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Abstract

Research suggests that doctors are failing to make 
use of technologies designed to optimize their deci-
sion-making skills in daily clinical activities, despite 
a proliferation of electronic tools with the potential for 
decreasing risks of medical and diagnostic errors. This 
paper addresses this issue by exploring the cognitive 
basis of medical decision making and its psychosocial 
context in relation to technology. We then discuss how 
cognitive-led technologies – in particular, decision 
support systems and artificial neural networks – may 
be applied in clinical contexts to improve medical 
decision making without becoming a substitute for 
the doctor’s judgment. We identify critical issues and 
make suggestions regarding future developments.
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1. Introduction

Despite technological advances in health manage-
ment systems, diagnostic errors and adverse events 
remain an urgent concern in medicine (Verghese 
et al. 2015; Ferrah et al. 2017; Shojania and 
Dixon-Woods 2017). Research suggests that tech-
nologies designed to support and improve decision 
making are not being adopted, even though such 
tools may assist with step-by-step routines and 

procedures for making decisions, approaching 
clinical cases or performing a given therapeutic 
intervention (Ely and Graber 2015). In this paper, 
we present a synthetic overview of the problem 
by presenting a combined cognitive-science and 
artificial-intelligence approach, thus showing how 
cognitive-led smart decision support technologies 
may be useful in clinical practice.

The following section describes a cognitive 
approach to medical decision making. Then, in 
Section 3, we discuss examples that show how arti-
ficial intelligence (AI) technology – in particular, 
decision support systems and artificial neural net-
works – can assist with medical decision making, 
leading to improved outcome. The implications 
and possible applications of these technologies 
are discussed more broadly in relation to cognitive 
processes in Section 4. In Section 5 we outline 
some final considerations with regard to the frame 
of actual medical praxis.

2.  The role of cognitive science in studying 
doctors’ medical decision making

A patient is an information carrier who enters 
medical organization routines in search of a diag-
nosis and/or appropriate treatment. The extraction 
of this clinical information entails information 
framing, a process that allows the integration of 
data from several environmental (the patient and 
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the organization) and internal (memory) sources 
within a single cognitive structure, a so-called 
mental model (Reason 1990).

This first mental model establishes what a 
doctor may or may not think about a specific 
patient, since it is the sole cognitive basis on which 
doctors are able to generate a clinical hypothe-
sis. However, although it may seem that similar 
processes would follow a formally defined logical 
path, this is not always the case: numerous indi-
vidual, interpersonal and organizational factors 
– e.g., working conditions, interruptions, time, 
availability of beds, diagnostic tools and general 
resources – can significantly affect the linearity 
of the process, and in some unfortunate cases the 
process can become a trap (Norman et al. 2017). 
Although biases may act at all decision-making 
stages, this initial information synthesis stage, 
when a physician needs to pool entry data, is in 
particular fraught with the risk of cognitive failures 
(Wilson et al. 1999; Klein 2005).

Further, the processes make physicians particu-
larly inept at simultaneously evaluating different 
causes and factors, leading them to choose only 
one possible sense-making course and to simplify 
the clinical situation by filtering out ‘unnecessary’ 
information, instead of integrating information 
into a complex model. The result, though, is 
actually oversimplification, and taking into con-
sideration only one possible pathway increases 
vulnerability to cognitive biases (Croskerry et al. 
2013).

Physicians often fail to realize the impact of 
implicit cognitive mechanisms (e.g., heuristics and 
biases) in their decisions. When asked, physicians 
often assert that they always use logic, analytical 
reasoning and pre-existing guidelines in their 
medical decision making. The reality, though is 
that decision makers usually fail to recognize the 
factors that determine their choices. Instead, they 
often find post hoc explanations based on rational 
considerations about past events; finding a justifi-
cation for a choice is easier and more convenient 
than analyzing why it was made. Naturally, this is 
another source of decision bias (Kahneman and 
Tversky 1973; Fischhoff 1975) and a potential 
hazard in medical decision making (Bornstein and 
Emler 2001).

