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Abstract. We study radial sign-changing solutions of a class of fully nonlinear elliptic Dirich-

let problems in a ball, driven by the extremal Pucci’s operators and with a power nonlinear

term. We first determine a new critical exponent related to the existence or nonexistence
of such solutions. Then we analyze the asymptotic behavior of the radial nodal solutions as

the exponents approach the critical values, showing that new concentration phenomena occur.

Finally we define a suitable weighted energy for these solutions and compute its limit value.

1. Introduction

Let B be the unit ball of RN and let 0 < λ ≤ Λ. We consider the problem
−F(D2u) = |u|p−1u in B

u = 0 on ∂B

u(0) > 0

(1.1)

where p > 1, F is either one of the Pucci’s extremal operators M±λ,Λ, defined respectively as

M−λ,Λ(X) := inf
λI≤A≤ΛI

tr(AX) = λ
∑
µi>0

µi + Λ
∑
µi<0

µi

M+
λ,Λ(X) := sup

λI≤A≤ΛI
tr(AX) = Λ

∑
µi>0

µi + λ
∑
µi<0

µi,

µ1, . . . , µN being the eigenvalues of any squared symmetric matrix X.

Obviously when λ = Λ, (1.1) is the classical Lane-Emden problem, because Pucci’s operators
reduce to a multiple of the Laplacian.

Let us immediately observe that, since M+
λ,Λ(−X) = −M−λ,Λ(X), solutions of (1.1) for

F =M−λ,Λ are solutions of the analogous problem for the operator F =M+
λ,Λ, but with u(0) < 0.

Thus, it is important to fix the sign at the center of the ball.

The study of (1.1), apart from being interesting in itself, is important to understand some
invariance of the Pucci’s operators which may be not so evident by their definition.

Indeed, though (1.1) does not have a variational structure when λ < Λ (as it happens instead
for the classical Lane-Emden problem) some critical exponents appear in connection with the
existence of solutions. For positive solutions (which are radial by the symmetry result of [6])
they are related to the existence of radial fast decaying solutions of the analogous problem in RN
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(see [9]) and induce a concentration phenomenon for positive solutions of (1.1), as p approaches
the critical values (see [4]). Moreover a weighted related “energy” was defined in [4] which is
preserved in the limit, thought the positive solutions concentrate at the origin and converge to
zero everywhere else.

The aim of the present paper is to study the asymptotic behavior of radial sign-changing
solutions of (1.1) as the exponent p approaches some critical values for their existence. We will
show that new critical exponents and new concentration phenomena occur, quite different from
those related to the classical Lane-Emden problem but also different from those shown in [4] for
the positive solutions of (1.1).

First of all we prove that a new critical exponent p∗∗+ appears for the existence of radial nodal

solutions to (1.1) when F =M+
λ,Λ, which is in between those for the existence of radial positive

solutions for the two Pucci’s operators (see (1.4)). This is somehow surprising because, since
the solutions of (1.1) are positive in the first nodal region, which is a ball, one would expect the
critical exponents to be the same as the one for positive solutions to (1.1). Indeed this is the
case for F =M−λ,Λ and for the classical Laplacian, but not for F =M+

λ,Λ (see Theorem 1.1).

Then we perform an accurate asymptotic analysis of radial nodal solutions of (1.1) with any
number k of nodal domains and show that the behavior can be different in each nodal region
and may also depend on k being even or odd (see Theorem 1.2 and Theorem 1.4). Indeed while
in some nodal domain there is blow up and concentration in others the solutions are bounded
and converge to a finite limit. Moreover the asymptotic profile of the solutions u of (1.1), after
suitable rescalings, can be different and, in the case of F = M+

λ,Λ, the fast decaying radial

positive solution of (1.12) in the exterior of the ball appears as limit profile of the restriction of
u to some nodal regions (see Proposition 7.3).

This is a completely new phenomenon, to our knowledge, different from what happens for the
classical Lane-Emden problem (see [7] and the references therein) and even from what happens
in the case of the classical Brezis-Nirenberg problem in low-dimensions which also presents some
peculiar asymptotic behavior (see [1], [2], [12], [13], [14], [15]).

Finally, all this reflects into the computation of the limit of some weighted energies which can
be defined for solutions of (1.1), according to what done in [4], even if (1.1) does not have a
variational structure.

We will show that the weighted energy of the positive fast decaying solutions, both in RN and
in RN \B will contribute to the limit of the total energy of u in some of the nodal regions where
blow up and concentration occur.

To state precisely our results let us start by recalling what is known for positive solutions to
(1.1).

In the paper [9] Felmer and Quaas proved that there exist two critical exponents p∗−, p∗+ such

that positive radial classical solutions to (1.1) exist if and only if p < p∗− for F =M−λ,Λ or p < p∗+
when F =M+

λ,Λ. We observe that the values of these critical exponents are not explicitly known
but they satisfy the following inequalities:

Ñ− + 2

Ñ− − 2
< p∗− <

N + 2

N − 2
,

max

{
Ñ+

Ñ+ − 2
,
N + 2

N − 2

}
< p∗+ <

Ñ+ + 2

Ñ+ − 2
,

(1.2)

where the dimension-like parameters Ñ± are defined, respectively by Ñ− := Λ
λ (N − 1) + 1,

Ñ+ := λ
Λ (N − 1) + 1.
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We point out that in the special case λ = Λ, when M−λ,Λ = M+
λ,Λ = λ∆, where ∆ is the

standard Laplacian, all the above inequalities become equalities. In particular p∗−, p∗+ reduce to

the usual Sobolev critical exponent N+2
N−2 .

In this paper we will always assume that λ < Λ and Ñ± > 2.

As far as the existence of radial sign-changing solutions is concerned, let us mention that in
[10] a sufficient condition on the exponent p is provided for general radially symmetric nonlinear

operators which, in the particular case of the Pucci’s operators, reads as p ≤ Ñ−
Ñ−−2

.

The first result of the present paper shows that such a bound on the exponent p is not optimal.
Indeed we get:

Theorem 1.1. We have:

i) if F = M−λ,Λ, then radial sign-changing solutions of (1.1) with any number of nodal
domains exist if and only if

p < p∗− ; (1.3)

ii) if F =M+
λ,Λ, then there exists a new critical exponent p∗∗+ satisfying

p∗− < p∗∗+ < p∗+ , (1.4)

such that no radial sign-changing solutions to (1.1) exist for p ≥ p∗∗+ , while radial sign-
changing solutions to (1.1) with any number of nodal domains exist at least for a sequence
of exponents pn ↗ p∗∗+ .

The above result will be proved in Section 3. Let us observe that while it is easy to obtain i),
using Theorem 3.1 of [11], the proof of ii) is quite involved and requires several steps.

Once we have these critical exponents we proceed studying the asymptotic behavior of the
nodal solutions of (1.1) as p approaches them to determine also their limit profile. As announced
before, we will see that new concentration phenomena occur.

We first start by analyzing the case when F =M−λ,Λ. Let pε := p∗−− ε, where ε > 0 is a small
parameter and let us consider the problem

−M−λ,Λ(D2u) = |u|pε−1u in B

u = 0 on ∂B

u(0) > 0

(1.5)

Let uε be a radial sign-changing solution of (1.5) with k ≥ 2 nodal regions. We denote by
r1 = r1(ε) < . . . < rk−1 = rk−1(ε) the nodal radii of uε and by si = si(ε) the unique maximum
points of |uε| in the (i+ 1)-th nodal region, for i = 0, . . . , k − 1. We have

0 = s0 < r1 < s1 < . . . < rk−1 < sk−1 < 1,

and we set Mi := |uε(si)|, for i = 0, 1, . . . , k − 1.

Theorem 1.2. Up to a subsequence, as ε → 0+, we have that M0 → +∞, r1 → 0, s1 → 0,
Mi → M̄i ∈ (0,+∞), for i = 1, . . . , k − 1, and uε → ū in C2

loc(B \ {0}), where ū is a radial
sign-changing solution of 

−M−λ,Λ(D2u) = |u|p
∗
−−1u in B

u = 0 on ∂B

u(0) < 0

(1.6)
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with (k − 1) nodal regions, if k ≥ 3, while ū is the unique negative solution of (1.6) if k = 2.
Moreover if k ≥ 3 we have ri → r̄i, si → s̄i, for i = 2, . . . , k−1, for some numbers r̄i, s̄i, such

that 0 < r̄2 < s̄2 < . . . < r̄k−1 < s̄k−1 < 1.

Note that (1.6) does not admit a positive solution, by (1.2), but it has a (unique) negative
solution as well as sign-changing solutions by (1.3), since u(0) < 0 so that the relevant exponents
for the existence of solutions to (1.6) are those for the corresponding equations involving the
operator M+

λ,Λ, but requiring the positivity at the origin.

Even if the problems that we are considering do not have a variational structure, we can
introduce, in the spirit of [4], a weighted energy ETp (u) defined for radial sign-changing functions
u which change concavity only once in each nodal region, and where p > 1 is a fixed exponent
(we refer to Sect. 10 for the definition). In particular, if uε is as in the statement of Theorem
1.2 we are interested in determining the limit energy ETpε(uε) as ε→ 0+. To this end, denoting
by U− the unique (up to scaling) positive radial fast decaying solution of

−M−λ,Λ(D2u) = up
∗
− in RN ,

and setting
Σ∗− := E∗(U−), (1.7)

where E∗(U−) is the (finite) energy of U− in RN with p = p∗− (see (10.7)) we have the following.

Theorem 1.3. Let uε be as in Theorem 1.2. It holds

lim
ε→0+

ETpε(uε) = Σ∗− + ETp∗−(ū), (1.8)

where Σ∗− is defined by (1.7) and ETp∗−(ū) is the total energy of the limit function ū (given by

Theorem 1.2), i.e.

ETp∗−(ū) =

k−1∑
j=1

Ep∗−,Ωj (ū
j), j = 1, . . . , k − 1, (1.9)

where ūj is the restriction of ū to its j-th nodal region Ωj, j = 1, . . . , k− 1 and Ep∗−,Ωj (ū
j) is its

energy as defined in (10.4).

When F = M+
λ,Λ the picture is quite different. Setting pn := p∗∗+ − εn, where εn > 0 is a

sequence converging to zero as n → +∞, we consider a radial sign-changing solution un of the
problem 

−M+
λ,Λ(D2u) = |u|pn−1u in B

u = 0 on ∂B

u(0) > 0

(1.10)

As before, for k ≥ 2 and i = 1, . . . , k − 1, we denote by ri = ri(n), the nodal radii of un, by
si = si(n) the unique maximum point in the (i+ 1)-th nodal region and define Mi = |un(si)|.

Theorem 1.4. Up to a subsequence, as n→ +∞, we have:

i) if k is even then M0 → +∞, Mi → +∞, ri → 0, si → 0 for all i = 1, . . . , k − 1, and
un → 0 in C2

loc(B \ {0}). Moreover for j = 0, . . . , k−2
2 there exist positive constants cj

such that
M2j

M2j+1
→ cj ;

if k ≥ 4 we also have that
M2j+1

M2j+2
→ +∞,
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for j = 0, . . . , k−4
2 , as n→ +∞;

ii) if k is odd then M0 → +∞, Mi → +∞, ri → 0, si → 0 for all i = 1, . . . , k−2, rk−1 → 0,
sk−1 → 0, Mk−1 → M̄ , for some M̄ > 0 and un → v̄ in C2

loc(B \ {0}), where v̄ is the
unique positive solution of{

−M+
λ,Λ(D2u) = up

∗∗
+ in B

u = 0 on ∂B.
(1.11)

Moreover for j = 0, . . . , k−3
2 there exist positive constants cj such that, as n→ +∞,

M2j

M2j+1
→ cj ,

M2j+1

M2j+2
→ +∞.

To determine the limit energy of un we denote by W− the only positive radial fast decaying
solution of {

−M−λ,Λ(D2u) = up
∗∗
+ in RN \B

u = 0 on ∂B
(1.12)

which exists by the results of [11] because p∗− < p∗∗+ . Then, setting

Σ∗∗+ := E∗∗(W−), (1.13)

where E∗∗(W−) is the (finite) energy in RN \B of W− (see (10.9)), we have the following.

Theorem 1.5. Let un be as in the statement of Theorem 1.4. We have

lim
n→+∞

ETpn(un) =


k
2Ep∗∗+ ,B(v̄) + k

2 Σ∗∗+ if k is even,

k+1
2 Ep∗∗+ ,B(v̄) + k−1

2 Σ∗∗+ if k is odd,
(1.14)

where Σ∗∗+ is defined by (1.13), and Ep∗∗+ ,B(v̄) is the energy of the only radial positive solution v̄

to (1.11) (see (10.2)).

The proofs of the above results are quite involved and combine several methods: blow up
techniques and study of some limit problems, phase plane analysis for the corresponding ODE’s
and estimates on related pointwise energies.

The outline of the paper is the following. In Section 2 we recall some preliminary results on
positive solutions. In Section 3 we prove Theorem 1.1. In Section 4 and Section 5 we consider
the case of solutions to (1.1) for F = M−λ,Λ with two or three nodal regions. This allows to
study the case of any number k of nodal domains by induction in Section 6, proving so Theorem
1.2. In Section 7 we study problem (1.1) for F = M+

λ,Λ and solutions with two nodal regions,
while in Section 8 we consider the case of three nodal domains. The proof of Theorem 1.4 is then
presented in Section 9, again by an induction argument.

