ITALIAN YOUNG MEDICINAL CHEMISTRY
VIRTUAL MEETING
#IYMCVMEET

ABSTRACT BOOK

22-24 JULY, 2020
WELCOME

The mission of the I-YMC-VMeet is to provide an online conference with keynote lectures and flash communication by the most distinguished Italian young scientists who have produced important, break-through discoveries in the last years in Medicinal Chemistry. This idea is aimed to promote networking, gathering young researchers and encouraging discussions on any scientific field related to drug discovery. We strongly believe in the importance of consolidating the interactions of our Community in science and beyond, for this reason we organized a poster session opened to all the members of scientific societies affiliated to EFMC.

Organizing Committee

Giannamaria Annunziato
(University of Parma, IT)

Michele Mari
(University of Urbino Carlo Bo, IT)

Isabella Romeo
(University of Calabria, IT)

Agostino Bruno
(Cor.Con. International, IT)

Alberto Massarotti
(University of Piemonte Orientale, IT)

Gianluca Sbardella
(University of Salerno, IT)

Scientific Committee

Giannamaria Annunziato
(University of Parma, IT)

Gianluca Sbardella
(University of Salerno, IT)

Gabriele Costantino
(University of Parma, IT)

Agostino Bruno
(Cor.Con. International, IT)

Stefano Alcaro
(University of Catanzaro, IT)

Patrizia Diana
(University of Palermo, IT)

Michele Mari
(University of Urbino Carlo Bo, IT)

Vincenza Andrisano
(University of Bologna, IT)

Roberto Di Santo
(University of Rome "Sapienza", IT)

Alberto Massarotti
(University of Piemonte Orientale, IT)

Tiziano Bandiera
(IIT, IT)

Fabrizio Micheli
(Aptuit, an Evotec Company, IT)

Isabella Romeo
(University of Calabria, IT)

Violetta Cecchetti
(University of Perugia, IT)
Scientific Program

Wednesday, 22nd July

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pm CET</td>
<td>Opening</td>
</tr>
<tr>
<td></td>
<td>Gianluca Sbardella - President of the Medicinal Chemistry Division</td>
</tr>
<tr>
<td>3.20 pm CET</td>
<td>Session 1 Chair: Alberto Massarotti (University of Piemonte Orientale, Italy)</td>
</tr>
<tr>
<td></td>
<td>KS, Alfonso D’Amato (University of Milan, Italy) OMICS profile of SARS-CoV2</td>
</tr>
<tr>
<td></td>
<td>Summer School in Pharmaceutical Analysis SSPA</td>
</tr>
<tr>
<td></td>
<td>Director: Manuela Bartolini</td>
</tr>
<tr>
<td>3.45 pm CET</td>
<td>Samuele Cazzamalli (Philochem, Switzerland) Small Molecule-Drug Conjugates: getting small to enhance targeting</td>
</tr>
<tr>
<td>4.00 pm CET</td>
<td>Marta Serafini (University of Piemonte Orientale, Italy) Benzimidazoles as IDO1 inhibitors: from a virtual screening to a potential treatment in pancreatic ductal adenocarcinoma</td>
</tr>
<tr>
<td>4.15 pm CET</td>
<td>Coffee break</td>
</tr>
<tr>
<td>4.30 pm CET</td>
<td>Session 2 Chair: Michele Mari (University of Urbino Carlo Bo, Italy)</td>
</tr>
<tr>
<td></td>
<td>KS, Tiziano Bandiera (IIT, Italy) Market watch: novel drug approvals for 2019</td>
</tr>
<tr>
<td></td>
<td>European School of Medicinal Chemistry ESMEC</td>
</tr>
<tr>
<td></td>
<td>Director: Marco Macchia</td>
</tr>
<tr>
<td>4.55 pm CET</td>
<td>Alessandra Altomare (University of Milan, Italy) Analytical strategies for understanding the molecular mechanisms of N-acetyl-cysteine as extracellular antioxidant</td>
</tr>
<tr>
<td>5.10 pm CET</td>
<td>Giulia Palermo (University of California Riverside, USA) Aiding the SARS-CoV2 detection through emerging CRISPR-Cas genome editing technologies</td>
</tr>
<tr>
<td>5.25 pm CET</td>
<td>Social event</td>
</tr>
<tr>
<td>5.50 pm CET</td>
<td>Closing remarks</td>
</tr>
</tbody>
</table>
Thursday, 23rd July