We argue that to optimize the diagnostic process 
and to prevent errors, doctors should exploit the 

potential of computer science technology and 
AI, so as to better balance intuitive and analytical 
processes (Lucchiari and Pravettoni 2012; Marcum 
2012) and thus avoiding falling into dangerous 
cognitive traps while using their knowledge and 
skills. Indeed, we argue that mind-friendly and 
human-centered decision-making support tools 
(Memon et al. 2014) are today equally important 
as technical and logical competencies in ensuring a 
rational diagnostic process. However, although use 
of technology is often evoked as a way to prevent 
medical errors, its impact is often limited by phy-
sicians’ difficulties in integrating it within clinical 
praxis. We thus believe that a fundamental step in 
the improvement of the diagnostic process consists 
of developing specific skills in using the methods 
provided by smart technologies, which requires 
not only technical investment but also cognitive 
and educational efforts.

3. The role of artificial intelligence

The systematic use of procedures and guidelines 
does not always guarantee the best intervention to 
be performed. This is not just the case when epide-
miological data are inadequate, but because such 
an approach does not conform with the reality of 
how the human mind actually functions – decision 
making in fact often relies on inner guidelines, or 
so-called ‘mindlines’ (Gabbay and le May 2008). 
These procedures make experts fast and efficient 
in making critical decisions but increase the prob-
ability of committing errors in some decisional 
contexts. Thus, the problem of ‘immunizing’ 
medical decisions from errors cannot be addressed 
simply by education and training (Sherbino et al. 
2014); various studies have suggested different 
approaches, but the use of cognitive-led technology 
to support medical decisions currently appears to 
be the most promising.

As noted in the previous section, physicians 
frequently need to simplify complex problems by 
automatic mental processes. In so doing, though, 
a diagnosis may be affected by cognitive biases 
(Holyoak 2012), even though decision-makers 
are rarely aware of this burden on their decisions 
(Figure 1). Further, physicians today work in the 
context of ‘big data’ (Lohr 2012): there is a great 
deal of data handling, not just to organize and 
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categorize complex information but, foremost, 
to retrieve elements useful for medical diagnosis 
and prognosis. This context means that real-time 
adaptive systems such as decision support systems 
(DSSs) and artificial neural networks (ANNs – 
Baxt 1992), the latter involving machine learning 
algorithms (Kononenko 2001), are now crucial 
for making it possible for physicians to provide 
effective early interventions (Bertoni et al. 2005), 
to identify at-risk patients and to make diagnostic 
decisions (Lucchiari et al. 2014), as well as for 
optimizing the organization of healthcare systems 
(Berwick et al. 2008). These systems allow doctors 
to adapt to specific cases and needs, while taking 
account of psychological and cognitive factors.

As an example, one recent study (Olczak et al. 
2017) compared the diagnostic accuracy of an 
AI system and human experts in an orthopedic 
setting when interpreting skeletal radiographs. 
Wrist, hand and ankle radiographs were selected 
and submitted to the ANN, as well as to two senior 
orthopedic surgeons. The results showed that the 
final accuracy for fractures was estimated at 83% 
by the best-performing ANN, similar to the rate of 
human diagnosis. Since training an ANN is much 

easier, faster and cheaper than training doctors, 
and given the potentiality of the tool to improve its 
performance with time and experience (e.g. learn-
ing by processing new datasets), the study strongly 
suggests that in the near future similar ANNs could 
improve the accuracy of the diagnostic process. 
Furthermore, once developed and trained in one 
clinical context an ANN can be simply adapted 
to other hospitals, spreading the related clinical 
advantage even in contexts where expert doctors 
are not easily available (e.g., small hospitals).

Cognitive-led smart technologies may be used 
both to prevent errors and to optimize medical 
decision making. In what follows, we describe 
decision support systems and artificial neural 
networks in more detail.

3.1. Decision support systems

A DSS is a knowledge resource that, when fed with 
patients’ data, can generate case-specific advice. 
In particular, the tool may elucidate the decision 
context, highlighting possible outcomes and con-
sequences and thus promoting critical thinking 
about the decision to take.