Finally in Section 10 we study the total energy associated to the nodal solutions of (1.1) and
prove Theorem 1.3 and Theorem 1.5.

2. Preliminary results on positive radial solutions

We begin this section by recalling the known results about the asymptotic analysis of positive
radial solutions to {

−F(D2u) = up in B

u = 0 on ∂B
(2.1)
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as p approaches the critical exponent for which such solutions exist (for the proofs we refer to
[4]). We first introduce some notation: let ε > 0 be a small parameter and set

pε :=

{
p∗+ − ε, if F =M+

λ,Λ,

p∗− − ε, if F =M−λ,Λ.

We denote by vpε,± the unique positive solution of (2.1). Namely vpε,+ is the only positive
solution to (2.1) if F = M+

λ,Λ, and vpε,− is the only positive solution to (2.1) if F = M−λ,Λ.

Accordingly, we denote by r0,± = r0,±(ε) ∈ (0, 1) the only radius such that v′′pε,±(r) < 0 for
r ∈ [0, r0,±) and v′′pε,±(r) > 0 for r ∈ (r0,±, 1). Moreover, let U± be the unique positive radial
solution of

−M±λ,Λ(D2u) = up
∗
± in RN (2.2)

such that U±(0) = 1, and denote by R0,± the unique radius such that U ′′±(r) < 0 for r ∈ [0, R0,±),

U ′′±(r) > 0 for r ∈ (R±0 ,+∞). We refer to the solutions of (2.2), and in particular to U±, as the
fast decaying solutions, since for all p ≥ p∗± and among all radial positive solutions of

−M±λ,Λ(D2u) = up in RN ,

one has
lim

r→+∞
r

2
p−1u(r) = 0 ⇐⇒ p = p∗± .

Proposition 2.1. Let vpε,± be the unique positive solution to (2.1). Then:

(i) lim
ε→0+

‖vpε,±‖∞ = lim
ε→0+

vpε,±(0) = +∞;

(ii) vpε,± → 0 in C2
loc(B \ {0}), as ε→ 0+;

(iii) lim
ε→0+

[r0,±(ε)]
2

pε−1 ‖vpε,±‖∞ = (R0,±)
2

p∗±−1 ;

(iv) lim
ε→0+

vpε,±(r0,±(ε))

‖vpε,±‖∞
= U±(R0,±);

(v) lim
ε→0+

[r0,±(ε)]
2

pε−1 vpε,±(r0,±(ε)) = (R0,±)
2

p∗±−1U±(R0,±);

(vi) lim
ε→0+

‖vpε,±‖
pε(Ñ±−2)−Ñ±

2
∞ (vpε,±)′(1) = −C±, where C± is a positive constant depending

only on N,λ,Λ.

Next we recall some useful results about the qualitative properties of the solutions of a suitable
class of initial value problems. To do this we need some preliminaries.

If u is a smooth radially symmetric function, we easily check that the Hessian of u is given by

D2u(x) =
u′(|x|)
|x|

IN +

(
u′′(|x|)− u′(|x|)

|x|

)
x

|x|
⊗ x

|x|
, (2.3)

where IN is the identity matrix of order N and x⊗ x is the matrix defined by (x⊗ x)ij = xixj ,
for any i, j ∈ {1, . . . , N}. In particular, since the eigenvalues of the matrix appearing in the

right-hand side of (2.3) are u′′(|x|), which is simple, and u′(|x|)
|x| , which has multiplicity (N − 1),

we infer that if u is a positive radial solution of −F(D2u) = up, then setting r = |x| there are
only three possibilities:

Case 1: u′(r) ≥ 0 and u′′(r) ≤ 0, so that u = u(r) satisfies−Λu′′(r)− λ(N − 1)u
′(r)
r = up(r) if F =M−λ,Λ,

−λu′′(r)− Λ(N − 1)u
′(r)
r = up(r) if F =M+

λ,Λ.
(2.4)
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Case 2: u′(r) ≤ 0 and u′′(r) ≤ 0, so that u = u(r) satisfies−Λ
(
u′′(r) + (N − 1)u

′(r)
r

)
= up(r) if F =M−λ,Λ,

−λ
(
u′′(r) + (N − 1)u

′(r)
r

)
= up(r) if F =M+

λ,Λ.
(2.5)

Case 3: u′(r) ≤ 0 and u′′(r) ≥ 0, so that u = u(r) satisfies−λu
′′(r)− Λ(N − 1)u

′(r)
r = up(r) if F =M−λ,Λ,

−Λu′′(r)− λ(N − 1)u
′(r)
r = up(r) if F =M+

λ,Λ.
(2.6)

We stress that the case u′(r) ≥ 0 and u′′(r) ≥ 0 cannot occur because u > 0 satisfies −F(D2u) =
up.

Now, let α > 0, p > 1 and consider the following initial value problem
u′′(r) = M−

(
−Λ(N−1)

r K−(u′(r))− up(r)
)

for r > 1

u(r) > 0 for r > 1

u(1) = 0, u′(1) = α

(2.7)

with

M−(ξ) :=

{
ξ/λ if ξ ≥ 0

ξ/Λ if ξ < 0
, K−(ξ) :=

{
λ
Λξ if ξ ≥ 0

ξ if ξ < 0.

Problem (2.7) has a unique solution uα = u(α, p, r), defined and positive on a maximal interval
[1, ρα), for some 1 < ρα ≤ +∞. In [10] it has been proved that there exists τα ∈ (1, ρα) such
that u′α(r) > 0 for r ∈ (1, τα), u′α(r) < 0 for r ∈ (τα, ρα). Moreover, there exists σα ∈ (τα, ρα)
such that u′′α < 0 in (1, σα) and u′′α > 0 in (σα, ρα) (see [9, 11]).

Concerning the asymptotic properties with respect to the parameter α, we recall that ρα → 1
as α→ +∞, while ρα → +∞ as α→ 0 (see [10, Proposition 3.2 and Lemma 3.1]). In particular
ρα < +∞ for all sufficiently large α > 0 and thus we can define the critical slope

α∗− = α∗−(p) := inf {α > 0; ρα < +∞} . (2.8)

We point out that if ρα < +∞ then uα(ρα) = 0 and u(x) := uα(|x|) is a positive radial solution
of {

−M−λ,Λ(D2u) = up in A1,ρα

u = 0 on ∂A1,ρα

where A1,ρα := {x ∈ RN ; 1 < |x| < ρα} is the annulus of radii 1, ρα, centered at the origin. If
ρα = +∞ then u(x) := uα(|x|) is a positive radial solution of{

−M−λ,Λ(D2u) = up in RN \B
u = 0 on ∂B

(2.9)

In [11] it has been proved that (2.9) has positive radial solutions if and only if p > p∗− (see
[11, Theorem 1.1]). More precisely, we have the following (see [11, Sect. 6 and Theorem 6.2]):

Theorem 2.2. Let uα denote the maximal positive solution of (2.7). One has α∗−(p) > 0 if and
only if p > p∗− and, for such p,

(i) for any α > α∗−(p) it holds that ρα < +∞;
(ii) ρα∗− = +∞ and uα∗− is a fast decaying solution of (2.9);

(iii) if p∗− < p ≤ N+2
N−2 , then for any α < α∗−(p), uα is either a pseudo-slow or a slow decaying

solution;
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(iv) if p > N+2
N−2 , then for any α < α∗−(p), uα is a slow decaying solution.

Analogous results hold for F =M+
λ,Λ, where one considers the initial value problem

u′′(r) = M+

(
−λ(N−1)

r K+(u′(r))− up(r)
)

for r > 1

u(r) > 0 for r > 1

u(1) = 0, u′(1) = α

(2.10)

where

M+(ξ) :=

{
ξ/Λ if ξ ≥ 0

s/λ if ξ < 0
, K+(ξ) :=

{
Λ
λ ξ if ξ ≥ 0

ξ if ξ < 0
.

We refer to [11] for the precise statements.

We conclude this section by proving a crucial property of the map p 7→ α∗−(p).

Proposition 2.3. The map p 7→ α∗−(p) is continuous in (1,+∞).

Proof. By Theorem 2.2, one has α∗−(p) ≡ 0 for p ∈ (1, p∗−].
Let us first prove that α∗−(p) → 0 for p ↘ p∗−. By contradiction, assume that there exist

α0 > 0 and a sequence pn ↘ p∗− such that α∗−(pn) > α0 for all n ∈ N. This means that, for all
n ∈ N, the initial value problem{

u′′(r) = M−

(
−Λ(N−1)

r K−(u′(r))− upn(r)
)

for r > 1

u(1) = 0, u′(1) = α0

(2.11)

has a solution un defined and positive in the whole interval (1,+∞). Let us denote by sn ∈
(1,+∞) the unique maximum point of un and set mn := un(sn). By (2.4), the energy-like
functionals

HΛ,n(r) :=
(u′n(r))2

2
+

(un(r))pn+1

Λ(pn + 1)

are nonincreasing in [1, sn]. Hence, we deduce

mpn+1
n ≤ Λ(pn + 1)

2
α2

0.

Then, (mn)n is bounded and, from (2.11), we infer that un → ū in C2
loc([1,+∞)), as n → +∞,

where ū is a solution to
u′′(r) = M−

(
−Λ(N−1)

r K−(u′(r))− up
∗
−(r)

)
for r > 1

u ≥ 0 for r > 1

u(1) = 0, u′(1) = α0.

Such function ū cannot be identically zero in view of the initial condition ū′(1) = α0 > 0.
Hence, ū > 0 in (1,+∞) and u(x) = ū(|x|) is a positive radial solution of (2.9) with p = p∗−,
contradicting Theorem 2.2.

Next, let us show that α∗− is continuous in (p∗−,+∞). For any fixed p0 > p∗−, let us consider
α > α∗−(p0). Then, denoting by u = uα,p0

the unique maximal solution of the initial value
problem {

u′′(r) = M−

(
−Λ(N−1)

r K−(u′(r))− |u|p0−1u(r)
)

for r > 1

u(1) = 0, u′(1) = α ,
(2.12)

there exists a ρα > 1 such that uα,p0
(r) > 0 in (1, ρα), uα,p0

(ρα) = 0 and uα,p0
< 0 in a right

neighborhood of ρα. By continuous dependence on the data, for p → p0 the corresponding
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maximal solution uα,p is converging to uα,p0 in C2
loc([1,+∞)). Hence, uα,p has a first zero close

to ρα for p close to p0, meaning that α∗−(p) ≤ α. By the arbitrary choice of α > α∗−(p0), we
deduce that lim supp→p0

α∗−(p) ≤ α∗−(p0).
Conversely, let us now consider 0 < α < α∗−(p0). Then, the maximal solution uα,p0 of

problem (2.12) is positive in (1,+∞). Let us prove that, for p close to p0, one has α∗−(p) ≥ α.
Arguing by contradiction, let us assume that, for a sequence pn → p0, the corresponding maximal
solutions uα,pn satisfy uα,pn(r) > 0 in (1, ρn) and uα,pn(ρn) = 0 for some ρn > 1. Again
by continuous dependence on the data, one has that uα,pn → uα,p0

in C2
loc([1,+∞)), so that

ρn → +∞. Moreover, for each n there exists tn ∈ (1, ρn) such that u′′α,pn(r) < 0 for r ∈ [1, tn)
and u′′α,pn(r) > 0 for r ∈ (tn, ρn], and the sequence (tn)n is bounded from above and from below
away from 1, since otherwise the function uα,p0 would be globally either concave or convex in
(1,+∞). Thus, possibly considering a subsequence, there exists t0 > 1 such that tn → t0, with
u′′α,p0

(r) < 0 for r ∈ [1, t0) and u′′α,p0
(r) > 0 for r > t0. Now, we claim that there exist positive

constants C,K > 0 independent of n such that

uα,pn(r) ≤ C

(r2 − t2n +K)
Ñ−−2

2

for r ∈ [tn, ρn] . (2.13)

Indeed, we observe that in the interval [tn, ρn], by (2.6), the function vn = uα,pn satisfies

v′′n +
Ñ− − 1

r
v′n +

vpnn
λ

= 0 . (2.14)

Then, considering the energy-like functional Hn : [tn, ρn]→ R defined by

Hn(r) := rÑ−

[
(v′n(r))2

2
+
Ñ− − 2

2λÑ−
vpn+1
n

]
+
Ñ− − 2

2
rÑ−−1vn(r)v′n(r),

and exploiting (2.14), we see that

H ′n(r) =
pn(Ñ− − 2)− (Ñ− + 2)

2λÑ−
rÑ−vpnn (r)v′n(r) < 0,

where we use the fact that pn → p0 and p0 > p∗− > Ñ−+2

Ñ−−2
. Hence, Hn is decreasing and, in

particular, we get that

Hn(r) ≥ Hn(ρn) = ρÑ−n
(v′n(ρn))2

2
> 0, for any r ∈ [tn, ρn].