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Chair: Isabella Romeo (University of Calabria, Italy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pm CET</td>
<td>Opening</td>
<td></td>
</tr>
<tr>
<td>3.05 pm CET</td>
<td>KS, Carmine Talarico (Dompé farmaceutici, Italy)</td>
<td>The Exscalate4CoV project: how CADD is supporting the fight against SARS-CoV-2. A real journey from HPC to virtual reality</td>
</tr>
<tr>
<td>3.30 pm CET</td>
<td>Francesca Morreale (IMP – Research Institute of Molecular Pathology, Austria)</td>
<td>BacPROTACs: bringing the PROTAC approach to the bacterial world</td>
</tr>
<tr>
<td>3.45 pm CET</td>
<td>Bruno Cerra (University of Perugia, Italy)</td>
<td>Size-tuneable flow synthesis of functional nanoparticles for biomedical applications</td>
</tr>
<tr>
<td>4.00 pm CET</td>
<td>Coffe break</td>
<td></td>
</tr>
<tr>
<td>4.15 pm CET</td>
<td>Alessia Romussi (IFOM - the FIRC Institute of Molecular Oncology, Italy)</td>
<td>Potent reversible inhibitors of Histone Lysine Demethylase KDM1A/LSD1 efficacious in Acute Myeloid Leukemia models</td>
</tr>
<tr>
<td>4.30 pm CET</td>
<td>Monica Viviano (University of Salerno, Italy)</td>
<td>Identification of novel pyrazole derivatives as inhibitors of lysine acetyltransferase p300</td>
</tr>
<tr>
<td>4.45 pm CET</td>
<td>Medicinal Chemistry Division of the Italian Chemical Society’s Awards</td>
<td>Gianluca Sbardella - President of the Medicinal Chemistry Division</td>
</tr>
<tr>
<td>4.50 pm CET</td>
<td>Francesco S. Di Leva (University of Naples Federico II, Italy)</td>
<td>Targeting the avβ6 RGD Integrin: from Computer-Aided Drug Design to Preclinical Applications</td>
</tr>
<tr>
<td>5.05 pm CET</td>
<td>Azzurra Stefanucci (University of Chieti-Pescara, Italy)</td>
<td>Potent, Efficacious, and Stable Cyclic Opioid Peptides with Long Lasting Antinociceptive Effect after Peripheral Administration</td>
</tr>
<tr>
<td>5.20 pm CET</td>
<td>Social event</td>
<td></td>
</tr>
</tbody>
</table>
Friday, 24th July

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pm CET</td>
<td>Opening</td>
</tr>
<tr>
<td>Session 5</td>
<td>Chair: Gianluca Sbardella (University of Salerno, IT)</td>
</tr>
</tbody>
</table>
| 3.05 pm CET| KS, Rita Petracca *(Marie Sklodowska-Curie Imperial College*
| | *London, UK)*
| | RaPID Selection of Novel Macrocyclic Peptides as Modulators of |
| | Rab27a-effector Interactions |
| | 13th Young Medicinal Chemist’s Symposium |
| | Chair: Maria Novella Romanelli |
| 3.30 pm CET| Flash prize and Poster prizes presentations |
| 4.00 pm CET| **Coffe break** |
| | Chair: **Gabriele Costantino** *(University of Parma, Italy)* |
| 4.15 pm CET| Round table |
| | About Medicinal Chemistry Career |
| | **Yves Auberson** *(EFMC President)* - Novartis, Switzerland |
| | **Kristina Goncharenko** *(EFMC-YSN)* - SpiroChem, Switzerland |
| | **Rui Moreira** *(EFMC President Elect)* - University of Lisbon, |
| | Portugal |
| | **David Peralta** *(Editor-in-Chief, ChemMedChem)* - Chemistry |
| | *Europe, Germany* |
| 5.00 pm CET| Closing remarks |
Keynote presentations
OMICS profile of SARS-CoV2

Alfonsina D’Amato
Pharmaceutical Sciences Department, Università` di Milano, Via Mangiagalli 25, Milano, Italia
alfonsina.damato@unimi.it

Network medicine based on OMICS data aims to understand diseases at the systems-level. Pharmacological studies attempt to recognize both the network connectivity and dynamics of signaling systems as components of drug targets.

The study of the proteome, metabolome and transcriptome of the host cell and of the viral proteome translated into the SARS-CoV2 infected cell has been applied in recent studies.1-5 OMICS based papers, reviewed in this lecture, show how the host cell responds to the viral infection, which molecular pathways are activated, and which are inhibited as well as the cell pathways promoted for viral replication. These and future results will provide a precise understanding of the molecular mechanism of infection and viral replication in the host cell and it will allow the identification of novel drug targets and the efficacy and mechanism of action of tested drugs. Identification of drug targets will be used for a drug repurposing in silico approach.

References
Market watch: novel drug approvals for 2019

Tiziano Bandiera
Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
tiziano.bandiera@iit.it

The approval of new drugs in 2019 remained high although the total number was lower than in 2018. In the United States, the Center for Drug Evaluation and Research (CDER) of the Food and Drug Administration (FDA) approved 48 new drugs\(^1\). Among them, 38 are new molecular entities while 10 are new therapeutic biologics. In Europe, the Committee for Medicinal Products for Human Use (CHMP) of the European Medicine Agency (EMA) recommended 66 medicines for marketing authorization\(^2\). Of these, 30 had a new active substance which had never been authorized in the EU before.

Most of the new drugs approved in the US were for orphan diseases: 21 new drugs, representing 44% of all approvals. The breakdown of new approvals for therapeutic areas shows that oncology was the area with most approvals (11 or 23% of new drugs), followed by neurology (9 new drugs), haematology (6 new drugs), and infectious disease (5 new drugs). In Europe, 23% of new medicines (7 drugs) were recommended for approval in haematology, followed by 5 new medicines (17%) for cancer treatment, and 3 new drugs (10%) for infectious diseases and endocrinology\(^2\).

Some of the drugs approved in 2019 add new modalities in the treatment of certain diseases. Among them, the FDA approved the first nanobody, caplacizumab, for the treatment of adult patients with acquired thrombotic thrombocytopenic purpura, a potential life threatening disease. Both the FDA and EMA approved Ervebo, the first vaccine for the prevention of Ebola infection.