Figure 1. Diagnostic schema
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Currently, there are many kinds of DSS available, 
including the following:

– computerized reminder systems, for increased 
effectiveness in preventive care settings;

– computerized information tools, for detailed 
information about pathogenesis, typical symp-
toms, treatment options and prognoses;

– care pathways for patients;
– computerized patient interviewing, consisting 

of a checklist for the patient to complete, after 
which the data are presented to the doctor in 
summary form;

– telemedicine systems;
– summary sheet with the results of special 

investigations and advice on the interpretation 
of results; and

– distance learning materials, used away from 
patients (e.g., in a course, or self-study).

Furthermore, decision support tools may be cate-
gorized based on their role in the decision process. 
Thus, DSSs may generate:

– inferences about diagnoses, prognoses or 
treatment effects;

– summaries of complex low-level data, e.g., 
through an intuitive display;

– a filter of cases similar to that of the individual 
patient at hand;

– alerts for rare events, e.g., high-risk cases; and
– audit compliance and reports about consist-

ency in the use of clinical discretion within a 
clinical guideline.

Applying cognitive science to DSS implemen-
tation may help the diagnosis process in several 
ways. In particular, it may assist in providing a 
mind-friendly structuring of problem representa-
tion, e.g. of a clinical scenario.

An example of a DSS to improve patient care 
comes from an Italian project developed for an 
internal medicine department at a multi-site hos-
pital system that comprised different health units. 
The protocol was aimed at evaluating the quality 
of care and the effectiveness of patient-specific 
reminders generated by the Medilogy Decision 
Support System (MediDSS), which was formed 
using international evidence-based guidelines 
and approved by an international panel of experts 

(Medilogy Srl., Medilogy Decision Support 
System). The MediDSS includes a drug–drug 
interaction database containing evidence-based 
information about the harms and benefits of more 
than 18,000 drug interactions (Böttiger et al. 2009), 
and it may be used to integrate structured patient 
data from the electronic health records (EHR) to 
generate patient-specific reminders, therapeutic 
suggestions and diagnosis-specific links to full-text 
guidelines. It is conceived in a way that, when the 
clinician opens a patient’s record, the reminders 
pop up on the monitors.

It is important to note that the application of 
medical decision systems should always consider 
the specific aims at each stage.

3.1.1. Barriers to adoption
Although many studies have highlighted the 
importance of clinical DSSs in improving phy-
sicians’ decision making, such systems are not 
employed regularly. This may be due to several 
factors. First, health personnel often find it diffi-
cult to understand how to use a DSS efficiently in 
their working routine (it could be too slow or too 
complicated) or even why they should. Second, 
the DSS may not produce a timely and effective 
output able to influence physicians’ decisions. 
Sometimes, the output may be in a format that is 
not easy to understand or that is difficult to apply 
in a given situation. As such, the result may not 
be straightforward enough to encourage users to 
change a decision or to suggest new actions. Finally, 
health personnel may consider their performance 
already optimal.

A previous study (Lucchiari et al. 2015) showed 
that DSSs are often not considered particularly 
relevant as expert doctors are supposed to make 
a decision on their own. This confirms a classical 
misunderstanding of the role of decision support 
technologies, which is that they are intended be a 
substitute for doctors’ responsibility rather than to 
extend their decision-making skills.

We suggest that to overcome such barriers to 
the widespread use of DSSs, technical aspects, 
cognitive issues and psychosocial factors should 
be considered together within a single decision 
support model. Currently, some developers appear 
to design technologically advanced systems with 
little relevance to the real world, while others create 
DSSs without first determining whether a clinical 
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need exists (Randolph et al. 1999). It is instead first 
necessary to identify the most effective method to 
improve the actual praxis, this being the critical 
variable for deploying a cognitive-led technology.