Now, let us consider the auxiliary functional Jn : [tn, ρn]→ R defined by

Jn(r) := vn(r)
− Ñ−
Ñ−−2

v′n(r)

r
.

Then, exploiting again (2.14) and the definition of Hn, we easily check that

J ′n(r) = − 2Ñ−

Ñ− − 2
vn(r)

− 2(Ñ−−1)

Ñ−−2 r−(Ñ−+1)Hn(r) < 0.

Therefore, Jn is monotone decreasing and thus Jn(tn) ≥ Jn(r) for any r ∈ [tn, ρn]. With the
help of (2.14), this can be rewritten as

−vn(tn)
pn−

Ñ−
Ñ−−2

λ(Ñ− − 1)
≥ vn(r)

− Ñ−
Ñ−−2

v′n(r)

r
.
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Since vn(tn) = uα,pn(tn)→ uα,p0(t0) > 0, from the above inequality we deduce that there exists
C1 > 0 independent of n such that, for any r ∈ [tn, ρn],

vn(r)
− Ñ−
Ñ−−2 v′n(r) ≤ −C1r.

Integrating between tn and r we obtain

vn(r)
− 2
Ñ−−2 − vn(tn)

− 2
Ñ−−2 ≥ C1

Ñ− − 2
(r2 − t2n).

Taking into account that vn(tn)→ uα,p0
(t0) > 0 as before, we infer that

vn(r)
− 2
Ñ−−2 ≥ C1

Ñ− − 2
(r2 − t2n) +K1,

for some positive constant K1 independent of n, and this is exactly (2.13).
Letting n→ +∞ in (2.13), we then obtain

uα,p0(r) ≤ C

(r2 − t20 +K)
Ñ−−2

2

for r ≥ t0 .

Since p0 > p∗− >
Ñ−
Ñ−−2

, it then follows that

lim
r→+∞

r
2

p0−1uα,p0
(r) = 0 ,

meaning that uα,p0
is a fast decaying solution of problem (2.9) with p = p0. Since α < α∗−(p0),

this is again a contradiction to Theorem 2.2. Hence, by the arbitrary choice of α < α∗−(p0), we
deduce that lim infp→p0 α

∗
−(p) ≥ α∗−(p0), which finally proves the continuity of α∗−. �

3. Critical exponents for the existence of radial sign-changing solutions in the
ball

In this section we prove Theorem 1.1. Since the proof of ii) requires several steps we start by
considering the case F =M+

λ,Λ, i.e. we consider the problem
−M+

λ,Λ(D2u) = |u|p−1u in B

u = 0 on ∂B

u(0) > 0

(3.1)

Let us define the following set

A := {p ∈ (1,+∞) : there exists up radial sign-changing solution to (3.1)}. (3.2)

Remark 3.1. The set A is nonempty in view of [10, Theorem 1.3]. Moreover, by a trivial scaling
argument, it is easy to check that A coincides with the set of p ∈ (1,+∞) for which there exists
a nodal solution up to (3.1) which changes sign exactly once.

As a first result we show a crucial upper bound for supA.

Proposition 3.2. It holds that

supA < p∗+.

Proof. We first observe that supA ≤ p∗+, because for p ≥ p∗+ there cannot exist positive radial
solutions to (3.1).
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Now, assume by contradiction that supA = p∗+. Then we can find a sequence (upn)pn∈A of
nodal radial solutions to (3.1), with pn ↗ p∗+. In view of Remark 3.1 we can assume without
loss of generality that upn changes sign exactly once. Let us consider the rescaled function

ũpn(x) = r
2

pn−1

1 upn(r1x), x ∈ B 1
r1

, (3.3)

where r1 = r1(n) is the node of upn .
By construction, for x ∈ B, (ũpn)pn∈A is a sequence of almost critical positive solutions of

(3.1). Then, in view of Proposition 2.1, we have ũ′pn(1) → 0 as pn → p∗+. In addition, by

construction, the function ũ−pn(x) := r
2

pn−1

1 u−pn(r1x), x ∈ A1, 1
r1

is a positive radial solution of{
−M−λ,Λ(D2u) = upn in A1, 1

r1

u = 0 on ∂A1, 1
r1

.

In particular, ũ−pn = ũ−pn(r) satisfies (2.7) with α = α(pn) = (ũ−pn)′(1)→ 0, as pn → p∗+, and we

have ũ−pn(1/r1) = 0.
On the other hand, since p∗+ > p∗− then in view of [11, Theorem 1.1] and Theorem 2.2 we

have α∗−(p∗+) > 0 and, from Proposition 2.3, we can find α0 > 0 such that α∗−(p) > α0 > 0 for
all p in a sufficiently small neighborhood of p∗+. In particular, for any α ∈ (0, α0) and for any p
sufficiently close to p∗+ the unique solution to (2.7) is defined and positive in the whole (1,+∞),
but this contradicts the properties of ũ−pn , namely that ũ−pn(1/r1) = 0. This gives a contradiction
and the proof is complete. �

Proposition 3.3. It holds that

supA > p∗−.

Proof. In order to prove the result we construct a sign-changing solution up to (3.1) for p in a
sufficiently small right neighborhood of p∗−.

To this end, let p ∈ (p∗−, p
∗
+) and as in Sect. 2 we denote by vp,+ the unique positive radial

solution of {
−M+

λ,Λ(D2u) = up in B,

u = 0 on ∂B.
(3.4)

Since p∗− < p∗+, choosing 0 < δ < (p∗+ − p∗−) we have Iδ := (p∗−, p
∗
− + δ) ⊂ (p∗−, p

∗
+) and

mp := max vp,+ = vp,+(0) is uniformly bounded for p ∈ Iδ. Moreover we can find γ > 0 such
that for all p ∈ Iδ it holds |v′p,+(1)| > γ > 0. Hence, exploiting Proposition 2.3 and since
α∗−(p)→ 0 as p→ p∗− (see the proof of Proposition 2.3) we find a right neighborhood of p∗−, let
us say Iε := (p∗−, p

∗
−+ ε) with ε < δ, such that |v′p,+(1)| > α∗−(p), for all p ∈ Iε. This means that

for all p ∈ Iε, if we take α = α(p) = −v′p,+(1) in (2.7) then we have ρα = ρα(p) < +∞ and the
unique maximal positive solution uα(p) = uα(p)(r) vanishes at r = ρα(p). Hence for p ∈ Iε we
can glue the two solutions by defining zp : [0, ρα(p)]→ R as

zp(r) :=

{
vp,+(r) if r ∈ [0, 1],

−uα(p)(r) if r ∈ (1, ρα(p)].

Then, setting up(r) := [ρα(p)]
2
p−1 zp(rρα(p)) we easily check that up(x) = up(|x|) is a radial

sign-changing solution to (3.1). �

By the very definition of supA we have that for p > supA radial sign-changing solution to
(3.1) cannot exist. In the next proposition we show that the same happens for p = supA.

Proposition 3.4. It holds that supA /∈ A.
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Proof. Assume by contradiction that there exists a a radial sign-changing solution u∗ to (3.1)
for p = supA. In view of Remark 3.1 we can assume without loss of generality that u∗ changes
sign exactly once and we denote by r∗ ∈ (0, 1) its nodal radius.

Let us consider the rescaled radial function ũ∗(x) := r
2
p−1
∗ u∗(r∗x), x ∈ B1/r∗ and set α∗ :=

−ũ′∗(1) > 0. Then, by construction (ũ∗)
−(r) (the negative part of ũ∗, defined by taking the

maximum between −ũ∗ and zero) coincides for r ∈ [1, 1/r∗] with the unique maximal positive
solution to (2.7) with α = α∗, p = supA.

Therefore, since supA > p∗− and (ũ∗)
−(1/r∗) = 0, from Theorem 2.2 we have

α∗ > α∗−(supA). (3.5)

Now we observe that, since supA < p∗+, up to a subsequence, as pn ↘ supA the unique

positive solution vpn,+ to (3.4) converges in C2(B) to ũ∗
∣∣
B

. In particular this implies that

−v′pn,+(1) → α∗, for some sequence pn ↘ supA. Moreover, from Proposition 2.3 and (3.5) we
infer that −v′pn,+(1) > α∗−(pn) for all pn sufficiently close to supA.

Therefore, fixing pn > supA sufficiently close to supA, and taking α = α(pn) = −v′pn,+(1) > 0
the unique maximal positive solution uα(pn) to (2.7) vanishes at some radius ρα(pn) such that
1 < ρα(pn) < +∞. Then, gluing vpn,+ and uα(pn) as in the proof of Proposition 3.3 we obtain
a radial sign-changing solution to Problem (3.1). Hence pn ∈ A which is a contradiction since
pn > supA. The proof is complete. �

Proposition 3.5. For any integer k ≥ 2 and any p ∈ A there exists a radial sign-changing
solution up to (3.1) with k nodal regions.

Proof. Let p ∈ A. We argue by induction on k. The basic step k = 2 is obvious by the definition
of A (see also Remark 3.1).

Assume that there exists up,k radial sign-changing solution to (3.1) with k nodal domains. We
need to distinguish between two cases.

If k is even, then up,k < 0 in the last nodal region and thus by Hopf’s Lemma we infer that
u′p,k(1) > 0. Then, since p < supA < p∗+, from [11, Theorem 1.1] we have that for any α > 0

the unique maximal positive solution uα = u(α, p, r) of the initial value problem (2.10) vanishes
at some ρα < +∞. Hence, taking α = α(p) = u′p,k(1) > 0, gluing up,k, uα(p) as in the proof of

Proposition 3.3 and rescaling, we obtain a radial solution up,k+1 of (3.1) with k+1 nodal regions
and such that up,k+1(0) > 0. This complete the proof of the inductive step when k is even.

If k is odd the previous argument works only for p ≤ p∗− (see [11, Theorem 1.2]). For this
reason we proceed in a different way. Let up,k be a radial sign-changing solution to (3.1) with
k nodal regions. Since k is odd then up,k > 0 in the last nodal region and thus −u′p,k(1) > 0.

We claim that −u′p,k(1) > α∗−(p), where α∗− is the critical slope defined in (2.8). We first

observe that if the claim is true then the maximal positive solution uα = u(α, p, r) of (2.7) with
α = α(p) = −u′p,k(1) vanishes at some ρα(p) < +∞, and thus we can construct up,k+1 satisfying
the desired properties by gluing up,k and uα(p) in the same way as before.

To prove the claim, let vp,+ be the only positive solution to (3.4) and consider its trajectory
γ1(t) = (x1(t), x′1(t)), t ∈ (−∞, 0] in the phase-plane, where x1 is the Emden-Fowler transform
of vp,+, obtained by setting r = et and

x1(t) := e
2
p−1 tvp,+(et).

By construction γ1 lies in the right-half plane and it is elementary to check that γ1(t) → (0, 0)
as t → −∞, and γ1(0) = (0, v′p,+(1)), with v′p,+(1) < 0. On the other hand, if we transform
the restriction of up,k to its last nodal component we obtain a trajectory γ2(t) = (x2(t), x′2(t)),

t ∈ [log(rk−1), 0] lying in the right-half plane and such that γ2(log(rk−1)) = (0, r
p+1
p−1

k−1u
′
p,k(rk−1))
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with u′p,k(rk−1) > 0, while γ2(0) = (0, u′p,k(1)) and u′p,k(1) < 0. Moreover, since x1, x2 satisfy

the same autonomous ODE (see [11] for more details) then γ1 and γ2 cannot intersect and thus
it follows that 0 > v′p,+(1) > u′p,k(1).

Now, let us prove that−v′p,+(1) > α∗−(p). Indeed, since 1 < p < supA and p ∈ A we know that
there exists a radial sign-changing up,2 solution to (3.1) with two nodal regions. Then, denoting

by r1 ∈ (0, 1) the node of up,2 and considering the usual scaling ũp,2(x) := r
2
p−1

1 up,2(r1x),
x ∈ B1/r1 , we infer that the restriction ũp,2

∣∣
B

coincides with vp,+ (uniqueness of the positive

radial solution) and the restriction ũ−p,2
∣∣
A1,1/r1

coincides with the unique positive solution to (2.7)

with α = −v′p,+(1). Therefore, since ũp,2
∣∣
A1,1/r1

vanishes at 1/r1 then by definition of α∗− and

by Theorem 2.2 we conclude that −v′p,+(1) > α∗−(p).
Then we have proved that α∗−(p) < −v′p,+(1) < −u′p,k(1). This concludes the proof. �

Proof of Theorem 1.1. To prove i) we observe that the existence of radial sign-changing solutions
to (1.1) for F = M−λ,Λ is a consequence of the existence of the positive solution of the same

problem, combined with the Liouville type results obtained in [11]. For this, let p < p∗− and let
vp be the positive solution of 

−M−λ,Λ(D2u) = |u|p−1u in B

u = 0 on ∂B

u(0) > 0

(3.6)

By Hopf’s Lemma it holds that |v′p(1)| > 0. Let wp be the positive maximal solution of (2.10)
with initial slope w′p(1) = |v′p(1)|. Since p < p∗− (which in particular implies that p < p∗+) then
in view of [11, Theorem 3.1], the function wp must vanish at some ρ = ρ(p) > 1. Hence the
function

up(r) =

{
vp(r) if r ≤ 1

−wp(r) if r ∈ (1, ρ]

defines a radial sign-changing solution, with two nodal regions, of

−M−λ,Λ(D2u) = |u|p−1u in Bρ

and such that up(0) > 0. By scaling, ũp(r) = ρ
2
p−1up(ρr) is a sign-changing solution of (3.6).

