capping agents are derived from nature (plants, fungi, microorganisms). The principal NPs
produced by green chemistry are metallic NPs, in particular noble metals NPs (Au and Ag) derived
from reduction of metallic salts from positive oxidation state to zero [10] in aqueous solutions by the
use of phytocompounds [11,12] acting as capping and reducing agents. NPs obtained are in the size
range of 1–100 nm with a shape and surface charge dependent on the biomolecules types involved in
the synthetic process that, in turn, influenced the speed of chemical reactions [13]. A fast metal salt
reduction permits to obtain small NPs whereas, on the contrary, bigger NPs are derived from slow
reduction rate [14]. In addition, the high temperature/pressure and acidic pH that characterize the
conventional route, are not required in the green processes [15]. The role of non-toxic capping/reducing
agents and safe solvents are investigated regarding their impact on the NPs formations, especially
regarding their size and shape. Despite metal NPs are more suitable as active therapy tools owing
to their optical properties, soft-NPs are more efficient to encapsulate drugs and macromolecules
because of their ability to form aqueous-suspended vesicles having a hollow lumen [16]. In particular,
responsive biodegradable polymeric NPs, able to respond to external stimuli, are particularly suitable
in drug delivery application. Polymers constituting NPs can be synthetic bio-inspired molecules
or green products derived from natural source like algae, silk or crustacean exoskeleton [17]. Last,
but not least, is the recent application of soft nanorobots and DNA nano-origami (with size range in
the molecular scale) in cancer therapy. These structures have the ability to deliver active biomolecules
in specific cancer sites because of their possibility to make changes in a controlled and predictable
manner to the environment following external stimuli [18]. Then, in this review, we carefully analysed
the main green synthetic routes, commonly used to obtain noble metals NPs (Au NPs and Ag NPs)
with plasmonic properties and the role of capping/reducing agents in their achievement. We also
reported their application in cancer therapy both in vitro and in vivo. In addition, the applications
of stimuli-responsive polymeric bio-inspired NPs in drug delivery systems together with the recent
advancements in the nanorobots were investigated.

2. Plasmonic NPs: Au NPs and Ag NPs

The noble metal NPs, Au NPs and Ag NPs, are involved in a wide range of applications because
of localised surface plasmon resonance (LSPR), which is produced by electrons oscillation on NPs
surface in presence of an electric field [19]. These characteristics are explained by Mie theory that
solved Maxwell’s equations for the case of an incoming wave interacting with a spherical colloidal
particle [20,21]. The Au and Ag show the most interesting selective absorption in the visible and
near-infrared (NIR) of wavelength, respectively. The surface plasmon energy is determined by
the dielectric properties of the metal and the surrounding environment, as well as the NPs shape
(Figure 1a–f) and the size (Figure 1g).

In addition, the size influences the colour of Au and Ag, which ranges from red through green to
violet [22]. Tuning the shape and size, it is possible to obtain NPs absorbing in a desired wavelength
required for a specific application (Figure 1a–k). Only dipole plasmons are formed for small NPs,
whereas the anisotropic NPs can be excited also in higher order plasmon modes as can be shown in
Ag nanoprisms, that present three peaks: at 340 nm (out of plane quadrupole resonance), 470 nm
(in-plane quadrupole resonance) and 640 nm (in-plane dipole resonance) [23]. In the case of nanorods,
many plasmon multiple modes were recorded with a position that strongly depends on their aspect ratio
and size, shifting in the red band when the size decreases [24]. Another class of metallic nanomaterials
are nanoshells (NSs), that offer interesting perspectives against tumour cells owing to their unique
features [25]. The term nanoshells refers to nanomaterials consisting of a metal layer covering a
dielectric core. The dimensions of the two components (shell thickness and core radius) can be tuned
in order to absorb and scatter light in a specific wavelength [26]. A thin metallic layer permits to obtain
an absorption peak in the infrared region, whereas, the increase of thickness induces a UV region
displacement [27].
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The tunability of Au NSs to scatter or absorb light at specific wavelengths is interesting in
biomedical applications such as cancer therapy and imaging. In the NIR, that includes wavelengths
between 650 and 900 nm, the absorption values of water and haemoglobin are very low and the
penetration of NIR wavelength in tissues is very high [28]. In light of this, the Au NSs are remarkably
suitable in photothermal therapy (PTT) after in vivo injection due to their ability to convert light in
heat in a specific tumour region [29]. Despite Au is commonly used to obtain NSs, Ag layer with
plasmonic properties was produced on a silica core in order to evaluate its effect in a medium that
mimic the tumour environment (pH 5.5), showing the Ag degradation rate useful as an antitumor
agent. In addition, the presence of silica core could allow to confine active molecules for therapy or
fluorescent materials for imaging [30]. In summary, Ag NPs show the highest plasmon excitation
efficiency [31] and they are mostly used as antibacterial tools [32,33]. Au NPs are often applied in many
fields especially nanomedicine because of their ability to absorb light in infrared spectrum making
them suitable agents in thermal therapy for cancer treatments [34,35].
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Figure 1. (a–f) Representative TEM images of Au nanomaterials having different shapes. Reproduced
with permission from [22], Copyright, The Royal Society of Chemistry, 2017. (g) Different localised
surface plasmon resonance (LSPR) tuning the size of Au NPs [36] and shape (h–k). Reproduced with
permission from [37], Copyright Elsevier, 2019.



Nanomaterials 2020, 10, 1083 4 of 26

2.1. Au NPs and Ag NPs from Bacteria and Fungi

Many green sources are available in the development of noble metals NPs. In bacteria, the reduction
of metallic ions can occur intracellularly or extracellularly [38] and the presence of different types of
biomolecules having carboxylic and amine groups, prevents the agglomeration phenomena [39].

Bacillus subtilis 168 was used to obtain octahedral Au NPs (5–25 nm) inside the cell wall [40]
whereas spherical Au NPs (10–20 nm) were synthesised using Rhodopseudomonas capsulate [41] at low
concentrations. Nanowires were achieved increasing the bacteria concentration. Also Escherichia
Coli DH5α was used to obtain spherical Au NPs (20–30 nm) starting from an aqueous solution of
tetrachloroauric acid (HAuCl4) [42] and single-cell protein of Spirulina platensis (6–10 nm) [43].

Ag NPs (spherical shape and with sizes between 2 and 100 nm) with different physico-chemical
properties were synthesised from Staphylococcus aureus as well as Bacillus licheniformis [44],
Bacillus megaterium (irregular shape and with sizes between 80 to 98.56 nm) [45] and Enterococcus
faecium (spherical shape and with sizes between 30 and 100 nm) [46].

