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Abstract 21 

Plasmopara viticola (Berk. et Curt.) Berl. and de Toni, the agent of downy mildew, is one of the 22 

most important pathogens of European grapevine (Vitis vinifera L.). Extensive evaluation of 23 

cultivated grapevine germplasm has highlighted the existence of resistant phenotypes in the 24 

Georgian (Southern Caucasus) germplasm. Resistance is shown as a reduction in disease severity. 25 

Unravelling the genetic architecture of grapevine response to P. viticola infection is crucial to 26 

develop resistant varieties and reduce the impact of disease management. The aim of this work 27 

was to apply a genome-wide association (GWA) approach to a panel of Georgian-derived 28 

accessions phenotyped for P. viticola susceptibility and genotyped with Vitis18kSNP chip array. 29 

GWA identified three highly significant novel loci on chromosomes 14 (Rpv29), 3 (Rpv30) and 16 30 
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(Rpv31) associated with a low level of pathogen sporulation. Rpv29, Rpv30 and Rpv31 loci 31 

appeared to be associated with plant defense genes against biotic stresses, such as genes involved 32 

in pathogen recognition and signal transduction. This study provides the first evidence of resistant 33 

loci against P. viticola in V. vinifera germplasm, and identifies potential target genes for breeding 34 

P. viticola resistant grapevine cultivars. 35 

 36 

1 Introduction 37 

Vitis vinifera L. is one of the most widely cultivated fruit tree species of agricultural interest and 38 

it is the only species of the Vitis genus extensively used in the global wine industry. According to 39 

the data collected in 2018, viticulture covers approximately 7.6 million hectares worldwide and 40 

produces more than 67 million tons of graps (http://www.oiv.int/). Unfortunately, V. vinifera is 41 

also known as the most susceptible Vitis species to Plasmopara viticola (Berk. et Curt.) Berl. and 42 

de Toni, the oomycete causing grapevine downy mildew. P. viticola was introduced into France 43 

from North America during the XIX century together with American wild Vitis species and rapidly 44 

spread across Europe dividing into two genetically distinct groups (Fontaine et al., 2013; 45 

Maddalena et al., 2020). Structure analysis indicated that the European and Italian P. viticola 46 

populations is formed by two separate genetic clusters, distributed according to a geographical 47 

gradient (East-West) and climatic conditions (Fontaine et al., 2013; Maddalena et al., 2020). P. 48 

viticola is a polycyclic pathogen able to biotrophically grow on tissues (leaves, shoots and clusters) 49 

of susceptible Vitis species and, particularly, V. vinifera. If adequate disease management 50 

strategies are not applied, the disease seriously affects yield in terms of on grape quality and 51 

quantity (Toffolatti et al., 2018b).  52 

Resistant accessions within the North American non-vinifera species, such as Vitis riparia Michx., 53 

Vitis cinerea (Engelm. ex A.Gray) Engelm. ex Millard and Vitis labrusca L., and the Northeast 54 

Asian species (Vitis amurensis Rupr.), exhibit varying levels of resistance, ranging from moderate 55 

to high, due to co-evolution with the pathogen (Jürges et al., 2009). Several QTL (Quantitative 56 

Trait Loci), conferring downy mildew resistance, at different levels ranging from weak to total, 57 

were discovered in Vitis species background: Rpv1 and Rpv2 in Muscadinia rotundifolia Michaux 58 

(Merdinoglu et al., 2003; Wiedemann-Merdinoglu et al., 2006); Rpv3 and Rpv19 in Vitis rupestris 59 

Scheele (Welter et al., 2007; Bellin et al., 2009; Divilov et al., 2018; Vezzulli et al., 2019; Foria et 60 

al., 2020); Rpv4, Rpv7, Rpv11, Rpv17, Rpv18, Rpv20 and Rpv21, in unspecified American species 61 
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(Fischer et al., 2004; Welter et al., 2007; Bellin et al., 2009; Divilov et al., 2018); Rpv5, Rpv6, 62 

Rpv9 and Rpv13 in V. riparia (Marguerit et al., 2009; Moreira et al., 2011); Rpv8, Rpv10, Rpv12, 63 

Rpv22, Rpv23, Rpv24, Rpv25 and Rpv26 in V. amurensis (Blasi et al., 2011; Schwander et al., 64 

2012; Venuti et al., 2013; Song et al., 2018; Lin et al., 2019); Rpv14 in V. cinerea (Ochssner et al., 65 

2016); Rpv15 and Rpv16 in Vitis piasezkii Maxim. (Pap et al. unpublished); Rpv27 in Vitis 66 

aestivalis Michx. (Sapkota et al., 2015, 2019); and Rpv28 (Bhattarai et al., in preparation; 67 

www.vivc.de). 68 

The management of downy mildew on traditional V. vinifera varieties requires regular application 69 

of fungicides. It is estimated that in the European Union, viticulture accounts for approximately 70 

70% of all agrochemicals used, most of which are applied to contain the agents of downy and 71 

powdery mildews. Nevertheless, the intensive use of chemicals is becoming more and more 72 

restricted because of their high costs, their risks to human health and their negative environmental 73 

impact due to the chemical residues detected in grapes, soil and aquifers. In addition, disease 74 

control could be difficult to attain in future because some P. viticola strains could develop site-75 

specific fungicide resistances, leading to great difficulties in the management of disease, while the 76 

discovery of new modes of action is rare (Hollomon, 2015). The EU Directive 2009/128 for 77 

sustainable management of diseases caused by plant pathogens in Europe strongly recommends a 78 

reduction in the number of treatments in the field. Moreover, the application of Regulation 79 