This completes the proof of i) in the case of two nodal regions.
Let us point out that such gluing argument can be performed inductively, so providing the

existence of sign-changing solutions for any number of nodal regions. The key point in this
procedure is that p is subcritical both for M−λ,Λ and M+

λ,Λ, which implies that for any choice

of the initial slope α > 0 the unique positive solution of (2.7) or (2.10) vanishes at some finite
ρ ∈ (1,+∞) (see [11, Theorem 3.1]).

Let us prove ii). We define
p∗∗+ := supA, (3.7)

where A is given by (3.2). Then ii) is a consequence of Proposition 3.2, Proposition 3.3, Propo-
sition 3.4 and Proposition 3.5. �

4. Asymptotic analysis of radial sign-changing solutions to (1.5) with two nodal
regions

In this section uε will denote a radial sign-changing solution of (1.5) with two nodal regions. We
set

M0 = M0(ε) :=
∥∥u+

ε

∥∥
∞ = u+

ε (0), (4.1)
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where u+
ε := max{0, uε} is the positive part of uε, and we denote by r1 = r1(ε) ∈ (0, 1) the node

of uε, i.e. the unique point r1 ∈ (0, 1) such that uε(r1) = 0. As in the previous section, vpε,−
stands for the only positive solution of (1.5). We begin with a preliminary result.

Proposition 4.1. The following statements hold:

i) M0 > ‖vpε,−‖∞;

ii) r1 =

(
‖vpε,−‖∞

M0

) pε−1
2

;

iii) lim
ε→0

M
pε−1

2
0 r1 = +∞;

iv) r
pε+1
pε−1

1 u′ε(r1) = (vpε,−)′(1).

Proof. Consider the rescaled function ũε(x) := r
2

pε−1

1 uε(r1x), x ∈ B. It is elementary to check
that ũε is a positive radial solution to (1.5). Hence, by uniqueness, we infer that ũε = vpε,−, and
the result easily follows from Proposition 2.1. �

Concerning the negative part of uε, namely u−ε := max {−uε, 0}, we adopt the following
notations:

M1 = M1(ε) :=
∥∥u−ε ∥∥∞ ,

s1 = s1(ε) ∈ (r1, 1) is the point where the maximum M1 is attained, i.e. M1 = u−ε (s1), and
t1 ∈ (s1, 1) is the only radius such that

(u−ε )′′(r) < 0 for r ∈ (r1, t1), (u−ε )′′(r) > 0 for r ∈ (t1, 1).

Remark 4.2. We point out that M1 is bounded away from zero, in fact it is bounded from
below by the principal eigenvalue λ+

1 = λ+
1 (−M+

λ,Λ;B). Indeed u−ε satisfies in the annulus

Ar1,1 = {x ∈ RN ; r1 < |x| < 1} the following{
−M+

λ,Λ(D2u−ε ) ≤Mpε−1
1 u−ε in Ar1,1

u−ε = 0 on ∂Ar1,1.

Since the principal eigenvalue λ+
1 gives a threshold for the validity of the maximum principle (see

[5]) and u−ε > 0 in Ar1,1, then necessarily

Mpε−1
1 ≥ λ+

1 (−M+
λ,Λ;Ar1,1) ≥ λ+

1 (−M+
λ,Λ;B). (4.2)

Proposition 4.3. The following statements hold:

i) lim
ε→0

r1 = 0;

ii) lim
ε→0

M
pε−1

2
1 r1 = 0;

iii) lim
ε→0

r1

s1
= 0;

iv) lim
ε→0
|u′ε(r1)| = +∞.

Proof. Let us consider the energy-like functional

H(r) :=
(u′ε(r))

2

2
+
|uε(r)|pε+1

λ(pε + 1)
, r ∈ [0, 1]. (4.3)

By a straightforward computation it holds that H ′ ≤ 0 in [r1, s1] (actually it could be proved
that H ′ ≤ 0 in the whole interval [0, 1]). This in particular yields

Mpε+1
1

λ(pε + 1)
= H(s1) ≤ H(r1) =

(u′ε(r1))2

2
. (4.4)
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Using Proposition 4.1-iv), Proposition 2.1-i,vi), (4.2) and (4.4) we then obtain

r
2 pε+1
pε−1

1 =
(v′pε,−(1))2

(u′ε(r1))2
≤ λ(pε + 1)

2

(v′pε,−(1))2

Mpε+1
1

≤ λ(pε + 1)

2

(v′pε,−(1))2

λ+
1 (−M+

λ,Λ, B)
pε+1
pε−1

→ 0 as ε→ 0.

(4.5)

This proves i). Moreover, again by (4.4) and Proposition 4.1-iv)

r1M
pε−1

2
1 ≤

(
λ(pε + 1)

2

) pε−1
2(pε+1)

r1|u′ε(r1)|
pε−1
pε+1 =

(
λ(pε + 1)

2

) pε−1
2(pε+1)

|v′pε,−(1)|
pε−1
pε+1 ,

which proves ii).

In order to prove iii) and iv) let us consider the energy-like functionals

Hγ,η(r) := rÑ−
(

(u′ε(r))
2

2
+

γ

pε + 1
|uε(r)|pε+1

)
+ ηrÑ−−1uε(r)u

′
ε(r), (4.6)

where γ, η are real parameters to be chosen later. It is easy to check that for r ∈ [r1, s1]

H ′γ,η(r) =

(
η + 1− Ñ−

2

)
rÑ−−1(u′ε(r))

2

+

(
γÑ−
pε + 1

− η

λ

)
rÑ−−1|uε(r)|pε+1

+

(
γ − 1

λ

)
rÑ− |uε(r)|pε−1uε(r)u

′
ε(r).

(4.7)

Choose

η =
Ñ− − 2

2
, γ =

η(pε + 1)

λÑ−

in (4.7). Since pε >
Ñ−+2

Ñ−−2
for small ε > 0, then H ′γ,η ≥ 0 in [r1, s1]. Hence Hγ,η(r1) ≤ Hγ,η(s1)

which reads as

r
Ñ−
1 (u′ε(r1))2 ≤ Ñ− − 2

λÑ−
s
Ñ−
1 Mpε+1

1 . (4.8)

By the convexity of uε in [r1, s1] we also have

M2
1 ≤ (u′ε(r1))2s2

1. (4.9)

Putting together (4.8)-(4.9) we get(
r1

s1

)Ñ−
≤ Ñ− − 2

λÑ−
Mpε−1

1 s2
1 =

Ñ− − 2

λÑ−
Mpε−1

1 r2
1

(
s1

r1

)2

.

Hence, by ii), iii) follows.

Now set in (4.6)-(4.7)

η =
Ñ− − 2

2
, γ =

1

λ
.
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With such a choice we easily check that H ′γ,η ≤ 0 in [r1, s1]. Then Hγ,η(r1) ≥ Hγ,η(s1) and using
(4.2) we infer that

(u′ε(r1))2 ≥ 2

λ(pε + 1)

(
s1

r1

)Ñ−
Mpε+1

1

≥ 2

λ(pε + 1)

(
s1

r1

)Ñ− (
λ+

1 (−M+
λ,Λ, B)

) pε+1
pε−1

.

(4.10)

This implies iv) because of iii). �

In the following statements we will make use of the rescaled function defined by

û−ε (x) :=
1

M1
u−ε

(
x

M
pε−1

2
1

)
x ∈ Âε, (4.11)

where Âε is the annulus Âε := A
r1M

pε−1
2

1 ,M
pε−1

2
1

. The function û−ε is a positive radial solution of{
−M+

λ,Λ(D2u) = upε in Âε,

u = 0 on ∂Âε.
(4.12)

For convenience of notations we set

r̂1 = r̂1(ε) := r1M
pε−1

2
1 , ŝ1 = ŝ1(ε) := s1M

pε−1
2

1 , t̂1 = t̂1(ε) := t1M
pε−1

2
1 . (4.13)

The first result is about the asymptotic behavior of ŝ1.

Proposition 4.4. lim
ε→0

ŝ1 = 0.

Proof. We first prove that ŝ1 is bounded from above. For this let us consider the energy function
(4.3), which is monotone decreasing in [r1, s1] (actually in [0, 1]). Hence for any r ∈ [r1, s1] we
have H(r) ≥ H(s1) and

(u−ε )′(r) ≥

√
2

λ(pε + 1)

√(
Mpε+1

1 − (u−ε (r))pε+1
)
.

Integrating in [r1, s1] we infer that∫ s1

r1

(u−ε )′(r)√(
Mpε+1

1 − u−ε (r)pε+1
) dr ≥

√
2

λ(pε + 1)
(s1 − r1). (4.14)

With the change of variable t =
u−ε
M1

we obtain∫ s1

r1

(u−ε )′(r)√(
Mpε+1

1 − u−ε (r)pε+1
) dr =

1

M
pε−1

2
1

∫ 1

0

1√
1− tpε+1

dt.

Then from (4.14) we deduce that

ŝ1 − r̂1 ≤
√
λ(pε + 1)

2

∫ 1

0

dt√
1− tpε+1

.

Sending ε→ 0 and using Proposition 4.3-ii)

lim sup
ε→0

ŝ1 ≤
√
λ(p∗− + 1)

2

∫ 1

0

dt√
1− tp∗−+1

≤ π

2

√
λN

N − 2
,
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which proves the claim.
From (2.4) it is easy to check that(

rÑ−−1(u−ε )′
)′

+
1

λ
rÑ−−1u−ε (r)pε = 0 in [r1, s1]. (4.15)

Integrating from r1 to r ∈ [r1, s1] we obtain

−rÑ−−1(u−ε )′(r) + r
Ñ−−1
1 (u−ε )′(r1) =

1

λ

∫ r

r1

sÑ−−1u−ε (s)pε ds ≤ Mpε
1

λÑ−
rÑ−

and then

−(u−ε )′(r) ≤ Mpε
1

λÑ−
r − rÑ−−1

1 (u−ε )′(r1)r1−Ñ− in [r1, s1].

Integrating the above inequality in [r1, s1], we infer that

r1(u−ε )′(r1)

Ñ− − 2

[
1−

(
r1

s1

)Ñ−−2
]
≤M1

(
1 +

ŝ2
1

2λÑ−

)
. (4.16)

Since ŝ1 is bounded from above and lim
ε→0

r1

s1
→ 0, in view of Proposition 4.3-iii), then

r1(u−ε )′(r̂1) ≤ CM1

for some positive constant C. Moreover r1(u−ε )′(r1) ≥ 0. Hence using (4.10)

C2 ≥
(
r1

(u−ε )′(r1)

M1

)2

≥ 2

λ(pε + 1)

(
s1

r1

)Ñ−−2

ŝ2
1.

The conclusion follows by Proposition 4.3-iii). �

From the previous result we immediately deduce that r̂1 → 0, as ε→ 0. Moreover we have

Corollary 4.5. lim
ε→0

s1 = 0.

Proof. Use (4.2) and Proposition 4.4. �

Next we study the asymptotic behavior of t̂1 and show that it cannot converge to zero. We
begin with a stronger result.

Proposition 4.6. lim inf
ε→0

t1(u−ε (t1))
pε−1

2 ≥

√
2λ(N − 1)

p∗− + 1
.

Proof. Let us consider the energy-like functional

H(r) := rN
(

[(u−ε )′(r)]2

2
+

1

λ(pε + 1)
(u−ε (r))pε+1

)
+

N

pε + 1
rN−1u−ε (r)(u−ε )′(r), r ∈ [s1, t1].

By (2.5), a direct computation shows that H ′(r) ≥ 0. Hence H(s1) ≤ H(t1) and thus

sN1
Mpε+1

1

λ(pε + 1)
≤ tN1

(
[(u−ε )′(t1)]2

2
+

1

λ(pε + 1)
(u−ε (t1))pε+1

)
+

N

pε + 1
tN−1
1 u−ε (t1)(u−ε )′(t1).

Exploiting the equation

(N − 1)
(u−ε )′(t1)

t1
= − 1

λ
(u−ε (t1))pε ,
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we have

sN1
Mpε+1

1

λ(pε + 1)
≤ 1

λ(N − 1)
tN1 (u−ε (t1))pε+1

(
1

2λ(N − 1)
t21(u−ε (t1))pε−1 − 1

pε + 1

)
.

This implies that

t21(u−ε (t1))pε−1 ≥ 2λ(N − 1)

pε + 1

and the conclusion follows passing to the limit as ε→ 0. �

As an immediate consequence of the previous proposition we get

Corollary 4.7. lim inf
ε→0

t̂1 ≥

√
2λ(N − 1)

p∗− + 1
.

Proof. It suffices to observe that t̂1 = t1M
pε−1

2
1 ≥ t1(u−ε (t1))

pε−1
2 so that the assertion follows by

Proposition 4.6. �

Coming back to the study of u−ε , from the previous results we obtain

Proposition 4.8. lim sup
ε→0

M1 < +∞.