Compared to bacteria, the metallic NPs biosynthesis by Fungi is more suitable for large scaling-up
because of the easy set-up laboratory equipment and fast microorganism growth [47]. AuNPs and
nanoplates with different sizes were synthesised using different concentrations of HAuCl4 and Yarrowia
lipolytica cells [48]. Ag NPs and Au NPs can be achieved by Aspergillus terreus (polydispersed spherical
shapes ranging from 1 to 20 nm) [49]. Spherical and rod shaped Au NPs were achieved from Epicoccum
nigrum with sizes ranging from 5 to 50 nm [50]. Spherical Ag NPs were obtained from Fusarium
oxysporum (ca. 42 nm) [51], Penicillium fellutanum (5–25 nm) [52] and Fusarium solani (5–35 nm) [53].
The reduction of silver ions by Penicillium sp. [54] was also used to obtain Ag NPs. The yeasts Candida
glabrata and Schizosaccharomices pombe were employed as biofactory for metal NPs [55], as well as an
extremophile yeast, useful to produce Ag and Au NPs with sizes ranging from 20 to 100 nm and good
plasmonic properties [56].

2.2. Au NPs and Ag NPs from Plants Extracts

The synthesis of Au NPs and Ag NPs using plants is still under investigation. The polyphenols
are abundant in plants extracts, represent the largest group among the natural antioxidants and are
potentially used as drugs and food additives. These molecules, together with other types of active
biomolecules (e.g., enzymes, amino acids, organic acids, tannins, carbohydrates, polysaccharides,
vitamins) are responsible of NPs formation by bio-reduction of metal ions, yielding metallic NPs [57]
(Figure 2).

Metal ions are entrapped by biomolecules and successively, after the steps of reduction, sintering
and smelting, the NPs formation is achieved. The site of ions absorption as well as the metal ion
amount define the NPs size and shape, whereas the adjustment of the reaction conditions influences
the morphology [58]. Polyphenols are characterised by aromatic rings that bind hydroxyl groups (OH)
that make them soluble in water and useful in both the reduction and the stabilisation of metallic
NPs [59]. The ability of H-donation exerted by polyphenols, mainly involves the metal salts of sulphates,
chlorides and nitrates, as strong antioxidants in the reduction step of metal precursors. In addition,
the polyphenols OH groups (in the reduced form) turn into carbonyl groups (C=O) following the
reduction of metal ions. At the same time, the C=O bonds provide the metal NPs stabilisation.

The zero valent metal atoms (nM0) are obtained starting from polyphenols (APOH) and metal
halogen precursors (nMn+) as follows:

nAPOH + nMn+
→ nAPX + nM0

Then, the NPs growth promotes the formation of metal atoms before the additional reduction of
metal ions:

nM0 + nMn+
→Mn

n+
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The next steps of Mnn+ collision and fusion permit the formation of (M2n
2n+)n resulting in the

formation of NPs [60]. Starting from these assumptions, many researches use plant extracts to obtain
metallic NPs for further applications in many fields.
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Figure 2. Schematic representation of Au NPs and Ag NPs synthesis using plant extracts.

2.2.1. Au NPs

Recently, good Au NPs (7–17.48 nm) were obtained using aqueous solution of Sansevieria
roxburghiana leaf extract in presence of HAuCl4 (2 mM) at low reaction temperature (40 ◦C). The authors
achieved different shapes of NPs (spherical, triangle, hexagonal, rod and decahedral) that were useful
to degrade organic pollutants such as 4-nitrophenol, acridine orange, Congo red, bromothymol blue,
phenol red and methylene blue [61]. Boomi et al. [62] obtained different size of Au NPs (<100 nm)
from Coleus aromaticus leaf extract at three different temperatures (30 ◦C, 60 ◦C and 100 ◦C) in order to
apply them in cotton fabric, showing UV protection and cytotoxic effects on human hepatocellular
carcinoma cell lines (HepG2).

Kasthuri et al. [63] used Lawsonia inermis (henna) to produce anisotropic Au and quasi-spherical
Ag NPs (21 and 39 nm respectively) exploiting the high concentration of apiin, a flavonoid contained
in the plant. The apiin is characterised by OH and C=O groups that not only acted as reducing agent
of metal salts, but also functionalised the NPs surface contributing to make them stable up to 3 months.
Song et al. [64] obtained Au NPs from Magnolia kobus and Diospyros kaki extracts having a size of
(5–300 nm) and different shape within a few minutes using a reaction temperature of 95 ◦C. In this
work, it was demonstrated that an increase of temperature allowed a faster rate of NPs production
and, at the same time, a reduction of NPs size. Au NPs from Magnolia kobus extract, analysed by FTIR,
show peaks related to metabolites and proteins that were adsorbed on NPs surface. Jafarizad et al. [65]
used Mentha and Pelargonium plant extracts to achieve Au NPs (10–100 nm) with different shapes
(triangular and polygonal NPs from Mentha and spherical for Pelargonium). First, the authors conducted
GC-MS analysis of extracts, finding Isoeugenol and Spathulenol in Mentha extract whereas phenolic
acids, tannins and flavonoids in Pelargonium: these molecules represented the reducing agents because
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of their OH functional groups. The effect of NPs stabilization was also verified by the presence of C=C
bonds and C=O groups in monoterpene and sesquiterpene.

In all the synthetic routes described above, two steps (nucleation and grown) occurred:
the manipulation of these opens new scenario to obtain customised NPs in terms of size, morphology
and surface charge. In light of these, the capping and reducing agents together with the reaction
solvents play an important role to obtain monodispersed green NPs [66].

2.2.2. Ag NPs

Generally, the addition of plant extracts in AgNO3 aqueous solution induced the reduction of
Ag+ [67]. The Alternanthera dentate extracts permitted the rapid synthesis of spherical Ag NPs, having
a size less than 100 nm and antibacterial effects [68]. Smaller Ag NPs (15–50) nm were achieved [69]
from Acalypha indica extracts, as well as those obtained from orange peel (Citrussinensis) with a size
of 6 nm [70]. Olea Europaea leaves extract was used to obtain Ag NPs, observing that an increase
of pH and temperature allowed to achieve spherical Ag NPs (20–25) nm with a strong antibacterial
ability against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli [71]. Two different
leaf extracts derived from Leccino and Carolea cultivar of Olea Europaea were used to synthesise Ag
NPs. The different sizes obtained (10–60 nm) were dependent on cultivar used, showing a strong
antibacterial activity on total faecal coliforms present in well waters [72].