Other notable approvals include upadacitinib, the first JAK1-selective inhibitor for the treatment of rheumatoid arthritis, trikafta, a triple combination of modulators of the activity of certain mutant forms of the CFTR protein for the treatment of cystic fibrosis, and entrectinib, a new small molecule for the treatment of \(NTRK\) gene fusion-positive solid tumors, including CNS tumors due to its ability to cross the blood–brain barrier.

The presentation will give an overview of the new drugs approved in 2019.

References

The Exscalate4CoV project: how CADD is supporting the fight against SARS-CoV-2. A real journey from HPC to virtual reality

Carmine Talarico
Dompé Farmaceutici S.p.S., via Pietro Castellino, 80131, Naples, Italy
carmine.talarico@dompe.com

E4C is a public-private consortium supported by the European Commission’s Horizon 2020 tender for projects to counter the Coronavirus pandemic and improve the management and care of patients. At the core of E4C is Exscalate (EXaSCale smArt pLatform Against paThogEns), at present the most powerful and cost-efficient intelligent supercomputing platform in the world. Exscalate has a “chemical library” of 500 billion molecules and a processing capacity of more than 3 million molecules per second. The E4C consortium, coordinated by Dompé Farmaceutici, is composed by 18 institutions from seven European countries.

First, E4C will select, through the EXSCALATE platform and the virtual screening protocols, the most promising drugs against coronavirus taken from the commercialized and developing drugs safe for humans (> 10000 drugs, SIM). At the same time, the proprietary Tangible Chemical Database (TCDb), comprising > 500 billion molecules, will be screened to identify new potential drugs to be tested against coronavirus, thus enhancing the success rate of the virtual screening step.

The aim of E4C is twofold: to identify molecules capable of targeting the coronavirus (2019-nCoV) and to develop an effective tool for countering future pandemics to be consolidated over time.

More specifically, E4C aims to:
- Establish a sustainable example for a rapid scientific response to any future pandemic scenario. The model leverages a rapid and effective High Performance Computing platform for the generation and analysis of 3D models and experimental 3D structures, X-ray resolution of protein targets from pandemic pathogens.
- Drive a fast virtual identification and repurposing of known drugs or proprietary/commercial candidate molecules to be further experimentally characterized.
- Define a workflow scheme for biochemical and cellular screening tests to validate candidate molecules at previous points and assure through phenotypic and genomic assays.
- Prepare, together with EMA, a development plan for successful candidates for direct “first in human” type studies or for further testing in animals with bridging studies.
- Identification of 2019-nCoV genomic regions involved in host adaptation, pathogenicity and mutations.

Figure 1. Representation of the two workflows used during the E4C project, helpful for identifying molecules against SARS-CoV-2.
RaPID Selection of Novel Macrocyclic Peptides as Modulators of Rab27a-effector Interactions

R. Petracca,a,b T. Lanyon-Hogg,a L. Walport,b E. W. Tate,a,b*

a Molecular Sciences Research Hub, Imperial College London, Department of Chemistry, 80 Wood Lane, London W12 0BZ, UK
b The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK

r.petracca@imperial.ac.uk

Rab27a belongs to the Rab subfamily of small GTPases, a highly conserved group of GTP/GDP-mediated molecular switch proteins involved in the regulation of intracellular trafficking. Recent studies correlated Rab27a cellular activity with the regulation of tumorigenic signals secretion involved in metastatic breast cancer progression and exosome release. The crystal structure of Rab27a in complex with an effector protein Slp2a shows that the protein globular structure is defined by a conserved nucleotide binding site and an extensive Rab-effector interaction surface. To date, a few small molecules have been claimed as putative reversible Rab27 ligands which can inhibit effector interactions, but previous studies in our labs have demonstrated that none of these compounds bind to Rab27a, strongly suggesting that their observed activity in cells is off-target and non-specific. However, discovery and validation of a cell-active stapled peptide probe for Rab25 suggests the feasibility of small GTPase targeting by effector binding disruption. We screened an mRNA display library against Rab27a in order to identify novel macrocyclic peptide modulators of the Rab27a-effector interaction (Figure 1). Following successful enrichment, the corresponding cyclic peptide sequences were analysed and several selected for synthesis and further testing. These peptide hits thus constitute a starting point for successive structure- and activity-guided modifications, aiming to determine Rab27a preferred conformations and binding modes, and ultimately to engage the active protein in cells.

References
Oral presentations
Small Molecule-Drug Conjugates: getting small to enhance targeting

Samuele Cazzamalli
Philochem AG, Libernstrasse 3, CH-8112, Zurich (Switzerland)
samuele.cazzamalli@philochem.ch

Conventional cancer chemotherapeutic agents do not preferentially localize at the tumor site [1]. Monoclonal antibodies and small organic ligands have been proposed as delivery vehicles of cytotoxic compounds, allowing the construction of antibody–drug conjugates (ADCs) [2] and small molecule–drug conjugates (SMDCs) [3]. Clinical efficacy of ADC products is hindered by their slow and inefficient accumulation in solid tumors [4, 5]. Small Molecule-Drug Conjugates have been recently proposed as an alternative approach to effectively deliver potent cytotoxic compounds to the neoplastic site and to solid metastatic lesions [5, 6]. Acetazolamide is a small organic compound that exhibits a high binding affinity to the tumor-associated antigen Carbonic Anhydrase IX (CAIX), a marker of Renal Cell Carcinoma and of hypoxic tumors [6]. We compared acetazolamide-based SMDC products to anti-CAIX ADCs for their ability to reach tumors in vivo and for their anti-tumor performance [5]. Recent clinical trial data have confirmed the efficient accumulation of an acetazolamide-based radiotracer (PHC-102) to solid tumors and metastatic lesions in Renal Cell Carcinoma patients [7] and provide a strong rational for the clinical development of anti-CAIX Small Molecule-Drug Conjugates.

