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Abstract. In this paper we investigate the existence and uniqueness of spacelike radial graphs of

prescribed mean curvature in the Lorentz-Minkowski space Ln+1, for n ≥ 2, spanning a given boundary
datum lying on the hyperbolic space Hn.

1. Introduction

A radial graph is a hypersurface Σ such that each ray emanating from the origin intersects Σ once at
most. In the euclidean context the problem of finding radial graphs of prescribed mean curvature has
been extensively studied over the years. The first paper on the subject is due to Radò. In his paper
[22], he proved that for any given Jordan curve Γ ⊂ R3, with one-one radial projection onto a convex
subset of the unit sphere S2, there exists a minimal graph spanning Γ. Later, Tausch proved, in [26],
that area-minimizing disk-type hypersurfaces spanning a boundary datum Γ which can be expressed
as a radial graph over ∂Ω, where Ω ⊂ Sn is a convex subset, have a local representation as a radial
graph. The case of variable mean curvature was investigated by Serrin [24], and a recent result of radial
representation for H-surfaces in cones has been given in [6]. Treibergs and Wei studied in [28] the case
of closed hypersurfaces, i.e. compact hypersurfaces without boundary. Lopez in [16] and de Lira in [13]
studied the case of radial graphs of constant mean curvature.

The Lorentz-Minkowski space, denoted by Ln+1, is defined as the vector space Rn+1 equipped with
the symmetric bilinear form

〈x, y〉 := x1y1 + . . .+ xnyn − xn+1yn+1,

where x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ Rn+1. The bilinear form 〈·, ·〉 is a non-degenerate bilin-
ear form of index one (see [25, Sect. A]), where the index of a bilinear form on a real vector space is
defined as the largest dimension of a negative definite subspace. The modulus of v ∈ Ln+1 is defined as
|v| :=

√
|〈v, v〉|.

The interest on finding spacelike hypersurfaces of prescribed mean curvature in the Lorentz-Minkowski
space comes from the theory of relativity, in which maximal and constant mean curvature spacelike hy-
persurfaces play an important role (see [1]), where spacelike means that the restriction of the Lorentz
metric to the tangent plane, at every point, is positive definite. In the literature, several result are
available for spacelike vertical graphs, i.e. hypersurfaces which are expressed as a cartesian graph. En-
tire maximal spacelike hypersurfaces were studied by Cheng and Yau in [7] and later Treibergs in [27]
tackled the general case of entire spacelike hypersurfaces of constant mean curvature. The Dirichlet
problem for spacelike vertical graphs in Ln+1 was solved by Bartik and Simon in [1], and Gerhardt in
[10] extended those results to the case of vertical graphs contained in a Lorentzian manifolds which can
be expressed as a product of a Riemannian manifold times an interval. Bayard studied in [2] the more
general problem of prescribed scalar curvature. On the contrary, for radial graphs, to our knowledge,
the only available result concerns entire spacelike hypersurfaces with prescribed scalar curvature which
are asymptotic to the light-cone (see [3]).
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The geometry of Lorentz-Minkowski spaces plays an in important role in the setting of the problem.
A first relevant fact is that there cannot exist spacelike closed hypersurfaces (see Proposition 2.5, or [18]
for the case of surfaces in L3). Therefore Sn-type surfaces are ruled out, and the model hypersurface
in Ln+1 for describing spacelike radial graphs is the hyperbolic space Hn (see Definition 2.6). Another
important feature of Lorentz-Minkowski spaces is that, given a domain, there exist spacelike hypersur-
faces of arbitrarily large (in modulus) mean curvature (see [17]), while in the euclidean context this is
not true in general. This fact will be crucial in our paper to construct barriers.

We state now the problem. Let Ω be a smooth bounded domain of Hn. For u : Ω→ R, we define the
associated radial graph over Ω as the set

Σ(u) := {p = eu(q)q ∈ Ln+1; q ∈ Ω}.

Let CΩ be the cone spanned by Ω (minus the origin), i.e. CΩ := {p = ρq ∈ Ln+1; q ∈ Ω, ρ > 0}, and let
H : CΩ → R.

Definition 1.1. A H-bump (over Ω) is a radial graph Σ whose boundary coincides with ∂Ω, and such
that the mean curvature of Σ at every (interior) point equals H.

The Dirichlet problem for spacelike H-bumps is given by



n∑
i,j=1

(
(1− |∇u|2)δij + uiuj)

)
uij = n(1− |∇u|2)− n(1− |∇u|2)3/2euH(euq) in Ω,

|∇u| < 1 in Ω,

u = 0 on ∂Ω,

(1.1)

where ui, uij are the covariant derivatives of u, ∇u is the gradient with respect to the Levi-Civita
connection of (Hn, g) (see Sect. 3), and g = dx1⊗ dx1 + . . .+ dxn⊗ dxn− dxn+1⊗ dxn+1 is the induced
Riemannian metric on Hn (see Sect. 2).

Definition 1.2. Let 0 < r1 ≤ 1 ≤ r2, with r1 6= r2. The hyperbolic conical cap of radii r1, r2 spanned
by Ω is the set CΩ(r1, r2) := {p = ρq ∈ Ln+1; q ∈ Ω, r1 ≤ ρ ≤ r2}.

The main result of our paper is the following existence theorem.

Theorem 1.3. Let α ∈ (0, 1), 0 < r1 ≤ 1 ≤ r2, with r1 6= r2. Assume Ω is a bounded domain of Hn of
class C3,α that satisfies a uniform exterior geodesic ball condition. If H ∈ C1,α(CΩ(r1, r2)) is positive
and satisfies

i) H(r1q) > r−1
1 and H(r2q) < r−1

2 for any q ∈ Ω;

ii) ∂
∂λ (λH(λq)) ≤ 0, for all q ∈ Ω, λ ∈ [r1, r2];

then there exists a unique solution of Problem 1.1 whose associated radial graph is contained in CΩ(r1, r2).

Let Ω, r1, r2 be in the statement of Theorem 1.3. Let m ≥ 1, let ω : Ω → R+ be a smooth positive
function such that rm−1

1 < ω < rm−1
2 and let Hm,ω : CΩ(r1, r2)→ R+, defined by

Hm,ω(x) :=
ω
(
x
|x|

)
|x|m

. (1.2)

One easily verifies that Hm,ω satisfies the hypotheses i) and ii) of Theorem 1.3. In particular, this shows
the existence of spacelike radial graphs of prescribed mean curvature even for non homogenous functions
H, a case which is not contemplated for instance in [3], where the k-th scalar curvature is prescribed
just on Hn.

We remark that, the equation (1.1) can be put in divergence form, namely
−divHN

(
∇u√

1− |∇u|2

)
+

N√
1− |∇u|2

= NeuH(euq) in Ω,

|∇u| < 1 in Ω,

u = 0 on ∂Ω,

(1.3)
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where divHn denotes the divergence operator for (Hn, g). The principal part of this operator appears in
the Born-Infeld theory of electromagnetism [4], which is a particular example of what is usually known
as a nonlinear electrodynamics. We therefore stress that Theorem 1.3 provides existence and uniqueness
of solutions for some specific Born-Infeld equations in which appear non trivial nonlinearities involving
both the gradient and the function.

The proof of Theorem 1.3 relies on the combinations of several tools. For the existence, we apply
a variant of the classical Leray-Schauder fixed point theorem due to Potter, see [20]. To this aim, we
make use of suitable comparison theorems and we prove fine a priori estimates for the solutions and
their gradient. Regarding uniqueness, we take benefit of the Hopf maximum principle as in the version
stated by Pucci and Serrin in [21].

We point out that the uniform exterior geodesic ball condition allows to construct barriers for the
gradient of the solutions at the boundary. Such construction strongly depends on the shape of the
mean curvature operator for spacelike hypersurfaces in the Lorentz-Minkowski space, and we remark
that Theorem 1.3 grants existence of spacelike radial graphs over arbitrary large and even non convex
domains of Hn. We note that it is not possible to mimic this construction in the euclidean framework,
and in fact the problem of finding radial graphs over proper (possibly non convex) domains of Sn which
are not contained in a hemisphere is still open.

Concerning global a priori estimates for the gradient, which is the key step in the proof, we derive a
quite complex technical result, see Proposition 8.1, which is inspired from the paper [10] and is based on
the introduction of an ad hoc differential operator, Stampacchia’s truncation method and fine estimates
of the Lp-norm of the quantity ν(u) = 1√

1−|∇u|2
.

In this paper we also introduce a new definition of admissible couple (Ω, H) and triple (Ω, H, θ), see
Definition 4.4, where θ ∈ (0, 1). This notion of admissibility is very general and works even for non
smooth domains and just for continuous functions H. However, given a couple (Ω, H), it is not easy in
general to verify whether it is admissible or not. In Sect. 4 we provide trivial examples of admissible
couples and in Proposition 4.7 we exhibit a class of functions H such that (Ω, H) is admissible whenever
Ω satisfies a uniform exterior geodesic condition. Using the notion of admissible couple, we can extend
Theorem 1.3 to a wider class of domains and mean curvature functions.

Theorem 1.4. Let α ∈ (0, 1), 0 < r1 ≤ 1 ≤ r2, with r1 6= r2. Assume that Ω is a bounded domain of
Hn of class C3,α and H ∈ C1,α(CΩ(r1, r2)) satisfies the conditions i) and ii) of Theorem 1.3. Assume
that (Ω, H) is admissible. Then there exists a unique solution of Problem 1.1 whose associated radial
graph is contained in CΩ(r1, r2).

A further existence result for Problem 1.1, under more restrictive assumptions, is as follows.

Theorem 1.5. Let α ∈ (0, 1) and Ω be a bounded domain of Hn of class C3,α. Assume θ ∈ (0, 1),
0 < r1 ≤ 1 ≤ r2, with r1 6= r2, and H ∈ C1,α(CΩ(r1, r2)) satisfies

a) H(r1q) > r−1
1 and H(r2q) < r−1

2 for any q ∈ Ω;

b) ∂
∂λ (λH(λq)) < − 1

r1(θ−θ2/4)1/2 , for all q ∈ Ω, λ ∈ [r1, r2];

c)
∥∥∇T0 H(x)

∥∥
n+1

< 1−θ
n3/2r2

2
, for all x ∈ CΩ(r1, r2), where ∇T0 H is the euclidean tangential compo-

nent of ∇0H(x) on Tx/|x|Hn (see Definition 6.2), ∇0H is the gradient of H with respect to the

euclidean flat metric, ‖ · ‖n+1 is the euclidean norm in Rn+1.

Assume at last that (Ω, H, θ) is admissible according to Definition 4.4 and Definition 4.10. Then there
exists a unique spacelike H-bump contained in CΩ(r1, r2).

We mention this result because the proof quite differs from that of Theorem 1.4 and better enlightens
the differences and difficulties with respect to the euclidean case. The proof is this time based on the
classical Leray-Schauder theorem, see for instance [11, Theorem 11.3]. The first step is to solve a
suitable regularized equation associated to (1.1), see (4.2) and Theorem 5.1. The idea of solving such
a regularized equation is taken from [27] where the author construct barriers for the gradient at the
boundary. The way back to the original Dirichlet problem then uses a gradient maximum principle [28,
Proposition 6]. In contrast with [27], we deal here with equations which do not satisfy, in general, a
gradient maximum principle [11, Theorem 15.1]. In fact, in our case, when passing to local coordinates,
we see that the regularized operator associated to (1.1) does not satisfy, in general [11, condition (15.11)],
and the principal part depends both on the gradient and on the domain variables. We refer to Lemma
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4.1 below for more details. In order to overcome this difficulty, and eventually deduce a global a priori
C1 estimate, we perform the regularization in a proper way. We then use the admissibility condition
to control the gradient at the boundary, whereas we use two different strategies, see Lemma 4.12, for
the interior estimate. The first one which is based on the properties of harmonic functions, works only
in dimension two. The other proof works in any dimension and is based on the global gradient bound
given by [11, Theorem 15.2].

At last, in the spirit of [28], we prove a new kind of interior gradient estimate, see Proposition 6.4, so
that, under the hypotheses of Theorem 1.5, the solution of the regularized problem is a solution of (1.1).
It is important to note that, in contrast to [28], since Hn has negative Ricci curvature and since we deal
with hypersurfaces with boundary, the mere gradient estimate of Proposition 6.4 is not sufficient for
getting a global a priori C1-estimate. We refer to Remark 6.5 for more details.

When Ω satisfies a uniform exterior geodesic conditions, thanks to Proposition 4.7, Remark 4.8 and
Remark 4.9, it is possible to show that the functions given by (1.2) satisfy the hypotheses of Theorem
1.5 for suitable choices of r1, r2,m, for ω close to one (in the C1-topology), and for some θ∗ ∈ (0, 1).

As a future goal, it would be natural to investigate if it is possible to remove the monotonicity
assumption on H and to extend Theorem 1.3 also to sign-changing mean curvature functions.

The outline of the paper is the following. In Sect. 2, we fix the notations and we collect some known
facts which are useful in the remaining of the paper. In Sect. 3, we derive the equation for spacelike
H-bumps and in Sect. 4 we prove Proposition 4.7 and some a priori estimates. Sect. 5 is dedicated
to the proof of existence and uniqueness of solutions for the regularized Dirichlet problem associated
to Problem 1.1. In Sect. 6, we work out an interior gradient estimate, namely Proposition 6.4, and in
Sect. 7 we prove Theorem 1.5. In Sect. 8, we prove a global a priori estimate for the gradient. We
finally prove Theorem 1.3 and Theorem 1.4 in Sect. 9.

2. Notation and preliminary results

Let n ≥ 2, we denote by Ln+1 the (n+1)-dimensional Lorentz-Minkowski space, which is Rn+1

equipped with the symmetric bilinear form

〈x, y〉 := x1y1 + . . .+ xnyn − xn+1yn+1.

We classify the vectors of Ln+1 in three types.