3.2.  Neural networks to support clinical 
decisions

An artificial neural network (ANN) is a mathe-
matical tool able to simulate human information 
processes through calculations. There are many 
types of problems that ANNs can deal with, e.g., 
prediction, network fitting, classification and 
pattern recognition, clustering and dynamic time 
series (Demuth and Beale 1993). Each ANN is 
made up of several nodes (or neurons) divided 
into layers and connected to each other. A specific 
mathematical function provides the strength of 
these connections, and their values vary across 
time depending on training (see Figure 2). The 
output is the result of these connections, which 
point to a final node that will contain the network 
outcome. Through proper training, an ANN learns 
how to connect several variables to produce the 
desired outcome; e.g., an assessment of whether 
a person with a set of symptoms has a particular 
clinical condition.

A typical ANN is a multiple-layer network with 
a single input layer but multiple hidden and output 
layers. At first, it is necessary to train the network 
in which input should match a particular output 
(Hagan et al. 1996). During this training phase, 
the information goes through some hidden layers 
that have random initial weights, which helps 
the network to learn the input/output associa-
tion. Using feed-forward and back-propagation 
algorithms, the weights of the hidden layers are 
re-calculated to support the network output in 
reducing the gap to the desired target values. In 
this way, given that an ANN model fits specific 
needs, it is possible to obtain a trained neural 
network able to provide the desired outcome with 
an estimated error.

Many types of neural networks may be differen-
tiated, based on some fundamental characteristics 
that include application, learning method, learning 
algorithms and the architecture of the connections. 
One fundamental classification here is based on 
the type of learning, either supervised (when there 
is a gold-standard database to train the network 

to obtain a specific output to an input dataset) 
or unsupervised. We then may distinguish three 
basic categories:

1. Associative memories: ANNs can learn asso-
ciations between patterns (complex sets of 
data as the pixels of a computer image) so that 
the presentation of pattern ‘A’ gives as output 
pattern ‘B’, even if the former is inaccurate or 
partial (resistance to noise). It is then pos-
sible to use an associative memory to give a 
full pattern as output in response to a partial 
pattern in the input.

2. Simulators of mathematical functions: ANNs 
can understand the function that links output 
with input, based on the examples provided 
during the learning phase. After this phase, the 
network can provide an output in response to 
an input which was not used during the train-
ing. It follows that the network can interpolate 
and extrapolate rules from a training dataset.

  Such capability is easily verifiable by training 
a network with a sequence of input/output data 
coming from a known function, and it is par-
ticularly useful for the treatment and predic-
tion of phenomena with unclear mathematical 
relationships between input and output. In any 
case, the network works like a ‘black box’, since 
the function implemented is not intelligible. 
Error back-propagation networks, which are 
currently the most used training algorithm 
for effectiveness and flexibility, are part of this 
class.

3. Classifiers: ANNs classify data into specific 
categories based on similarity. In this last type, 
the network makes use of unsupervised learn-
ing, or self-organizing learning, in which the 
input data are not distributed on a default set of 
categories. The learning algorithm of a neural 
network depends on the type of application, as 
well as on the architecture of the connections. 
The classical architecture of a classifier is based 
on Kohnen self-organizing maps, which refer 
to unsupervised neural networks that repre-
sent their distribution as a map, where similar 
samples are mapped closely together.

Neural networks are built to work in parallel and 
can process large amounts of data simultaneously. 
They are sophisticated statistical systems with 
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good noise immunity: if system units present a 
malfunction, although the network as a whole 
would experience a degradation of performance 
it is unlikely to face a system crash. Consequently, 
ANNs are particularly robust. However, a model 
produced by a neural network, although very 
efficient, is not explainable in human symbolic 
language. Outcomes must be accepted as if they 
were coming from a black box. In other words, 
and differently from an algorithmic system, you 
cannot follow step-by-step the path from the input 
to the output, since the system achieves the result 
without showing the process. This fact may limit 
the use of ANNs in some cases.