Proof. Arguing by contradiction let us assume that along some subsequence, still denoted by ε,
M1 →∞. Consider the rescaled function û−ε defined in (4.11). By construction û−ε satisfies

û−ε (ŝ1) = 1, 0 ≤ û−ε ≤ 1.

The limit of the domains Âε is RN\ {0} and, since (û−ε )ε is uniformly bounded and solves
(4.12), by regularity estimates, we have that û−ε → û in C2

loc(RN\ {0}), for some radially sym-
metric function û, 0 ≤ û ≤ 1, which solves

−M+
λ,Λ(D2u) = up

∗
− in RN\ {0}. (4.17)

Now we want to show that û can be extended to a C2 solution of (4.17) in the whole RN with
û(0) = 1 and û′(0) = 0. In the interval (ŝ1, t̂1) we have that (û−ε )′ ≤ 0 and (û−ε )′′ ≤ 0. Therefore
the equation satisfied by û−ε is

−(û−ε )′′(r)− N − 1

r
(û−ε )′(r) =

(û−ε )(r)pε

λ
r ∈ (ŝ1, t̂1)

that we can write as: (
rN−1(û−ε )′

)′
= − 1

λ
rN−1(û−ε )(r)pε ≥ − 1

λ
rN−1 . (4.18)

Integrating between ŝ1 and r ∈ (ŝ1, t̂1) we get

rN−1(û−ε )′(r)− ŝN−1
1 (û−ε )′(ŝ1) ≥ − 1

λN
(rN − ŝN1 ),

and, since (û−ε )′(ŝ1) = 0 and ŝ1 > 0, we obtain

(û−ε )′(r) ≥ − 1

λN
r for r ∈ (ŝ1, t̂1). (4.19)

Integrating again between ŝ1 and r ∈ (ŝ1, t̂1), taking into account that û−ε (ŝ1) = 1, we have

û−ε (r) ≥ 1− 1

2λN
r2 for r ∈ (ŝ1, t̂1). (4.20)
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Passing to the limit as ε → 0, taking into account Proposition 4.4 and Corollary 4.7, we infer
that

û(r) ≥ 1− 1

2λN
r2 for r ∈

(
0,

√
2λ(N − 1)

p∗− + 1

)
.

From this, since û ≤ 1, we deduce that

lim
r→0

û(r) = 1. (4.21)

Hence û can be extended by continuity at the origin, by setting û(0) := 1. Next we show that
also û′ can be extended by continuity in 0. From (4.19) we have

|(û−ε )′(r)| ≤ r

λN
for any r ∈ (ŝ1, t̂1)

and passing to the limit as ε→ 0, we get

|û′(r)| ≤ r

λN
for r ∈

(
0,

√
2λ(N − 1)

p∗− + 1

)
(4.22)

which gives limr→0 û
′(r) = 0. Hence û is a positive radial solution of (4.17) that extends to a

C1 function near the origin. This implies that û is a (positive) C2 radial solution of

−M+
λ,Λ(D2u) = up

∗
− in RN . (4.23)

Indeed, since û verifies (rN−1û′(r))′ = − 1
λr

N−1(û(r))p
∗
− for r ∈

(
0,
√

2λ(N−1)
p∗−+1

)
, then, fixing

0 < δ < r and integrating between δ and r, we get that

rN−1û′(r)− δN−1û′(δ) = − 1

λ

∫ r

δ

sN−1(û(s))p
∗
− ds.

Passing to the limit as δ → 0, by (4.22), we obtain

û′(r)

r
= − 1

λrN

∫ r

0

sN−1(û(s))p
∗
− ds. (4.24)

By de L’Hôpital’s rule, the right-hand side of (4.24) has a finite limit as r → 0 and thus the
same holds for the left-hand side, which readily implies that û extends to a C2 radial solution of
(4.23).

At the end, since p∗− < p∗+, then by [9, Theorem 1.1] we know that (4.23) has only the trivial
solution, which contradicts the positivity of û. �

Summing up, we have all the ingredients to prove the following

Theorem 4.9. Let uε be a radial sign-changing solution to (1.5) with two nodal regions. Then,
up to a subsequence, as ε → 0+ we have that uε → ū in C2

loc(B \ {0}), where ū is the unique
negative solution of (1.6)

Proof. Let us consider the restriction of u−ε to the annulus Ar1,1. From Proposition 4.8 we have
that u−ε

∣∣
Ar1,1

is uniformly bounded and from Proposition 4.3, i) we have r1 → 0. Hence, by

standard regularity theory, up to a subsequence as ε→ 0, we get that u−ε → ū− in C2
loc(B \{0}),

where ū− is a non-negative radial solution of{
−M+

λ,Λ(D2u) = |u|p
∗
−−1u in B \ {0},

u = 0 on ∂B.
(4.25)

We claim that ū− can be extended to a smooth positive solution of (4.25) in the whole ball. For
this, taking into account that s1 → 0 by Corollary 4.5, u−ε (s1) = M1 → M1 ∈ (0,+∞) in view
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of Proposition 4.8 and (4.2), t1 → t̄1 ∈ (0, 1), as it follows by combining Proposition 4.8 and
Proposition 4.6 (the case t̄1 = 1 being excluded by Hopf lemma), then repeating the proofs of
(4.21), (4.22), with û−ε replaced by u−ε , we get that

lim
r→0

ū−(r) = M1, lim
r→0

(ū−)′(r) = 0.

Hence ū− extends to a C1 radial function near the origin and we easily conclude as in the proof
of Proposition 4.8. �

5. Asymptotic analysis of radial sign-changing solutions to (1.5) with three
nodal regions

To prove Theorem 1.2 we could argue by induction starting from k = 2, nevertheless, for the
reader’s convenience, we detail the case k = 3.

Let uε be a sign-changing solution of (1.5) with three nodal regions, let ri = ri(ε), i = 1, 2, be
the nodal radii, let si = si(ε), i = 1, 2, be the maximum points of |uε| in the second and third
nodal region, and denote by Mi = Mi(ε), i = 0, 1, 2 the maximum values of |uε| in each nodal
region.

The following lemma is a trivial consequence of the results obtained in the previous section.

Lemma 5.1. As ε→ 0+, we have: r1 → 0, s1 → 0, r1
r2
→ 0, M0 → +∞ and

0 < lim inf r
2

pε−1

2 M1 ≤ lim sup r
2

pε−1

2 M1 < +∞.

Proof. Let us consider the rescaled function

ũε,2(x) = r
2

pε−1

2 uε(r2x), x ∈ B 1
r2

. (5.1)

By construction the restriction of ũε,2 to B is a sign-changing solution to (1.5) with exactly
two nodal regions, and thus we can apply the results of Sect. 4. In particular, denoting by
r̃1 ∈ (0, 1) the nodal radius of ũε,2, by s̃1 the maximum point of |ũ−ε,2|, and setting M̃0 := ũε,2(0),

M̃1 := |ũε,2(s̃1)|, as ε→ 0+ we have:

a) r̃1 = r1
r2
→ 0,

b) s̃1 = s1
r2
→ 0,

c) M̃0 = r
2

pε−1

2 M0 → +∞,

d) 0 < lim inf r
2

pε−1

2 M1 ≤ lim sup r
2

pε−1

2 M1 < +∞.

�

Next we study the asymptotic behavior of the function ũε,2 defined in (5.1) in its third nodal

region, which is the annulus A1, 1
r2

. To this end we set s̃2 := s2
r2

, M̃2 := r
2

pε−1

2 M2, which are,

respectively, the maximum point and the maximum value of ũε,2 achieved in A1, 1
r2

.

Proposition 5.2. lim sup
ε→0

M̃2 < +∞.

Proof. Let us consider the energy-like functionals Hλ : [s1, t1]→ R, HΛ : [t1, s2]→ R defined by

Hλ(r) :=
(u′ε(r))

2

2
+
|uε(r)|pε+1

λ(pε + 1)
,

HΛ(r) :=
(u′ε(r))

2

2
+
|uε(r)|pε+1

Λ(pε + 1)
,
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where t1 is the only point contained in the interval (r1, r2) such that u′′ε (t1) = 0. Exploiting the
ODE in (2.7), taking into account that u′′ε ≥ 0, u′ε ≥ 0 in [s1, t1] and u′′ε ≤ 0, u′ε ≥ 0 in [t1, s2],
we easily check that Hλ and HΛ are decreasing. Hence, since λ ≤ Λ, we infer that

Hλ(s1) ≥ Hλ(t1) ≥ HΛ(t1) ≥ HΛ(s2),

which gives

Mpε+1
1

λ(pε + 1)
≥ Mpε+1

2

Λ(pε + 1)
. (5.2)

From this we get that

r
2

pε−1

2 M1 ≥
(
λ

Λ

) 1
pε+1

r
2

pε−1

2 M2

and using Lemma 5.1 we conclude. �

Lemma 5.3. lim inf
ε→0

r2 > 0.

Proof. Assume by contradiction that there exists a sequence ε→ 0+ such that r2 → 0. Consider
the restriction to A r1

r2
, 1
r2

of the rescaled function ũε,2 defined in (5.1). Since r2 → 0 and thanks

to Lemma 5.1 the limit domain of A r1
r2
, 1
r2

is RN \{0}. Thanks to Lemma 5.1, Proposition 5.2 and

elliptic regularity theory we infer that, up to a further subsequence, ũε,2 → ũ in C2
loc(RN \ {0}),

for some radially symmetric function ũ satisfying

−M−λ,Λ(D2u) = |u|p
∗
−−1u in RN .

Moreover, in view of Theorem 4.9, it holds that ũ < 0 in B. Hence, since ũ = 0 on ∂B, by
Hopf’s Lemma we get that ũ′(1) > 0. Therefore, for r > 1 the function ũ = ũ(r) is a solution
(defined and positive in the whole (1,+∞)) to (2.7) with p = p∗−, α = ũ′(1), but this contradicts
[11, Theorem 1.1]. �

Corollary 5.4. lim inf
ε→0

M̃2 > 0.

Proof. Arguing as in Remark 4.2 we have M̃pε−1
2 ≥ λ+

1 (−M−λ,Λ;A1,1/r2) and the conclusion
follows from Lemma 5.3. �

Finally, summing up, we can describe the asymptotic behavior of uε.

Theorem 5.5. Let uε be a radial sign-changing solution to (1.5) with three nodal regions. Then,
up to a subsequence, as ε → 0+ we have that uε → ū in C2

loc(B \ {0}), where ū is a radial
sign-changing solution of (1.6) having two nodal regions.

Proof. We first observe that, as a consequence of Lemma 5.1 and Lemma 5.3, we have that M1

is uniformly bounded, and bounded away from zero. The same holds for M2 in view of (5.2) and
Corollary 5.4. Moreover from Lemma 5.1 we know that r1 → 0. Hence, the restriction of uε to
Ar1,1 is uniformly bounded and by standard regularity theory, up to a subsequence, uε → ū in

C2
loc(B \ {0}), for some radially symmetric function ū satisfying (4.25).
We claim that ū is sign-changing with exactly two nodal regions. To prove this we first

notice that since M2 is uniformly bounded we have r2 6→ 1, otherwise λ1(−M−λ,Λ;Ar2,1) →
+∞ and from the inequality Mpε−1

2 ≥ λ1(−M−λ,Λ;Ar2,1) (see Remark 4.2) we would obtain a

contradiction. Hence, from this and Lemma 5.3 we infer that r2 → r̄2 ∈ (0, 1).
Now, since the restriction to the unit ball of ũε,2 defined in (5.1) is a sign-changing solution of

(1.5) with two nodal regions, then from Theorem 4.9 we get that ũε,2 converges in C2
loc(B \ {0})

to the unique negative radial solution ũ of (1.6). Moreover, since r2 → r̄2 ∈ (0, 1) we deduce
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that ū(x) = r̄
− 2
p∗−−1

2 ũ(r̄−1
2 x) for x ∈ Br̄2 \ {0}. Therefore, ū extends to a smooth function near

the origin which is a radial solution of (1.6) and such that ū < 0 in Br̄2 and ū(r̄2) = 0. Hence
ū′(r̄2) > 0 and thus we easily deduce that ū > 0 in Ar̄2,1. Moreover we have s2 → s̄2, for some
s̄2 such that r̄2 < s̄2 < 1. In fact, s2 → r̄2 cannot happen because ū′(r̄2) > 0, while s2 6→ 1
because ū > 0 in Ar̄2,1, ū(1) = 0 and thus ū′(1) < 0.

�

6. Asymptotic analysis of radial sign-changing solutions to (1.5) with k nodal
regions

In this section we prove Theorem 1.2.

Proof of Theorem 1.2. The case k = 2 has been proved in Theorem 4.9. For k ≥ 3 we argue by
induction on k. The case k = 3 is given by Theorem 5.5. Then, assuming the assertion true for
a solution with k nodal domains, let uε be a radial sign-changing solution of (1.5) with (k + 1)
nodal regions. Consider the rescaled function

ũε,k(x) = r
2

pε−1

k uε(rkx), x ∈ B 1
rk

. (6.1)

Denoting with r̃i, s̃i, M̃i the corresponding quantities for ũε,k, by construction, we have M̃i =

r
2

pε−1

k Mi, s̃i = si
rk

for i = 0, . . . , k and r̃i = ri
rk

, for i = 1, . . . , k.