1107/2009, concerning the placement on the market of plant protection products, is causing a 80 

reduction in the active substances available. The exploitation of resistance sources is the best way 81 

to decrease the use of chemicals for disease management and to achieve an effective protection 82 

from P. viticola in an environmental friendly way. Breeders had already started crossing the 83 

susceptible V. vinifera varieties with American species in the XIX century, first in US and then in 84 

Europe (Eibach and Töpfer, 2015; Migicovsky et al., 2016; Merdinoglu et al., 2018; Yobrégat, 85 

2018). Nowadays, numerous varieties combining resistant traits from American and Asian species 86 

and the quality traits of V. vinifera are available (Reynolds, 2015). A comprehensive list of new 87 

resistant varieties can be accessed from the Vitis International Variety Catalogue website (VIVC; 88 

www.vivc.de).  89 

Finding new sources of resistance is of paramount importance in breeding for biotic stress 90 

resistance in a perennial crop, which has to be productive for years while maintaining its resistance 91 

characteristics at the same time: the main strategy for preventing the selection of pathogen strains 92 
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able to overcome resistance is, in fact, pyramiding resistance genes in the crop variety (Eibach et 93 

al., 2007; Delmotte et al., 2016; Zini et al., 2019). Recently, unique resistance traits to the downy 94 

mildew agent have been reported in V. vinifera varieties (Bitsadze et al., 2015; Toffolatti et al., 95 

2016b) coming from the first domestication center of the species: Georgia, Southern Caucasus 96 

(Imazio et al., 2013). The resistance mechanism for one of these resistant cultivars, named 97 

Mgaloblishvili, has been studied in detail (Toffolatti et al., 2018a, 2020). After artificial 98 

inoculation, P. viticola growth and sporulation are significantly affected in Mgaloblishvili: the 99 

mycelium degenerates, sporangiophores show an altered morphology and lower numbers of 100 

sporangia are produced, without any evidences of the hypersensitive response that occurs in 101 

American species. From the transcriptomic point of view, its defense mechanism shows an 102 

overexpression of genes related to pathogen recognition through PAMP (pathogen-associated 103 

molecular patterns), DAMP (damage-associated molecular patterns), and effector receptors and 104 

ubiquitination, signaling pathway through ethylene, synthesis of antimicrobial compounds (such 105 

as monoterpenes and flavonoids) and fungal wall degrading enzymes, and the development of 106 

structural barriers (such as cell wall reinforcement). The discovery of resistance to P. viticola in 107 

V. vinifera promises fresh opportunities for grapevine breeding in terms of new resistant loci. 108 

Breeding for disease resistance is a very time-consuming process (up to 25-30 years are required 109 

for a breeding program), because it needs the evaluation of resistance levels of the progeny and 110 

other important characteristics (yield and quality of vines), which are typically not achieved until 111 

the third year after planting. A way to considerably decrease the length of the breeding process 112 

(accelerating the process by up to 10 years) is the adoption of the marker-assisted selection (MAS) 113 

approach, which allows the targeted selection of progeny harboring the resistance loci (Eibach and 114 

Töpfer, 2015).  115 

Identification of genomic loci associated with complex quantitative and qualitative traits was 116 

enabled by the development of QTL (quantitative trait locus) and GWA (genome wide association) 117 

mapping approaches, combining genetic and phenotypic data. QTL mapping is performed using 118 

segregating biparental populations, while GWA approach relies on historical recombination events 119 

which occurred in natural populations, germplasm collections and breeding materials (Korte and 120 

Farlow, 2013). Over the last 10 years, NGS (next-generation sequencing) technologies have made 121 

available numerous (from thousands to hundreds of thousands) SNP (single nucleotide 122 



polymorphism) markers to be used for GWA study (GWAS) in various plant and animal species 123 

(Bhat et al., 2016). 124 

In grapevine, at least three high-density SNP arrays have been set up (Myles et al., 2010; Marrano 125 

et al., 2017; Laucou et al., 2018), and the most used SNP set is the Vitis18kSNP chip array, 126 

developed by the GrapeReSeq Consortium, re‐sequencing the genome of 47 V. vinifera genotypes 127 

and 18 genotypes belonging to American Vitis species and holding 18,071 SNPs. This high-density 128 

SNP array has been demonstrated to be a valid method for mapping of both quantitative and 129 

qualitative traits (Laucou et al., 2018).  130 

In the present work, the Vitis18kSNP chip array was used to genotype a panel of V. vinifera 131 

Georgian accessions to identify genomic regions and/or putative markers associated with P. 132 

viticola resistance in V. vinifera, through a GWA approach, to be used for MAS in further breeding 133 

programs. 134 

 135 

2 Material and methods 136 

2.1 Plant materials 137 

The panel of accessions analyzed in this study (Supplementary Table 1) accounted for 132 138 

genotypes: 84 are seedlings of the Mgaloblishvili self-pollinated population, and 48 are genotypes 139 

belonging to the Georgian germplasm collection. The breeding-derived genotypes are maintained 140 

in the greenhouse of the Department of Agricultural and Environmental Sciences (DiSAA), located 141 

in Arcagna (Lodi, Italy) and the germplasm genotypes are planted in the DiSAA germplasm 142 

collection vineyard, located in Torrazza Coste (Pavia, Italy). Mgaloblishvili self-progeny was 143 

obtained in spring of 2012, by enclosing Mgaloblishvili inflorescences in paper bags before 144 

flowering. At harvesting, bunches were collected and the seeds were extracted from berries to be 145 

vernalized at 5°C for two months in humid sand. The vernalized seeds were placed in plates of 146 

polystyrene cups filled with rockwool and maintained at 20 to 25 °C up to germination in a 147 

screenhouse. The seedlings were transplanted into 8-cm pots filled with a sand–peat mixture (7:3 148 

in volume) and after one year were moved in 20-cm pots. The plants were regularly irrigated and 149 

maintained without mineral fertilization practice. In Figure 1, some stages of Mgaloblishvili self-150 

pollination, seedling germination and plant maintenance in greenhouse are shown. 151 