Definition 2.1. A vector v ∈ Ln+1 is said to be

• spacelike if 〈v, v〉 > 0 or v = 0;
• timelike if 〈v, v〉 < 0;
• lightlike if 〈v, v〉 = 0 and v 6= 0.

The modulus of v ∈ Ln+1 is defined as |v| :=
√
|〈v, v〉|. We also denote by (x, y)n+1 = x1y1 +

. . .+xn+1yn+1 the euclidean scalar product, and by ‖x‖n+1 =
√
x2

1 + . . .+ x2
n+1 the euclidean norm in

Rn+1. Given a vector subspace V of Ln+1, we consider the induced metric 〈·, ·〉V defined in the natural
way

〈v, w〉V := 〈v, w〉, v, w ∈ V.
According to Definition 2.1 we classify the subspaces of Ln+1 as follows.

Definition 2.2. A vector subspace V of Ln+1 is said to be:

• spacelike if the induced metric is positive definite;
• timelike if the induced metric has index 1;
• lightlike if the induced metric is degenerate.

In this paper, we deal only with hypersurfaces in Ln+1, and thus we identify the tangent space of
M ⊂ Ln+1 at p ∈ M , denoted by TpM , with a vector subspace of dimension n in Ln+1. In particular,
by abuse of notation, if φ : U → M , where U is an open subset of Rn, is a local parametrization, we
still use the symbol ∂i to denote the vector ∂φ

∂xi
.

Definition 2.3. Let M ⊂ Ln+1 be a hypersurface. We say that M is spacelike (resp. timelike, lightlike)
if, for any p ∈ M , the vector subspace TpM is spacelike (resp. timelike, lightlike). We say that M is a
non-degenerate hypersurface if M is spacelike or timelike.
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Definition 2.4. A timelike vector v ∈ Ln+1 is said to be future-oriented (resp. past-oriented) if
〈v,En+1〉 < 0 (resp. 〈v,En+1〉 > 0), where En+1 := (0, . . . , 0, 1).

We observe that for a spacelike (resp. timelike) surface M and p ∈ M , we have the decomposition
Ln+1 = TpM ⊕ (TpM)⊥, where (TpM)⊥ is a timelike (resp. spacelike) subspace of dimension 1 (see
[18]). A Gauss map is a differentiable map N : M → Ln+1 such that |N(p)| = 1 and N(p) ∈ (TpM)⊥

for all p ∈M . If M is spacelike, the Gauss map pointing to the future is a map N : M → Hn.
We recall now a result which is simple but crucial because it marks a relevant difference between the

euclidean geometry and the geometry of Lorentz-Minkowski spaces.

Proposition 2.5. Let M ⊂ Ln+1 be a compact spacelike, timelike or lightlike hypersurface. Then
∂M 6= ∅.

Proof. Assume that ∂M = ∅ and that M is spacelike (resp. timelike or lightlike). Let a ∈ Ln+1 be a
spacelike (resp. timelike) vector. Since M is compact, there exists a minimum (or a maximum) p0 ∈M
for the function f(p) = 〈p, a〉. Since ∂M = ∅, then p0 is a critical point of the function f and thus
〈v, a〉 = 0 for all v ∈ TpM . Hence a ∈ (TpM)⊥, but this gives a contradiction because (TpM)⊥ is
timelike (resp. spacelike or lightlike). �

In other words, the previous result tells us that a closed hypersurface (i.e. compact without boundary)
must be degenerate (see Definition 2.3). Therefore closed surfaces are not relevant in the Lorentz-
Minkowski space, and this is deeply in contrast to the euclidean geometry. For the sake of completeness,
we also point out that Proposition 2.5, as well the previous definitions, can be extended to general
hypersurfaces, see e.g. [18, Sect. 3].

Definition 2.6. The hyperbolic space of center p0 ∈ Ln+1 and radius r > 0 is the hypersurface defined
by

Hn(p0, r) := {p ∈ Ln+1; 〈p− p0, p− p0〉 = −r2, 〈p− p0, En+1〉 < 0},
where En+1 = (0, . . . , 0, 1).

From the euclidean point of view, this hypersurface is the “upper sheet” of a hyperboloid of two
sheets.

Remark 2.7. The hyperbolic space is a spacelike hypersurface (see [18, 25]). In fact, let v ∈ TpHn(p0, r)
and let σ = σ(s) be a curve in Hn(p0, r) such that σ′(0) = v. Then, differentiating with respect to
s the relation 〈σ(s) − p0, σ(s) − p0〉 = −r2 at s = 0, we obtain 〈v, p − p0〉 = 0. This implies that
TpHn(p0, r) = Span{p− p0}⊥. Since p− p0 is a timelike vector, it follows that Hn(p0, r) is a spacelike
hypersurface. Moreover N(p) = (p− p0)/r is a Gauss map.

When p0 is the origin of Ln+1, and r = 1, the hyperbolic space is denoted by Hn, that is

Hn := {(x1, . . . , xn+1) ∈ Ln+1; x2
1 + . . .+ x2

n − x2
n+1 = −1, xn+1 > 0}.

In view of the previous remark, for any p ∈ Hn, the induced metric on TpHn is positive definite, and
hence the tensor g = dx1 ⊗ dx1 + . . . + dxn ⊗ dxn − dxn+1 ⊗ dxn+1 is a Riemannian metric for Hn.
Another model for Hn is the Poincaré model in the unit disk Bn := {y ∈ Rn; ‖y‖n < 1}, where ‖ · ‖n is
the euclidean norm in Rn. The hyperbolic metric in Bn is defined by

g̃ =
4

(1− ‖y‖2n)2

n∑
i=1

dyi ⊗ dyi,

which is conformally equivalent to the flat metric in Bn. The isometry between (Hn, g) and (Bn, g̃) is
given by the map F : Hn → Bn defined by

F (x) := x0 −
2(x− x0)

〈x− x0, x− x0〉
=

(
x1

1 + xn+1
, . . . ,

xn
1 + xn+1

)
, (2.1)

where x0 = (0, . . . , 0,−1) ∈ Rn+1 (see [14, Proposition 3.5]). The map F is also known as hyperbolic
stereographic projection, and from a geometrical point of view, F sends a point x ∈ Hn to the intersection
between the line joining x and x0 with the hyperplane {y ∈ Rn+1; yn+1 = 0}.

We conclude this section by recalling a variant of the Leray-Schauder fixed point theorem which will
be used in the proof of Theorem 1.3.

Theorem 2.8 (A. J. B. Potter [20]). Let X be a locally convex linear Hausdorff topological space and
U a closed convex subset of X such that the zero element of X is contained in the interior of U . Let
T : [0, 1]×U → X be a continuous map such that T ([0, 1]×U) is relatively compact in X. Assume that
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a) T (t, x) 6= x for all x ∈ ∂U and t ∈ [0, 1];
b) T (0× ∂U) ⊂ U .

Then, there is an element x̄ of U such that x̄ = T (1, x̄).

3. Derivation of the equation

Let Ω be a proper smooth bounded domain of the hyperbolic space Hn. Let us denote by T (Ω) the
space of tangent vector fields to Ω and denote by ∇0 the Levi-Civita connection of Ln+1. We recall that
∇0 coincides with the flat connection of Rn+1, and we denote by ∇ the induced Levi-Civita connection
on Ω. Let u be a smooth function defined on Ω. We denote, respectively, by du, ∇u the differential and
the gradient of u, which is the only vector field on Ω such that

du(X) = 〈X,∇u〉, for any X ∈ T (Ω).

The second covariant derivative of u is defined as

∇X,Y u := ∇X∇Y u−∇XY (u) = ∇X∇Y u−∇∇XY u, for any X,Y ∈ T (Ω),

and the Hessian of u, denoted by ∇2u, is the symmetric 2-tensor given by

∇2u (X,Y ) := ∇X,Y u, for any X,Y ∈ T (Ω).

The Laplacian of u, denoted by ∆u, is the trace of the Hessian.

Let {e1, . . . , en} be a local orthonormal frame field for Ω and let {ω1, . . . , ωn} be the dual coframe
field, i.e. ωi(ej) = δij , for any i, j = 1, . . . , n. The connection forms ωij ’s are defined by

ωij(X) := 〈∇Xej , ei〉, X ∈ T (Ω), (3.1)

and thus we have

∇eiej =

n∑
k=1

ωkj(ei)ek. (3.2)

We also recall that the connection forms are skew symmetric, i.e. ωij +ωji = 0, for any i, j ∈ {1, . . . , n}.
In terms of the dual coframe field the exterior derivative of u (i.e. the differential) can be written as

du =

n∑
i=1

uiω
i,

where ui denotes the covariant derivative ∇eiu. We will also use the notation ∇i to denote ∇ei .
For the second covariant derivatives, taking X = ei, Y = ej and using (3.1) we have

∇ei,eju = ∇eiuj −
n∑
k=1

ωkj(ei)uk. (3.3)

From now on we will use the notation uij to denote ∇ei,eju. In particular the Hessian of u can be

written as uijωj ⊗ ωi and the Laplacian of u as ∆u =
∑n
i=1 uii.

Definition 3.1. Let A ⊂ Ln+1, we define the cone spanned by A as the set

CA := {ρq ∈ Ln+1; q ∈ A, ρ > 0}.
Remark 3.2. Observe that setting en+1(x) := x/|x|, for x ∈ CΩ, and extending the ei’s as constant
along radii, i.e. ei(x) = ei(x/|x|), x ∈ CΩ, for i = 1, . . . , n, we get that {e1, . . . , en+1} is a local
orthonormal frame field for CΩ, where en+1 is the future oriented unit radial direction, i.e. 〈en+1, en+1〉 =
−1, 〈en+1, En+1〉 < 0. We also observe that by direct computation we have ∇0

i en+1 = ei, for any
i = 1, . . . , n. We remark that by definition en+1(q) = q for any q ∈ Ω, and by abuse of notation when
writing ∇0

wq, where w ∈ T (Rn+1), it will be always understood that we are computing ∇0
wen+1 at

x = q, as well as ∇0
qw will stand for ∇0

en+1
w.

In order to derive the equation of spacelike H-bumps one can argue as in [28, Sect. 1] with minor
adjustments. Indeed, we only need to take into account the changes due to the bilinear form 〈·, ·〉, and
the definition of mean curvature for spacelike hypersurfaces [18, Sect. 3.2]). For the sake of completeness
we derive the equation following the scheme of [16, Sect. 2].

Let u ∈ C0(Ω) ∩ C2(Ω), let Σ be the associated radial graph and let Y : Ω→ Rn+1 the map defined
as Y(q) := eu(q)q. From Remark 3.2 it holds that ∇0

i q = ei and thus

∇0
iY = ∇0

i (e
uq) = euuiq + euei. (3.4)
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Therefore a local basis for TY(q)Σ is given by

Ei(q) = eu(ei + uiq), i = 1, . . . , n,

and the components of the metric are

gij = 〈Ei, Ej〉 = e2u(〈ei, ej〉+ uiuj〈q, q〉) = e2u(δij − uiuj).

Since we look for a spacelike hypersurface we must have |∇u|2 < 1, and by elementary computations
we see that the inverse matrix (gij) is given by

gij = e−2u

(
δij +

uiuj
1− |∇u|2

)
. (3.5)

For the Gauss map we have

N(Y(q)) =
q +

∑n
i=1 ukek

(1− |∇u|2)1/2
.

Indeed it is elementary to verify that 〈N(Y(q)), Ei〉 = 0 for any i = 1, . . . , n and

〈N(Y(q)), N(Y(q))〉 =
−1 + |∇u|2

1− |∇u|2
= −1.

Moreover, as u = 0 on ∂Ω, there exists q1 ∈ Ω such that ∇u(q1) = 0 and by definition N(Y(q1)) = q1

and thus 〈N(Y(q1)), En+1〉 < 0. Therefore, since N ◦ Y ∈ C0(Ω,Rn+1) and Ω is connected, it follows
that N(Y(Ω)) ⊂ Hn, so that N is future oriented. The coefficients of the second fundamental form are
given by

σij = 〈N,∇0
i∇0

jY〉 =
eu (−δij + uiuj − uij)

(1− |∇u|2)1/2
. (3.6)

Indeed, recalling Remark 3.2 and (3.4), by direct computation we have

∇0
i

(
∇0
jY
)

= eu
(
uiujq +∇0

i∇0
ju q + ujei + uiej +∇0

i ej
)
.

Hence, by using the relations 〈ei, ej〉 = δij , 〈ei, q〉 = 0, and regrouping the terms, we deduce that

〈N,∇0
i∇0

jY〉 =
eu

(1− |∇u|2)1/2

(
+uiuj −∇0

i∇0
ju+ 〈∇0

i ej , q〉+

n∑
k=1

uk〈∇0
i ej , ek〉

)
. (3.7)

Since 〈∇0
i ej , q〉 = −〈ej ,∇0

i q〉 = −〈ej , ei〉 = −δij and

∇0
i∇0

ju−
n∑
k=1

uk〈∇0
i ej , ek〉 = ∇i∇ju−

n∑
k=1

uk〈∇iej , ek〉 = uij ,

then from (3.7) we finally get (3.6).
At the end, from [18, Definition 3.3], the mean curvature of a spacelike hypersurface at p = Y(q) ∈ Σ

is given by

nH(Y(q)) = −
n∑

i,j=1

gijσij .

Therefore, from (3.5) and (3.6), we deduce that u must satisfy the following equation

n∑
i,j=1

(
(1− |∇u|2)δij + uiuj)

)
uij = n(1− |∇u|2)− neu(1− |∇u|2)3/2H(Y(q)).