Now, since the restriction of ũε,k to the unit ball is a solution to (1.5) with k nodal regions then,

by the inductive hypothesis, up to a subsequence, as ε → 0+ we get that M̃0 → +∞, r̃1 → 0,
s̃1 → 0 and r̃i → r̃i, s̃i → s̃i, for i = 2, . . . , k − 1, where 0 < r̃2 < s̃2 < . . . < r̃k−1 < s̃k−1 < 1

and M̃i → M̃i, for some positive numbers M̃i, for i = 1, . . . , k − 1. Moreover ũε,k → ũk, in

C2
loc(B \ {0}), where ũk is a radial sign-changing solution to (1.6) with k − 1 nodal regions.

As an immediate consequence we obtain that M0 → +∞, r1 → 0, s1 → 0, since M0 > M̃0 =

r
2

pε−1

k M0 and 0 < r1 < s1 < s̃1 = s1
rk

. We divide the remaining part of the proof in three steps:

Step 1: M̃k is bounded.

Let us consider the energy-like functionals

H̃λ(r) :=
(ũ′ε,k(r))2

2
+
|ũε,k(r)|pε+1

λ(pε + 1)
,

H̃Λ(r) :=
(ũ′ε,k(r))2

2
+
|ũε,k(r)|pε+1

Λ(pε + 1)
.

If k+ 1 is even, then H̃λ(r) is monotone decreasing in [s̃k−1, s̃k]. Then H̃λ(s̃k−1) ≥ H̃λ(s̃k) from
which we deduce that

M̃k−1 ≥ M̃k. (6.2)

If k + 1 is odd then H̃λ(r) is monotone decreasing in [s̃k−1, t̃k−1], while H̃Λ(r) is monotone
decreasing in [t̃k−1, s̃k]. Hence, using that λ ≤ Λ, we have

H̃λ(s̃k−1) ≥ H̃λ(t̃k−1) ≥ H̃Λ(t̃k−1) ≥ H̃Λ(s̃k).

From this we easily deduce that

M̃k−1 ≥
(
λ

Λ

) 1
pε+1

M̃k. (6.3)
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Exploiting the inductive hypothesis we deduce from (6.2)-(6.3) that M̃k is bounded.

Step 2: lim inf
ε→0

rk > 0.

Assume by contradiction that rk → 0, for some subsequence ε → 0. Then, the limit domain
of Ar̃1, 1

rk

is RN \ {0} and, in view of Step 1 and the inductive hypothesis, we have that the

restriction ũε,k
∣∣
A
r̃1,

1
rk

is uniformly bounded. Hence ũε,k → ũk in C2
loc(RN \ {0}), where ũk is a

radial solution of

−M−λ,Λ(D2u) = |u|p
∗
−−1u in RN \ {0}. (6.4)

Moreover, ũk is non-trivial and sign-changing because by construction we have ũk ≡ ũk in B\{0},
where ũk is the limit of ũε,k

∣∣
B

. In particular, ũ′k(1) 6= 0, ũk(1) = 0 and thus it cannot happen

that ũk ≡ 0 in RN \ B. Therefore, the restriction of ũk to RN \ B is a constant-sign radial
solution of {

−M−λ,Λ(D2u) = |u|p
∗
−−1u in RN \B,

u = 0 on ∂B.
(6.5)

This contradicts [11, Theorem 1.1].

Step 3: conclusion.

In view of Step 1 and Step 2, since M̃k = r
2

pε−1

k Mk, we infer that Mk is bounded. Moreover it is

bounded away from zero. Indeed, arguing as in Remark 4.2 we get thatMpε−1
k ≥ λ+

1

(
−M+

λ,Λ;B
)

if k + 1 is odd, or Mpε−1
k ≥ λ+

1

(
−M−λ,Λ;B

)
if k + 1 is even.

Up to a subsequence we then have Mk → M̄k, rk → r̄k, for some M̄k ∈ (0,+∞), r̄k ∈ (0, 1].
Arguing as in the proof of Theorem 5.5, taking the restriction of uε to Ark,1, exploiting that Mk

is bounded and that λ+
1 (−M±λ,Λ;Ark,1)→ +∞ if rk → 1, we infer that r̄k 6= 1.

Now, using the definitions of M̃i, r̃i, s̃i for i = 2, . . . , k − 1 and the results proved in the

first part of the proof, we conclude that Mi → M̄i = r̄
− 2
p∗−−1

k M̃i ∈ (0,+∞), ri → r̄i = r̃ir̄k,

si → s̄i = s̃ir̄k for i = 2, . . . , k − 1, and it holds

0 < r̄2 < s̄2 < . . . < r̄k−1 < s̄k−1.

Summing up, since the restriction of uε to Ar1,1 is uniformly bounded and r̄k 6= 1 we deduce

that, up to a subsequence, uε → ū in C2
loc(B \ {0}), where ū is a non-trivial radial sign-changing

solution of {
−M−λ,Λ(D2u) = |u|p

∗
−−1u in B \ {0},

u = 0 on ∂B,
(6.6)

with k nodal regions. Since r̄k ∈ (0, 1), s̃k−1 ∈ (0, 1) we infer that s̄k−1 < r̄k. Moreover,
denoting by s̄k the limit point of sk, from the regularity of ū in compact subsets of B \ {0} and
since M̄k 6= 0, we deduce that it cannot happen that s̄k = r̄k. Moreover, since u′ε(sk) = 0 and
|ū′(1)| > 0 in view of the Hopf’s Lemma, we infer that sk → 1 cannot happen. Therefore the
nodes and the extrema of ū are ordered in the following way

0 < r̄2 < s̄2 < . . . < r̄k−1 < s̄k−1 < r̄k < s̄k < 1,

as expected.
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At the end, arguing as in the proof of Theorem 5.5 we see that ū(x) = r̄
− 2
p∗−−1

k ũk(r̄kx), for
x ∈ Br̄k \ {0}. Hence ū extends to a C2 radial function near the origin and it is a sign-changing
solution of (1.6) having k nodal regions. This completes the proof of the inductive step. �

7. Asymptotic analysis of radial sign-changing solutions to (1.10) with two
nodal regions

Let un be a sequence of radial sign-changing solutions to (1.10) with two nodal domains, where
pn = p∗∗+ − εn, εn ↘ 0 as n → +∞. The first result is about the behavior of Mn := ‖un‖∞ as
n → +∞. We set M0 = M0(n) := ‖u+

n ‖∞ = un(0) and M1 = M1(n) := ‖u−n ‖∞, and we denote
by r1 = r1(n) the nodal radius and by s1 = s1(n) the minimum point.

Proposition 7.1. We have Mn → +∞, as n→ +∞.

Proof. Arguing as in Remark 4.2 we infer that

Mpn−1
0 ≥ λ+

1 (−M+
λ,Λ;Br1) ≥ λ+

1 (−M+
λ,Λ;B),

Mpn−1
1 ≥ λ+

1 (−M−λ,Λ;Ar1,1) ≥ λ+
1 (−M−λ,Λ;B),

(7.1)

which readily implies that M0 and M1 are uniformly bounded from below away from zero. Since
Mn = max {M0,M1} the same holds for Mn.

Now, assume thatMn →M ∈ (0,+∞) for some subsequence. Then, from elliptic regularity es-
timates we deduce that un is uniformly bounded in C2(B). In addition, in view of (7.1) it cannot
happen that r1 → 0 or r1 → 1, otherwise λ+

1 (−M+
λ,Λ, Br1)→ +∞ or λ+

1 (−M−λ,Λ;Ar1,1)→ +∞
and by (7.1) this would imply that one between M0 and M1 blows-up, contradicting the uniform
boundedness of un.

Therefore r1 6→ 0, r1 6→ 1 and by regularity estimates, up to a further subsequence, as
n → +∞, we have un → ū in C2(B), where ū is a radial sign-changing solution of (1.11) and
ū(0) > 0 (because of (7.1)), but this contradicts Proposition 3.4. �

Proposition 7.2. We have:

i) 0 < lim inf
n→+∞

r1M
pn−1

2
0 ≤ lim sup

n→+∞
r1M

pn−1
2

0 < +∞;

ii) 0 < lim inf
n→+∞

M0

M1
≤ lim sup

n→+∞

M0

M1
< +∞;

iii) M0 → +∞, M1 → +∞;
iv) r1 → 0;
v) the rescaled function

ũn(x) := r
2

pn−1

1 un (r1x) , x ∈ B1/r1 , (7.2)

converges, up to a subsequence, in C2
loc(RN ) to a non-trivial radial sign-changing solution

of

−M+
λ,Λ(D2u) = |u|p

∗∗
+ −1u in RN . (7.3)

vi) s1 → 0.

Proof. If along a subsequence it holds that r1M
pn−1

2
0 → +∞, then, defining the rescaled function

ûn(x) :=
1

M0
un

(
x

M
pn−1

2
0

)
, x ∈ B

M
pn−1

2
0

,
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we have ûn(0) = 1 and by the usual argument we infer that û+
n → û in C2

loc(RN ), where û is a
positive radial solution of

−M+
λ,Λ(D2u) = up

∗∗
+ in RN . (7.4)

On the other hand, since p∗∗+ < p∗+ then by [9, Theorem 1.1] we get that (7.4) does not have
positive radial solutions, and this gives a contradiction.

If along a subsequence it holds that r1M
pn−1

2
0 → 0, arguing as in Remark 4.2 for ûn, we would

have
1 ≥ λ+

1 (−M+
λ,Λ, B

r1M
pn−1

2
0

)→ +∞

which is a contradiction. This completes the proof of i).

To prove ii) we show that M0

M1
→ 0 and M0

M1
→ +∞ cannot occur along any subsequence.

Let us consider the functionals

Hλ(r) :=
(u′n)2(r)

2
+

upn+1
n

λ(pn + 1)
, r ∈ [0, t0], HΛ(r) :=

(u′n)2(r)

2
+
|un|pn+1

Λ(pn + 1)
, r ∈ [t0, s1],

where t0 ∈ (0, r1) is the only radius such that u′′n < 0 in (0, t0) and u′′n > 0 in (t0, r1). Exploiting
the ODE satisfied by un in [0, s1], we check that Hλ is decreasing in [0, t0] and HΛ is decreasing
in [t0, s1]. Moreover, since λ ≤ Λ and un(t0) > 0 we infer that Hλ(t0) ≥ HΛ(t0). Summing up
we get that

Hλ(0) ≥ Hλ(t0) ≥ HΛ(t0) ≥ HΛ(s1),

and since Hλ(0) =
Mpn+1

0

λ(pn+1) , HΛ(s1) =
Mpn+1

1

Λ(pn+1) we deduce that

M0

M1
≥
(
λ

Λ

) 1
pn+1

. (7.5)

From (7.5) it follows that

Mn ≤
(

Λ

λ

) 1
pn+1

M0

and this implies
lim

n→+∞
M0 = +∞. (7.6)

Assume now that, for some subsequence, M0

M1
→ +∞ and consider again the rescaled function

ûn. By construction ûn(0) = 1, ‖ûn‖∞ ≤ 1 and as before, up to a subsequence as n→ +∞, we
have ûn → û in C2

loc(RN ), where û is a non-trivial radial solution to (7.3) satisfying û(0) = 1.
From i) there exists c1 > 0 such that û > 0 in Bc1 and û = 0 on ∂Bc1 . Moreover û′(c1) < 0.

On the other hand, taking into account that M0

M1
→ +∞, we deduce that û ≡ 0 in RN\Bc1 , since

for any fixed x such that |x| > c1 and for all sufficiently large n we have

|ûn(x)| =

∣∣∣∣∣ 1

M0
un

(
x

M
pn−1

2
0

)∣∣∣∣∣ ≤ M1

M0
.

Passing to the limit as n→ +∞ we obtain û(x) = 0, which contradicts the C1 regularity of û.
Statement iii) is an immediate consequence of (7.6) and ii), while iv) directly follows from i)

and iii).

Let us prove v) and vi). From i) and ii) the rescaled function ũn in (7.2) is uniformly bounded,
and by iii) the limit of B1/r1 is RN . Moreover, by construction ũn

∣∣
B

= vpn,+ is the only radial

positive solution of (1.10). Hence, up to a subsequence as n→ +∞, we have ũn → ũ in C2
loc(RN ),

where ũ is a non-trivial radial solution of (7.3), and this proves v). In particular ũ > 0 in B,
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ũ = 0 on ∂B and the function ũ− = ũ−(r) coincides, for r > 1, with the unique maximal solution
of (2.7) with p = p∗∗+ , α = −(ũ+)′(1). Now arguing as in the proof of the first part of Proposition
4.4, we infer that s1

r1
is bounded. Since r1 → 0 by iv), we conclude that s1 → 0 as well.

�

In the next result we state and prove a uniform upper bound that will be crucial in the sequel
(see Sect. 10).