Similar size range was obtained using Coffea arabica seed extract in the presence of AgNO3 [73].
Shankar et al. [74] synthesised bimetallic core-shell NPs Au/Ag by simultaneous reduction of aqueous
Ag+ and AuCl4– by the use of Azadirachta indica broth. The obtained Ag NPs were polydispersed and
spherical, with a diameter in the range of 5–35 nm, whereas the Au NPs show planar structures with,
in most cases, triangular shape.

Ag NPs with sizes between 15 and 500 nm were achieved by Pinus desiflora, Diospyros kaki,
Ginko biloba, Magnolia kobus and Platanus orientalis [75]. Ag NPs (60–80 nm) were obtained using
callus extract of Carica papaya; also in this case, the active biomolecules and proteins acted as suitable
tool for the synthesis and stabilisation of NPs [76]. Eya’ane Meva et al. [77] obtained Ag NPs from
Stachytarpheta cayennensis, a ligneous weed abundant in saponins, carbohydrates, flavonoids and
terpenoids. The NPs obtained within 5 min were characterised by the presence of pure Ag and
AgCl nanocrystallites, with an average diameter of 13 nm and 20 nm for Ag and AgCl, respectively.
In addition, a lot of natural (starch, chitosan, sodium alginate, gum acacia) and synthetic polymers
(polyethylene glycol, PEG and polyvinyl alcohol, PVA) were able to reduce metallic ions in solution [8].
Spherical and monodisperse Ag NPs with a size of 3 nm were obtained using Gum kondagogu (a
polysaccharide derived from Cochlospermum gossypium); its OH and C=O groups were involved in
the synthesis of Ag NPs [78].

2.3. The Role of Capping/Reducing Agents and Solvents in Green Route

In the previous paragraph, we focused on the role of the phytochemical agents acting as reducing
and capping molecules to produce stable materials in large quantities and in a fast manner.

The capping agents are organic molecules that bind the metallic core by electrostatic or chemical
interactions, developing a layer on NPs surface in order to prevent aggregation phenomena.
The common capping agents used in conventional NPs synthesis are cetyl trimethylammonium
bromide (CTAB), polyvinylpyrrolidone (PVP), oleic acid, sodium dodecyl sulphate (SDS), tetraethyl
ammonium bromide (TEAB). These reagents have an effective role in NPs growth and control of their
size, but are hazardous [14]. For example, CTAB is highly toxic to liver cells causing many doubts to
their use in biological applications [79]. The reducing agents commonly used in chemical route are
hydrazine (N2H4), formaldehyde (CH2O) and sodium tetrahydridoborate (NaBH4) [80] that, also in
this case, are toxic to the environment and living organisms. Other typical agents acting as capping
and reducing tools are represented by sodium citrate (Na3C6H5O7) and tannic acid (C76H52O46) that
are used to obtain highly monodispersed Ag NPs and Au NPs with tunable size which depends on
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the citrate/tannic acid concentrations [81]. Na3C6H5O7 is characterised by the presence of electron
pairs in the carbonyl groups (C(=O)OH) stabilizing electrostatically NPs and, at same time, it acts as
coordination agent in compounds with metallic atoms that have free orbitals. In addition, the use
of Na3C6H5O7 makes easy the chance of further NP functionalisation [82–84]. On the other hand,
C76H52O46 includes a glucose core linked by ester bonds to polygalloyl ester chains. At its natural
pH, C76H52O46 is a strong reducing agent [81]. The identification of biomolecules derived from
natural sources, acting as capping and reducing agents, is the new challenge to replace toxic materials
with the safe alternatives. Polysaccharides are particularly suitable in the field of green chemistry
because of their high solubility in water and easy purification [85] acting as capping and reducing
agents. Au NPs were also obtained from marine carbohydrates such as chitosan that induced the
formation of NPs with an average diameter of 115.21 ± 16.87 nm and cubic symmetry [86]. In a
recent work, Dananjaya et al. [87] demonstrated the synthesis of spherical Au NPs with an average
size of 36.45 ± 3.25 nm using the polysaccharide of Spirulina maxima as reducing and capping agent
of HAuCl4 salts. Ag NPs (1–8 nm) were obtained using starch as a capping and reducing agent
without AgNO3 aggregation phenomena at low temperature [88]. Amylose, a polyhydroxylated
macromolecule, was also used because its ability in dynamic supramolecular association development
boosted the complexation and reduction of metallic ions [89]. In addition, dextran was employed
because of its high eco-friendly and biocompatibility. Small spherical Ag NPs with an average diameter
of 1 to 10 nm [90] were obtained using AgNO3 solution with dextran at different molecular weights
acting as stabilising and reducing agent. D-glucose was used to reduce Au3+ and to further develop
semi-monodispersed Au NPs [91]. During chemical synthesis, a key role is played by the solvents
because of their effectiveness to dissolve capping and reducing agents, to transfer heat and finally
to disperse NPs. Instead, among organic compounds, toluene, acetone and ethanol are hazardous
for living organisms and environment, with the additional problem of their disposal [67]. Moreover,
the workers could be expose to solvents because of their volatility and, for these reasons, alternative
compounds are under investigation. In general ‘the best solvent is no solvent and if a solvent is needed
then water is preferred’ [92]; water is the most innocuous substance in the world with non-inflammable
nature and high thermal capacity that is commonly used in several chemical reactions [93] such as
oxidations, reductions and dehydration reactions [94]. In this optic, the supercritical water (373 ◦C of
temperature and 22.1 MPa of pressure) obtained in autoclave, is an alternative to organic solvents and
allows to obtain good NPs because of the dielectric constant of water inducing high solubility and
reaction equilibrium [95,96]. Therefore, the supercritical fluid synthesis enables continuous synthesis
of NPs and it has high potential to be incorporated as an industrial-level production process [97].
The employment of CO2 in synthetic metallic NPs routes has different advantages, because of its
energy-efficiency and the possibility of continuous supply owing to its abundance. Monodispersed Au
NPs (ca. 2 nm) in a single phase of scCO2 were formed by the reduction of triphenylphosphine gold(I)
perfluorooctanoate ([(C6H5)3P]AuCl) with dimethylamineborane ((CH3)2NH · BH3) [98]. In similar
manner, also spherical Ag NPs (4 nm) were obtained by the use of high-pressure fibre-optic reactor
equipped with a CCD array UV−vis spectrometer [99].