4. A priori estimates

Let ε > 0 and let ηε ∈ C∞0 ([0,+∞)) be such that rηε ∈ C∞0 ([0,+∞)), r 7→ ηε(r)r is increasing in
(0, 2

ε ) and decreasing in ( 2
ε ,+∞). Assume moreover that

ηε(r)r =


r for r < 1− ε,

1− 1
2ε for 1− 1

2ε < r < 2
ε ,

0 for r > 3
ε .
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We define the regularized equation as

n∑
i,j=1

((1− η2
ε (|∇u|)|∇u|2)δij + η2

ε (|∇u|)uiuj)uij

= n(1− ηε(|∇u|)2|∇u|2)
(

1−
√

1− ηε(|∇u|)2|∇u|2euH(euq)
)
.

(4.1)

To simplify the notation we will write η2
ε |∇u|2 instead of η2

ε (|∇u|)|∇u|2. The regularized Dirichlet
problem for spacelike H-bumps is

n∑
i,j=1

((1− η2
ε |∇u|2)δij + η2

εuiuj)uij = n(1− η2
ε |∇u|2)

(
1−

√
1− η2

ε |∇u|2euH(euq)
)

in Ω,

u = 0 on ∂Ω.

(4.2)

We denote by Qε the operator

Qε(u) :=

n∑
i,j=1

((1− η2
ε |∇u|2)δij + η2

εuiuj)uij − n(1− η2
ε |∇u|2) + n(1− η2

ε |∇u|2)3/2euH(euq).

We claim that, in hyperbolic stereographic coordinates, the operator Qε is uniformly elliptic. This is
the content of the next lemma.

Lemma 4.1. For any ε ∈ (0, 1), the operator Qε, in hyperbolic stereographic coordinates, is uniformly
elliptic with ellipticity constants depending only on ε and Ω.

Proof. Let F : Hn → Bn be the hyperbolic stereographic projection. By definition we have that Ω is
mapped into a smooth proper domain Λ = F (Ω) ⊂⊂ Bn, φ = F−1 : Λ→ Ω is a global parametrization,
and there exist c1, c2 > 0 depending only on Ω such that

c1 ≤
(1− ‖y‖2n)2

4
≤ c2, for all y ∈ Λ. (4.3)

Let us set

λ(y) :=
2

1− ‖y‖2n
, y ∈ Bn. (4.4)

We recall that F is an isometry and the hyperbolic metric in Bn is g̃ = λ2
∑n
i=1 dyi ⊗ dyi (see Sect.

2). In particular, 〈∂i, ∂j〉 = δijλ
2, where ∂i denotes the vector ∂φ

∂yi
, and the Christoffel symbols of the

hyperbolic Levi-Civita connection are given by

Γkij =
λi
λ
δjk +

λj
λ
δik −

n∑
l=1

δkl
λl
λ
δij , (4.5)

where λi = ∂λ
∂yi

. In local coordinates the gradient is given by

∇u =

n∑
i,j=1

g̃ij
∂ũ

∂yi
∂j = λ−2

n∑
i=1

∂ũ

∂yi
∂i, (4.6)

and thus

|∇u|2 = λ−2‖∇0ũ‖2n, (4.7)

where ũ = u ◦ F−1 and ∇0ũ is the gradient of ũ with respect to the euclidean flat metric. Using the
well known expression for the Hessian and the Laplacian in local coordinates we have

∇2u(∂i, ∂j) =
∂2 ũ

∂yj∂yi
−

n∑
k=1

Γkji
∂ũ

∂yk
, (4.8)

∆u =

n∑
i,j=1

g̃ij

(
∂2ũ

∂yi∂yj
−

n∑
k=1

Γkij
∂ũ

∂yk

)
= λ−2

n∑
i=1

(
∂2ũ

∂y2
i

−
n∑
k=1

Γkii
∂ũ

∂yk

)
. (4.9)

By using the previous identities and (4.5) we infer that

n∑
i,j=1

uiujuij = λ−4
n∑

h,k=1

∂ũ

∂yh

∂ũ

∂yk

∂2ũ

∂yh∂yk
+ Φ, (4.10)
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where Φ is a term which does not involve second order partial derivatives. From (4.4), (4.7), (4.9) and
(4.10) we deduce that the principal part of the operator Qε, in hyperbolic stereographic coordinates, is

λ−2

 n∑
i,j=1

(
1− η2

ελ
−2‖∇0ũ‖2n

)
δij

∂2ũ

∂yi∂yj
+ η2

ελ
−2 ∂ũ

∂yi

∂ũ

∂yj

∂2ũ

∂yi∂yj

 ,
where ηε = ηε(λ

−1‖∇0ũ‖n). For any i, j = 1, . . . , n, we define, for y ∈ Λ, p = (p1, . . . , pn) ∈ Rn,

ãijε (y, p) := λ−2
[(

1− η2
ε (λ−1‖p‖n)λ−2‖p‖2n

)
δij + η2

ε (λ−1‖p‖n)λ−2pipj
]
. (4.11)

Now, for any ξ = (ξ1, . . . , ξn) ∈ Rn, y ∈ Λ, p ∈ Rn we claim that

c2‖ξ‖2n ≥
n∑

i,j=1

ãijε (y, p)ξiξj ≥
1

2
εc1‖ξ‖2n, (4.12)

where the constants c1, c2 are given by (4.3). Indeed by the definition of ηε for any y ∈ Λ, p ∈ Rn it
holds

0 ≤ η2
ε (λ−1‖p‖n)λ−2‖p‖2n ≤ (1− ε/2)2

and thus

n∑
i,j=1

ãijε (y, p)ξiξj = λ−2

(1− η2
ελ
−2‖p‖2n

)
‖ξ‖2n + η2

ελ
−2

(
n∑
i=1

piξi

) n∑
j=1

pjξj


= λ−2

[(
1− η2

ελ
−2‖p‖2n

)
‖ξ‖2n + η2

ελ
−2(p, ξ)2

n

]
≥ λ−2

(
1− η2

ελ
−2‖p‖2n

)
‖ξ‖2n ≥ λ−2(1− (1− ε/2)2)‖ξ‖2n ≥

1

2
c1ε‖ξ‖2n,

where (·, ·)n denotes the euclidean scalar product in Rn. The proof of the other inequality in (4.12) is
similar and we omit the details. The proof is then complete. �

For t ∈ [0, 1], we define the operator

Qtε(u) :=

n∑
i,j=1

((1− η2
ε |∇u|2)δij + η2

εuiuj)uij − nt(1− η2
ε |∇u|2) + nt(1− η2

ε |∇u|2)3/2euH(euq),

For u such that |∇u|∞,Ω < 1, we also define the operator Qt(u) as

Qt(u) :=

n∑
i,j=1

((1− |∇u|2)δij + uiuj)uij − nt(1− |∇u|2) + nt(1− |∇u|2)3/2euH(euq). (4.13)

Remark 4.2. By definition, for any fixed ε ∈ (0, 1), if u is such that |∇u|∞,Ω ≤ 1 − ε we have
Qtε(u) = Qt(u), for any t ∈ [0, 1]. Moreover, in view of Lemma 4.1 and since the principal parts of Qtε,
Qt are independent on t, they are uniformly elliptic even with respect to t, when passing to hyperbolic
stereographic coordinates.

Remark 4.3. As seen in the proof of Lemma 4.1 we can write an explicit expression of the operator
Qtε in hyperbolic stereographic coordinates defined in the whole Λ = F (Ω). For our purposes we just
observe that the transformed operator is of the form

Q̃tε(ũ) =

n∑
i,j=1

ãijε (y,∇0ũ)ũij + b̃ε,t(y, u,∇0ũ),

where ãijε = ãε(y, p) : Λ× Rn → R is given by (4.11), and b̃ε,t : Λ× R× Rn → R is given by

b̃ε,t(y, z, p) := −
(
1− η2

ελ
−2‖p‖2n

) n∑
k=1

Gk(y)pk − η2
ελ
−2

n∑
h,k,r=1

Ghkr(y)phpkpr

−nt
(
1− η2

ελ
−2‖p‖2n

)
+ nt

(
1− η2

ελ
−2‖p‖2n

)3/2
ezH(ezF (y)),

where λ is defined in (4.4), Gk,Ghkr are smooth functions defined in Λ, h, k, r ∈ {1, . . . , n}. We point out

that ãijε does not depend on z and ãijε = O(1), b̃ε,t = O(‖p‖n), as ‖p‖n → +∞, uniformly for y ∈ Λ, and
z in compact subsets of R. In particular, according to the notations of [11], setting E :=

∑n
ij=1 ã

ij
ε pipj ,

we have that E does not depend on z and E = O(‖p‖2n) as ‖p‖n → +∞, uniformly for y ∈ Λ.
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These properties will be useful in the sequel. In addition, since (ãijε ) is symmetric and positive
definite, when applying the results of [11, Sect. 15], it will be understood that we take (ãijε )∗ = ãijε and
ci = 0 (see [11, (15.23)]).

We define now the class of admissible domains.

Definition 4.4. Let Ω be a bounded domain of Hn and let H ∈ C0(CΩ). We say that (Ω, H) is
admissible if there exists a constant θ ∈ (0, 1) such that for any q0 ∈ ∂Ω and for any t ∈ [0, 1], there
exist two functions ϕ1, ϕ2 ∈ C2(Ω) satisfying

(i) supΩ |∇ϕi| ≤ 1− θ, for i = 1, 2,
(ii) ϕ1(q0) = 0 and ϕ1(q0) ≤ 0 on ∂Ω,
(iii) ϕ2(q0) = 0 and ϕ2(q0) ≥ 0 on ∂Ω,
(iv) Qt(ϕ1) ≥ 0, Qt(ϕ2) ≤ 0 in Ω.

We denote by A the set of admissible couples (Ω, H). Given θ ∈ (0, 1), and given Ω and H as above,
we say that (Ω, H, θ) is admissible if (Ω, H) is admissible with constant θ.

Remark 4.5. We observe that A 6= ∅. In fact for any given domain Ω ⊂ Hn, for any fixed m > 0, the
function H(x) = 1

|x|m , x ∈ CΩ is such that (Ω, H) ∈ A. In fact it is easy to see that Qt(0) = 0 for any

t ∈ [0, 1], so that the functions ϕ1 = 0, ϕ2 = 0 verify (i)-(iv) for any θ ∈ (0, 1). More in general, for any
domain Ω, for any function H ∈ C0(CΩ) such that H

∣∣
Ω

= 1, we have that (Ω, H) ∈ A, and (Ω, H, θ) is

admissible for any θ ∈ (0, 1).

This condition of admissibility is very general. If we impose some regularity on ∂Ω, and if we assume
that H is positive, smooth and not increasing along radii, then every couple (Ω, H) is admissible. This
is the content of the next result. We introduce first the following definition.

Definition 4.6. Let Ω be a bounded domain of Hn. We say that Ω satisfies a uniform exterior geodesic
ball condition if there exist σ > 0 and a map Ξ : ∂Ω→ Hn of class C2 such that for any q0 ∈ ∂Ω there
exists a geodesic ball in Hn of radius σ centered at ξ = Ξ(q0) ∈ Hn \ Ω, and denoted by Bσ(ξ), such
that q0 ∈ ∂Bσ(ξ) and Bσ(ξ) ⊂ Hn \ Ω.

Proposition 4.7. Let Ω be a bounded domain of Hn satisfying a uniform exterior geodesic ball condition.
Let H ∈ C1(CΩ) be such that H > 0 and ∂

∂λ (λH(λq)) ≤ 0, for all q ∈ Ω, λ > 0. Then (Ω, H) is
admissible

Proof. Let distHn(·, ·) be the geodesic distance in Hn. Let σ > 0 be the number given by Definition 4.6
for Ω. In particular, by definition, it follows that for any q0 ∈ ∂Ω there exists ξ = ξ(q0) /∈ Ω such that
distHn(ξ, ∂Ω) = distHn(ξ, q0) = σ.

Let q0 ∈ ∂Ω, t ∈ [0, 1] and let ξ = ξ(q0) satisfying the above properties. Since every geodesic ball of
Hn is geodesically convex (see [19, Sect 2.5]) we can take R > 0 sufficiently large so that Ω is contained
in the geodesically convex ball BR(ξ). We observe that since Ω is bounded and distHn(ξ, ∂Ω) = σ, up
to a new choice of a larger R, we can assume that R is uniform with respect to the choice of q0 ∈ ∂Ω.

Arguing as in proof of [10, Theorem 2.1], we set |||q||| := distHn(q, ξ) to denote the geodesic distance
from ξ and we define

δ+(q) :=

∫ |||q|||
|||q0|||

(1 + γ(s))−1/2 ds,

γ(s) := αeβs,

where α, β are positive constant to be determined later. By construction it holds that δ+ ∈ C2(BR(ξ)\
{ξ}), δ+ ∈ C2(Ω), δ+(q0) = 0 and δ+ ≥ 0 in Ω because of the exterior ball condition.

Let us consider the following operator (which is the divergence form of −Qt)

Qtdiv(u) := −divHn

(
∇u√

1− |∇u|2

)
+

nt√
1− |∇u|2

− nteuH(euq).

We set

A(u) := −divHn

(
∇u√

1− |∇u|2

)
, ν(u) :=

1√
1− |∇u|2

.

We observe that |∇|||q|||| = 1 for any q ∈ BR(ξ) \ {ξ}. This property is known for general manifolds
when R is sufficiently small so that BR(ξ) is contained in a normal neighborhood of ξ (see [14, Corollary
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6.9 and 6.11]). In our case, as a consequence of the Cartan-Hadamard Theorem, since Hn has negative
sectional curvature then it admits global normal coordinates and we are done.

Therefore, since the covariant derivatives of δ+ are given by (δ+)i = (1 + γ)−1/2|||q|||i, we obtain
that for any q ∈ Ω

|∇δ+| = (1 + γ)−1/2 < 1,

and

ν(δ+) = γ−1/2(1 + γ)1/2.