References
Benzimidazoles as IDO1 inhibitors:
from a virtual screening to a potential treatment in pancreatic ductal adenocarcinoma

Marta Serafini,a,* Alberto Massarotti,a and Tracey Pirali²

a Department of Pharmaceutical Sciences; Università del Piemonte Orientale; Novara, 28100; Italy;

*Correspondence to: marta.serafini@uniupo.it

Depletion of tryptophan and the consequent increase in kynurenines in the tumour microenvironment have been shown to enhance inflammation and lead to immune tolerance, as well as to promote neoangiogenesis. For this reason, the key catabolic enzyme for tryptophan to kynurenines, indoleamine 2,3-dioxygenase 1 (IDO1), has taken center-stage as a druggable target in cancer immunotherapy in the last decades. High expression of this enzyme is indeed associated with poor prognosis in various human tumours and aggressive tumor phenotype.[1] It is not surprising, therefore, that 5 different IDO1 inhibitors have entered clinical trials in the past, either alone or in combination with other immunotherapeutic drugs. Yet, the report at the 2018 ASCO Annual Meeting that epacadostat failed to show a clinical benefit in combination to pembrolizumab in unresectable or metastatic melanoma leads to think whether some elements have been neglected in IDO1 landscape.[2] From a medicinal chemistry point of view, the design of novel small molecules with improved biological profile and able to specifically target this enzyme still represents a challenge.

In this context, starting from a virtual screening, a successful medicinal chemistry campaign has led to the identification of a novel class of benzimidazole IDO1 inhibitors in which the progenitor is represented by compound 10 (Figure 1). This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. Moreover, benzimidazole derivatives exhibit a strong binding interaction with IDO1, a inhibitory potency at the low nanomolar level in several tumoral settings and high selectivity towards IDO1 over TDO and CYPs. The synthesized compounds are also able to significantly reduce L-Kyn plasma levels in mice and to exert a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma. The peculiar biological profile points to this class of molecules as a valuable template for boosting the antitumor immune system.[3]

References

Analytical strategies for understanding the molecular mechanisms of N-acetyl-cysteine as extracellular antioxidant

Alessandra Altomare, a Giovanna Baron, a Maura Brioschi, b Elena Tremoli, b Marina Carini, a Piergiuseppe Agostoni, b Giulio Vistoli, a Cristina Banfi, b and Giancarlo Aldinia

a Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
b Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy.

*N-acyl-cysteine (NAC) is a well-established antioxidant agent and since the 1980s it has been proposed for the treatment of diseases in which oxidative stress is considered to be involved in the onset and progression of the disease state [1]. The in vivo antioxidant activity of NAC was largely demonstrated by different biomarkers of oxidative stress [2,3], but the molecular mechanisms explaining it are far from being fully elucidated. The aim of this work was to understand the mechanism through which N-acetyl-cysteine (NAC) acts as an extracellular antioxidant. We proposed and demonstrated that NAC acts as an antioxidant by regenerating the free form of albumin Cys34 by a disulfide breaking activity of the cysteinylated form (HSA-Cys). The ability of NAC to regenerate albumin Cys34 (HSA-SH) was studied by MS intact protein analysis in human serum and in a concentration range of NAC easily achievable after oral and iv administration (5-50 µg/ml) and then confirmed using human serum from healthy donors. NAC, dose-dependently broke the cysteinylated form of albumin to form the dimer NAC-Cys thus regenerating Cys34 which was maintained for at least 120 min. Cys was faster in restoring the Cys34 according to the reaction constant determined with GSSG reaction, but after almost 60 min of incubation the recovery of HSA-SH ended and HSA-Cys then increased above initial concentration, due to the dimer Cys-Cys which upon formation, rapidly reacts with Cys34 turning back to the mixed disulfide HSA-Cys. The explanation for the different nucleophilic exchanges between Cys-Cys and Cys-NAC with Cys34 was given by molecular modelling studies. Finally, the Cys34 regenerating effect of NAC was related to its ability to improve the total antioxidant capacity of plasma as measured by the total peroxyl radical-trapping potential (TRAP) assay. The results well indicate that NAC greatly increases the plasma antioxidant activity and this effect is not reached by a direct effect but through the regenerating effect of Cys34. Cys, even if more effective as thiol-disulfide breaking agent, was much less effective as antioxidant because it is unable to maintain the Cys34 in a free form due to the reaction of cystine with Cys34 [4]. A scheme reporting the indirect antioxidant mechanism of NAC at extracellular level is depicted in the figure.