3. Anticancer Activity of Green Au NPs and Au NSs

The need to develop advanced technologies and innovative strategies to treat cancer progression
arises from the high rate of incidence, prevalence and mortality of this pathology. Currently,
the conventional therapies, such as surgical intervention, chemotherapeutic treatment and radiotherapy,
induce several side effects in patients, acting both on cancer cells and healthy ones [100]. For this
reason, in the past decades, the scientific research efforts are focused on the development of new
therapeutic approaches able to target the treatments towards tumour sites, decreasing unwanted toxic
effects on healthy cells. In this perspective, engineered NPs represent a versatile system for cancer
diagnosis and treatment. Au NPs have raised growing interest in the biomedical field because of their
unique optical properties, electrochemical stability and low toxicity. The adverse effects can be further
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reduced by the use of Au NPs derived from green techniques, preventing the exposure to additional
chemical agents [101].

Two breast cancer cell lines (MDA-MB 231 and MCF-7) were used to test the anticancer potential
of Au NPs (ca. 12.5 nm) obtained using Mimosa pudica extract as a reducing agent. Several anticancer
assays such as MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin
V-FITC/PI staining and DAPI staining confirmed the inhibition of cancer cells proliferation and
apoptosis activation boosted by Au NPs [102].

The anticancer properties of green spherical Au NPs (10–16 nm), achieved by α-helical protein
(apo-α-lactalbumin) as reducing and capping agent (Apo-α-LA-Au NPs), were studied in order to
test their anticancer effect on MCF-7 and epithelial human cervical carcinoma (HeLa) cell lines [103].
The Apo-α-LA-Au NPs obtained were stable and with a hydrodynamic size between 10 and 16 nm.
Cell viability assays show a viability reduction ~75% for MCF-7 and ~30% for HeLa cells after NPs
doping. Contrary, on mouse fibroblast cells (L929), used as healthy control, the effect of Apo-α-LA-Au
NPs exposure was negligible. Besides, on breast cancer models, the anticancer potential against
colorectal tumour of green Au NPs was evaluated in vitro. The extracts derived from a brown
Alga, Cystoseira baccata, were used to achieve Au NPs with a mean diameter of 8.4 ± 2.2 nm, to test
their anticancer potential on two colon cancer carcinoma cell lines, HT-29 and CaCo-2; PSC-201-010
fibroblasts were used as healthy counterpart. Cells were doped with 400, 200, 100 and 50 µM of Au
NPs and the early and late apoptotic activation were studied. The Caco-2 cells were more susceptible
to the early apoptosis then HT-29 [104]. Also Curcuma wenyujin [105] was used to obtain spherical
Au NPs (200 nm) that show anticancer activity on the human renal carcinoma cell lines A498 using
two high concentrations (25 µg/mL and 50 µg/mL). Authors studied the apoptotic genes expression
in the human kidney carcinoma cell line (A498) by real-time PCR analysis. An overexpression of
genes Bid and Bax after treatment of A498 with CW-Au NPs in a dose-dependent manner was shown.
In contrary, the expression of anti-apoptosis gene Bcl2 was decreased. The surface properties due to the
conjugation between NPs and phytoconstituents can be useful in the development of NP-biointerface
platforms. Pine bark extracts were used to achieve oleamide-capped Au NPs with a size of 16 nm in
order to evaluate the interaction with human serum albumin (BSA). The in vitro evaluation show a
selective toxicity against lung cancer with respect to non-cancerous human embryonic kidney cells [106].
The polysaccharide PST001, isolated from the seed of Tamarindus indica (Ti), is an antitumor and
immunomodulatory compound. For this reason, it was employed in the AuNPs synthetic route in
order to achieve PST-Au NPs (15–20 nm) adsorbing it on their surface. A range of concentrations
between 1.575 and 131.264 µg/mL were used to study their anticancer properties on several cell lines
derived from different cancer tissues. After 48 h of exposure, the growth of MCF7 and of the leukaemia
cell line (K562) was arrested with IC50 values of 70.3 ± 1.2 g/mL and 48.9 ± 1.8 g/mL, respectively.
The PST-Au NPs also displayed exceptional adverse effects against human adenocarcinomic alveolar
basal epithelial cells (A549), malignant melanoma cells (A375), HepG2 and human colonrectal cancer
cells (HCT116) cells [107]. Besides the anticancer activity was due to the functionalisation of Au NPs,
the latter are commonly applied in photothermal therapies because of their photoresponsive properties
inducing tumour thermal ablation [108].

Therefore, Au NPs can upgrade the effectiveness of conventional laser hyperthermia through
localising the thermal damage to the tumour site while keeping the surrounding tissues safe [109].
In addition, compared to conventional dye absorbers, Au NPs do not undergo the photobleaching and
they are more stable and efficient. The hyperthermia boosts the sensitivity of cancer cells and can be
employed in combination with chemotherapy drugs to enhance the efficiency in cancer treatment.

Polydopamine (PDA)-coated spiky Au NPs (50–100 nm) were developed with the aim of combining
photothermal effect with antitumor drug, doxorubicin [110]. These nanovectors boosted several
anti-tumour immune responses destroying local and distant tumours with an efficiency superior to 85%
in mice bearing CT26 colon carcinoma. In addition, the authors demonstrated their strong therapeutic
effectiveness against advanced head and neck squamous cell carcinoma (HNSCC), namely TC-1
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submucosa-lung metastasis. In addition, the PDA-Au NPS established long-term immunity against
tumour recurrence (Figure 3).
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Au NPs, synthesised using Curcuma manga (CM) extract were used against MCF-7; upon irradiation
with a 532 nm laser, CM-Au NPs exhibited higher photothermal heating efficiency with respect to
citrate-capped Au NPs reducing cell viability by about 72% [111]. A multifunctional nanoplatform
comprising green alginate nanogel co-loaded with cisplatin and Au NPs was developed. This system
was first developed with the aim to combine photothermal therapy and chemotherapy on human
glioblastoma cells (U87-MG). The results show that the combination of NPs with radiation induce a
decrease in live cells by about 70% [112].