In addition, by direct computation (see [10, (2.14)-(2.16)]) it holds that

A(δ+) = (1 + γ)−1/2

(
β

2
−∆|||q|||

)
ν(δ+),

We observe that ∆|||q||| is smooth and bounded in compact subsets of BR(ξ) \ {ξ} and it is singular as
q → ξ. Indeed (see [10, (2.17)-(2.18)]) we have

−∆|||q||| = −n− 1

|||q|||
+ Ψ, (4.14)

where Ψ is a bounded term which is given, in normal coordinates centered at ξ, by

Ψ = −
n∑

i,j,k=1

gijΓkij |||q|||k.

In particular, in view of the uniform exterior geodesic ball condition, since distHn(q, ξ(q0)) ≥ σ for any
q ∈ Ω, for any q0 ∈ ∂Ω, then from (4.14) we infer that ∆|||q||| is bounded in Ω by a constant depending
only on n, σ,Ω, q0. In addition, by definition the map q0 7→ ξ is of class C2(∂Ω,Hn) and thus, by
compactness of ∂Ω, it follows that ∆|||q||| is bounded by a constant depending only n, σ,Ω.

Now, by the previous relations we have

A(δ+) + tnν(δ+) =
[
(1 + γ)−1/2(β/2−∆|||x|||) + tn

]
(γ−1/2(1 + γ)1/2)

≥
(
β

2
−∆|||x|||

)
γ−1/2 =

(
β

2
−∆|||x|||

)
α−1/2e−

βs
2 .

Setting H̄ := maxq∈ΩH(q) > 0, we can choose β sufficiently large so that β
2 − ∆|||q||| > 0, for any

q ∈ Ω. With this choice of β we choose α sufficiently small so that
(
β
2 −∆|||q|||

)
α−1/2e

βs
2 ≥ nH̄, for

any x ∈ Ω, s ∈ [|||q0|||, supq∈Ω |||q|||]. Therefore, since δ+ ≥ 0 in Ω, and in view of the monotonicity
assumption on H, it follows that

A(δ+) + ntν(δ+)− nteδ
+

H(eδ
+

q) ≥ A(δ+) + ntν(δ+)− nte0H(e0q)

≥ A(δ+) + ntν(δ+)− ntH̄
≥ 0.

Hence, Qtdiv(δ+) ≥ 0 in Ω, which is equivalent to Qt(δ+) ≤ 0 in Ω, and in addition by construction we

have δ+ ≥ 0 on ∂Ω, δ+(x0) = 0, |∇δ+| = (1 + γ)−1/2 ≤ 1− θ+, for some number θ+ = θ+(α, β) ∈ (0, 1).
As pointed out before, in view of the uniform exterior ball condition, −∆|||q||| is uniformly bounded

by a constant depending only on n, σ,Ω, and by construction supq∈Ω |||q||| ≤ R. Therefore, the numbers

α, β can be chosen in a uniform way with respect to the base point q0 ∈ ∂Ω (and also with respect on
t ∈ [0, 1]). Hence, there exist θ+ ∈ (0, 1) such that for any q0 ∈ ∂Ω, t ∈ [0, 1] the function ϕ2 := δ+

(which depends on the choice of q0 but non on t) satisfies i)-iv) of Definition 4.4 with θ = θ+. For the
other barrier is suffices to take ϕ1 := δ−, where

δ− := −
∫ |||q|||
|||q0|||

(1 + γ(s))−1/2 ds,

and to argue as in the previous case. We limit to observe that in this case the choice of α, β has to be
made in a different way but it is still uniform with respect to q0, and t.
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In fact

A(δ−) + tnν(δ−) = −γ−1/2

(
β

2
−∆|||x||| − tn(1 + γ)1/2

)

= −α−1/2e−
βs
2

(
β

2
−∆|||x||| − tn(1 + αeβs)1/2

)
.

Taking α = e−β supx∈Ω |||x|||, it follows that n(1+αeβs)1/2 ≤
√

2n for any β > 0, s ∈ [|||x0|||, supx∈Ω |||x|||].
With this choice of α, we choose β such that

β

2
−∆|||x||| − 2n ≥ 0,

for x ∈ Ω. At the end, we have that A(δ−) + tnν(δ−) ≤ 0, and thus being H > 0 it holds that

A(δ−) + tnν(δ−)− tneδ
−
H(eδ

−
) ≤ A(δ−) + tnν(δ−) ≤ 0 in Ω.

As before we find a uniform θ− ∈ (0, 1) such that for any q0 ∈ ∂Ω, t ∈ [0, 1], the function ϕ1 := δ−

satisfies |∇ϕ1| ≤ 1 − θ− and ii)-iv) of Definition 4.4. At the end, choosing θ := min{θ−, θ+} we have
that for any q0 ∈ ∂Ω, t ∈ [0, 1], the functions ϕ1, ϕ2 satisfy i)-iv) of Definition 4.4, and hence (Ω, H) is
admissible. The proof is complete. �

Remark 4.8. It is important to note that in the previous proof the choice of θ depends only on n, σ,Ω
and depends on H just by the number H̄ := maxq∈ΩH(q) > 0 because of the monotonicity assumption.
In particular θ does not depend on the derivatives of H.

If H ∈ C1(CΩ(r1, r2)) we define a canonical extension of H to a mapping on the cone CΩ in the
following way: set

h1(q) :=

[
∂

∂ρ
ρH(ρq)

]
ρ=r1

, h2(q) :=

[
∂

∂ρ
ρH(ρq)

]
ρ=r2

and

Ĥ(ρq) :=


r1
ρ H(r1q) +

(
1− r1

ρ

)
h1(q) for ρ ∈ (0, r1),

H(ρq) for ρ ∈ [r1, r2],
r2
ρ H(r2q) +

(
1− r2

ρ

)
h2(q) for ρ ∈ (r2,+∞).

(4.15)

Remark 4.9. It is elementary to check that Ĥ ∈ C1(CΩ), and if H satisfies ∂
∂λ (λH(λq)) ≤ 0, for all q ∈

Ω, λ ∈ [r1, r2] it follows that

∂

∂λ

(
λĤ(λq)

)
≤ 0, for all q ∈ Ω, λ > 0.

Therefore, since Ĥ(x) = H(x) for x ∈ Ω, by Remark 4.8 if Ω satisfies the hypotheses of Proposition

4.7 and H is positive, it follows that (Ĥ,Ω) is admissible with constant which does not depend on the

choice of r1, r2, and the derivatives of Ĥ.

In view of the previous remark, the following definition makes sense:

Definition 4.10. Let Ω be a bounded domain of Hn, let 0 < r1 ≤ 1 ≤ r2 and H ∈ C1(CΩ(r1, r2)). We

say that (Ω, H) is admissible if (Ω, Ĥ) is admissible, where Ĥ is the extension of H defined in (4.15),

and for θ ∈ (0, 1) we say that (Ω, H, θ) is admissible if (Ω, Ĥ, θ) is admissible.

Now we have all the tools to prove the a priori estimates. Let us fix some notation: let k ∈ N, α ∈ (0, 1)

we consider the subspaces Ck,α0 (Ω) := {u ∈ Ck,α(Ω) | u|∂Ω = 0}, Ck0 (Ω) := {u ∈ Ck(Ω) | u|∂Ω = 0},
endowed, respectively, with the usual norms | · |k,α, | · |k. We point out that Ck,α0 (Ω), Ck0 (Ω) are closed
subspaces of Banach spaces and thus they are Banach too. When needed we will specify also the domain
in the norms, otherwise it will be understood that the domain is Ω, moreover for the C0(Ω)-norm we
will use the notations | · |∞, | · |∞,Ω, and ‖ · ‖∞, ‖ · ‖∞,Ω when working in the euclidean setting.

We define Q̂tε as the operator obtained from Qtε by replacing H with its extension Ĥ, and in the class

of functions satisfying |∇u|∞,Ω < 1 we define Q̂t as

Q̂t(u) :=

n∑
i,j=1

((1− |∇u|2)δij + uiuj)uij − nt(1− |∇u|2) + nt(1− |∇u|2)3/2euĤ(euq). (4.16)
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In order to simplify the notation we set Lε,uu :=
∑n
i,j=1((1 − η2

ε |∇u|2)δij + η2
εuiuj)uij . The first

result we prove is about a priori C0 estimate for solutions of Q̂tε(u) = 0.

Lemma 4.11 (A priori C0 estimates). Let Ω be a bounded domain and let r1 6= r2 such that
0 < r1 ≤ 1 ≤ r2. Assume that H ∈ C1(CΩ(r1, r2)) satisfies

H(r1q) > r−1
1 and H(r2q) < r−1

2 for any q ∈ Ω, (4.17)

and
∂

∂λ
(λH(λq)) ≤ 0, for all q ∈ Ω, λ ∈ [r1, r2]. (4.18)

For ε ∈ (0, 1), for every t ∈ [0, 1], if u ∈ C2
0 (Ω) is a solution of Q̂tε(u) = 0 then

log r1 ≤ u(q) ≤ log r2, for every q ∈ Ω.

Proof. Let us observe that since we are assuming (4.17), (4.18), it holds that

Ĥ(x) > |x|−1 if |x| 6 r1, x ∈ CΩ and Ĥ(x) < |x|−1 if |x| > r2, x ∈ CΩ. (4.19)

Let ε ∈ (0, 1), let t ∈ [0, 1] and let u ∈ C2
0 (Ω) such that Q̂tε(u) = 0. By definition u is a classical

solution of the Dirichlet problem{
Lε,uu = nt(1− η2

ε |∇u|2)
(

1−
√

1− η2
ε |∇u|2euĤ(euq)

)
in Ω,

u = 0 in ∂Ω.
(4.20)

Let q0 ∈ Ω such that u(q0) = maxΩ u. Assume by contradiction that u(q0) > log r2. Then q0 ∈ Ω
because r2 ≥ 1 and u = 0 on ∂Ω. Hence ∇u(q0) = 0, and being q0 a maximum point, it holds that
∆u(q0) ≤ 0, and by definition of Lu,ε this reads as

Lu,εu ≤ 0.

On the other hand it must be t > 0 because otherwise if t = 0 then u ≡ 0. Moreover

Lu,εu(q0) = nteu(q0)

(
1

eu(q0)
− Ĥ(eu(q0)q0)

)
> 0,

because Ĥ(x) < |x|−1 as |x| > r2. Thus we reach a contradiction. The same argument holds to show
that minΩ u ≥ log r1. �

Lemma 4.12 (A priori C1,α estimates). Let ε ∈ (0, 1) and let Ω be a bounded domain of class C2.
Assume that H satisfies (4.17), (4.18). Then, there exist two positive constants M , C and α0 ∈ (0, 1)
such that for all t ∈ [0, 1] if u ∈ C2

0 (Ω) is such that |∇u|∞,∂Ω ≤ 1− ε and is a solution of the equation

Q̂tε(u) = 0, then
|∇u|∞,Ω ≤M
|u|1,α0 ≤ C.

Proof. Let us fix ε ∈ (0, 1), let t ∈ [0, 1] and let u = ut be a solution of Q̂tε(u) = 0. From Lemma 4.11
we have that log r1 ≤ u ≤ log r2 and thus by definition u also verifies Qtε(u) = 0. Therefore, from now
on we can work just with the operator Qtε.

Let us set bε,t(q, u,∇u) := nt(1 − η2
ε |∇u|2)

(
1−

√
1− η2

ε |∇u|2euH(euq)
)

. In view of Remark 4.2,

passing to hyperbolic stereographic coordinates, the operator Qtε is uniformly elliptic with constants
independent on t, moreover, by definition and thanks to Lemma 4.11 the term bε,t(q, u,∇u) is uniformly
bounded with respect to t.

Now there are only two possibilities: there exists a constant M independent on t such that |∇u|∞,Ω ≤
M for all t ∈ [0, 1] or there exists a subsequence (tk) ⊂ [0, 1], such that |∇utk |∞,Ω → +∞, as k → +∞.
We claim that the second case cannot happen. To this end we will give two proofs of this fact, one
works only in dimension 2, the other one works in any dimension.
Case of dimension 2: assume that |∇utk |∞,Ω → +∞. Let us set Ω′k := {x ∈ Ω; |∇utk | ≥ 3

ε }, and
qk ∈ Ω′k such that |∇utk |∞,Ω = |∇utk(qk)|. We observe that Ω′k is closed and hence is a compact subset

of Ω, and being |∇ut|∞,∂Ω ≤ 1 − ε we have that Ω′k ∩ ∂Ω = ∅ for all k. Let Ω′′k be the connected
component of Ω′k containing qk. Consider now the auxiliary problem{

∆vtk = ntk(1− η2
ε |∇utk |2)

(
1−

√
1− η2

ε |∇utk |2eutkH(eutk q)
)

in Ω,

vtk = 0 in ∂Ω.
(4.21)
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We observe that since utk is uniformly bounded, then by construction and standard regularity theory
we get that vtk and its gradient are uniformly bounded with respect to k. By definition wtk := utk −vtk
is harmonic in Ω′′k . Therefore, considering the isometry F : H2 → B2, and since harmonicity is preserved

through composition with isometries (see [12, Sect. 2.2]), then, w̃tk := F ◦ wtk is harmonic in Ω̃′′k :=
F (Ω′′k) ⊂⊂ B2. Now, since the hyperbolic metric g̃ is conformal to the euclidean metric g0 in B2 (see

Sect. 2), we have that w̃tk is harmonic also in (Ω̃′′k , g0). We point out that, in general, this fact is false

in the other dimensions. Hence, since w̃tk is harmonic it follows that also ∇0w̃tk is harmonic in Ω̃′′k , so,
‖∇0w̃tk‖n achieves its maximum on the boundary, and thus ‖∇0w̃tk‖∞ = ‖∇0w̃tk‖∞,∂Ω̃′′k

→ +∞, as

k → +∞. On the other hand, by construction and (4.7) we have that

‖∇0w̃tk‖∞,∂Ω̃′′k
= sup

y∈∂Ω̃′′k

‖∇0w̃tk(y)‖n = sup
q∈∂Ω′′k

4

(1− ‖F (q)‖2n)2
|∇wtk(q)|

≤ sup
q∈∂Ω′′k

4

(1− ‖F (q)‖2n)2

(
3

ε
+ |∇vk(q)|

)
is uniformly bounded and thus we get a contradiction.
Case of any dimension n ≥ 2: consider ũ := u ◦ F−1, where F : Hn → Bn is the hyperbolic
stereographic projection. Then ũ is a solution of an uniformly elliptic equation which satisfies the
hypotheses of [11, Theorem 15.2] (see [11, (i), pag. 367]). In fact, thanks to Remark 4.3, writing Qtε in
local coordinates we see by elementary computations that the natural conditions of [11, (i), pag. 367],
are satisfied (uniformly in t). In particular, introducing the operator δ = ∂

∂z +
∑n
k=1 ‖p‖−2

n pk
∂
∂yk

, we

see that δãijε , δb̃ε,t satisfy, as ‖p‖n → +∞ (uniformly for (y, z) ∈ Λ × [log r1, log r2], and in t ∈ [0, 1]),
the growth conditions of [11, (15.36)], and thus the hypotheses of [11, Theorem 15.2] are satisfied with
c ≤ 0.