Furthermore, as with any modeling algorithm, 
the neural networks are efficient only if the pre-
dictor variables are chosen with care. They cannot 
effectively treat categorical variables (for example, 
the patient’s residence address) with many differ-
ent values. The training phase sets the weights of 
individual neurons, and this may take some time 
if the number of records and variables analyzed 
is particularly large. There are no theorems or 
models to determine the optimal network, and the 
success of a network then depends greatly on the 
experience of the designer.

Developing a prediction system by neural net-
works requires following a series of operations that 

affect the result and the overall effectiveness of the 
forecast. The main steps are as follows:

– designating the objective to forecast;
– collecting data and creating a learning database 

to train the neural network;
– defining the architecture and parameters 

necessary for the definition of the neurons 
connection weights; and

– generalization of the output.

The dataset preparation is a particularly important 
phase of a neural network implementation. The 
first consideration here is data selection: this is 
intuitively decisive, as the learning of any biological 
or artificial system depends on the available infor-
mation. The reason the network needs a training 
phase is to better approximate a function, and to 
produce accurate forecasting. This process implies 
comparing the response provided by the network 
to a given input (independent variable) with the 
already known value of a dependent variable 
(output). By changing the weights of connections, it 
is possible to minimize the difference between the 
desired output (the value of the function for spe-
cific input values) and the actual output (the output 
value of the neural network for the same input 
values). In this phase, a continuous calibration of 

Figure 2. A back-propagation artificial neural network
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the database is necessary to eliminate data that do 
not modify the network functioning.

This procedure should follow a series of steps:

1. a broad definition of the first database;
2. implementation of first learning network;
3. evaluation of the information content of the 

individual variables;
4. analysis of the correlation matrix between the 

input variables;
5. elimination of less significant and more 

self-interrelated variables; and
6. operation of subsequent learning network with 

a reduced and optimized database.

In this way, it is possible to identify the optimal 
training dataset according to an iterative scheme 
that should maximize the learning ability of the 
network and minimize the information (input) 
needed to feed the network. Once the dataset is 
ready, a part of it is used to train the network (the 
training set), while the remaining part is required 
to test the predictive capabilities of the network 
(testing set).

Neural networks are particularly suitable when 
the relationship between input and output is very 
complicated in terms of the number of variables, 
and when the relationship is non-linear. ANNs 
perform an iterative and empirical exploration 
of data, to identify ‘soft rules’ that adequately 
describe the data interdependence; therefore, 
they are particularly powerful when we have many 
variables without a good explanatory hypothesis 
to organize them, and this is the primary use 
of neural networks in the medical field. Each 
stage that traditionally characterizes the medical 
decision-making process may benefit from the 
use of ANNs. In particular, the approach allows 
fast computing of the success probability of each 
alternative, and then an assessment of the related 
utility value. Furthermore, it can be used to test 
decision validity (Lisboa and Taktak 2006).

The power of these tools for predicting out-
comes and supporting clinical decisions is widely 
recognized today, and the use of ANNs within 
medical settings is increasing rapidly – a recent 
PubMed search reveals that since 2000 more than 
150 scientific papers have been dedicated to this 
issue. The specific contribution that an ANN may 
provide is due to its ability to integrate a large 

number of parameters to predict a clinical outcome 
without the kinds of cognitive constraints that lead 
doctors to prune the data. Whereas doctors use 
heuristics that simplify a situation based on their 
individual experience, ANNs prune variables based 
only on mathematic computing. Furthermore, 
ANNs can predict outcomes in a fast and reliable 
way, being able to learn with training. With ANNs, 
the choice of the best parameters to consider in 
a given context is explicit, evidence-based and 
standardized, since it is not the consequence of 
individual mindlines. Furthermore, since an ANN 
learns once a new item is entered into the system, 
tool validity may improve with time and adapt to 
new inputs. As such, these tools also allow the con-
struction of a shared cognition that may support 
all medical decisions in the same context.

3.2.1.  A network for surgical site infection (SSI) 
prediction

We propose here an example we have developed 
for prediction in a surgical setting. In particular, 
we projected an ANN aimed at estimating the 
probability of the occurrence of a surgical site 
infection (SSI) within one year after hip or knee 
prosthetic implant surgery. In this context, there 
is sufficient data about patients, the hospital stay 
and intervention characteristics that may serve as 
input for the ANN.