 152 

2.2 Phenotyping 153 



The degree of susceptibility to P. viticola was evaluated through experimental inoculation on leaf 154 

samples collected at the beginning of the 2015, 2016, and 2017 grapevine growing seasons, using 155 

the protocol described by Toffolatti et al. (Toffolatti et al., 2016b). To maximize the genetic 156 

variability of the pathogen and allow the detection of accessions that were resistant to a wide range 157 

of pathogen strains, field populations of P. viticola were used for the experimental inoculations 158 

(Toffolatti et al., 2016). Recent studies demonstrated that the European and Italian P. viticola 159 

population is divided in two genetic clusters, separated over an east-west gradient (Fontaine et al., 160 

2013; Maddalena et al., 2020). In this study, east and west populations of P. viticola coming from 161 

Italy, at S. Maria della Versa (Pavia; East population) and Casarsa della Delizia (Pordenone; West 162 

population), and Georgia (West), were mixed to perform experimental inoculations. Phenotypical 163 

evaluations were performed in triplicate. Briefly, three leaf discs (1.5 cm in diameter) were cut 164 

from three leaves collected from the 3rd-5th leaf starting from the shoot apex of the plants. The 165 

leaf disks were sprayed with 1 mL P. viticola sporangia suspension (5x104 sporangia·mL-1) and 166 

incubated in a humid chamber at 22 °C for 10 days. Disease severity was estimated from the area 167 

covered by sporulation by calculating the Percentage Index of Infections (I%I) (Townsend and 168 

Heuberger, 1947). The accessions with an average I%I lower than 25% along the three sampled 169 

years were considered resistant. The 25% threshold was chosen based on the I%I distribution. Box 170 

plot distribution of the three replicate values of the samples showed that only nine samples (ID 171 

124, ID 122, ID LIB 56, ID 138, ID 109, ID L22A, ID M22F, ID M22A, ID M22E) showed 172 

I%I<40%, while the others reached higher values (Supplementary Figure 1). The average I%I of 173 

these samples was 20±5% (95% confidence interval). Therefore, 25% was the chosen threshold. 174 

The existence of differences between I%I recorded in different years was analyzed by Pearson’s 175 

correlation coefficient. 176 

Resistance levels (RLs), expressed in percentage, were calculated for each accessions by using 177 

the following formula: 178 

𝑅𝐿 = 100 − (
𝐼%𝐼𝑥

𝐼%𝐼𝑀𝐴𝑋
× 100) where I%Ix is the average disease severity of the sample x and 179 

I%IMAX is the maximum value of disease severity recorded (accession ID 157 M, I%I=85.8%). 180 

 181 

2.3 SNP genotyping 182 

The 132 genotypes were genotyped using the Vitis18kSNP array (Illumina Inc., San Diego, CA, 183 

USA), containing 18,071 SNPs. The genotyping of breeding-derived accessions (Mgaloblishvili 184 



seedlings) was performed in this work, while for germplasm genotypes the data were obtained by 185 

De Lorenzis et al. (2015). Genotyping was carried out on 200 ng of genomic DNA extracted from 186 

100 mg of freeze‐fresh young leaf tissue using NucleoSpin® Plant II (MACHEREY‐NAGEL, 187 

Germany), according to the manufacturer’s protocol. DNA concentration and quality were checked 188 

by electrophoresis on agarose gel and by spectroscopy using a NanoDrop Spectrophotometer 189 

(Thermo Fisher Scientific, Waltham, MA, USA) and Quant‐iT dsDNA HS assay kit for Qubit 3.0 190 

Fluorometer (Thermo Fisher Scientific). Genotyping analysis was performed by the laboratory of 191 

Fondazione Edmund Much (San Michele all’Adige, Trento, Italy). 192 

 193 

2.4 Data analysis 194 

SNP data produced in this work (84 Mgaloblishvili seedlings) were filtered for samples showing 195 

a call quality value (p50GC) lower than 0.54 and loci with a GenTrain (GT) score value lower than 196 

0.6 and a marker missing rate > 20% (De Lorenzis et al., 2015). The Mgaloblishvili self-pollinated 197 

population dataset and the SNP profiles of 48 varieties reported in De Lorenzis et al. (De Lorenzis 198 

et al., 2015) were merged and filtered for minor allele frequency (MAF) > 5%.  199 

MEGA 7.0 software (Kumar et al., 2016) was used to design a UPGMA (Unweighted Pair Group 200 

Method with Arithmetic Mean) phylogenetic tree, based on the Dice’s coefficient (Dice, 1945) 201 

distance matrix generated by PEAS 1.0 software (Xu et al., 2010). Principal Component Analysis 202 