Thanks to Lemma 4.11 the oscillation of u is uniformly bounded, moreover, since |∇u|∞,∂Ω ≤ 1− ε
and the structural conditions are satisfied uniformly in t, we have that the constant given by [11,
Theorem 15.2] is uniformly bounded with respect to t. Hence there exists C independent on t such
that ‖∇0ũ‖∞,F (Ω) ≤ C, and hence, in view of (4.7), the same holds for |∇u|∞,Ω. Therefore, it cannot
happen that there exist a sequence (tk) such that |∇utk |∞,Ω → +∞, and we are done.
Conclusion: from the previous discussion the only possibility is that there exists a constant M such
that |∇u|∞,Ω ≤ M for all t ∈ [0, 1]. From this fact, up to passing to local coordinates, since Qtε is
uniformly elliptic (with ellipticity constant independent on t), bε,t(q, u,∇u) is uniformly bounded in t,
thanks to [11, Theorem 13.7], there exists α0 ∈ (0, 1) and a positive constant C, both depending only
on n, Ω, |∇u|∞,Ω, Ω, and the ratio between the uniform bound on bε,t and the lower ellipticity constant,
such that

[∇u]0,α0
≤ C,

where [·]0,α0 denotes the C0,α0 seminorm. At the end, from this fact and Lemma 4.11, we conclude that

|u|1,α0 ≤ C1,

for some constant C1 not depending on t, and the proof is complete.
�

5. Existence and uniqueness of solutions for the regularized problem

The aim of this section is to prove the following:

Theorem 5.1. Let α ∈ (0, 1), 0 < r1 ≤ 1 ≤ r2, with r1 6= r2, let Ω be a bounded domain of Hn,
with boundary of class C2,α. Let H ∈ C1(CΩ(r1, r2)) satisfying the hypotheses i), ii) of Theorem 1.3.
Assume that (Ω, H) is admissible. Then, there exists ε̄ ∈ (0, 1) such that for any ε ∈ (0, ε̄) Problem 4.2
has a solution. Moreover such solution is the unique solution of Problem 4.2 whose associated radial
graph is contained in CΩ(r1, r2).

Proof. We divide the proof in several steps.

Step 1: Choice of ε̄ ∈ (0, 1).

Let Ĥ be the extension of H defined in (4.15). Since (Ω, Ĥ) is admissible we choose ε̄ = θ, where θ is
given by Definition 4.4.
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Let ε ∈ (0, 1) such that ε < θ, let α0 ∈ (0, 1) be the number given by Lemma 4.12 and set β :=

min{α, α0}. For any fixed w ∈ C1,β(Ω) we define the operator Lw,ε : C2,β
0 (Ω)→ C0,β(Ω) as

Lw,εu :=

n∑
i,j=1

(
(1− η2

ε |∇w|2)δij + η2
εwiwj

)
uij .

Step 2: For every w ∈ C1,β(Ω) the operator Lw,ε is a bijection of C2,β
0 (Ω) onto C0,β(Ω).

A mapping u ∈ C2,β
0 (Ω) belongs to the kernel of Lw,ε if and only if u solves the Dirichlet problem

n∑
i,j=1

(
(1− η2

ε |∇w|2)δij + η2
εwiwj

)
uij = 0 in Ω,

u = 0 on ∂Ω.

(5.1)

Since Lw,ε is uniformly elliptic (see Lemma 4.1), by the maximum principle, being u = 0 on ∂Ω we
obtain that u = 0 in Ω, and this means that Lw,ε is injective. In order to prove that Lw,ε is onto we use

the continuity method. Let t ∈ [0, 1], we introduce the family of operators Lt,w,ε : C2,β
0 (Ω) → C0,β(Ω)

defined by

Lt,w,ε = (1− t)∆ + tLw,ε.

We observe that L0,w,ε = ∆ and for every f ∈ C0,β(Ω) the Dirichlet problem{
∆u = f in Ω,

u = 0 on ∂Ω,

admits a solution C2,β(Ω). That is L0,w,ε sends C0,β(Ω) onto C2,β
0 (Ω). Now we claim that there exists

a constant C > 0 such that

|u|2,β ≤ C|Lt,w,ε|0,β , (5.2)

for every t ∈ [0, 1], for every u ∈ C2,β
0 (Ω). In view of the method of continuity this is enough to infer

that L1,w,ε = Lw,ε is onto. If (5.2) is false then there exist sequences (tk) ⊂ [0, 1], (uk) ⊂ C2,β
0 (Ω) such

that

|Lt,w,ε|0,β → 0 and |uk|2,β = 1. (5.3)

By compactness, in particular using also the Ascoli-Arzelà Theorem, there exist t ∈ [0, 1] and u ∈
C2,β

0 (Ω) such that, up to a subsequences,

tk → t and uk → u in C2(Ω).

By continuity we have Lt,w,εu = 0. Since, up to passing in hyperbolic stereographic coordinates, Lt,w,ε
is a convex combination of elliptic operators, it is so too. Hence u = 0. In particular

uk → 0 in C0(Ω). (5.4)

We observe that

Lt,w,εu =

n∑
i,j=1

aijt,εuij ,

where aijt,ε =
(
(1− tη2

ε |∇w|2)δij + tη2
εwiwj

)
, and Lt,w,ε is uniformly elliptic, moreover, arguing as in the

proof of Lemma 4.1 we see that the ellipticity constants are independent on t. Since the boundary is
smooth we can apply Global Schauder estimates and we get that

|uk|2,β ≤ C(|uk|∞ + |Lt,w,ε|0,β),

with C independent on k. This yields a contradiction with (5.3), (5.4). Hence (5.2) is true and the
proof of Step 2 is complete.

Step 3: For every C > 0 there exists K > 0 such that if |w|1,β ≤ C then |u|2,β ≤ K|Lw,εu|0,β for every

u ∈ C2,β
0 (Ω).

We argue by contradiction as in the last part of the proof of Step 2. If the result is false then there

exist a bounded sequence (wk) in C1,β(Ω) and a sequence (uk) in C2,β
0 (Ω) such that

|uk|2,β = 1 and |Lwk,εuk|0,β → 0. (5.5)
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By compactness, there exist w ∈ C1(Ω) and u ∈ C2
0 (Ω) such that, up to subsequences,

wk → w in C1(Ω) and uk → u in C2(Ω).

By continuity we get Lw,εu = 0. Then u = 0, by Step 2. Taking into account of Lemma 4.1 we
observe that the operators Lwk,ε are uniformly elliptic with ellipticity constants independent on k.
Using standard Schauder’s estimates we obtain that

|uk|2,β ≤ C1 (|uk|∞ + |Lwk,εuk|0,β) ,

where C1 is constant independent on k. Since uk → 0 in C0(Ω) and by (5.5) we reach a contradiction.
The proof of Step 3 is complete.

Step 4: Let (wk) be a bounded sequence in C1,β(Ω) and let (fk) be a bounded sequence in C0,β(Ω).
Then the sequence (uk) of solutions of {

Lwk,εuk = fk in Ω,

uk = 0 on ∂Ω.
(5.6)

is bounded in C2,β(Ω).

The existence of a solution uk of (5.6) is given by Step 2, and the thesis follows from Step 3.

Step 5: Let us consider the map Tε : C1,β
0 (Ω)→ C1,β

0 (Ω), defined as follows: for every w ∈ C1,β
0 (Ω) we

set Tε(w) := u, where u = u(w, ε) is the unique solution of the problem


n∑

i,j=1

(
(1− η2

ε |∇w|2)δij + η2
εwiwj

)
uij = n(1− η2

ε |∇w|2)
(

1−
√

1− η2
ε |∇w|2ewĤ(ewq)

)
in Ω,

u = 0 on ∂Ω.

(5.7)
We claim that Tε is a compact operator.

We first observe Tε is well defined, in fact, as proved in Step 2, for a given w ∈ C1,β
0 (Ω), the operator

Lw,ε is a bijection between C2,β
0 (Ω) and C0,β(Ω). In addition is Tε is a linear map. It remains to prove

that Tε maps bounded families of C1,β
0 (Ω) into relatively compact subsets of C1,β

0 (Ω).

Let (wλ) be a bounded family of C1,β
0 (Ω), then (uλ), where uλ = Twλ, is a family of solutions of 5.7.

Hence uλ ∈ C2,β
0 (Ω) and since we assuming that there exists C > 0 such that |wλ|1,β ≤ C then by Step

3 we have

|uλ|2,β ≤ K
∣∣∣n(1− η2

ε |∇wλ|2)
(

1−
√

1− η2
ε |∇wλ|2ewλĤ(ewλq)

)∣∣∣
0,β
≤ K1,

where K1 is a positive constant not depending on the family. Hence (uλ) is uniformly bounded in

C2,β
0 (Ω), and in particular by Step 4 and Ascoli-Arzelà Theorem it is relatively compact in C1,β

0 (Ω).

This proves that (uλ) is relatively compact in C1,β
0 (Ω) and we are done.

Step 6: There exists a constant C > 0 such that |u|1,β ≤ C for any u ∈ C1,β
0 (Ω) satisfying u = tTεu,

where t ∈ [0, 1].

We first observe that by definition and standard elliptic regularity theory any u ∈ C1,β
0 (Ω) satisfying

u = tTεu is of class C2,β
0 (Ω) and verifies Q̂tε(u) = 0. Thanks to Lemma 4.12, and since β ≤ α0, there

exists C > 0 such that |u|1,β ≤ C, provided that |∇u|∞,∂Ω ≤ 1− ε. Therefore, in oder to conclude it is
sufficient to check this boundary estimate for the gradient.

Let q0 ∈ ∂Ω such that |∇u(q0)| = |∇u|∞,∂Ω. If ∇u(q0) = 0 it follows that ∇u = 0 on ∂Ω and hence
there is nothing to prove. Therefore, let us assume that ∇u(q0) 6= 0.

Since (Ω, Ĥ) is admissible, for any t ∈ [0, 1] there exist ϕ1, ϕ2 ∈ C2(Ω) satisfying i)-iv) of Definition
4.4 at q0. Hence, taking into account of the choice of ε and Remark 4.2, we have

Q̂tε(ϕ1) ≥ Q̂tε(u) ≥ Q̂tε(ϕ2) in Ω,

and ϕ1 ≤ u ≤ ϕ2 on ∂Ω. Let us write Q̂tε(u) =
∑n
i,j=1 a

ij
ε uij + b̂ε,t(q, u,∇u), where

b̂ε,t(q, u,∇u) := −nt(1− η2
ε |∇u|2) + nt(1− η2

ε |∇u|2)3/2euĤ(euq).
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Notice that thanks to assunption ii) and Remark 4.9 it follows that for any fixed q ∈ Ω the map

z 7→ ezĤ(ezq) is not increasing.
Thanks to Lemma 4.1 and Remark 4.3, under the hyperbolic stereographic projection F : Hn → Bn,

the operator Q̂tε is transformed into an uniformly elliptic operator of the form

Q̃tεũ =

n∑
i,j=1

ãijε (y,∇0ũ)ũij + b̃ε,t(y, ũ,∇0ũ),

where y ∈ F (Ω), ∇0ũ is the euclidean gradient, ũij are the second partial derivatives of ũ = u ◦F−1. In
view of Remark 4.3 and assumption ii) the principal part ãijε (y, p) does not depend on z, and for each

(y, p) ∈ F (Ω)× Rn the map z 7→ b̃ε,t(y, z, p) is non-increasing. Hence the comparison principle applies

(see [11, Theorem 10.1]), and thus setting ϕ̃i := ϕi ◦ F−1, for i = 1, 2, from Q̃tε(ϕ̃1) ≥ Q̃tε(ũ) ≥ Q̃tε(ϕ̃2)
in F (Ω), and ϕ̃1 ≤ ũ ≤ ϕ̃2 on ∂F (Ω), it follows that ϕ̃1 ≤ ũ ≤ ϕ̃2 in F (Ω). Therefore we obtain

ϕ1 ≤ u ≤ ϕ2 in Ω. (5.8)

We observe that since u = 0 on ∂Ω then ∇u(q0) is orthogonal to Tq0∂Ω, where Tq0∂Ω is the tangent
space at q0 for ∂Ω, and we have the orthogonal decomposition Span{∇u(q0)}

⊕
Tq0∂Ω = Tq0Hn.