Fazal et al. [113] achieved anisotropic Au NPs using Theobromo cacao extract as the reducing and
stabilising agent. NPs exhibited spherical shape and sizes ranging from 150 to 200 nm. The high
biocompatibility of Au NPs was demonstrated following the cytotoxic assays carried out on epidermoid
carcinoma (A431), MDA-MB231 and murine fibroblasts (L929 and NIH-3T3) cell lines up to 200 µg/mL
concentrations. Cell death was triggered by applying 800 nm femtosecond laser at low power density
(6 W/cm2) on A431 cells previously exposed to green Au NPs. Hydrosoluble fraction of an endemic
asteraceae medicinal plant was used to synthetize spherical Au NPs (15 nm) and tested on skin
tumour murine model by intravenous injection. Tumour area was irradiated for 20 min (808 nm;
1.5 W/cm2) and mice were monitored every day for 3 days showing decrease of tumour volume
without causing the necrosis of healthy tissue [114]. The performance of PTT was demonstrated by
preclinical studies in xenograft mice tumours while currently, the PEG-Au NSs with a size of 150 nm
were used in human clinical trials called AuroLase for the phothermal treatment of different tumour
sites (ClinicalTrials.gov Identifiers: NCT01679470 for metastatic lung tumours (2012−2014) [115],
NCT00848042 for tumours of the head and neck (2008−2014) [116] and NCT02680535 for localised
prostate cancer (2016 until now) [117]). The NPs were administered by intravenous injections following
the subsequent accumulation in cancer site. Before the pre-clinic investigations, the AuroLase treatment
was used in brain tumours of dogs, showing regression phenomena [118]. Au nanorods were
administrated to dogs and cats with several mammary glands cancer. After that, a regime of three
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low PTT doses were applied at 2-week intervals observing a tumour ablation by apoptosis without
collateral effects after 1 year of treatment [119].

Recent initial results, regarding the clinical application of Au NSs in human prostate tumours
were shown by Rastinehad et al. [120]. The authors reported a combined system in which the PTT
was used in combination with magnetic resonance–ultrasound fusion imaging in order to induce the
cancer area ablation reducing the patient morbidity. The results were encouraging due to cancer laser
ablation in 94% (15/16) of patients.

4. Anticancer Activity of Green Ag NPs

In literature, a large number of research articles reported the anticancer potential of Ag NPs
obtained by plant extracts against different tumour types and their biocompatibility behaviour in
normal cells.

Ag NPs (ca. 45 nm) were produced using Juglans regia L. walnut husk extracts to assess their
anticancer activity against MCF-7. Cells were exposed to six concentrations (10, 20, 30, 40, 50 and
60 µg/mL) of NPs for 48 h. Results show a viability decrease of 40% while in L-929, used as healthy
control, only 20% of cells died [121].

The impact on breast cancer cell viability by green Ag NPs exposure was confirmed by Jannathul
Firdhouse and Lalitha [122]. They synthesised spherical Ag NPs with a mean size in the range of
10–30 nm by the use of aqueous extract of Alternanthera sessilis acting as reducing agent. The evaluation
of cytotoxicity was studied after MCF-7 exposure to Ag NPs at different concentrations (1.56, 3.12, 6.25,
12.5 and 25 µL/mL). NPs show strong inhibition activity with IC50 value 3.04 µg/mL compared to
cis-platin used as standard.

MCF-7, HepG2 and A549 cancer cell lines were used to demonstrate the in vitro toxic effects
triggered by Ag NPs derived from fresh leaves extract of Panax ginseng Meyer. A massive production
of reactive oxygen species (ROS) was seen as a consequence of Ag NPs exposure at different doses
(1–20 mg/mL) for a period of 48 h. Furthermore, additional experiments conducted on A549 cells
showed reduced migration capability, the augment of apoptotic process and the up-regulation of p38
MAPK/p53-mitochondria caspase-3 pathway. The absence of alterations in murine macrophage cell
lines highlighted the possibility to use this kind of Ag NPs as promising anticancer strategy [123].
Ag NPs obtained from aqueous extracts of Nepeta deflersiana plants with a size of ca. 33 nm were tested in
HeLa cells in order to evaluate the ROS production and lipid peroxidation activation. Authors selected
a large range of NPs concentrations (1–100 µg/mL), showing a decrease of cell viability, glutathione
depletion and apoptotic/necrotic cellular pathways induction after 24 h [124]. Several experimental
studies were performed to identify the therapeutic strategies based on Ag NPs for lung cancer diseases
treatment. Venkatesan et al. [125] used aqueous extract of Rosa Damascena petals to produce spherical
Ag NPs with a size of 84 ± 10 nm. The synthesised Ag NPs exhibited anticancer activity on A549 cells
as evidenced by the MTT assay with IC50 value of NPs of 80 µg/mL. Artemisia Princeps leaf extracts
were used by Gurunathan et al. [126] to produce Ag NPs (10 and 40 nm,) in order to expose A549 cells
and normal human lung cells (L-132) to different NPs concentrations (3.0625–50 µg/mL) for 24 h. An
increase of mortality and ROS levels production was recorded in A549 cells, whereas the healthy cells
did not underwent any toxic event following NPs exposure.

5. Biocompatibility of Green Au NPs and Ag NPs on Healthy Cells

The strength of NPs derived from green synthesis lies in their ability to not induce significant toxic
effects on healthy cells. This concept is at the basis of anticancer therapy that very often uses drugs,
molecules and materials that do not discriminate between healthy and tumour tissues. In literature,
there are some examples of comparative studies on the potential different behaviour of green NPs versus
NPs obtained by conventional route. Venkatesan et al. [127] obtained Au NPs using a novel marine
brown alga Ecklonia cava by the reduction of HAuCl4. NPs show spherical and triangular shape and an
average size of 30 ± 0.25 nm and their effects on human keratinocyte cells (HaCaT) were evaluated.
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Cells were incubated with Au NPs in a concentration range ranging from 10 to 50 µg/mL, showing good
biocompatibility; on the contrary Au NPs achieved through conventional route (chemical reduction
and subsequent stabilization using triphenylphosphine) induced cell morphology injury using a
lower maximum concentration (25 µg/mL) [128]. Commercial Au NPs (ca. 50 nm) boosted apoptosis
activation and cell death in monkey kidney cell lines (Vero) after exposure to NPs concentration
ranging between 36 and 1000 ng/mL [129]. Opposite to these results, green Au NPs achieved from
Sphearanthus Amaranthoids with similar size (ca. 47 nm) on Vero cells were not chronically toxic to the
cell growth or for their viability despite the use of higher NPs concentrations (25 µg/mL, 50 µg/mL and
100 µg/mL) [130].