(PCA) was carried out using adegenet package (Jombart, 2008) of R software (R Core Team), and 203 

the first two components values were plotted on a 2‐D scatterplot. Structure analysis was carried 204 

out using LEA package (Frichot and François, 2015) of R software by varying the number of 205 

ancestral genetic groups (K) from 1 to 10 in ten repetition runs for each K value. The most likely 206 

K value was detected based on LEA cross-validation method.  207 

The LD (linkage disequilibrium) estimation as Pearson’s squared correlation coefficient (r2) 208 

between each pair of molecular markers (Zhao et al., 2005) was evaluated using PLINK (Purcell 209 

et al., 2007) software. The pair-wise LD as r2 was calculated using the parameters --ld-window-r2 210 

0, --ld-window 99999, --ld-window-kb 10000. The distances between loci were categorized into 211 

intervals of a fixed length (100 kb) and, for each interval, average r2 was calculated. The LD decay 212 

was visualized by plotting the average r2 per each interval from 0 up to 10 Mb by R software. 213 

Association analysis was performed in R software using GAPIT package (Lipka et al., 2012). GLM 214 

(Generalized Linear Model), MLM (Mixed Linear Model), MLMM (Multiple Locus Mixed linear 215 



Model), FarmCPU (Fixed and random model Circulating Probability Unification) and SUPER 216 

(Settlement of MLM Under Progressively Exclusion Relationship) algorithms were tested. For 217 

fixed effect, Q-matrix (for K = 3), detected by LEA, was used as the covariate for association 218 

analysis accounting for population structure. The GWA algorithm performances were evaluated 219 

through quantile-quantile (QQ) plots. A conservative threshold for assessing SNP significance was 220 

calculated based on Bonferroni correction for a type I error rate of 0.05. The SNPs fitting a logistic 221 

regression, performed in PLINK software, were selected. 222 

 223 

2.5 Candidate gene mining 224 

Gene associated with SNP loci passing the Bonferroni-adjusted threshold were predicted based on 225 

the LD r2 threshold of 0.2 (Li et al., 2014), using the grapevine reference genome PN40024 226 

(12X.v2 version) (Canaguier et al., 2017). The SNP loci mapping to reference genome was 227 

conducted using CLC Genomic Workbench software (v. 20.0) in advance sequence finder toolbox 228 

including negative strand. Nearby genes in linkage regions of stable SNP-trait associations with 229 

putative functions supposedly related to the P. viticola resistant trait were selected as candidates. 230 

 231 

3 Results 232 

3.1 Phenotypic and genetic diversity of accession panel 233 

Phenotyping evaluations were performed for three years (2017-2019) and only genotypes scored 234 

with a I%I<25% in the three years of evaluation were classified as resistant. Evaluation trials have 235 

shown an overall high susceptibility to P. viticola infection, with some accessions showing a large 236 

distribution of the data (Supplementary Figure 1). Nine out of 132 genotypes were resistant: five 237 

Mgaloblishvili seedlings (ID 124, 122, LIB 56, 138, 109), Mgaloblishvili and three varieties (Jani 238 

Bakhvis, Zerdagi and Kamuri shavi) (Figure 2A; Supplementary Table 1). The samples showed a 239 

significant correlation among years (r>0.991; N=3; P<0.043). RLs of the nine resistant genotypes 240 

ranged from 70 to 84% (Supplementary Table 1). None of the resistant genotypes showed HR in 241 

leaf tissues. 242 

The SNP genotyping data of the Mgaloblishvili self-pollinated population were merged with the 243 

ones of 48 Georgian cultivars (De Lorenzis et al., 2015). The final dataset accounted for 132 244 

genotypes and 12,825 SNP loci (Supplementary Table 2). Clustering analysis discriminated the 245 

genotypes in two well distinct main groups (Figure 2B). In each main group, both breeding-derived 246 



genotypes and germplasm cultivars were included, though they were mainly clustered in well 247 

separated sub-groups. Resistant genotypes were distributed between the two main groups. The 248 

range of identity varied from 95% to 88%. PCA strongly differentiated Mgaloblishvili self-249 

pollinated and germplasm individuals into two distinct groups (Figure 2C). The first two principal 250 

components (PCs) captured 33% of total explained variance (PC1 = 29% and PC2 = 4%). The two 251 

groups were separated along the PC1. As expected, the germplasm individuals showed a variability 252 

higher than the breeding-derived accessions. According to the cross-validation plot, structure 253 

analysis identified three ancestral populations (K = 3), one for Mgaloblishvili seedlings (group 1) 254 

and two for germplasm individuals (groups 2 and 3) (Figure 2D). The three resistant cultivars were 255 

assigned one to group 2 (Zerdagi) and two to group 3 (Jani Bakhvis and Kamuri shavi). The 256 

percentage of admixed genotypes (with a membership probability < 80%) was 28%. All the 257 

admixed genotypes were detected among the cultivars (Supplementary Table 3). All the nine 258 

resistant genotypes showed a membership probability higher than 80%. LD decay was estimated 259 

for the entire dataset (Figure 2E). LD decreased with the increase in physical distance between 260 

marker loci. Average LD decay (r2 = 0.11) was observed after ~2Mb. The LD value dropped to 261 