References
Aiding the SARS-CoV2 detection through emerging CRISPR-Cas genome editing technologies

Giulia Palermo,1,2,* Aakash Saha,1 Pablo R. Arantes,1 Rohaine V. Hsu,1 Yogesh B. Narkhede1 and Martin Jinek3
1Department of Bioengineering and 2Department of Chemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States. 3Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

*gpalermo@engr.ucr.edu

The SARS-CoV-2 coronavirus is rapidly spreading across multiple countries, causing a severe acute respiratory syndrome that threatens the world population. As the number of cases is steadily growing, there is pressing need for rapid testing tools, which could limit the contagion. New versions of the CRISPR gene-editing system are being harnessed as a fast, yet reliable diagnostic tool against SARS-CoV-2 infections. However, the molecular basis of viral nucleic acid detection is largely elusive, demanding improved approaches to expedite detection. Here, we describe how the CRISPR-associated protein Cas12a recognizes viral genetic material through microsecond-long simulations. Molecular simulations of CRISPR-Cas12a reveal that DNA binding induces a switch in the conformational dynamics of the Cas12a protein, which results in the activation of the peripheral REC2 and Nuc domains to enable cleavage of nucleic acids. Accordingly, large-amplitude motions of the Nuc domain favor the conformational activation of the system toward DNA cleavages, while the joint dynamics of REC2 is shown to prime the conformational transition of the DNA target strand toward the catalytic site. Most notably, the highly coupled dynamics of the REC2 region and Nuc domain suggest that REC2 could act as a regulator of the Nuc function, similar to what was observed previously for the HNH domain in the CRISPR-associated nuclease Cas9. Considering that the REC lobe is a key determinant in the system’s specificity, our findings provide a rational basis for future biophysical studies aimed at characterizing its function in CRISPR-Cas12a. Overall, the dynamic and mechanistic aspects reported here are at the bottleneck in the process of detecting viral nucleic acids, delivering information that can help in expediting detection. This is the utmost need of the time considering the increasing number of afflicted individuals.
BacPROTACs: bringing the PROTAC approach to the bacterial world

Francesca E. Morreale,a,* Stefan Kleine,b David Haselbach,a Anton Meinhart,a Klaus Rumpel,c Dirk Kessler,c
Guido Boehmelt,c Markus Kaiser,b Tim Clausena

a Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
b Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
c Boehringer Ingelheim RCV GmbH & Co. KG, Dr.-Boehringer-Gasse 5-11, 1121 Vienna, Austria.

francesca.morreale@imp.ac.at

The possibility of hijacking protein-tagging and degradation machineries offers unique opportunities for drug discovery, as demonstrated by the development of proteolysis-targeting chimeras (PROTACs). PROTACs are bifunctional small molecules able to induce ubiquitination and subsequent degradation of proteins of interest (POIs) in eukaryotic cells, showing many advantages over classic inhibitors.

The aim of our research is to explore the possibility of bringing the PROTAC approach to the bacterial world by reprogramming components of bacterial protein degradation pathways. Among them is the ClpC:ClpP (ClpCP) protease, a central quality-control factor in Gram-positive bacteria. ClpCP is composed of the hexameric AAA unfoldase ClpC, which recognises substrates through the N-terminal domains (NTD) and feeds them into the protease cage formed by ClpP.

In order to induce selective POI degradation in bacteria, we designed bifunctional small molecules, which we call Bacterial PROTACs (BacPROTACs), recruiting model POIs to the NTD substrate receptor domain of ClpC.

Using an in vitro reconstituted system, we demonstrated the feasibility of BacPROTAC-mediated POI recruitment, leading to the unfolding, translocation and ultimately proteolysis of a POI by the B. subtilis ClpCP complex. Additionally, we succeeded in determining the cryo-EM structure of a ternary complex comprising B. subtilis ClpC, BacPROTAC and POI, visualising, for the first time, the structure of the ClpC hexamer in an activated state.

In conclusion, we validate in vitro a bacteria-specific targeted protein degradation technology, which could represent an innovative approach to expand the current antibiotic arsenal.
Size-Tuneable Flow Synthesis of Functional Nanoparticles for Biomedical Applications

Bruno Cerra, a, * Barbara Albertini, b Paolo Blasi, c Antimo Gioiello a

a Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia
b Kemin Industries, Via Don P. Borghi 1/B, 42025 Cavriago (RE)
c Department of Pharmacy and Biotechnology, Via Belmeloro 6, 40126, Bologna

*bruno.cerra@chimfarm.unipg.it

The past few decades have witnessed significant advances in the development of functional nanoparticles (NPs) for biomedical applications due to their unique optical, thermal, magnetic and electrical properties. This increasing interest has resulted in a growing demand for efficient and scalable methods that enable the preparation of NPs with a precise control over particle size, distribution and morphology. Recently, flow chemistry systems have shown a promising potential to produce NPs with a high level of reproducibility and with a fine tuning of their properties. Indeed, the accurate regulation of experimental conditions and fluidodynamics parameters ensured by flow devices allows a precise control over the mass transfer, the residence time and the mixing efficiency thus resulting in a spatio-temporal separation between nucleation and growth of NPs. As a continuation of our interest in the use of flow chemistry technology in nanomaterials for biomedical applications, in this communication we describe a flow-based approach for the preparation of size-tuneable gold (Au) NPs by Turkevich method. Au NPs were prepared by reducing Au3+ precursor (HAuCl4) to Au0 using sodium citrate as reducing and stabilizing agent (Figure 1). A two level factorial experimental design was used to evaluate the effect of temperature, flow rate and sodium citrate/HAuCl4 molar ratio on Au NPs size and shape. The potential advantages in terms of size control and scalability of the method will be illustrated and discussed.