Let us set ŵ := ∇u(q0)
|∇u(q0)| and consider a curve ψ : (−δ, δ) → Hn such that ψ(0) = q0, ψ(s) ∈ Ω for

s ∈ (0, δ) and ψ′(0) = ŵ if ŵ points towards the interior of Ω (otherwise we take ψ′(0) = −ŵ). Since
Ω has a smooth boundary we can always find a curve satisfying these properties. From (5.8), and since
u(q0) = ϕ1(q0) = ϕ2(q0) = 0 we deduce that for all sufficiently small h > 0

ϕ1(ψ(h))− ϕ1(ψ(0))

h
≤ u(ψ(h))− u(ψ(0))

h
≤ ϕ2(ψ(h))− ϕ2(ψ(0))

h
. (5.9)

Passing to the limit as h→ 0+ we get that

dϕ1(q0)[ŵ] ≤ du(q0)[ŵ] ≤ dϕ2(q0)[ŵ],

(if ŵ points in the opposite direction (5.9) holds but with the reversed inequalities). At the end, it
follows that

|du(q0)[ŵ]| ≤ max{|dϕ1(q0)[ŵ]|, |dϕ2(q0)[ŵ]|}.
Since Hn a spacelike hypersurface, then for any q ∈ Hn the Cauchy-Schwartz inequality holds in TqHn
for 〈·, ·〉TqHn (we point out that, in general, the Cauchy-Schwartz inequality does not hold in Ln+1, see
[17]). In particular |dϕi(q0)[ŵ]| = |〈∇ϕi(q0), ŵ〉| ≤ |ϕi(q0)||ŵ| = |ϕi(q0)|.

Hence, by the previous discussion and by Definition 4.4 we have

|∇u(q0)| = |〈∇u(q0), ŵ〉| = |du(q0)[ŵ]| ≤ max{|dϕ1[ŵ], dϕ2[ŵ]} ≤ 1− θ.
At the end since ε < θ we get that |∇u| verifies the desired boundary estimate, and thus from the

initial discussion, the proof of Step 6 is complete.

Step 7: Existence of a solution of Problem (4.2).

Thanks to Step 5 and Step 6 it follows that the operator Tε : C1,β
0 (Ω)→ C1,β

0 (Ω) satisfies the hypotheses

of the Leray-Schauder Theorem (see [11, Theorem 11.3]), and thus there exists u ∈ C1,β
0 (Ω) which solves

u = Tεu. Hence, u ∈ C2,β
0 (Ω), and by definition of Ĥ and Lemma 4.11 u is a solution of Problem (4.2).

The proof of Step 7 is complete.

Step 8: Uniqueness.

For the uniqueness of the solution it is sufficient to argue as in [5, Sect. 2.3]. For the sake of completeness
we give a sketch of the proof.

Let us fix ε ∈ (0, 1) and let u1, u2 ∈ C2(Ω) ∩ C0(Ω) be two solutions of Problem 4.2 such that the
corresponding radial graphs are contained in CΩ(r1, r2). If u1 6= u2 then there exists q ∈ Ω such that
u1(q) 6= u2(q). Without loss of generality we can assume that u1(q) < u2(q). Then there exists µ > 0
such that u1(q) + µ > u2(q) for every q ∈ Ω and u1(q0) + µ = u2(q0) at some q0 ∈ Ω. Set u1 := u1 + µ
and observe that u1 verifies

n∑
i,j=1

(
(1− η2

ε |∇u1|2)δij + η2
εu1iu1j

)
u1ij 6 n(1− |η2

ε∇u1|2)
(

1−
√

1− η2
ε |∇u1|2 eu1 Ĥ(eu1q)

)
in Ω
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because of ii) and µ > 0. Notice that the radial graph defined by u1 stays over (in the radial direction)
that one corresponding to u2 and they touch themselves at the point X0 = q0e

u2(q0). Now, in order to
conclude it sufficient to compare u1 and u2 by means of the Hopf maximum principle. To this end we
use the version stated in [21, Theorem 2.3] for the operator

Qε(u) =

n∑
i,j=1

(
(1− η2

ε |∇u|2)δij + uiuj
)
uij

− n(1− η2
ε |∇u|2)

(
1−

√
1− η2

ε |∇u|2 eu Ĥ(euq)
)
.

It is easy to see that, up to passing to hyperbolic stereographic coordinates, the assumptions of [21,
Theorem 2.3] are fulfilled, and applying the theorem as in [5], we deduce that u1 = u2 in Ω. But this
gives a contradiction since u1|∂Ω = µ > 0 = u2|∂Ω. Hence it must be u1 = u2 and we are done.

�

6. An interior estimate for the gradient

In this section we prove an estimate for the gradient when the maximum point of its modulus lies in
the interior of the domain Ω. We begin with a preliminary elementary result of linear algebra.

Lemma 6.1. Let A = (aij), B = (bij) ∈Mn(R) be two symmetric matrices. Assume that A is positive
semi-definite and B is negative semi-definite. Then

n∑
i,j=1

aijbij ≤ 0.

Proof. Since A, B are symmetric we have that
∑n
i,j=1 aijbij = trace(AB), and there exist two invertible

matrices P , Q such that P−1AP = DA, Q−1BQ = DB are diagonal. Thanks to the assumptions we
have that DA has non-negative elements on the diagonal, while DB has non positive elements on the
diagonal. Therefore, since the trace is invariant under similitude, and diagonal matrices commute in
the product, we have

trace(AB) = trace(P−1APP−1BP ) = trace(DAP
−1BP ) = trace(P−1DABP ) = trace(DAB).

Now, by the same argument we get that

trace(DAB) = trace(Q−1DAQQ
−1BQ) = trace(DAQ

−1QDB) = trace(DADB).

Therefore,
∑n
i,j=1 aijbij = trace(AB) = trace(DADB) ≤ 0, and the proof is complete. �

Definition 6.2. Let H ∈ C1(CΩ), let ∇0H be gradient of H in Rn+1 with respect to the flat metric.
We define the (euclidean) tangential component of ∇0H on T x

|x|
Hn as the vector

∇T0 H(x) := ∇0H(x)− (∇0H(x), r̂(x))n+1 r̂(x), x ∈ CΩ
where

r̂(x) :=
(x1, . . . , xn,−xn+1)

‖x‖n+1
.

Remark 6.3. We point out that by definition ∇T0 H(x) = ∇0H(x) − 〈∇0H(x), x
‖x‖n+1

〉r̂(x), and if

v ∈ Rn+1 is such that (r̂(x), v)n+1 = 0 then 〈 x|x| , v〉 = 0, and viceversa. In particular (r̂(x), v)n+1 = 0

for any v ∈ T x
|x|

Hn, x ∈ CΩ

In the sequel we will make use also of the following formulas for the second and third covariant
derivatives of a smooth function u defined over Ω (see [29, Sect. 2])

n∑
j=1

uijω
j = dui −

n∑
j=1

ujωji, (6.1)

n∑
k=1

uijkω
k = duij −

n∑
k=1

ukjωki −
n∑
k=1

uikωkj . (6.2)
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Proposition 6.4. Let Ω be a bounded domain of Hn, let H ∈ C1(CΩ), ε ∈ (0, 1) and let u ∈ C3(Ω) be
a solution of

n∑
i,j=1

((1− η2
ε |∇u|2)δij + η2

εuiuj)uij = n(1− η2
ε |∇u|2)

(
1−

√
1− η2

ε |∇u|2euH(euq)
)
. (6.3)

Then, if the maximum point q0 of |∇u| lies in the interior of Ω, we have |∇u(q0)| = 0 or[
−(n− 1)− n(1− η2

ε |∇u(q0)|)1/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
|∇u(q0)|

−n3/2(1− η2
ε |∇u(q0)|)1/2e2u(q0)‖∇T0 H(eu(q0)q0)‖n+1 ≤ 0,

(6.4)

where ∇T0 H is the (euclidean) tangential component of (∇0H)(eu(q0)q0) on Tq0Hn.

Proof. We will prove a more general version of (6.4). Let us fix a smooth positive function f : R→ R+

and consider the auxiliary function ϕ := f(2Cu)|∇u|2, where C ∈ R is a fixed constant. In order to
simplify the notation we set v := |∇u|2, hence ϕ = f(2Cu)v. Assume that ϕ has a maximum point at
some q0 lying in the interior of Ω. Hence ∇ϕ(q0) = 0 and the Hessian (ϕij(q0)) is negative semi-definite.

By direct computation we have vi = 2
∑n
j=1 ujuji and from ∇ϕ(q0) = 0 we get that

n∑
h=1

f(2Cu)uhuhi + f ′(2Cu)Cvui = 0, for all i = 1, . . . , n, (6.5)

which implies that

n∑
i,h=1

uiuihuh = −C f
′

f
v2, (6.6)

where, f , f ′ stand, respectively, for f(2Cu), f ′(2Cu). By a simple computation, from (6.6), we get that

n∑
i,h,k=1

uiuihuhkuk =

(
f ′

f

)2

C2v3. (6.7)

Let us set aijε := ((1 − η2
ε |∇u|2)δij + η2

εuiuj), bε := n(1 − η2
ε |∇u|2)

(
1−

√
1− η2

ε |∇u|2euH(euq)
)

.

Since (aijε ) is a positive definite symmetric matrix and (ϕij(q0)) is symmetric negative semi-definite,
then, from Lemma 6.1 it follows that

n∑
i,j=1

aijε ϕij(q0) ≤ 0. (6.8)

In order to get an estimate for v = |∇u|2 the idea is to use (6.8). To this end we compute explicitly
ϕij(q0). Recalling that ϕi = 2 (

∑n
h=1 f(2Cu)uhuhi + f ′(2Cu)Cvui), and using (6.5), (6.1) we have

n∑
j=1

ϕij(q0)ωj

= 2

n∑
j=1

[
n∑
h=1

(2Cf ′ujuhuhi + fuhjuhi + fuhijuh) + 2C2f ′′ujuiv + Cf ′uijv +

n∑
h=1

2Cf ′uiuhuhj

]
ωj ,

and thus from (6.8) we infer that

2

 n∑
i,h=1

(
4Cf ′(1− η2

ε v)uiuhuhi + f(1− η2
ε v)u2

hi + f(1− η2
ε v)uhiiuh

)
+ 2C2f ′′(1− η2

ε v)v2

+

n∑
i=1

Cf ′(1− η2
ε v)uiiv +

n∑
i,h=1

2Cf ′η2
εuiuhuhi +

n∑
i,j,h=1

(
fη2

εuiujuhjuhi + fη2
εuiujuhuhij

)
+2C2f ′′ηv3 +

n∑
i,j=1

Cf ′η2
εuiujuijv +

n∑
j,h=1

2Cf ′η2
εujuhuhjv

 ≤ 0.

(6.9)
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Now we estimate and rewrite the terms involving the second and third covariant derivatives. We
may choose a coordinate frame at q0 satisfying δ1iv

1/2 = ui. Either v(q0) = 0 in which case maxΩ ϕ =
ϕ(q0) = 0 and the thesis follows immediately. Otherwise in these coordinates, from (6.5), it follows that

u11 = −f
′

f
Cv, (6.10)

which implies that
n∑

i,j=1

uijuij ≥
(
f ′

f

)2

C2v2. (6.11)

Since u is a solution of (6.3), computing at q0 in these coordinates we have
n∑
i=1

(1− η2
ε v)uii + η2

ε vu11 = bε,

and from (6.10) we obtain
n∑
i=1

uii =

(
bε + C

f ′

f
η2
ε v

2

)
(1− η2

ε v)−1. (6.12)

Recalling that ηε(|∇u|) = ηε(v
1/2), by direct computation we infer

∇k(η2
ε v) =

n∑
h=1

(
2ηεη

′
εv

1/2uhuhk + 2η2
εuhuhk

)
, (6.13)

where it is understood that η′ε stands for η′ε(v
1/2). By differentiating (6.3), taking into account of

(6.1),(6.2) and (6.13), after some standard computations we deduce that

n∑
k=1

− n∑
i,h=1

(2ηεη
′
εv

1/2uhuhk + 2η2
εuhuhk)uii +

n∑
i,j,h=1

2ηεη
′
εv
−1/2uiujuhuhkuij

+

n∑
i,j=1

(
η2
εujuikuij + η2

εuiujkuij + ((1− η2
ε v)δij + η2

εuiuj)uijk
)ωk =

n∑
k=1

(bε)kω
k.

Now, contracting the equation with uk, we get that

n∑
i,h,k=1

(
−2ηεη

′
εv

1/2uhukuhkuii − 2η2
εuhukuhkuii

)
+

n∑
i,j,h,k=1

2ηεη
′
εv
−1/2uiujukuhuhkuij

+
n∑

i,j,k=1

(
η2
εujukuikuij + η2

εuiukujkuij
)

+

n∑
i,k=1

(1− η2
ε v)ukuiik +

n∑
i,j,k=1

η2
εuiujukuijk

=

n∑
k=1

(bε)kuk.

(6.14)

Since the Ricci curvature of the Hyperbolic space is Rij = −(n−1)δij , the Ricci formula (see formula
(2.11) in [29]) gives

n∑
k=1

ukukii =

n∑
k=1

ukuiik − (n− 1)v. (6.15)

Hence, using (6.15), and taking into account of (6.6), (6.7),(6.12), we rewrite (6.14) as

n∑
i,k=1

(1− η2
ε v)ukukii +

n∑
i,j,k=1

η2
εuiujukuijk

= −(n− 1)v(1− η2
ε v)− 2ηεη

′
εC

f ′

f v
5/2(1− η2

ε v)−1(bε + C f ′

f η
2
ε v

2)

−2η2
εCv

2(1− η2
ε v)−1(bε + Cη2

ε v
2)

−2ηεη
′
εC

2

(
f ′

f

)2

v7/2 − 2η2
εC

2

(
f ′

f

)2

v3 +

n∑
k=1

(bε)kuk.