0.2 after ~100kb. 262 

 263 

3.2 GWA analysis 264 

Different statistical models (GLM, MLM, MLMM, FarmCPU and SUPER) were tested for 265 

detecting associations for P. viticola resistance. Because structure analysis was able to capture the 266 

differences among the Georgian germplasm cultivars better than PCA, Q-matrix for K = 3 was 267 

used as covariate in the GWA analysis. The application of GLM, MLM and SUPER models 268 

allowed to account for stratification, although a relevant number of false positives was detected 269 

(Figure 3A, B, E). A significant SNP associated with P. viticola infection was identified in the 270 

three tested models: the SNP (chr14_21613512_C_T) located in the chromosome 14 at position 271 

21,613,512 with a p-value of 4.01e-07, 5.09e-07 and 3.68e-10, respectively for GLM, MLM and 272 

SUPER models. MLMM and FarmCPU models reduced false positive associations (Figure 3C, 273 

D). MLMM models detected one significant SNP associated with P. viticola infection, with a -274 

log10 p-value above the Bonferroni-adjusted threshold, and two SNPs below the Bonferroni-275 

adjusted threshold. The first SNP was the same detected by the GLM, MLM and SUPER models, 276 

with a p-value of 1.25e-08. The remaining two SNPs were li_T_C_chr16_21398409, located on 277 



chromosome 16 at position 21,398,409 and a p-value of 7.9e-06 and cn_C_T_chr3_16229046, 278 

located on chromosome 3 at position 16,229,046 and a p-value of 1.25e-05. FarmCPU model 279 

detected the same SNPs detected by MLMM model. chr14_21613512_C_T and 280 

cn_C_T_chr3_16229046 were above the Bonferroni-adjusted threshold, with p-values of 8.23e-281 

08 and 8.18e-04, respectively, while li_T_C_chr16_21398409 was slightly below the threshold, 282 

with a p-value of 6.25e-03. 283 

For an approximate estimation of allelic effect, a logistic regression was fitted for the three 284 

significant SNPs. As observed by odds ratio, highly significant association was confirmed for 285 

chr14_21613512_C_T locus, followed by li_T_C_chr16_21398409 and cn_C_T_chr3_16229046 286 

(Table 1). 287 

 288 

3.3 Candidate gene prediction  289 

The three SNP loci passing the Bonferroni-adjusted threshold were mapped to V. vinifera reference 290 

genome (PN40024 12X) to identify putative genes related to the P. viticola resistant trait. The LD 291 

value (r2) dropped to 0.2 after ~100kb, for this reason a window of 100kb upstream and 292 

downstream the most significant SNPs was chosen to search for candidate genes. Supplementary 293 

Table 4 reports the list of candidate genes in a window of 100kb upstream and downstream the 294 

three SNPs associated to P. viticola resistance trait. Supplementary Table 5 reports the SNP allele 295 

information associated to these three regions. 296 

The chr14_21613512_C_T locus mapped in the coding region of HEAT repeat-containing 5B 297 

protein (VIT_214s0006g03120) (Figure 4). The polymorphism (G → A) was non-synonymous 298 

giving rise to a change in the encoded amino acid, from aspartic acid (D) to asparagine (N). 299 

Upstream of this locus were annotated five genes: three of them encode for uncharacterized 300 

proteins (VIT_214s0006g03076, VIT_214s0006g03080 and VIT_214s0006g03100), and two for 301 

a probable cellulose synthase A catalytic subunit 8 [UDP-forming] (VIT_214s0006g03090) and 302 

an acyl-CoA-binding domain-containing protein 3-like (VIT_214s0006g03110). Downstream of 303 

this locus were annotated two genes, encoding for a probable carboxylesterase 17 and a plant 304 

cadmium resistance 4 protein (VIT_214s0006g03180 and VIT_214s0006g03190, respectively). 305 

cn_C_T_chr3_16229046 and li_T_C_chr16_21398409 loci were mapped in intragenic regions 306 

(Figure 5 and 6). The first locus was localized in a region including, upstream, an uncharacterized 307 

protein (VIT_203s0017g00420), a magnesium-dependent phosphatase 1 (VIT_203s0017g00410), 308 



an ubiquitin carboxyl-terminal hydrolase 21 (VIT_203s0017g00396), a MADS-box protein 309 

JOINTLESS-like (VIT_203s0017g00390), and a magnesium-dependent phosphatase 1-like 310 

(VIT_203s0017g00380), downstream, an uncharacterized protein (VIT_203s0017g00440), a 311 

MADS-box protein JOINTLESS-like (VIT_203s0017g00450) and an inositol transporter 1 312 

(VIT_203s0017g00460). The second locus mapped in the genomic region including, upstream, 313 

two rust resistance kinase Lr10-like genes (VIT_216s0148g00020, VIT_216s0148g00010) and 314 

two genes encoding for uncharacterized proteins (VIT_216s0050g02810, VIT_216s0050g02800), 315 

and downstream, two rust resistance kinase Lr10-like genes (VIT_216s0148g00030 and 316 

VIT_216s0148g00040).  317 

 318 

4 Discussion 319 

Downy mildew is one of the most important diseases affecting grapevines worldwide. So far, the 320 

sources of resistance were searched for in non-vinifera species, such as V. labrusca, V. aestivalis, 321 

V. riparia, V. rotundifolia and V. amurensis. The identification of resistant cultivars in the V. 322 

vinifera Georgian germplasm gave us the possibility to explore this promising material. In this 323 

work, a first insight was provided into quantitative resistance loci affecting downy mildew resistant 324 

traits in V. vinifera using an association mapping approach.  325 

 326 

4.1 Grapevine resistant cultivars belong to different Georgian regions 327 

Experimental inoculations on 132 grapevine individuals belonging to the Mgaloblishvili seedling 328 

population and Georgian germplasm confirmed the high susceptibility of V. vinifera to P. viticola 329 

infection. Almost all breeding-derived and germplasm accessions were severely affected by the 330 

pathogen, developing medium to high I%I. Several accessions showed a large variability in the 331 