The literature emphasizes how risk factors are 
difficult to identify and how patients’ charac-
teristics should be used with caution to predict 
SSI, since they vary from patient to patient. It is 
not clear which combination of signs, symptoms 
and other parameters gives rise to a good or bad 
post-surgery pathway. The AI implemented for this 
pilot study is a feed-forward network, which uses 
a gradient descent-learning algorithm with super-
vised learning and back-propagation training. The 
initial database was a 58 × 690 table, containing 58 
variables for each of the 690 patients of the sample 
considered. In the first phase, 552 subjects (80% of 
the whole sample) were used to train the network. 
The remaining 138 patients were used to feed the 
network in the testing phase. The sensitivity of 
the network was 76.9% (CI 53.9%; 99.8%), with a 
100% of specificity (CI 99.9%; 100%); the positive 
predictive value of the network was 100%, and 
the negative predictive value was 98.1%; finally, 
the positive likelihood ratio turned out to be far 
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greater than 10 (> 769), and the negative one was 
equal to 0.231.

The best result was obtained by using four 
hidden neurons (see Figure 3). The error threshold 
is more than acceptable (4.1), the time required 
to go through the steps (288 seconds) and for 
training (15 seconds) is in both cases excellent, the 
convergence of the network is very close to 100% 
(99.9994%) and the predictive capability (intended 
as general correspondence between the real output 
and the output calculated by the network) is 76%.

Our artificial neural network showed a good 
predictive value concerning an exclusively 
physician-led decision process that requires careful 
and costly tests (bacterial culture, tissue ultra-
sound, scintigraphy and so on) to be confirmed. 
This neural network, therefore, proved to be a 

potentially useful cognitive support mechanism 
for the decision-making process.

Also, the neural network designed was proved 
to be a SpPin diagnostic test due to high speci-
ficity (100%). This means that the trained system 
does not give rise to false positive cases and can 
confirm the presence of infection with absolute 
precision (all persons labeled positive became 
infected). Also, the value of sensitivity (76.9%) 
is good, as it limits the possibility that a subject 
potentially affected by SSI is considered at risk by 
the network. Under the positive predictive value 
of 1 this approach confirmed the capability of a 
network to identify and confirm infection, even 
though SSI prevalence is quite low (about 1.88%); 
this means that, when the data for a new patient 
are entered into the network, there is maximum 

Figure 3. The 58 input neurons and four hidden neurons neural network used to predict SSI
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capacity for alert. Earlier SSI diagnosis also makes it 
easier to plan a patient’s therapeutic journey inside 
and outside the hospital, with fewer hospital stays 
and thus less cost for hospitals.

The neural network approach has extraordinary 
potential because of its fault tolerance and the 
ability to extract new solutions efficiently and in the 
shortest time possible. Further, whatever decision 
doctors take will be based on overt and sharable 
considerations, making them fully accountable for 
their choices.

4. Implications and applications

Physicians today can collect a great deal of data 
about their patients, ranging from personal to 
clinical information, including pharmacological 
treatments and their effects, different prognoses, 
imaging scans and other reports. During the diag-
nostic journey, such data is processed, evaluated 
and assigned towards the most likely diagnostic 
pathway. However, as discussed above, humans 
tend to solve complexity by using experience-based 
heuristics. These cognitive shortcuts can simplify a 
situation, so that doctors select only essential data 
to reach the best solution within a reasonable time. 
However, this process can also exclude potentially 
relevant information. Moreover, some data are also 
discarded because traditional statistical techniques 
are not robust enough to handle the amounts of 
data now generated (Sharpe and Caleb 1994). The 
use of cognitive-led smart technologies can over-
come this possible loss of information, as well as 
oversimplification. They make it possible to process 
several variables together and to present them in 
an accessible format so as to be easily applied to a 
specific clinical picture.