Proposition 7.3. Let ũ−n be the negative part of the rescaled function ũn defined in (7.2). Then,
up to a subsequence as n→ +∞, ũ−n →W− in C2

loc(RN \B), where W− is the only positive radial
fast decaying solution of (1.12). Moreover, there exist two positive constants C, K (independent
on n) such that for all sufficiently large n it holds

ũ−n (r) ≤ C(
r2 − (t̃1)2 +K

) Ñ−−2

2

for r ∈
[
t̃1,

1

r1

]
, (7.7)

where t̃1 → t̄1 ∈ (1,+∞) and t̄1 is the only radius where W− = W−(r) changes concavity.

Proof. In view of Proposition 7.2-v), up to a subsequence as n→ +∞, we have in particular that
ũ−n → ũ− in C2

loc(RN \ B), where ũ− is a positive radial solution of (1.12). We claim that ũ−

is fast decaying. By (ii) of Theorem 2.2 this is equivalent to show that α∗−(p∗∗+ ) = (ũ−)′(1). To
prove this, we observe that ũ−n = ũ−n (r) is a solution of (2.7) with p = pn, α = α(n) = (ũ−n )′(1) =
−v′pn,+(1) and such that ũ−n (1/r1) = 0, and thus, by definition of α∗−, we have

α∗−(pn) ≤ (ũ−n )′(1).

Then, passing to the limit as n→ +∞, exploiting Proposition 2.3 and taking into account that
ũn → ũ in C2

loc(RN ), we deduce that

α∗−(p∗∗+ ) ≤ (ũ−)′(1).

On the other hand, since ũ− = ũ−(r) is defined and positive in the whole (1,+∞), then, by (i)
of Theorem 2.2, we infer that α∗−(p∗∗+ ) ≥ (ũ−)′(1). Hence, ũ− = W− is the only positive radial
fast decaying solution of (1.12).

For (7.7), we notice that it is exactly inequality (2.13) obtained in the proof of Proposition
2.3. Indeed, denoting by t̃1 the only radius where ũ−n = ũ−n (r) changes concavity and setting

vn(r) := ũ−n (r), we have that vn satisfies (2.14) in
[
t̃1,

1
r1

]
, with pn = p∗∗+ − εn. In the present

case, pn → p∗∗+ , which still satisfies p∗∗+ > p∗− >
Ñ−+2

Ñ−−2
. Then the proof follows verbatim, taking

into account that vn → W− in C2
loc([1,+∞), and that t̃1 → t̄1, vn(t̃1) → W−(t̄1), as n → +∞,

where t̄1 is the only radius where W− = W−(r) changes concavity. �

We conclude this section by studying the limiting behavior of un.

Proposition 7.4. Up to a subsequence, as n→ +∞, it holds that un → 0 in C2
loc(B \ {0}).

Proof. The proof is carried out along the same line of [4, Theorem 1.1, ii)]. By elliptic estimates,
it is sufficient to show that for any fixed ρ ∈ (0, 1)

‖un‖∞,Aρ → 0 as n→ +∞,

where Aρ =
{
x ∈ B : |x| ≥ ρ

}
and ‖ · ‖∞,Aρ denotes the L∞-norm in Aρ.

Using (7.7) and the definition (7.2) of ũn we have

r
2

pn−1

1 u−n (r1r) ≤ C
1(

r2 − t21
r2
1

+K
) Ñ−−2

2

for r ∈
[
t1
r1
,

1

r1

)
,
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or equivalently

r
2

pn−1

1 u−n (r) ≤ C 1(
r2

r2
1
− t21

r2
1

+K
) Ñ−−2

2

, for r ∈ [t1, 1)

for some positive constants C and K independent on n.
Now, since t1

r1
→ t̄1 ∈ (1,+∞) by Proposition 7.3 and r1 → 0 in view of Proposition 7.2-iv), we

infer that t1 → 0. Hence for sufficiently large n we have t21 ≤
ρ2

2 and

‖un‖∞,Aρ =
∥∥u−n ∥∥∞,Aρ ≤ C(

ρ2

2

) Ñ−−2

2

r
Ñ−−2− 2

pn−1

1 .

Then the conclusion follows since r1 → 0 and Ñ− − 2− 2
pn−1 → Ñ− − 2− 2

p∗∗+ −1 > 0.

�

Remark 7.5. By Proposition 7.2 and Proposition 7.4 we have that the maximum and the mini-
mum of un, namely M0 and −M1, blow up at the same rate and the minimum point s1 converges
to the maximum point which is zero. Thus we have concentration of the positive and negative
part at the same point.

This is a new phenomenon, as compared with the classical Lane-Emden problem in which case,
whenever the rate of blow-up of the positive and negative part is the same, the two nodal regions
separate and the concentration points of the negative and positive part are different (see [3]).

8. Asymptotic analysis of radial sign-changing solutions to (1.10) with three
nodal regions

Having proved in the previous section Theorem 1.4 when k = 2 we could argue by induction
to get the general result. However, since passing from even to odd the statement changes, we
prefer to detail the proof for k = 3, for the reader convenience.

Let un be a sign-changing solution of (1.10) with three nodal regions, let ri = ri(n), i = 1, 2,
be the nodal radii, let si = si(n), i = 1, 2, be the maximum points of |un| in the second and
third nodal region, and denote by Mi = Mi(n), i = 0, 1, 2 the maximum values of |un| in each
nodal region.

Proposition 8.1. Up to a subsequence, as n→ +∞, we have: M0 → +∞, M1 → +∞, ri → 0,
si → 0 for i = 1, 2, M2 → M̄ , for some M̄ > 0, and un → v̄ in C2

loc(B \ {0}), where v̄ is the
unique positive radial solution of (1.11).

Proof. Let us consider the rescaled function

ũn(x) := r
2

pn−1

2 un(r2x), x ∈ B1/r2 . (8.1)

Then the restriction of ũn to the unit ball B is the radial sign-changing solution of (1.10) with
two nodal regions so that the results of Sect. 7 apply. In particular, up to a subsequence, as
n→ +∞, we have:

r1

r2
→ 0 , r

2
pn−1

2 Mi → +∞ for i = 0, 1 (8.2)

and

M0

M1
=
r

2
pn−1

2 M0

r
2

pn−1

2 M1

→ c0, (8.3)



NEW CONCENTRATION PHENOMENA FOR RADIAL FULLY NONLINEAR EQUATIONS 28

for some positive constant c0. From (8.2) we deduce that

Mi → +∞ for i = 0, 1

r1 → 0.

Moreover

H̃(r) =
(ũ′n(r))2

2
+
|ũn(r)|pn+1

λ(pn + 1)

is monotone decreasing in [1, s2r2 ], hence(
r

2
pn−1

2 M2

)pn+1

λ(pn + 1)
≤ (ũ′n(1))2

2
. (8.4)

Since ũ′n(1)→ 0, then

r
2

pn−1

2 M2 → 0 (8.5)

and, using the lower bound Mpn−1
2 ≥ λ+

1 (−M+
λ,Λ;B) (see (7.1)), we also deduce that r2 → 0

and, as a consequence, s1 → 0. Putting together (8.2) for i = 1 and (8.5) we have

M1

M2
=
r

2
pn−1

2 M1

r
2

pn−1

2 M2

→ +∞. (8.6)

Arguing as in Proposition 4.4 and Corollary 4.5 we also deduce that s2 → 0. If M2 is bounded
from above, then un

∣∣
Ar2,1

→ ū in C2
loc(B \{0}) for some radial positive function ū. Since s2 → 0,

then as in the proof of Theorem 4.9 we obtain that ū extends to the unique positive radial
solution of (1.11), as we aim to prove. Hence to complete the proof it remains to show that
lim supn→+∞M2 < +∞. On the contrary, let us assume that, along some sequence n → +∞,
M2 → +∞ and consider the rescaled function

ûn(x) :=
1

M2
un

(
x

M
pn−1

2
2

)
, x ∈ A

r2M
pn−1

2
2 ,M

pn−1
2

2

.

Since the limit domain of ûn is RN\ {0} by (8.5), we can argue exactly as in Proposition 4.8 to
deduce that ûn → û in C2

loc(RN \ {0}), where û can be extended to a non-trivial radial positive
solution to (7.4). This is clearly a contradiction since p∗∗+ < p∗+. Hence the only possibility is

that M2 → M̄ for some positive constant M̄ as we wanted to show. �

9. Asymptotic analysis of radial sign-changing solutions to (1.10) with k nodal
regions

In this section we prove Theorem 1.4.

Proof of Theorem 1.4. We argue by induction on k. The steps k = 2, 3 have been proved respec-
tively in Sect. 7 and Sect. 8. So let us assume that the assertion holds true for solutions with k
nodal regions and let un be a radial sign-changing solution to (1.10) with k + 1 nodal regions.

Case 1: if k + 1 is even, then the restriction to B of the rescaled function

ũn,k(x) := r
2

pn−1

k un(rkx), x ∈ B1/rk ,

is a solution to (1.10) having k nodal regions, with k odd. Hence, exploiting the inductive

hypothesis and the definition of ũn,k, we infer that, up to a subsequence as n→ +∞, M0r
2

pn−1

k →
+∞, . . . ,Mk−2r

2
pn−1

k → +∞, and Mk−1r
2

pn−1

k → M̄ , for some M̄ > 0. This readily implies that
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M0 → +∞, . . . ,Mk−2 → +∞. Moreover, by inductive hypothesis, we also have ri
rk
→ 0, si

rk
→ 0

for i = 1, . . . , k − 1, which easily implies that ri → 0, si → 0, for i = 1, . . . , k − 1.

Finally, exploiting again the inductive hypothesis we deduce that
M2j

M2j+1
=

M2jr
pn−1

2
k

M2jr
pn−1

2
k

→ cj

for j = 0, . . . , k−3
2 , with cj positive constants, and that

M2j+1

M2j+2
=

M2j+1r
pn−1

2
k

M2j+2r
pn−1

2
k

→ +∞ for j =

0, . . . , k−3
2 .

Now, arguing as in the proof of (7.5) we have that

Mk−1

Mk
≥
(
λ

Λ

) 1
pn+1

. (9.1)

Let us show that

lim sup
n→+∞

Mk−1

Mk
< +∞.

Assume by contradiction that, for a subsequence, Mk−1

Mk
→ +∞ and consider the restriction of

ũn,k to the annulus Ark−1/rk,1/rk . Since Mk−1r
2

pn−1

k → M̄ , for some M̄ > 0 then from (9.1) we

deduce that ũn,k
∣∣
Ark−1/rk,1/rk

is uniformly bounded. We claim that rk 6→ 1. Otherwise, since

ũε,k
∣∣
A1,1/rk

is uniformly bounded and rk → 1 we would have λ1(−M−λ,Λ;A1,1/rk) → +∞, and

from (4.2) we would have a contradiction. Hence rk → r̄ ∈ (0, 1) or rk → 0, and recalling that
by inductive hypothesis rk−1

rk
→ 0, we infer that ũn,k

∣∣
Ark−1/rk,1/rk

→ ũ in C2
loc(Π), where ũ is

non-trivial (because by inductive hypothesis it coincides with ū in B) and the limit domain Π is

either RN \ {0} or B 1
r̄
\ {0}. Since we are assuming that Mk−1

Mk
→ +∞, arguing as in the proof of

Proposition 7.2, ii), we deduce that ũ ≡ 0 in Π ∩ {x ∈ RN ; |x| > 1} contradicting the regularity
of ũ. Hence the only possibility is

Mk−1

Mk
→ c(k−1)/2, (9.2)

for some c(k−1)/2 > 0. Let us also show that rk → 0. Indeed, since ũn,k
∣∣
Ark−1/rk,1/rk

→ ũ in

C2
loc(Π), where ũ can be extended to a non-trivial sign-changing solution to −M+

λ,Λu = |u|p
∗∗
+ −1u

in Br̄, with homogenous Dirichlet boundary condition if Π = Br̄ \ {0}, or −M+
λ,Λu = |u|p

∗∗
+ −1u

in RN if Π = RN \ {0}. Now, in view of Proposition 3.4 the first case cannot occur and and thus

we infer that rk → 0. In particular, since Mk−1r
2

pn−1

k → M̄ , it follows that Mk−1 → +∞ and
from (9.2) we infer that Mk → +∞.

Moreover, since Mks
2

pn−1

k is bounded from above (by arguing as in the first part of Proposition
4.4) and Mk → +∞, then sk → 0.

To conclude the proof it remains to show that un → 0 in C2
loc(B \ {0}). The proof of this

fact is identical to that of Proposition 7.4 with minor modifications. In particular, taking into
account that rk, sk → 0 and un is negative in the last nodal component, then, for any fixed
ρ ∈ (0, 1) and for all sufficiently large n we obtain

‖un‖∞,Aρ =
∥∥u−n ∥∥∞,Aρ ≤ C(

ρ2

2

) Ñ−−2

2

r
Ñ−−2− 2

pn−1

k ,

for some positive constant C = C(N,λ,Λ) independent on n. This completes the proof when
k + 1 is even.
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Case 2: if k + 1 is odd we consider the restriction to B of the rescaled function

ũn,k(x) := r
2

pn−1

k un(rkx), x ∈ B1/rk , (9.3)

which is a solution to (1.10) having k nodal regions, with k even. Hence, from the inductive hy-

pothesis, up to a subsequence, as n→ +∞, we get that M0r
2

pn−1

k → +∞, . . . ,Mk−1r
2

pn−1

k → +∞
and thus we infer that M0 → +∞, . . . ,Mk−1 → +∞. Exploiting again the inductive hypoth-
esis, we have ri

rk
→ 0, si

rk
→ 0 for i = 1, . . . , k − 1, which implies that ri → 0, si → 0, for

i = 1, . . . , k − 1. Moreover
M2j

M2j+1
=

M2jr
pn−1

2
k

M2j+1r
pn−1

2
k

→ cj for j = 0, . . . , k−2
2 and cj positive con-

stants,
M2j+1

M2j+2
=

M2j+1r
pn−1

2
k

M2j+2r
pn−1

2
k

→ +∞, for j = 0, . . . , k−4
2 .