I%I distribution: this variability is frequently occurring in field assessment and in bioassays 332 

(Cadle-Davidson, 2008; Calonnec et al., 2013; Toffolatti et al., 2016a) and could be related to 333 

several factors among which are the physiological state of the plant and the virulence of the 334 

pathogen. It is due to this variability that the experimental inoculations have been carried out in 335 

different years with mixed inocula: to identify those accessions that consistently showed a resistant 336 

behavior. A limited number of accessions (five breeding-derived and four germplasm accessions) 337 

clearly showed a reduced disease severity, which ranged from 5 to 25%. None of the accessions 338 

showed any necrotic spots, which are associated with HR, confirming that the defense mechanism 339 



different from the one observed for North American and Asian Vitis species (Toffolatti et al., 340 

2018a; Dry et al., 2019). The resistant cultivars showed different genetic origins. They were 341 

grouped in two different clusters and ancestral groups, characterized by cultivars having the same 342 

geographical provenance (Imazio et al., 2013; De Lorenzis et al., 2015). Zerdagi, a variety 343 

originated from Samegrelo province in the Western Georgia, was grouped with cultivars coming 344 

from Southern regions and Jani Bakhvis and Kamuri shavi with cultivars coming from the Western 345 

and Eastern regions.  346 

 347 

4.2 Multi-locus GWA models are the best for studying complex traits 348 

The GWA approach was applied by genotyping 132 grapevine individuals with the 18k SNP 349 

genotyping array. A recent study has demonstrated the power of this array in detecting both known 350 

(such as berry color) and novel (such as acidity) loci related to phenotypic traits via GWA (Laucou 351 

et al., 2018). GWAS requires a genomic map with a marker density higher than the LD extent 352 

(Brachi et al., 2011). In our dataset, the average LD declined with the increase of the physical 353 

distance between markers, as already estimated in grapevine (Myles et al., 2010; Laucou et al., 354 

2018) (Figure 2E). The high LD levels observed in grapevine and the average inter-SNP spacing 355 

(about one SNP every ~47 kbp, (Laucou et al., 2018), appear to be enough to tag associated loci. 356 

Regarding the accuracy, the effectiveness of the GWA approach is strongly influenced by 357 

population stratification. Breeding-derived and germplasm accessions clearly showed genetic 358 

differentiation (Figure 2B-D). Since structure analysis was better able than PCA to capture the 359 

level of stratification, structure results were used as covariates for association analysis. Accounting 360 

for the complexity of phenotypic dataset and known population stratification, different algorithms, 361 

both single- (GLM, MLM and SUPER) and multi-locus (MLMM and FarmCPU) for modeling 362 

marker-trait associations were tested. It is widely accepted that multi-locus GWAS models are 363 

superior to single-locus GWAS methods to identify association (Cui et al., 2018). In our study, 364 

multi-locus GWAS models detected the highest number of significant SNPs: FarmCPU = two 365 

(plus one just above the Bonferroni-adjusted threshold; MLMM = one (plus two Bonferroni-366 

adjusted threshold); GLM, MLM and SUPER = one (Figure 3). Furthermore, our results confirm 367 

the usefulness of the Vitis SNP genotyping array in detecting loci associated with phenotypical 368 

traits (Laucou et al., 2018). 369 

 370 



4.3 Three novel SNP-trait associations to P. viticola resistance were identified 371 

To date, up to 28 QTL conferring resistance to downy mildew have been identified within wild 372 

Vitis species (Dry et al., 2019; www.vivc.de), but only two, Rpv1 and Rpv3 were characterized 373 

(Feechan et al., 2013; Eisenmann et al., 2019), mapping on chromosomes 12 and 18, respectively. 374 

Rpv1 is a NB-LRR (nucleotide-binding site leucine-rich repeat) receptor, while Rpv3 is associated 375 

with the biosynthesis of stilbenes. In our study, clear signals were identified on chromosomes 14, 376 

3 and 16. The signal on chromosome 14, related to chr14_21613512_C_T locus, was recorded in 377 

all the five tested models, while the other two, related to cn_C_T_chr3_16229046 and 378 

li_T_C_chr16_21398409, were recorded only in MLMM and FarmCPU models, with some 379 

differences in the p-value. Among the 27 QTL already identified, three (Rpv8, 12 and 19) map on 380 

chromosome 14, while no QTL were found to map on chromosomes 3 and 16.  Rpv8 and Rpv12 381 

both mapped on the upper arm of chromosome 14 (Blasi et al., 2011; Venuti et al., 2013), while 382 

Rpv19 mapped on the lower arm, at around position 24 Mb (Divilov et al., 2018). Because the 383 

SNPs identified in this work do not physically co-locate to the QTL already identified, it is possible 384 

to conclude that the three loci are novel associations. We designated the locus on chromosome 14 385 