As reported for Au NPs, there are also some studies for Ag NPs in which the biocompatibility
of green NPs with respect to the same NPs achieved by conventional chemical route is evaluated in
healthy cell lines. Vishnu et al. [131] obtained Ag NPs by chemical conventional route using N2H4

without adding any capping or stabilisation agents, whereas the green Ag NPs were synthesised from
aqueous Desmodium gangeticum extract. NPs show comparable physico-chemical properties (irregular
shape, size range between 20 and 100 nm and negative surface charge). The authors compared adverse
effects of NPs after 24 h of incubation by the use of lactate dehydrogenase (LDH) assay in porcine
kidney cells epithelial cells (LLC-pk1). The results clearly show less toxic potential of Ag NPs prepared
by green approach. Kummara et al. [132] obtained Ag NPs both from leaf extracts of Azadirachta indica
and conventional chemical route using Na3C6H5O7 as reducing agent. Negative charged spherical NPs
with a mean diameter of 94 nm (green Ag NPs) and 104 nm (Ag NPs obtained by chemical method)
were synthesised. They demonstrated that green Ag NPs did not induce significant changes in cell
viability on healthy cell lines, namely the Human skin Dermal Fibroblast (HDFa) using a concentration
range between 10 and 240 ppm. Contrarily, the chemical Ag NPs show several adverse effects on cells.

6. Bio-Inspired Nanoplatforms for Drug Delivery

The application of nanotechnology tools to boost therapeutic delivery is not a novel concept.
Nevertheless, the methodologies on how to design more effective and refined delivery systems
significantly improved in the last decade. Currently, there is a huge number of research works on
NP-assisted drug delivery. The greatest volume of this researches focuses on cancer treatment. Indeed,
25 years after the approval of the first anticancer drug (Doxil) by the FDA, thousands of manuscripts
appear following a PubMed search on the terms ‘NPs and cancer’. But despite the large investment in
anticancer nanomedicines, at the moment there are only 15 of such platforms available and approved
in clinical use [133]. Someone might rightfully wonder why all that research effort is not reflected in
today’s market. Unfortunately, there is not only one root to this problem. First, there is considerable
difficulty in profiling these complex systems as well as producing them in a commercial scale [134].
Because of the highly sophisticated nature of the nanoscale systems, it is troublesome to apply generic
manufacturing and quality assurance protocols. Incomplete evaluation might signify for instance a
poor toxicological assessment, leading to adverse immune responses in patients along the course of
a clinical trial [135]. Another substantial hurdle is accurately predicting the in vivo journey of the
nanoplatforms within the different body compartments. There are some barriers that the NPs must
surpass prior to the intended target. [136]. Upon systemic administration, which is the case of most
nanoscale systems, the NP develops adsorbed plasma proteins coating known as the ‘protein corona’.
This coating alters the innate properties of the NPs and in effect determines its in vivo behaviour [137].
A precise targeted delivery might be also challenging to achieve. Particles tend to accumulate in
off-targets organs (typically spleen and liver) and might not reach a significant percentage in the tumour
site, or in their general site of action [138]. Avoiding RES clearance and increasing the biodistribution
pose a significant obstacle [139]. In addition, the secretion of the delivery system, or alternatively
its body accumulation and retentions, are of utmost importance in the context of biosafety. Last,
but not least, the use of biodegradable material for the construction of nanomedicines might result
in the long-term accumulation of toxic by-products in the body. Thus, recently there is an increased
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interest in developing NPs in which their degradation products can be metabolised and get naturally
eliminated [140]. While looking for safer materials and more green synthetic approaches, researchers
have concentrated back on natural polymers. These materials present unique biocompatibility and
are exceptionally rich in functional groups, thus allowing easier modification. Silk is a prominent
choice and has attracted recently significant attention. Both of its components (sericin and fibroin) have
been applied in biomedical applications. Sericin, for instance, has been employed in the production of
tumour-targeting NPs [141]. Sericin conjugated to doxorubicin assembles in aqueous environment
because of the hydrophilic character of the polymer as opposed to the hydrophobic nature of the drug.
The system is not only biodegradable but is also designed to carry a pH-responsive unit (hydrazone
bond) between the polymer and the drug. Thus, the conjugate will disassemble and release the
drug in the acidic lysosomal pH. In addition, this smart conjugate is joined to folate for targeting
folate-receptor positive cancer cells. Silk, in combination with elastin, has also been employed for
the production of genetically engineered polymers [142]. These mechanically attractive proteins can
self-assemble at the right combination and load anticancer agents. When the silk content is higher,
the polymer is in a dissolved state. With an increase in temperature, or upon adding hydrophobic
drugs, the polymer chains aggregate forming micellar domains. These silk-elastin platforms lack,
however, a sensitive compartment, as it was the case in the previous sericin-based platform. This raises
questions to the application of the construct as a drug delivery platform because the loaded drug
(DOXO) was released in a small amount and only in enzymatic environment. Thixotropic silk-based
hydrogels have also attracted attention as platforms for localised chemotherapy [143]. What is of
particular interest is that these nanofiber hydrogels are derived from a ‘green’ all aqueous approach.
Sustainable release of the anticancer model drug can be tuned through the platform crystallinity and
silk content. As in the sericin nanoparticles, the release is pH-dependent. Furthermore, this system
presents good injectability and exhibits high DOXO release at pH 4.5 in vitro. The other constituent
of silk, fibroin, has also been employed together with chitosan as a liposome surface coating [144].
Liposome attained a multilamellar arrangement and show higher cargo release (calcein) at pH 6.5–6.
At this pH range, complexation of the two modifiers (fibroin and chitosan) was higher compressing the
liposomal membrane and promoting the cargo release. The polysaccharide chitosan, used in this work
as a modifier, stands out for its very unique biocompatibility properties [145]. It has been employed
extensively as a carrier of proteins, nucleic acids as well as small-molecule drugs. It has been also
investigated as a promising candidate to surpass the highly selective BBB [146]. In another particularly
interesting case, chitosan forms ‘green’ vesicles in the presence of ATP (a natural polyelectrolyte)
through electrostatic interactions [147]. Chitosan constitutes both the outer positively charged corona
and also the component of the ‘wall’ through the interaction with the negatively charged ATP. In effect,
it is the ratio between the polymers, or in other words the charges, that determines the stability of the
system. The pH appears also to be a key factor in the stability as the system precipitates soon after
assembly at pH 7. Chitosan has also been a constituent of prodrugs that self-assembles in a micellar
arrangement in aqueous solution. In this case, the chitosan-stearic acid (polymer) is conjugated to the
hydrophobic DOXO (model drug) through disulphide bridge that breaks in the presence of a reducing
environment [148]. As the drug in this case is not physically entrapped but rather conjugated the
system does not exhibit uncontrolled drug release. The model drug is not crucial for the stability of this
system, as the polymer composed by hydrophobic stearic acid and the hydrophilic chitosan exhibits
amphilic properties and self-arranges in aqueous solution. This system is a promising candidate for
nuclear delivery as chitosan presents structural similarities with N-acetylglucosamine, which is a
component of the nuclear membrane. The last class we would like to discuss as a nature-inspired
nanoparticle is based on DNA-origami. These constructs are undoubtedly synthetically demanding
but on the other hand they offer tremendous control with respect to responsiveness. DNA-origami
combine biocompatibility and programmable production. A wonderful example of these biomaterials
is a DNA nanorobot assessed as a delivery carrier for cancer therapeutics [149]. This smart platform
switches from a hollow tube conformation to a flat sheet (origami) in response to a molecular trigger,