References
Potent reversible inhibitors of Histone Lysine Demethylase KDM1A/LSD1 efficacious in Acute Myeloid Leukemia models

Alessia Romussi,a,∗ Anna Cappa,a Paola Vianello,a Silvia Brambillasca,a Maria Rosaria Cera,a Roberto Dal Zotto,a Giovanni Fagá,a Raimondo Fattori,a Loris Moretti,b,T Luca Sartori,a,# Paolo Trifiro,a Stefania Vultaggio,a Valentina Cecatiello,c Sebastiano Pasqualato,f Giulio Dondo,d Savero Minucci,b,e Ciro Mercurio a and Mario Varasi a

a IFOM - The FIRC Institute of Molecular Oncology Foundation, Experimental Therapeutics Program, Via Adamello 16, 20139 Milano, Italy; b Department of Experimental Oncology, Academic Drug Discovery, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milano, Italy; c Biochemistry and Structural Biology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milano, Italy; d APHAD Srl, Via Della Resistenza 65, 20090 Buccinasco MI, Italy; e Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; f Present Address: Nuevolution A/S, Amgen Research Copenhagen, Rønnegade 8, 2100 Copenhagen, Denmark; # Present address: S-IN Soluzioni Informatiche Srl, via Ferrari 14, I-36100 Vicenza, Italy

∗alessia.romussi@ifom.eu

Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent monoaminoxidase enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. Several lines of evidences, which include over-expression in solid and hematological malignancies[1],[2] as well as the correlation in certain tumor types between over-expression and poor prognosis,[3] indicate KDM1A as an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, the interest in finding reversible KDM1A inhibitors has recently grown and we have also contributed to the field by reporting the identification of thieno[3,2-b]pyrrole-5-carboxamides as reversible inhibitors of KDM1A.[4] The SAR exploration around these derivatives led to the discovery of a series of imidazoles endowed with picomolar inhibitory biochemical activity.[5]

Here we report on the identification of these imidazole KDM1A inhibitors (Figure 1), their preliminary SAR supported by ligand/LSD1-CoRest co-crystal structures, and the characterization of their biological activity up to evidence of in vivo efficacy in murine leukemia models.

Figure 1

Acknowledgments: this research was supported by Rasna Therapeutics, Inc. and by a generous donation from Ravelli Family.

Authors information: the work by A. R., A. C., P. V., S. B., M. R. C., R. D. Z., G. F., R. F., L. S., P. T., S. V., C. M. and M. V. was performed in part at the European Institute of Oncology IRCCS, Academic Drug Discovery.

References
Identification of novel pyrazole derivatives as inhibitors of lysine acetyltransferase p300

Monica Viviano,a,* Ciro Milite,a Alessandra Feoli,a Gianluigi Lauro,a Haitao Li,b Giuseppe Bifulco,a Sabrina Castellanoa and Gianluca Sbardellaa

a Dipartimento di Farmacia, Università degli Studi di Salerno, Via G. Paolo II 132, 84084 Fisciano (SA), Italy
b Tsinghua University, Center for Structural Biology, Beijing 100084, P.R. China

*mviviano@unisa.it

Lysine acetylation is far from being fully understood, even after 50 years from its discovery. Lysine acetyltransferases (KATs) are responsible of this chemical modification, that neutralizes the positive charge of lysine side chains, weakening the interactions between histones and DNA and, as a result, making chromosomal DNA more accessible. Among the nuclear KATs, the acetyltransferase p300 (KAT3B) plays key roles in different cellular processes, implying that the dysregulation of its activity leads to many human diseases, including cancer. These observations suggest that p300 might represents a potential anticancer therapeutic target.

Starting from an Inverse Virtual Screening study, we recently identified the Cannabinoid Receptor 1 (CB1) inverse agonist Rimonabant as a new potential p300 inhibitor and confirmed this outcome in in cell and in vivo studies. Therefore, with the aim to identify new p300 modulators, a computational model was developed and a first series of pyrazole derivatives synthesized. Prompted by our interest in the discovery of small molecule modulators of epigenetic targets, after further structural optimization (Figure 1) here we report the identification of a new series of p300 inhibitors, that might represent new opportunities to investigate the role of this protein in chromatin biology and drug discovery.

References
Targeting the αvβ6 RGD Integrin: from Computer-Aided Drug Design to Preclinical Applications

Francesco Saverio Di Leva,a,* Stefano Tomassi,a Salvatore Di Maro,b Ettore Novellino,a Horst Kessler,c Neil Gerard Quigley,d Johannes Notni,d Susanne Kossatz,e and Luciana Marinellia

aDipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
bDipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via A. Vivaldi 43, 81100, Caserta, Italy
cInstitute for Advanced Study and Center of Integrated Protein Science, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
dInstitute of Pathology, Technische Universität München, Trogerstrasse 18, 81675 München, Germany
eKlinik für Nuklearmedizin and TranslaTUM, Central Institute for Translational Cancer Research, Technische Universität München, Ismaninger Str. 22, 81675, München, Germany

francesco.dileva@unina.it

The αvβ6 integrin has recently emerged as a prominent target for the treatment and diagnosis of several tumors and idiopathic pulmonary fibrosis.[1] Therefore, selective, low molecular weight ligands of this receptor are in great demand. Here, a metadynamics-assisted design strategy was successfully applied to transform a linear helical nonapeptide[3] into a cyclic pentapeptide endowed with remarkable αvβ6 potency and specificity. NMR and docking studies elucidated the molecular basis of the affinity and selectivity of this compound, paving the way for the rational design of new αvβ6-specific ligands. Finally, our peptide was developed into a highly efficient PET tracer for specific αvβ6 in vivo imaging, prompting future clinical applications.