Physicians should consider such tools an essen-
tial part of their clinical praxis, not just as an aid 
for avoiding medical errors, but also as a way to 
promote optimization, thus reducing risks for 
patients and increasing clinical and economic effi-
ciencies. Cognitive-led smart technologies should 
be part of their daily routine, but not considered 
as being in competition with their experience and 
professionalism. However, despite the considerable 
attention that has been given to this topic over 
the last 20 years, doctors still need support in 
using them. They need to focus not only on DSS 

or other similar tools but also on making specific 
and customized decision tools, for instance, based 
on the use of ANNs. As such, the construction 
of such tools requires an interdisciplinary effort. 
Doctors should be involved in the definition of the 
decision model to be implemented, be in charge 
of the data collection procedures and decide how 
and when to integrate the tools’ outcomes with 
their daily activities. We argue that the use of these 
technologies is the most promising way to reduce 
medical errors, but that this will be possible only 
with the full involvement of doctors in their actual 
application.

Being involved in this way will increase physi-
cians’ trust in decision-making technology, thus 
allowing them to focus their attention on aspects 
of their role specifically related to their expertise 
while delegating mere data processing to comput-
ers. This way, automatic processing will support the 
human mind toward making balanced decisions 
– i.e., decisions that incorporate characteristics of 
both natural and artificial cognition.

5. Conclusion

In this paper, we have addressed the ability of cog-
nitive science to explain which mental mechanisms 
lead doctors to take diagnostic decisions and the 
enormous potential of AI to support physicians’ 
decision making at all stages of this process. AI 
confirms that a cognitive approach represents the 
primary method for improving the reliability of 
making a diagnosis, and, as a corollary, provides a 
monitoring system to test the appropriateness of 
decisions, thus helping health personnel as well 
as health organizations to learn by experience and 
to adapt when new demands emerge. By using 
these technologies, it is possible to avoid some of 
the most serious cognitive traps and biases that 
undermine the daily work of health personnel, 
such as premature closure and overconfidence 
(Lucchiari and Pravettoni 2013). AI also makes it 
possible to keep track of each step, to analyze the 
entire process backwards when things go wrong 
(e.g., due to a violation) and to find the origin of 
possible adverse events.

However, these strategies are not suitable for 
all medical settings. Also, in many health organi-
zations, including national health systems, the use 



24  Claudio Lucchiari, Maria Elide Vanutelli and Raffaella Folgieri

of cognitive-led AI is poor or, at least, is scarcely 
integrated into daily activities. Thus, a more 
substantial effort by organizations in this direc-
tion would be desirable, with health personnel 
education and training devoted to developing the 
smarter use of decision technologies, even if the 
issue is not only a matter of the technology itself. 
Indeed, clinical decision-making tools are rarely 
used by physicians to make real decisions about 
specific patients, because the task they support 
does not match the physician’s mental task. In 
previous works (Lucchiari and Pravettoni 2012), a 
cognitive balanced model (CBM) was suggested to 
describe how the clinical decision setting should 
be represented by a functional balance between 
analysis and intuition, guidelines and mindlines. 
CBM underlines the need for a doctor to develop 
both intuitive and analytical skills, but also the need 
for a support system that will help physicians find 
the balance needed case by case, adapting their 
thinking style to fit with the actual demands of 
the problem.

Consequently, physicians, nurses and all health 
personnel should all develop higher decision 
awareness. Although medical decision making 
is under in-depth scientific investigation all over 
the world, and results are diffused and shared, 
many physicians still lack necessary knowledge 
about basic decision theory, especially when we 
shift attention from probabilities to psychological 
issues. Heuristics and biases are now well-known 
lemmas, but few decision makers appraise their 
role during a decision process – for instance, 
when making a diagnosis. Many errors are due 
to cognitive factors, and most of them should be 
prevented by developing awareness of this fact. 
We strongly believe that cognitive-led AI research 
could soon play a significant role in addressing this 
issue and in aiding physicians in improving their 
decision-making skills.
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