(6.16)

Now, from (6.9) and by using (6.6), (6.7), (6.11), (6.12) (6.16), we deduce that
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−4C2(1− η2
ε v) (f ′)2

f v2 + C2(1− η2
ε v) (f ′)2

f v2

+f
[
−(n− 1)v(1− η2

ε v)− 2ηεη
′
εC

f ′

f v
5/2(1− η2

ε v)−1(bε + C f ′

f η
2
ε v

2)

−2Cη2
ε v

2(1− η2
ε v)−1(bε + C

f ′

f
η2
ε v

2)− 2C2ηεη
′
ε

(
f ′

f

)2

v7/2 − 2C2

(
f ′

f

)2

v3 +

n∑
k=1

(bε)kuk

]
+2C2f ′′(1− η2

ε v)v2 + Cf ′v(bε + C f ′

f η
2
ε v

2)− 2C2 (f ′)2

f η2
ε v

2 + C2 (f ′)2

f η2
ε v

3

+2C2f ′′η2
ε v

3 − C2 (f ′)2

f η2
ε v

3 − 2C2 (f ′)2

f η2
ε v

3 ≤ 0.

(6.17)
Now we compute the term

∑n
k=1(bε)kuk. To this end let us observe that

(euH(euq))k (q0) = eu(q0)ukH(eu(q0)q0)+e2u(q0)uk(q0)(∇0H)(eu(q0)q0)·q0+e2u(q0)(∇0H)(eu(q0)q0)·ek(q0),

where · denotes the standard euclidean product of Rn+1, ∇0H is the gradient of H with respect to the
flat metric in Rn+1. Then, after some computations and taking into account of (6.13), we get that

n∑
k=1

(bε)kuk(q0) = 2nC
f ′

f
ηεη
′
εv

5/2
(

1−
√

1− η2
ε v e

u(q0)H(eu(q0)q0)
)

+ 2nC
f ′

f
(η2
ε v)v

(
1−

√
1− η2

ε v e
u(q0)H(eu(q0)q0)

)
− nC

f ′

f
ηεη
′
ε

√
1− η2

ε v
(
eu(q0)H(eu(q0)q0)

)
v2

− nC
f ′

f
(η2
ε v)(1− η2

ε v)
(
eu(q0)H(eu(q0)q0)

)
v

− n(1− η2
ε v)3/2eu(q0)

(
eu(q0)H(eu(q0)q0) + e2u(q0)∇0H(eu(q0)q0) · q0

)
v

− n(1− η2
ε v)3/2e2u(q0)∇0H(eu(q0)q0) · ∇u,

(6.18)

Computing ∂
∂λ (λH(λq0))

∣∣
λ=eu(q0) and taking into account of Remark 6.3, we rewrite the last two terms

of (6.18) as

− n(1− η2
ε v)3/2eu(q0) ∂

∂λ
(λH(λq0))

∣∣
λ=eu(q0)v − n(1− η2

ε v)3/2e2u(q0)∇T0 H(eu(q0)q0) · ∇u, (6.19)

where ∇T0 H is the euclidean tangential component of (∇0H) on Tq0Hn. Hence, from (6.17), (6.18),
(6.19), regrouping and simplifying terms, we get that

−2C2(f ′)2
[
1− η2

ε + η′ε(ηεv
1/2)

]
v3

−C2
[
(f ′)2(3− 4η2

ε v + (η2
ε v)) + 2f ′f(η2

ε v)2 − 2f ′′f(1− η2
ε v)
]
v2

−nC(1− η2
ε v)3/2f ′fη′ε(ηεv

1/2)eu(q0)H(eu(q0)q0)v3/2

+
[
−(n− 1)f2(1− η2

ε v)2 − C2(f ′)2f(η2
ε v)(1− η2

ε v)− nCff ′(1− η2
ε v)2(η2

ε v)eu(q0)H(eu(q0)q0)

−nf2(1− η2
ε v)5/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
v

−nf2(1− η2
ε v)5/2e2u(q0)∇T0 H(eu(q0)q0) · ∇u

+nCf ′f(1− η2
ε v)2

(
1−

√
1− η2

ε v e
u(q0)H(eu(q0)q0)

)
≤ 0,

(6.20)
and the proof of the general inequality is complete. Now we prove (6.4). Taking f ≡ 1, and dividing
(6.20) by (1− η2

ε v)2, we get that[
−(n− 1)− n(1− η2

ε v)1/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
v−n(1−η2

ε v)1/2e2u(q0)∇T0 H(eu(q0)q0) ·∇u ≤ 0.

(6.21)



RADIAL GRAPHS 22

Assume that v(q0) 6= 0 (otherwise v ≡ 0 and there is nothing to prove). To conclude the proof it
remains to estimate the term ∇T0 H(eu(q0)q0) ·∇u. To this end, recalling the notations used in the proof

of Lemma 4.1, we define h̃ ∈ Rn as the vector whose i-th component is h̃i := ∇T0 H(eu(q0)q0) · ∂i
‖∂i‖n+1

,

i = 1, . . . , n, where ∂i = ∂φ
∂yi

(F (q0)). Then, by construction and Cauchy-Schwartz’s inequality we have

‖h̃‖2n =

n∑
i=1

(
∇T0 H(eu(q0)q0) · ∂i

‖∂i‖n+1

)2

≤ n‖∇T0 H(eu(q0)q0)‖2n+1. (6.22)

Now, exploiting (4.6) we have

∇T0 H(eu(q0)q0) · ∇u = λ−2
n∑
i=1

∂ũ

∂yi
∇T0 H(eu(q0)q0) · ∂i = λ−1

n∑
i=1

∂ũ

∂yi
h̃i = λ−1(∇0ũ, h̃)n,

and thus, from (4.7), (6.22) we deduce that

|∇T0 H(eu(q0)q0) · ∇u| = λ−1|(∇0ũ, h̃)n| ≤ λ−1‖∇0ũ‖n‖h̃‖n ≤
√
n|∇u|‖∇T0 H(eu(q0)q0)‖n+1. (6.23)

Finally, combining (6.21), (6.23) and dividing by v1/2, we obtain (6.4). The proof is complete.
�

Remark 6.5. Applying the gradient estimate (6.4) to the solutions of Qtε(u) = 0, we obtain[
−(n− 1)− nt(1− η2

ε |∇u(q0)|)1/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
|∇u(q0)|

−n3/2t(1− η2
ε |∇u(q0)|)1/2e2u(q0)‖∇T0 H(eu(q0)q0)‖n+1 ≤ 0.

(6.24)

Hence, it is not possible, by using only this strategy, to get a uniform bound with respect to t for |∇u|∞
as in [28]. In fact here we deal with functions defined on a manifold with negative Ricci curvature, and
thus in (6.24) we have a term −(n − 1), while in [28], for the sphere, this term has the opposite sign.
We also point out that this trouble does not depend on the choice of the auxiliary function in the proof
of Proposition 6.4, as enlightened by (6.20), where the leading term v3 has a negative coefficient.

7. Proof of Theorem 1.5

Proof of Theorem 1.5. We first observe that by definition (Ω, H) is admissible with constant θ, and thus
in the proof of Theorem 5.1 we can take ε̄ = θ. Therefore, for any ε ∈ (0, θ), there exists a solution uε
of the regularized problem (4.2). Let us choose ε ∈ (0, θ) sufficiently close to θ so that

∂

∂λ
(λH(λq)) < − 1

r1(ε− ε2/4)1/2
, for all q ∈ Ω, λ ∈ [r1, r2], (7.1)

∥∥∇T0 H(X)
∥∥
n+1

<
1− ε
n3/2r2

2

, X ∈ CΩ(r1, r2), (7.2)

and let u be the solution of the regularized problem (4.2).
Let q0 ∈ Ω be the maximum point of |∇u|, and set v = |∇u(q0)|2. There are only two possibilities:

v < (1 − ε)2 or v ≥ (1 − ε)2. In the first case there is nothing to prove, in fact, by definition of ηε we
have that u is a solution of Problem 1.1 and we are done. Therefore let us assume that v ≥ (1 − ε)2.
We point out that in this case q0 cannot belong to ∂Ω because by Step 6 of the proof of Theorem 5.1
and since ε < θ, we have that sup∂Ω |∇u|2 ≤ (1 − θ)2 < (1 − ε)2. Hence q0 ∈ Ω. We also observe

that u ∈ C3,β(Ω), for some β ∈ (0, α]. In fact, by Theorem 5.1 we know that u ∈ C2,β
0 (Ω). Thanks to

Lemma 4.11 we know that Σ(u) is contained in CΩ(r1, r2) and being H ∈ C1,α(CΩ(r1, r2)), ∂Ω ∈ C3,α,

by standard regularity results (see [11]), we get that u ∈ C3,β(Ω). Therefore, we can apply Proposition
6.4 and recalling that by definition 1− η2

ε v = 1− η2
ε (|∇u(q0)) |∇u(q0)|2, we have[

−(n− 1)− n(1− η2
ε v)1/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
v1/2

−n3/2(1− η2
ε v)1/2e2u(q0)‖∇T0 H(eu(q0)q0)‖n+1 ≤ 0,

(7.3)



RADIAL GRAPHS 23

but on the other hand, since we are assuming that v ≥ (1−ε)2, by definition of ηε we have 1 ≥ 1−η2
ε v ≥

1− (1− ε/2)2, and in view of (7.1), (7.2) we have[
−(n− 1)− n(1− η2

ε v)1/2eu(q0) ∂

∂λ
(λH(λq))

∣∣
λ=eu(q0)

]
v1/2

−n3/2(1− η2
ε v)1/2e2u(q0)‖∇TH(eu(q0)q0)‖n+1

>

[
−(n− 1) + n

eu(q0)

r1

(1− η2
ε v)1/2

(ε− ε2/4)1/2

]
v1/2 − e2u(q0)

r2
2

(1− ε)

≥
[
−(n− 1) + n

(ε− ε2/4)1/2

(ε− ε2/4)1/2

]
v1/2 − (1− ε)

≥ (1− ε)− (1− ε) = 0

and thus we contradict (7.3). Therefore the only possibility is v < (1 − ε)2, and by definition of ηε
this means that u is a solution of Problem 1.1. Moreover, as proved in Theorem 5.1, such solution is
the unique solution whose associated radial graph is contained in CΩ(r1, r2), and this completes the
proof. �

8. A finer gradient estimate

In this section we prove an a priori estimate for the gradient of the solutions of
−divHn

( ∇u√
1− |∇u|2

)
+

nt√
1− |∇u|2

= nteuH(euq) in Ω,

|∇u| < 1 in Ω,

u = 0 on ∂Ω,

(8.1)

where t ∈ [0, 1]. As in Sect. 4 we introduce the function ν = 1√
1−|∇u|2

.

Proposition 8.1. Let Ω be a bounded domain of Hn, let H ∈ C1(CΩ), let r1, r2 ∈ R be such that
r1 6= r2, 0 < r1 ≤ 1 ≤ r2 and let ν0 > 0 be a positive number. Then, there exists a constant
C = C(r1, r2, ν0,Ω, H) > 0 such that for any t ∈ [0, 1], for any solution u ∈ C3(Ω) of (8.1) satisfying
log r1 ≤ u ≤ log r2 and sup∂Ω ν ≤ ν0, we have

sup
Ω
ν ≤ C.

Proof. Let u ∈ C3(Ω) be a solution of (8.1) satisfying log r1 ≤ u ≤ log r2 and sup∂Ω ν ≤ ν0. Clearly
ν ∈ C0(Ω) and we can introduce the differential operator Pu : C1(Ω)→ C0(Ω) defined by

Puw := ν

n∑
k=1

ukwk,

where uk, wk are the covariant derivatives with respect to a orthonormal frame field. Applying Pu to
both sides of the equation in (8.1) and arguing as in Proposition 6.4 we deduce that ν satisfies the
following equation:

−
n∑

i,j=1

∇i
(
ν−2fijνj

)
+ ν−2|∇ν|2 + |〈∇u,∇ν〉|2 + ν

n∑
i,j,k=1

fijujkuik +

n∑
i,j=1

ν2Rijuiuj

+ ntν〈∇u,∇ν〉 = νnt

n∑
k=1

uk∇k(euH(euq)),

(8.2)

where fij := νδij + ν3uiuj , Rij = −(n − 1)δij is the Ricci curvature tensor of Hn, i, j = 1, . . . , n.
This relation resemble that appearing in [10, (4.8)], and it can be proved by direct computation taking
into account of the identities ν−2 = 1 − |∇u|2, νi = ν3

∑n
l=1 ululi, 〈∇u,∇ν〉 = ν3

∑n
l,m=1 ulumulm,

|∇ν|2 = ν6
∑n
i=1 (

∑n
l=1 ululi)

2
, and [29, (2.6)]. In order to estimate the terms appearing in (8.2) we

first observe that
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n∑
i,j,k=1

fijujkuik =

n∑
i,j,k=1

(
νδij + ν3uiuj

)
ujkuik

= ν

n∑
i,k=1

u2
ik + ν3

n∑
k=1

(
n∑
i=1

uiuik

)2

≥ ν|D2u|2,

(8.3)

where |D2u|2 :=
∑n
i,k=1 u

2
ik is the square of the matrix norm of the Hessian. For the term nt〈∇u,∇ν〉,

we write the equation in (8.1) in non-divergence form as

− ν∆u− 〈∇u,∇ν〉+ ntν = nteuH(euq). (8.4)

Then, multiplying each side by ntν, recalling that ν ≥ 1, euH(euq) is uniformly bounded with respect
to t, and using the inequality |∆u| ≤

√
n|D2u| we deduce that

|ntν〈∇u,∇ν〉| ≤ c1ν2(1 + |∆u|) ≤ c2ν2(1 + |D2u|),
for some constants c1, c2 > 0 depending on n, r1, r2 and ‖H‖∞,CΩ , but not on t. From now on c3, c4,

etc. will denote positive constants which do not depend on t. Now, if |D2u| < c2

(
1 +

√
1 + 1

c2

)
we get

that |ntν〈∇u,∇ν〉| ≤ c3ν2, where c3 depends just on c2, and thus ntν〈∇u,∇ν〉 ≥ −c3ν2. On the other

hand, if |D2u| ≥ c2
(

1 +
√

1 + 1
c2

)
, by an elementary computation we infer that

−c2ν2(1 + |D2u|) +
1

2
ν2|D2u|2 ≥ 0.