Figure 1. From metadynamics-inspired design to in vivo application of a cyclic pentapeptide as potent and selective αvβ6 integrin ligand.

References
Potent, efficacious, and stable cyclic opioid peptides with long lasting antinociceptive effect after peripheral administration

Azzurra Stefanucci,a,* Marilisa Pia Dimmito,a Laura Ciarlo,b Stefano Pieretti,b Ettore Novellino,c Wei Lei,d Deborah Barlow,e Karen L. Houseknecht,e John M. Streicher,d and Adriano Mollicaa

aDepartment of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy.
bIstituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy.
cDepartment of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy.
dDepartment of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States.
eDepartment of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States.

* a.stefanucci@unich.it

Four novel fluorinated cyclic analogues of biphalin with excellent to modest binding affinity for μ-, δ-, and κ-receptors were synthesized.[1] The cyclic peptides have a combination of piperazine or hydrazine linker with or without a xylene bridge (Figure 1). Among the ligands, MACE3 demonstrated a better activity than biphalin after intravenous administration, and its corresponding analogue incorporating the hydrazine linker (MACE2) was able to induce longer lasting analgesia following subcutaneous administration. An analogue of MACE2 containing 2,6-dimethyl-L-tyrosine (MACE4) showed the best potency and in vivo antinociceptive activity of this series.

Figure 1. Biphalin structural modifications.

References
Poster presentations
Design and synthesis of new constrained GEBR library compounds as potential PDE4D inhibitors

Federica Rapetti, a,* Tommaso Prosdocimi, b Chiara Brullo, a Emilio Parisini, bc Olga Bruno a

a DIFAR, University of Genova, viale Benedetto XV, 3, 16132 Genova, Italy; b Center for Nano Science and Technology@PoliMI, Istituto Italiano di Tecnologia, via Giovanni Pascoli 70/3, 20133 Milano, Italy c Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia

* federica.rapetti@edu.unige.it

In the past we developed a panel of compounds (GEBR library, Fig. 1) to obtain selective inhibitors against phosphodiesterase type 4 isoforms (PDE4D) for the treatment of neurodegenerative disorders. [1,2] In those molecules, we identified three essential pharmacophore substructures: 1) a catechol portion (that interact with the Q2 pocket of the catalytic domain); 2) different linker; 3) a basic end. Crystallographic studies evidenced three ligand conformation for the tail portion: twisted, extended and protruding, [3] the latter being the most promising candidates for further investigation. On the basis of our crystallographic information, and also taking into account the recent evidences appeared in the literature, we projected a new series of molecules in which the catechol portion has been replaced by a bulkier 8-methoxy-3,4-dihydro-2H-benzo[b][1,4]oxazine moiety, in order to optimize the interaction with the highly polar groove in the lower part of the catalytic pocket. The new scaffold, never investigated among the plethora of PDE4 inhibitors appeared in the last 25 years, maintains the two oxygen atoms necessary for the interaction with Gln 535 of the Q pocket and, in the meanwhile, the additional NH group could exploit a new type of polar interaction. To maintain the possibility of directing the tail portion out of the catalytic pocket, and therefore to assume the protruding conformation, we synthesized three different series (1-3, Fig. 1), using the same flexible and polar linkers of previous compounds. Synthesis of these compounds will be reported in the poster session.

References
The Antioxidant Capability of Higenamine: Insights from Theory

Isabella Romeo, a* Angela Parise, a Anna Galano, b Nino Russo, a Juan Raúl Alvarez-Idaboy, c and Tiziana Marino a

a Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, Italy
b Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico
c Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico

*isabella.romeo@unical.it

Higenamine is a plant-based alkaloid belonging to the structural class of protoberberines. It is present in many plants such as Aconitum japonicum and Aconitum carmichaelii. It shows a multi-target profile which led researchers to focus on the mechanisms and on the pathways implicated in higenamine action in different diseases. Recent literature indicates that the common denominator could be its antioxidant activity against reactive oxygen species (ROS). For all these reasons and in order to rationalize the existing experimental results,[1] we decided to carefully investigate the antioxidant properties of higenamine by employing a density functional theory (DFT)-based computational protocol previously and successfully used for a series of natural antioxidants. Different reaction mechanisms such as hydrogen atom transfer (HAT), radical adduct formation (RAF), single-electron transfer (SET) were considered for the reaction of higenamine with the $^\cdot$OOH radical. The pH values and the molar fraction at physiological pH were determined in aqueous solution. The results show that the preferred reaction mechanism was the hydrogen atom transfer from the catecholic ring. The computed kinetic constants calculated in aqueous and lipid-like environments revealed that, in order to obtain reliable results, it is important to consider all the species present in water solution derived from acid–base equilibria. From the present investigation, it emerges that at physiological pH (7.4), the scavenging activity of higenamine against the $^\cdot$OOH radical is higher than that of Trolox, chosen as a reference antioxidant (Figure 1). Furthermore, higenamine results to be more efficient for that purpose than melatonin and caffeine, whose protective action against oxidative stress is frequently associated with their reactive oxygen species (ROS) scavenging activity.[2]

Figure 1. Schematic representation of the considered mechanisms for Higenamine. HAT, hydrogen atom transfer, RAF, radical adduct formation, SET, single-electron transfer.