Nanomaterials 2020, 10, 1083 13 of 26

and by doing so, it exposes the loaded cargo (thrombin). This rearrangement is due to the attachment
of aptamer functionalities to the nucleolin marker which is expressed on the tumour endothelial blood
vessels. These sophisticated platforms arrest tumour growth through interfering with the tumour
blood supply. Other DNA origami platforms have concentrated on other external triggers. An example
is a capsule programmed to open and/or close in response to pH change. At low pH, a Hoogsten triplex
motive (polypurine-polypyrimidine) keeps the capsule together. Upon increasing the pH, the capsule
opens and releases the cargo (Au NPs and horseradish peroxidase, HRP are employed as cargo). At pH
6.4, at which the capsule is closed, HRP exhibits higher activity, pointing to a construct that is porous
and accessible to small molecules [150] (Figure 4).
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can be anchored to the capsule interior. The cargo is encapsulated by dropping the pH and revealed
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7. Self-Propelling Active NPs

The navigation towards chemical sources plays a crucial role in the evolutionary process for
many organisms and biological mechanisms [151]. Macro- and micro-organisms, including bacteria,
sperm cells and uni- or multicellular organisms, base their survival on the ability to perceive and
promptly respond to external stimuli [152]. Adaptation mechanisms to these environmental changes
often originate motion where organisms chase nutrients or run away from toxins [153]. A thriving
research across multiple fields, including material science, cell biology, physics and chemistry,
has attempted to mimic and model these fundamental phenomena with artificial constructs, leading to
the inauguration of the active matter era [154]. Active NPs can be designed and engineered ad-hoc
to transform external energy into mechanical work that is used to autonomously propel towards
an oriented direction [155]. NPs can be customised at the molecular level in a way to generate
motion (chemotaxis, thermotaxis, magnetotaxis, haptotaxis) that responds to different external stimuli
(chemical gradients, temperature, magnetic fields, adhesion forces) [156].

The mechanisms that NPs adopt to migrate at the nanoscale necessarily have to take into account
the physical constraints; propulsion is subjected when such small objects are involved. Water presence



Nanomaterials 2020, 10, 1083 14 of 26

is the major limitation to particles propulsion; considering their size, NPs perceive water as a viscous
fluid that impedes their navigation [157]. Moreover, Brownian thermally driven fluctuations constantly
randomise NPs directionality through collisions with solvent molecules. Thus, progressing in the
design of nano-constructs able to self-migrate is still challenging. A feasible solution to overcome these
restrictions is based on the perturbation of the flow field over the body surface and this condition
can be achieved through two different strategies. The first approach induces nano-objects to execute
non-reciprocal movements through body shape alteration, in order to displace the fluid around
the body [158]. This is, for example, what happens in nature in micro-organisms provided with
appendices [159,160] with Escherichia Coli bacteria being probably one of the must studied system.
Escherichia Coli possesses long flagella on one side of the body that perform a non-time-reversible
motion in order to move in a specific direction [161]. From a synthetic point of view, several attempts
have tried to replicate this strategy using synthetic protrusions [162]. Artificial bacterial flagella (ABF),
for example, have been designed in a way to have a magnetic moiety that can be controlled through
rotating magnetic fields. When the latter changes, the magnetic moment of the motor aligns with the
current field, the magnetic part start rotating and the helical or tail oscillates to give propulsion [163].
The shape of these systems, however, often govern their response to the magnetic stimuli and the
consequence motility. Ali et al. [164], have proposed a self-assembled nano-robotic swimmer whose
polymerised bacterial flagella modify the polymorphic form and geometry in response to external
input in order to adapt the motility to the environment. Flagella have been also modulated through
acoustic waves where the acoustic excitation impose the tail to oscillate and move with high propulsive
forces [165]. The synthetic replication of NPs able to alter their body shape has successfully found
application in the biomedical field [166,167]. Medina-Sanchez et al. [166], for example, have developed
metal-coated polymer magnetic microhelices that can navigate in fluidic channels under physiological
environment. These spermbots could capture, transport and deliver sperm cells to the oocyte. Moreover,
Qiu et al. [158], have functionalised ABF with plasmid DNA (pDNA)-loaded lipoplexes for gene
delivery in vitro to human embryonic kidney (HEK 293) [167].

The second useful approach to overcome physical limitation to propulsion consists in exploiting
gradients that modify nanoparticles local environment. This phenomenon, known as phoretic
transport, is based on short-ranges interactions between the particle and a local gradient; the latter
induces a stress gradient at the particle surface resulting in a phoretic slip velocity and motion of
the particle [168]. If particles generate the gradients needed themselves, the navigation is usually
referred to as self-phoresis or self-propelled motion [169]. The gradient can be generated through
magnetic [170], thermic [171], photonic [172], acoustic [173], chemical [174] stimuli and different
propulsion mechanisms can effectively drive the navigation [175,176]. Liang et al. developed 10-µm
silicon nanowires prepared through metal-assisted chemical etching (MACE) that respond to an external
electrical field controlled by visible-light exposure [177]. Kagan et al. [178], have prepared microbullets
able to vaporise biocompatible fuel, e.g., perfluorocarbon emulsions, and to deeply penetrate and
deform tissues. Interestingly, Au nanowires (AuNWs) were synthesised by template electrodeposition
methods, functionalised with cysteamine and further wrapped with green fluorescence protein target
siRNA (siGFP) hybridised to a rolling circle amplification (RCA) DNA strand. Upon application
of ultrasound source, nanomotors bombard HEK-293 and MCF-7 cells wall, leading to aggregation,
piercing and fast internalisation. Thus, siRNA, that is responsible for silencing the formation of new
fluorescent proteins, was quickly delivered intracellularly with a ~13 fold improvement in the silencing
response compared to the static modified nanowires [179] (Figure 5E).
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Figure 5. (A). Schematic representation of GFP/RCA-AuNW penetration in HEK293-GFP cell due to
the nanomotor movement stimulated by ultrasound (US)-powered propulsion, and (B) gene-mRNA
silencing in living cells. (C) Time-lapse images illustrating the penetration of a GFP/ RCA-AuNW
(black dots) into a HEK293-GFP cell (light spheres) at 10 s intervals, (D) 4 s intervals and (E) 1 s
intervals. The blue arrows indicate the direction of the motion. Reproduced with permission from [179],
Copyright American Chemical Society, 2016.