(for chr14_21613512_C_T) Rpv29, the locus on chromosome 3 (cn_C_T_chr3_16229046) Rpv30 386 

and the locus on chromosome 16 (li_T_C_chr16_21398409) Rpv31. 387 

The logistic regression values (Table 1) indicated that the Rpv29 locus is the one having a major 388 

effect on the phenotype. Furthermore, the other two loci, Rpv30 and Rpv31, showed a statistically 389 

significant p-value as well, although the allelic effect estimation is lower. Nevertheless, since the 390 

resistance mechanism of accessions analyzed in this work did not show HR, it suggests that more 391 

than one locus are necessary to acquire the resistance. 392 

 393 

4.4 Rpv29, Rpv30 and Rpv31 are markers associated with genes related to P. viticola 394 

resistance in V. vinifera 395 

NB-LRR genes appeared to be associated with Rpv12 locus in the upper arm of chromosome 14 396 

(Venuti et al., 2013). The SNP located on chromosome 14 (Rpv29) mapped in the coding region 397 

of HEAT repeat-containing 5B protein and the polymorphism leads to a non-synonymous amino 398 

acid substitution from aspartic acid to asparagine. Further studies are needed to better understand 399 

the effect at the protein level. HEAT motifs are tandemly repeated sequences of about 50 amino 400 

acid residues identified in a wide variety of eukaryotic proteins (Andrade et al., 2001). It was 401 



demonstrated that repeat proteins possess an intrinsic ability to bind peptides, acting as an integral 402 

component of protein complexes (Sharma and Pandey, 2016). HEAT repeat proteins, such as ILA, 403 

are required for plant immunity. In Arabidopsis thaliana, ILA is required for both non-host and 404 

basal resistance against Pseudomonas syringae, for resistance mediated by NB-LRR proteins and 405 

for systemic acquired resistance (SAR) (Monaghan and Li, 2010). NB-LRR proteins act as specific 406 

receptors of pathogen effectors, activating defense mechanisms leading to effector-triggered 407 

immunity (ETI) (Jones and Dangl, 2006). It is therefore tempting to speculate that the 408 

chr14_21613512_C_T locus could be involved in both primary plant-pathogen interactions 409 

leading to both ETI and SAR.  Nevertheless, further investigations are needed to confirm this 410 

result.  411 

In a region spanning ~100kb upstream and downstream the Rpv29 locus, four genes, encoding for 412 

a probable cellulose synthase A catalytic subunit 8 [UDP-forming], an acyl-CoA-binding domain-413 

containing protein 3-like, a probable carboxylesterase 17 and a plant cadmium resistance 4 protein, 414 

as well as three genes encoding for uncharacterized proteins, were mapped. All the candidate 415 

genes, except plant cadmium resistance 4 protein, appeared to be related to plant defense 416 

mechanism, based on the literature.  417 

Cellulose synthases are involved in the secondary cell wall formation (Taylor et al., 2000). 418 

Structural modification, such as cell wall thickening, is one of the mechanisms adopted by plants 419 

to contrast the pathogen infection (Schulze-Lefert, 2004). A number of evidences proving the 420 

connection between cell wall structure and stress signaling, leading to enhanced production of 421 

hormones (such as jasmonate and ethylene) and to enhanced resistance to a broad range of 422 

pathogens were described (Ellis and Turner, 2001).  Similarly to other organisms, Mgaloblishvili 423 

showed an up-regulation of genes, such as cellulose synthase-like protein G3 gene, that are 424 

involved in the transition from primary to secondary wall synthesis (Taylor et al., 1999).  425 

Acyl-CoA binding proteins are thought to facilitate the transport of fatty acids/lipids among the 426 

cells (Kragelund et al., 1993). They are required for PAMP resistance to fungal pathogens, as 427 

described for A. thaliana against Botrytis cinerea and Colletotrichum higginsianum (Xia et al., 428 

2012). 429 

Carboxylesterases (CXEs) are a large family of enzymes, belonging to the α/β hydrolase fold 430 

superfamily, that hydrolyze ester, amide, and carbamate bonds (Putterill et al., 2003). They are 431 

involved in plant defense responses. Nicotiana tabacum, A. thaliana and Capsicum annuum 432 



showed some CXEs involved in the plant-pathogen interaction, some of them related to 433 

hypersensitive response (Pontier et al., 1994; Kim et al., 2001; Putterill et al., 2003). In Vitis 434 

flexuosa, some CXEs were upregulated in response to Botrytis cinerea, Elsinoe ampelina and 435 

Rhizobium vitis infection, indicating a putative role in defense mechanism during pathogen 436 

infection (Islam and Yun, 2016).  437 

The cn_C_T_chr3_16229046 locus on chromosome 3 (Rpv30) was annotated close to predicted 438 

genes, such as MADS-box protein JOINTLESS-like, ubiquitin carboxyl-terminal hydrolase 21, 439 

magnesium-dependent phosphatase 1 and 1-like (MDP-1 and MDP-1-like) and inositol transporter 440 

1 (INT1), and two genes encoding for uncharacterized proteins. All the candidate genes, except 441 

INT1, appeared to be related to plant defense mechanism, based on the literature.  442 

MADS-domain transcription factors are proteins involved in multiple developmental pathways in 443 

plants, animals, and fungi (Castelán-Muñoz et al., 2019). JOINTLESS is a MADS-domain 444 

transcription factor, that together with MACROCALYX, induces the expression of AP2/ERF 445 

(ethylene response factor) 52 transcription factor in tomato during pre-abscission and abscission 446 

stages of pedicel (Nakano et al., 2014). Transcriptional data revealed that Mgaloblishvili defense 447 

mechanism is mediated mainly by ethylene (Toffolatti et al., 2018a). This MADS-domain 448 

transcription factor can be related to P. viticola resistance mechanism in V. vinifera. 449 