Hence, in view (8.3) and the previous inequalities we obtain
n∑

i,j,k=1

fijujkuik + ntν〈∇u,∇ν〉 ≥ −c4ν2 +
1

2
ν2|D2u|2. (8.5)

Therefore, from (8.2), (8.5) we have

−
n∑

i,j=1

∇i
(
ν−2fijνj

)
+ |〈∇u,∇ν〉|2 +

1

2
ν2|D2u|2 ≤ c5ν2 + νnt

n∑
k=1

uk∇k(euH(euq)). (8.6)

Now, writing (8.4) as −ν∆u− 〈∇u,∇ν〉 = nteuH(euq)− ntν and squaring, then, by using elementary
inequalities we get that

ν2|∆u|2 − 2ν|∆u||〈∇u,∇ν〉|+ |〈∇u,∇ν〉|2 ≤ 2n2e2uH2(euq) + 2n2ν2. (8.7)

Multiplying (8.4) by ν, and using |∆u| ≤
√
n|D2u|, we deduce that ν|〈∇u,∇ν〉| ≤ c5ν

2(1 + |D2u|).
Hence, from this, using again |∆u| ≤

√
n|D2u|, and (8.7) we obtain

−nν2|D2u|2 − 2
√
nc5ν

2(1 + |D2u|) + |〈∇u,∇ν〉|2 ≤ 2n2e2uH2(euq) + 2n2ν2,

and thus by elementary computations we deduce that

− c6ν2|D2u|2 + |〈∇u,∇ν〉|2 ≤ 2n2e2uH2(euq) + c7ν
2. (8.8)

Therefore, dividing (8.8) by C := 2c6 + 1 and summing with (8.6) we deduce the following

−
n∑

i,j=1

∇i
(
ν−2fijνj

)
+ (1 + 2c∗)|〈∇u,∇ν〉|2 + c∗ν

2|D2u|2

≤ c8ν
2 + c8e

2uH2(euq) + νnt

n∑
k=1

uk∇k(euH(euq)),

(8.9)

where c∗ = 1
2 −

c6
2c6+1 > 0 does not depend on t. From (8.9), by arguing as in [10, Theorem 4.1], we can

conclude the proof. In fact, using Stampacchia’s truncation method (for the details see the Appendix
in [10]), multiplying (8.9) with

ψl := νmax{ν − l, 0}, l ≥ ν0,

and integrating by parts we deduce the following

sup
Ω
ν ≤ ν0 + c9(1 + |ν|32n,Ω), (8.10)
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where c9 > 0 is a constant depending on n, Ω, r1, r2 and ‖H‖∞,CΩ but not on t, and | · |p,Ω denotes the
standard Lp-norm. Therefore, in order to conclude the proof it suffices to prove a uniform estimate for
the L2n-norm of ν with respect to the parameter t. To this end, recalling that ν ≥ 1, and that euH(eu)
is uniformly bounded by a constant depending only on r1, r2, ‖H‖∞,CΩ , we can rewrite the right-hand
side of (8.9) in a simpler way

−
n∑

i,j=1

∇i
(
ν−2fijνj

)
+ (1 + 2c∗)|〈∇u,∇ν〉|2 + c∗ν

2|D2u|2 ≤ c10ν
2 + νnt

n∑
k=1

uk∇k(euH(euq)). (8.11)

Now, let p ≥ 2 any fixed real number, let λ > 0 be a real number to be chosen later and multiply (8.11)
with

ρl := νpl e
λu,

where νl := max{ν − l, 0} and l is any fixed number such that l ≥ ν0. Since νpl e
λu ∈ H1,q

0 (Ω), for any
q ∈ [1,+∞[, we can integrate by parts and thus we obtain

p

n∑
i,j=1

∫
Ω

ν−2fijνjνiν
p−1
l eλu + λ

n∑
i,j=1

∫
Ω

ν−2fijνjuiν
p
l e
λu

+ (1 + 2c∗)

∫
Ω

|〈∇u,∇ν〉|2νpl e
λu + c∗

∫
Ω

ν2|D2u|2νpl e
λu

≤ c11

∫
Ω

ν2νpl e
λu + c11(p+ 1)

∫
Ω

ννp−1
l |〈∇u,∇ν〉|eλu + c11λ

∫
Ω

ννpl |D
2u|eλu.

(8.12)

Now let us observe that

n∑
i,j=1

fijνiνj =

n∑
i,j=1

(δijν + ν3uiuj)νiνj

= ν|∇ν|2 + ν3|〈∇u,∇ν〉|2

≥ ν3|〈∇u,∇ν〉|2.

(8.13)

In addition, by direct computation we have

λ

n∑
i,j=1

∫
Ω

ν−2fijνjuiν
p
l e
λu = λ

n∑
i,j=1

∫
Ω

(1− |∇u|2)ν(δijν + ν3uiuj)νjuiν
p
l e
λu

= λ

∫
Ω

〈∇u,∇ν〉ννpl e
λu.

(8.14)

Furthermore, fixing a large constant C1, splitting the domains of the integrals in two parts: |〈∇u,∇ν〉| ≤
C1 and |〈∇u,∇ν〉| > C1, then, by elementary computations it follows that for a suitable large constant
c12 > 0 it hods that

c∗

∫
Ω

νpl |〈∇u,∇ν〉|
2eλu − c11(p+ 1)

∫
Ω

ννp−1
l |〈∇u,∇ν〉|eλu

≥ −c12

∫
Ω

νpl e
λu − c12

∫
Ω

ννp−1
l eλu.

(8.15)

Again by elementary considerations we obtain the further estimate

c∗

∫
Ω

ν2|D2u|2νpl e
λu − c11λ

∫
Ω

ν|D2u|νpl e
λu,

≥ −c13

∫
Ω

νpl e
λu.

(8.16)

Indeed, since it is always possible to find a constant c11 > 0 such that c∗x
2 − c11λx + c13 > 0 for all

x ≥ 0, then, taking x = ν|D2u| we obtain the desired inequality. Therefore, from (8.12), and using the
estimates (8.13)–(8.16), we deduce that
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(1 + p+ c∗)

∫
Ω

|〈∇u,∇ν〉|2νpl e
λu

≤ λ

∫
Ω

|〈∇u,∇ν〉|ννpl e
λu + c14

∫
Ω

ν2νpl e
λu + c14

∫
Ω

νpl e
λu + c14

∫
Ω

ννp−1
l eλu︸ ︷︷ ︸

(I)

. (8.17)

Observe that (I) contains only powers of the form νaνbl with a, b ≥ 0 such that a+ b ≤ p+ 1. From
now on we will denote by I1, I2, etc., terms which are finite sums of integrals of the form c

∫
Ω
νaνbl e

λu,
where a+ b ≤ p+ 1, a, b ≥ 0 and c is a constant which does not depend on t. The strategy to conclude
the proof is to obtain an estimate of the kind∫

Ω

ν2νpl e
λu ≤ I. (8.18)

To this aim, from (8.17), dividing each side by (p + 1 + c∗) and using the elementary inequality xy ≤
1
2x

2 + 1
2y

2, we obtain that∫
Ω

|〈∇u,∇ν〉|2νpl e
λu ≤ λ2

(1 + p+ c∗)2

∫
Ω

ν2νpl e
λu +

2c12

1 + p+ c∗

∫
Ω

ν2νpl e
λu + I1. (8.19)

Now, multiplying (8.4) by ϕ = ννpl e
λu, integrating by parts, taking into account that ∇ϕ = ∇ννpl eλu +

pν∇ννp−1
l eλu + λννpl ∇u, and p ≥ 2, we get that

λ

∫
Ω

ν2νpl |∇u|
2eλu ≤ c15

∫
Ω

ν2νpl e
λu + (p+ 1)

∫
Ω

ν2νp−1
l |〈∇u,∇ν〉|eλu + I2. (8.20)

Now, choosing λ > c15, recalling that ν−2 = 1− |∇u|2, from (8.20) we obtain

λ

∫
Ω

ν2νpl e
λu ≤ (p+ 1)2

(λ− c15)2

∫
Ω

νpl |〈∇u,∇ν〉|
2eλu + I3. (8.21)

From the combination of (8.19) and (8.21), for a large λ such that

λ2(p+ 1)2

(p+ 1 + c∗)2(λ− c15)2
+

2c12(p+ 1)2

(p+ 1 + c∗)(λ− c15)2
< 1

it follows that ∫
Ω

νpl |〈∇u,∇ν〉|
2eλu ≤ I4,

and then, from this and (8.21), we conclude that∫
Ω

ν2νpl e
λu ≤ I5,

which gives the desired inequality (8.18). Therefore, from (8.18) and the arbitrariness of p we deduce that
|ν|2n,Ω is uniformly bounded in t and thus from (8.10) we deduce the thesis. The proof is complete. �

9. Proofs of Theorem 1.3 and Theorem 1.4

The proofs of Theorem 1.3 and Theorem 1.4 are identical except for a small part and thus we give a
unified proof in which at some point we distinguish between the two cases.

Proof. Let α, r1, r2, Ω and H be as in the statement of the theorem. Recalling the definition of the

operators Qt, Q̂t (see (4.13), (4.16)), then by the same proof of Lemma 4.11 it follows that, for any

t ∈ [0, 1], if u ∈ C2
0 (Ω) is a solution of Q̂t(u) = 0 and satisfies |∇u|∞,Ω < 1 then

log r1 ≤ u(q) ≤ log r2, for any q ∈ Ω. (9.1)

Hence, by definition of Qt, we have also a uniform bound with respect to t on the L∞ norm of the
solutions of Qt(u) = 0. In order to get a uniform bound on the gradient we use Proposition 8.1. To
this end, in the case of Theorem 1.3 since Ω satisfies a uniform exterior geodesic condition and H > 0,
then, thanks to Proposition 4.7 we have that (Ω, H) is admissible, and by arguing as in Step 6 of the
proof of Theorem 5.1 we obtain that there exists θ ∈ (0, 1) such that for any t ∈ [0, 1], if u ∈ C2

0 (Ω) is
a solution of Qt(u) = 0 and satisfies |∇u|∞,Ω < 1, then

|∇u(q)| ≤ 1− θ, for any q ∈ ∂Ω.
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Indeed, if |∇u|∞,Ω < 1 and u ∈ C1(Ω), then, by the same proof of Lemma 4.1 we get that Qt is
uniformly elliptic in Ω (when passing to hyperbolic stereographic coordinates) and thus, thanks to the
hypotheses on H, we can apply [11, Theorem 10.1] and argue as in Step 6 of the proof of Theorem 5.1.
In the case of Theorem 1.4 the proof of this fact is identical and we use directly the hypothesis that
(Ω, H) is admissible without invoking Proposition 4.7.

Since Ω is of class C3,α, H ∈ C1,α(CΩ(r1, r2)) and thanks to (9.1) then by standard elliptic regularity

theory (see [11]) any solution u ∈ C2,α
0 (Ω) of Qt(u) = 0 such that |∇u| < 1 in Ω turns out to be of

class C3,α(Ω). Hence, setting ν0 := 1√
1−θ2

, by Proposition 8.1, it follows that there exists θ∗ ∈ (0, 1),

depending only on n, r1, r2, ν0,Ω, H but not on t, such that for any solution u ∈ C3(Ω) of Qt(u) = 0,
satisfying |∇u| < 1 in Ω, it holds that

|∇u(q)| ≤ 1− θ∗, for any q ∈ Ω. (9.2)

Let us fix δ > 0 sufficiently small so that 1− θ∗ + δ < 1 and consider the set

U := {w ∈ C1,α
0 (Ω); |∇w|∞,Ω ≤ 1− θ∗ + δ}.

Clearly U is a convex and closed subset of C1,α
0 (Ω). We define the map T : [0, 1] × U → C1,α

0 (Ω),
T (t, w) := u, where u is the unique solution of


n∑

i,j=1

(
(1− |∇w|2)δij + wiwj

)
uij = nt(1− |∇w|2)

(
1−

√
1− |∇w|2ewĤ(ewq)

)
in Ω,

u = 0 on ∂Ω.

We observe that T is well defined. Indeed, for a fixed w ∈ U , considering the linear operator Lwu :=∑n
i,j=1

(
(1− |∇w|2)δij + wiwj

)
uij , and arguing as in Step 2 of the proof of Theorem 5.1, we see that

Lw,ε : C2,α
0 (Ω)→ C0,α(Ω) is a bijection. Hence

T (w) = tL−1
w

(
n(1− |∇w|2)

(
1−

√
1− |∇w|2ewĤ(ewq)

))
is defined and we are done.

It is easy to verify that T is continuous and, arguing as in the proof of Step 5 of Theorem 5.1, we
have that T ([0, 1] × U) is a relatively compact subset of C1,α

0 (Ω). Moreover 0 lies in the interior of
U and T (0 × ∂U) ⊂ U . To conclude the proof it suffices to prove that if (t, u) ∈ [0, 1] × U satisfies

T (t, u) = u then u 6∈ ∂U . Indeed, if T (t, u) = u then u ∈ C2,α
0 (Ω) is a solution of Q̂t(u) = 0 and thus

from (9.1) we have Qt(u) = 0. Then, since u ∈ U we have |∇u|∞,Ω ≤ 1 − θ∗ + δ < 1 and thus Qt
is uniformly elliptic. Therefore by elliptic regularity theory u ∈ C3,α(Ω) and thanks to (9.2) it follows
that |∇u|∞,Ω ≤ 1− θ∗ < 1− θ∗ + δ, thus u cannot belong to ∂U and we are done.

At the end, from Theorem 2.8 we conclude that there exists ū ∈ U which solves T (1, ū) = ū, i.e., ū
is a solution of (1.1). For the uniqueness it suffices to argue as in Step 8 of the proof of Theorem 5.1.
The proof is complete

�
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