Repeating exactly the same arguments of Sect. 8, in the case of three nodal regions, we infer

that rk, sk → 0, Mk−1

Mk
→ +∞ and that Mk → M̄ , where M̄ is a positive constant. From this

we also deduce that un converges in C2
loc(B\ {0}) to the unique positive solution of (1.11). The

proof is complete. �

10. Energy of solutions

Let Ω be a bounded radial domain in RN , i.e. Ω is either a ball or an annulus centered at the
origin. Then the radial coordinate r will belong either to [0, R), R > 0, if Ω is the ball BR, or to
the interval (a, b), 0 < a < b, if Ω is the annulus Aa,b.

We consider the space of radial functions in Ω which have constant sign and change convexity
only once. More precisely we define

XΩ :=
{
u ∈ C2

rad(Ω); |u| > 0 and ∃ % = %(u) ∈ (a, b) [resp. % ∈ (0, R) if Ω is a ball]

such that u′′(%) = 0, u′′(r) < 0 for r ∈ (a, %) and u′′(r) > 0 for r ∈ (%, b),

or u′′(r) > 0 for r ∈ (a, %) and u′′(r) < 0 for r ∈ (%, b),

[resp. r ∈ (0, %) and r ∈ (%,R) if Ω is a ball]} .

Next, for an exponent p > 1 and for any function u ∈ XΩ we consider the radial weight:

gu,p(x) :=

{
[%(u)]γ(p) if |x| = r ≤ %(u),

|x|γ(p) if |x| > %(u),
(10.1)

with γ(p) := 2
(
p+1
p−1

)
−N , and define the weighted energy

Ep,Ω(u) :=

∫
Ω

|u(x)|p+1gu,p(x) dx. (10.2)

It is elementary to check that Ep,Ω is invariant under the scaling uα(x) = αu(α
p−1

2 x) (see [4,
Proof of Thorem 1.2]), i.e.

Ep,Ω(u) = Ep,Ωα(uα) (10.3)

with Ωα = α−
p−1

2 Ω.
We observe that if u is a solution of (1.1) with k nodal regions, then the restrictions um to

each nodal region Ωm, for m = 1, . . . , k, belong to the space XΩm . Therefore we can consider
the energy of each function um in the corresponding nodal region Ωm:

Ep,Ωm(um) :=

∫
Ωm
|um(x)|p+1gum,p(x) dx, for m = 1, . . . , k, (10.4)
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and define the total energy of the solution u in the ball B as

ETp (u) :=

k∑
m=1

Ep,Ωm(um). (10.5)

A similar energy can be defined for any positive (fast decaying) radial solution U± of the critical
equation in RN

−M±λ,Λ(D2u) = up
∗
± in RN . (10.6)

We denote it by E∗(U±), i.e.

E∗(U±) :=

∫
RN
|U±(x)|p

∗
±+1g∗U±(x) dx, (10.7)

where

g∗U±(x) :=

{
[%(U±)]γ

∗
if |x| = r ≤ %(U±),

|x|γ∗ if |x| = r > %(U±),
(10.8)

with γ∗ := 2
(
p∗±+1

p∗±−1

)
−N .

Note that, by the invariance of the energy with respect the usual scaling, Σ∗± := E∗(U±) is a
constant depending only on λ,Λ, N .

We now prove Theorem 1.3 (we refer to Theorem 1.2 for the notations).

Proof of Theorem 1.3. Let us first consider the restriction of the solution uε to the first nodal
region Ω1

ε = Br1 . We denote it by u1
ε. The function

ũ1
ε(x) := r

2
pε−1

1 u1
ε(r1x), x ∈ B,

is the unique positive solution of{
−M−λ,Λ(D2u) = upε in B,

u = 0 on ∂B.

By the scaling invariance (10.3), we have

Epε,Ω1
ε
(u1
ε) = Epε,B(ũ1

ε).

By [4, Theorem 1.2] we immediately deduce that, as ε→ 0,

Epε,Ω1
ε
(u1
ε)→

∫
RN

(U−)p
∗
−+1g∗U− dx = Σ∗−.

This gives the first contribution to the limit of the total energy in (1.8).
On the other hand we recall that the nodal radii r1, r2, . . . , rk−1 converge respectively to 0,

r̄2,. . . , r̄k−1, where r̄2,. . . , r̄k−1 are the nodal radii of the limit function ū given by Theorem 1.2.
Thus, by the convergence of uε → ū in C2

loc(B \ {0}) we have that the restriction umε of uε to
its nodal region Ωmε , m = 2, . . . , k, converges to the restriction of ū to the corresponding nodal
region, i.e.:

u2
ε → ū1, . . . , u

m
ε → ūm−1.

Then, using also that Mi → M̄i, we have

Epε,Ω2
ε
(u2
ε) =

∫
Ω2
ε

|u2
ε|pε+1gu2

ε
dx→

∫
Br̄2

|ū1|p
∗
−+1g∗ū1

dx

. . .

Epε,Ωmε (umε ) =

∫
Ωmε

|umε |pε+1gumε dx→
∫
Ar̄m−1,r̄m

|ūm|p
∗
−+1g∗ūm−1

dx,
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where r̄m = 1 if m = k. Thus the assertion (1.8) holds and the proof is complete. �

We now study the limit energy of a family of sign-changing solution to (1.10) having k nodal
regions, as n → +∞ and prove Theorem 1.5. We denote by E∗∗(W−) the energy of the only
radial positive fast decaying solution to (1.12), namely

E∗∗(W−) =

∫
RN\B

|W−(x)|p
∗∗
+ +1g∗∗W−(x) dx, (10.9)

where

g∗∗W−(x) :=

{
[%(W−)]γ

∗∗
if 1 ≤ |x| = r ≤ %(W−),

|x|γ∗∗ if |x| = r > %(W−),
(10.10)

with γ∗∗ := 2
(
p∗∗+ +1

p∗∗+ −1

)
−N . Since W− is fast decaying easily we have:

Lemma 10.1. The energy E∗∗(W−) is finite.

Proof. Since W− is fast decaying we can find C > 0 and r̄ > 1 such that

W−(r) ≤ C

rÑ−−2
for r > r̄. (10.11)

Up to choosing a larger r̄ we can assume without loss of generality that r̄ > %(W−) and thus

E∗∗(W−) =

∫
RN\B

|W−(x)|p
∗∗
+ +1g∗∗W−(x) dx

=

∫ %(W−)

1

|W−(r)|p
∗∗
+ +1[%(W−)]

2

(
p∗∗+ +1

p∗∗
+
−1

)
−N

rN−1 dr

+

∫ +∞

%(W−)

|W−|p
∗∗
+ +1r

2

(
p∗∗+ +1

p∗∗
+
−1

)
−N

rN−1 dr

= (I) + (II).

Clearly (I) is finite. For (II), exploiting (10.11) we have

(II) ≤
∫ r̄

%(W−)

|W−(r)|p
∗∗
+ +1r

2

(
p∗∗+ +1

p∗∗
+
−1

)
−N

rN−1 dr + C

∫ +∞

r̄

r
−(Ñ−−2)(p∗∗+ +1)+2

(
p∗∗+ +1

p∗∗
+
−1

)
−1

dr

= (III) + (IV ).

Now, (III) is finite and so is (IV ) by a straightforward computation because p∗∗+ > p∗− >
Ñ−
Ñ−−2

. �

We now prove Theorem 1.5 (for the notations we refer to Theorem 1.4 and the beginning of
this section).

Proof of Theorem 1.5. We argue by induction on k ≥ 2. We begin with the basic step k = 2.
Assume that un is a sign-changing solution to (1.10) having two nodal regions and let r1

be the node of un. Then Ω1
n = Br1 and Ω2

n = Ar1,1. We consider the rescaled function ũn
defined in (7.2). By construction ũ+

n

∣∣
B

coincides with the unique positive solution of (1.10), i.e.

ũ+
n

∣∣
B

= vpn,+ and it is uniformly bounded (see Proposition 7.2). Hence ũ+
n

∣∣
B
→ v̄ in C2(B),

where v̄ is the unique positive solution of (1.11). Hence, exploiting the scaling invariance of the
energy and passing to the limit as n→ +∞ we get that

Epn,Ω1
n
(u1
n) = Epn,B(ũ+

n ) =

∫
B

|ũ+
n |pn+1gũ+

n
dx→

∫
B

|v̄|p
∗∗
+ +1gv̄ dx = Ep∗∗+ ,B(v̄). (10.12)
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For u2
n we have Ω2

n = Ar1,1 and exploiting the scaling invariance and the definition of the energy
we have

Epn,Ω2
n
(u2
n) = Epn,A1,1/r1

(ũ−n ) =

∫
A1,t̃1

|ũ−n |pn+1[t̃1]γ(pn) dx+

∫
At̃1,1/r1

|ũ−n |pn+1|x|γ(pn) dx,

= (I) + (II),

where t̃1 = %(ũ−n ). From Proposition 7.3 we have ũ−n
∣∣
A1,1/r1

→ W− in C2
loc(RN \ B), where W−

is the unique radial positive fast decaying solution of (1.12). We claim that we can pass to limit
under the integral sign in (I) and (II). Indeed, for (I) it is obvious because ũn is uniformly
bounded and t̃1 → t̄1 ∈ (0,+∞), where t̄1 = %(W−), while for (II), taking into account (7.7)

and that pn > p∗− >
Ñ−
Ñ−−2

, we easily obtain

|ũ−n (r)|pn+1r2 pn+1
pn−1−NrN−1 ≤ Cr−(Ñ−−2)(pn+1)+2 pn+1

pn−1−1 ≤ Cr−1−δ for r ≥ t̃1,

for some C > 0, δ > 0 independent on n. Hence, by Lebesgue’s dominated convergence theorem
we can pass to the limit under the integral sign in (II) and thus we conclude that

lim
n→+∞

Epn,Ω2
n
(u2
n) =

∫
A1,t̄1

|W−(x)|p
∗∗
+ +1[t̄1]γ(p∗∗+ ) dx+

∫
RN\Bt̄1

|W−(x)|p
∗∗
+ +1|x|γ(p∗∗+ ) dx

= E∗∗(W−) = Σ∗∗+ .
(10.13)

Combining (10.12) and (10.13) we complete the proof of the basic step.

Now let us prove the inductive step. Let un be a radial solution to (1.10) with k + 1 nodal
regions and consider the rescaled function ũk,n defined by (9.3). Clearly, by invariance under
this scaling and by definition we easily have

ETpn(un) = ETpn(ũk,n
∣∣
B

) + Epn,A1,1/rk
(ũk,n

∣∣
A1,1/rk

). (10.14)

Since the restriction ũk,n
∣∣
B

is a radial sign-changing solution of (1.10) with k nodal regions then
by the induction hypothesis we infer that

lim
n→+∞

ETpn(ũk,n
∣∣
B

) =

{
k
2Ep∗∗+ ,B(v̄) + k

2 Σ∗∗+ if k is even,

k+1
2 Ep∗∗+ ,B(v̄) + k−1

2 Σ∗∗+ if k is odd.
(10.15)

For the second term of (10.14), if k is even then un has an odd number of nodal components
and by Theorem 1.4 we have rk → 0, uk+1

n = un
∣∣
Ark,1

is uniformly bounded and uk+1
n → v̄ in

C2
loc(B \ {0}). Therefore, by the usual invariance under scaling and exploiting these properties

we get that

lim
n→+∞

Epn,A1,1/rk
(ũk,n

∣∣
A1,1/rk

) = lim
n→+∞

Epn,Ark,1(uk+1
n ) = Ep∗∗+ ,B(v̄). (10.16)

If k is odd, then applying Theorem 1.4 to ũk,n
∣∣
B

we infer that ũk,n
∣∣
B
→ v̄ in C2

loc(B \ {0}).
Hence, arguing as in the proof of Proposition 7.3 we have ũ−n

∣∣
A1,1/rk

→W− in C2
loc(RN \B) and

t̃k → t̄k ∈ (1,+∞), t̄k = %(W−). Then, as in the proof of the basic step k = 2 and exploiting
an analogous uniform upper bound (the proof is the same as that of Proposition 7.3 with minor
changes), we get that

lim
n→+∞

Epn,A1,1/rk
(ũk,n

∣∣
A1,1/rk

) = Σ∗∗+ . (10.17)

At the end, combining (10.14)–(10.17) we obtain (1.14).
�
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