Ubiquitin-protein hydrolases are involved in the processing of ubiquitinated proteins. 450 

Ubiquitination in plant cells modulates signaling mediated by PAMP receptors and leads to the 451 

accumulation of NB-LRR receptors (Furlan et al., 2012). In Mgaloblishvili, the ubiquitination 452 

process appeared to be activated, upregulating genes encoding for RING H2-type E3 ligases 453 

(Toffolatti et al., 2018a), activated in response to biotic and abiotic stresses and involved in 454 

ubiquitination (Mazzucotelli et al., 2006).  455 

Protein phosphorylation, by a combined action of protein kinases and phosphatases, is a rapid post‐456 

translational control mechanism in the response to environmental stimuli, such pathogen elicitors, 457 

playing a major role in signal transduction pathways (Friso and van Wijk, 2015). Some DNA-458 

binding proteins, with phosphatase activity, are able to bind defense-related genes and take part in 459 

their transcriptional regulation (i.e. DBP1 controlling transcription of the defense-related CEVI1 460 

gene in A. thaliana during plant–virus interactions) (Carrasco et al., 2003). MDP-1 and MDP-1-461 

like genes can be involved in the transcriptional regulation of some defense-related genes in the V. 462 

vinifera-P. viticola interactions. 463 



The locus named li_T_C_chr16_21398409 (Rpv31) was annotated in linkage group including 464 

several rust resistance kinase Lr10-like genes. As already described above, Mgaloblishvili could 465 

recognize P. viticola through specific NB‐LRR receptors, such as several Lr10 genes. It was 466 

demonstrated the Lr10 confers enhanced resistance to Puccinia triticina in Triticum aestivum 467 

(Feuillet et al., 2003). Frequently, NB‐LRR genes occur in clusters. In Vitis, the Rpv12 locus 468 

accounts for 13 NB-LRR genes in a region of about 600 kb and it is part of a cluster of 46 NB-469 

LRRs in the upper arm of chromosome 14 (Venuti et al., 2013). In our study, three Lr10-like genes 470 

(LOC100251517, LOC100256646, LOC100242248), spanning a region of about 47 kb on 471 

chromosome 16, appeared to be associated with the P. viticola resistance trait. Also, these three 472 

Lr10-like genes are part of a wider region, including a higher number of NB-LRR genes. In 473 

Toffolatti et al. (Toffolatti et al., 2018a), seven Lr10-like genes were differentially expressed (with 474 

a log2 fold-change value higher than 2) in Mgaloblishvili after P. viticola inoculation. Among 475 

them, four are located on chromosome 16, spanning a region of about 6 Mb. GWA results 476 

corroborate the involvement of these receptors in triggering the plant response. Indeed, during the 477 

infection process P. viticola has shown the expression of numerous different cytoplasmic and 478 

apoplastic effectors (Toffolatti et al., 2020) and their interaction with the NB-LRR receptors of the 479 

plant should be further investigated. Since no hypersensitive response (HR) was observed in the 480 

Georgian resistant accessions, due to absence of co-evolution with the pathogen, the involvement 481 

of the effector receptor Lr10 could be associated with an effector-triggered immunity not 482 

associated with HR. Indeed, HR is not always occurring in ETI (Jones and Dangl, 2006). 483 

 484 

5 Conclusions 485 

In this study, for the first time in V. vinifera, GWAS was used to identify loci associated with the 486 

resistance to P. viticola attack. The analysis provided evidence of three novel resistant loci (Rpv29, 487 

Rpv30 and Rpv31) in a panel of Georgian accessions, that they could be utilized for further genetic 488 

and breeding studies to select genotypes showing resistance to P. viticola infection. The three loci 489 

were found to co-locate with in genomic regions enriched genes associated with plant defense 490 

mechanism against biotic stress, suggesting both PAMP-triggered immunity and ETI-HR free 491 

response. Nevertheless, this suggested have to be validated, by functionally characterize the 492 

candidate genes. Functional genomics approaches, such as CRISPR-based (Clustered Regularly 493 

Interspaced Short Palindromic Repeats) or RNA interference technologies, can help to functionally 494 



validate the candidate genes and, thus, to investigate which gene(s) is essential for resistance to P. 495 

viticola infection.  496 

The great advantage provided by sources of resistance in V. vinifera germplasm compared to the 497 

non-vinifera one, lies in the possibility to obtain crosses with cultivated varieties showing a good 498 

resistance level against a specific pathogen and, at the same time, able to provide a product free 499 

from the unpleasant characteristics usually imparted by the American vines, first of all the foxy 500 

flavor of the grapes. The discovery of resistant sources in the V. vinifera background is crucial to 501 

exploit favorable alleles already present in a germplasm, coupling at the same time good resistance 502 

to pathogen and good agronomic traits. Indeed, Caucasian accessions show very attractive 503 

characteristics for high-quality production also in the perspective of the climate change, such as 504 

late ripening, medium-size berries, avoidance of excessive sugar accumulation, smooth tannin and 505 

ability to maintain good level of acidity. 506 
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indicated with red arrows/violet bar, genes are indicated with blue arrows. 818 



 819 

Figure 6. Annotation on grapevine reference genome PN40024 of li_T_C_chr16_21398409 locus 820 

(Rpv31), on chromosome 16, associated with P. viticola resistant trait in V. vinifera. Locus is 821 
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