However, in all these cases, a certain level of asymmetry into the system is necessary to get
propulsion. In fact, only when a field gradient is present near one side of the particle surface,
the resultant slip flow provides hydrodynamic stress necessary to overcome viscous resistance [180].
Several strategies can be adopted to introduce asymmetry in the final object configuration that span
from altering the material composition or surface functionalisation, as in the case of Janus particles [181]
or enzyme-powered particles [182] to modify the shape profile [183]. In these cases, the particles possess
two or more elements with dissimilar chemical or physical properties used to interact differently with
the surroundings.

Chemical gradients more than others have been largely exploited for the autonomous propulsion
of motors at the nanoscale [184] and chemically controlled nanoparticles have shown incredible
performances when applied for biomedical purposes [185,186]. This is mainly achieved through the
combination of nanoparticles with biodegradable and biocompatible polymers [187] that can complete
their task and in some cases disassemble into safe products [188].

Fernández de Ávila et al. [189], for example, developed magnesium motors covered with
clarithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) and a chitosan polymer layer. Using an
acid-driven propulsion, these artificial motors adhered onto the stomach wall of a mouse model and
neutralised rapidly the gastric acid without causing evident acute toxicity. Moreover, the delivery
of the antibiotic drug clarithromycin on the site of interest successfully reduced Helicobacter
Pylori bacterial burden (Figure 6A–D). Andahari et al. [190], reported the synthesis of pH-sensitive
nanomotors through the conjugation of magnetic Fe3O4 NPs and anti-epithelial cell adhesion
molecule antibody (anti-EpCAM mAb) to multi-walled carbon nanotubes (CNT) (CNT-Fe3O4-mAb)
(Figure 6E–G). CNT-Fe3O4-mAb nanomotor navigation was controlled through the conversion of
H2O2, highly present in the tumour microenvironment, into water and oxygen by Fe3O4, exploiting
then a bubble propulsion mechanism. Owing to this process, CNT-Fe3O4-mAb have shown high
propulsion velocities in complex biological fluids and high human colorectal carcinoma (HCT116)
spheroids penetrability. When loaded with doxorubicin hydrochloride (DOX), CNT-DOX-Fe3O4-mAb
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shows tumour size reduction by ~62%. Among the various chemical reactions potentially involved
in the propulsion of nanoparticles, it is worth to mention the great potentiality of enzymatic-driven
nanomotors where enzyme substrates are exploited as fuel owing to their biocompatibility and
versatility [182,191,192]. Even though the propulsion mechanisms has not been fully comprehended,
several hypothesis have been proposed and numerous studies have tried to establish the correlation
between navigation and enzyme distribution and configuration [191]. Joseph et al. [193], have used
enzyme-encapsulating polymersomes combined with the Angiopep-2 peptide to target the BBB and
penetrate the brain. Particularly, poly[(2-methacryloyl)ethylphosphorylcholine]–poly[2 (diisopropyl
amino)ethyl methacrylate] (PMPC-PDPA) or poly[oligo(ethylene glycol) methyl methacrylate]
(POEGMA)–PDPA-based polymersomes were mixed with poly(ethylene oxide) poly(butylene oxide)
(PEO-PBO) copolymers in order to introduce in the membrane topology a domain with a different
permeability (Figure 6H–J). Polymersomes encapsulating glucose oxidase and catalase have shown
BBB penetration and a ~4 -fold delivery increase in rat parenchyma. Furthermore, mesoporous
silica NPs (SiO2NPs) coated with PEG have been functionalised with urease and anti-FGFR3
antibody. Urease catalysis of urea enhanced the internalisation efficiency of the NPs into bladder
cancer cells spheroids. The formation of ammonia from the enzymatic reaction combined with the
anti-FGFR3 antibody, seemed to have a suppressive effect on spheroid proliferation [194]. Also Ma and
Sanchez [195] prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon
dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to
the nano-architecture. This motor is powered by the degradation of H2O2 (Figure 6K).
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Figure 6. (A–D). Schematic illustration of in vivo drug delivery by the propulsion of Mg-based
micromotors polymer-coated in a mouse stomach and time lapse images of the micromotor
navigation in simulated gastric fluids. Reproduced with permission from [189], Copyright Nature,
2017. (E–G) Schematic illustration of CNT-DOX-Fe3O4-mAb nanomotors propulsion mechanisms,
tumour penetration and fate of 3D HCT116 cells spheroid. Reproduced with permission from [190]
Copyright Nature, 2020. (H–J) TEM micrographs of asymmetric 9:1 PMPC-PDPA/PEO-PBO and
POEGMA-PDPA/PEO-PBO polymersomes in positive and negative staining. Reproduced with
permission from [193], Copyright American Association for the Advancement of Science, 2018.
(K) Schematic representation and transmission electron microscopy (TEM) micrograph of Janus
mesoporous silica nanomotor half coated with SiO2 and half functionalised with the enzyme catalase.
Reproduced with permission from [195] Copyright Elsevier, 2017.

All these efforts have shown the great potential of synthetic nanomotors to perceive environmental
stimuli and tune their motion. This capacity has been broadly exploited for biomedical purposes,
where the normal occurrence of gradients of different nature allows taking advantage of these
mechanisms and, most importantly, a high level of precision and specificity is requested.
A comprehensive knowledge of the mechanisms and effects of these systems is still lacking and
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any future effort should go in the direction of proving the exclusive advantages nanomotors provide
over the existing technology disclosing any potential health risks.

8. Conclusions

The use of NPs in cancer therapy is still under investigation. The NPs toxic behaviour as well as
their biodistribution and accumulation can influence their application. In the perspective to overcome
these inconveniences, green synthetic approach represents the alternative to the conventional methods
decreasing the adverse effects induced by toxic solvents and reducing/capping agents. Their application
as active agents in vitro and in vivo has high impact on the cancer treatment, making the collateral effects
on healthy cells negligible. In addition, further anticancer tools constituted by natural polymers are
bio-inspired nanovesicles for anticancer drug delivery and nanorobots that respond to different external
sources (chemical gradients, temperature, magnetic fields, adhesion forces), particularly suitable to
overcome biological barriers. The future challenge will be to develop a nanoscaled-personalised
multiplatform constituted by different kinds of materials in order to apply them in several types of
tumours and at different staging to contrast both early and late the cancer progression.
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