References
Conformational equilibria of N-anilinoethylamides for perspective design of melatonergic agonists

Gian Marco Elisi,a,*, Laura Scalvini,a Alessio Lodola,a Gilberto Spadoni,b Annalida Bedini,b Valeria Lucini,c Marco Mor,a and Silvia Rivaraa

a Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
b Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza Rinascimento 6, I-61029 Urbino, Italy
c Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, Via Vanvitelli 32, I-20129 Milano, Italy

*gianmarco.elisi@unipr.it

N-anilinoethylamides are a class of nonselective nanomolar melatonin receptor ligands obtained through the bioisosteric replacement of the melatonin indole ring with an aniline portion [1]. A methyl group was inserted on the methylenes of the ethylamide chain, to investigate the effect on the biological activity and on conformational equilibria. Binding affinity of newly synthesized compounds was evaluated on human MT₁ and MT₂ receptors stably expressed in NIH3T3 cells, using 2-[¹²⁵I]iodomelatonin as radioligand. While methylation of the α carbon decreased MT₁ and MT₂ binding affinity compared to the unsubstituted precursor, substitution of the β carbon provided a couple of potent enantiomers with ten-fold stereoselectivity. When docked into the MT₂ receptor crystal structure, the two enantiomers were able to accommodate the methyl group in the same region of the binding site, assuming different conformations of the ethylamide side chain.

Molecular dynamics simulations of the two enantiomers in solution evidenced the presence of a set of preferred conformations (Figure 1), in agreement with results obtained from experimental NMR spectroscopy. The bioactive conformation of the eutomer was the most abundant in solution, while the conformation of the distomer able to bind the receptor was characterized by a higher energy content and a lower abundance in solution.

This finding suggests that the β-methyl group is able to induce a conformational enrichment of the bioactive conformation of the eutomer, identified through docking and, possibly, stabilized at the membrane interface, consistent with the stereoselective behavior observed for the two enantiomers.

Figure 1. Free-energy surface of the beta-methyl N-anilinoethylamide eutomer calculated from a molecular dynamics simulation.

References
Transfer learning for protein-ligand binding kinetics prediction

Nurlybek Amangeldiuly,a,* Dmitry S. Karlov,a and Maxim V. Fedorovb

aCenter for Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
bDepartment of Physics, University of Strathclyde, Scottish Universities Physics Alliance (SUPA), G4 0NG, Glasgow, United Kingdom

*nurlybek.amangeldiuly@skoltech.ru

Predicting binding kinetics of a protein-ligand complex is a challenging interdisciplinary task that has potential in lead optimization. Hypothesis that longer protein-ligand residence times increase in vivo drug efficacy [1], motivated the kinetics-based lead optimization and search for the key determinants that could affect binding mechanisms by applying various experimental and computational approaches including machine learning. Currently there is a plenty of factors that bottleneck the application of high-throughput approaches for this task: lack of high-quality database, poor generalizability of the prediction models on external data and poor performance while training on widely available descriptors.

Previous exploratory works in this problem domain trained machine learning models such as support vector machines or partial least squares regression on molecular dynamics-based descriptors [1, 2, 3], we tried to overcome the challenge of low amount of data by applying a transfer learning approach utilizing 3D deep convolutional neural network architecture (3D-CNNs), using two datasets, namely PDBbind v.2016 core set [4] for initial learning of the network weights and our own curated binding kinetics dataset for rate constants prediction. We show that correlation between dissociation constant, pK_D and dissociation rate constant, pKoff values for the protein-ligand complexes in the dataset justifies the use of binding affinity data for knowledge transfer. To adequately evaluate the performance of our model, we conducted 5-fold cross-validation and test on 20% of the database.

References
A bicyclic α-aminophosphonate improves cognitive decline in 5xFAD murine model

Imidazoline I2 receptors (I2-IR) are widely distributed in the CNS and appear increased in the patients that suffer from Alzheimer’s disease (AD). Since structural data for I2-IR remains unknown, the discovery of selective I2-IR ligands is necessary for their pharmacological characterization. In this framework, we have recently contributed with a new structural family of I2-IR ligands and reported their beneficial biological activities improving the cognition of a murine model of neurodegeneration in senescence-accelerated prone mice (SAMP8) [1,2]. Herein, we present the synthesis and pharmacological profile of a new family of bicyclic α-aminophosphonates endowed with high affinities for human brain I2-IR (Figure 1). 37 Bicyclic α-aminophosphonates were prepared via diastereoselective silver catalyzed [3+2] cycloaddition reaction by using α-substituted PhosMic derivatives and diversely N-substituted maleimides. 3D-QSAR, DMPK and physicochemical parameters were calculated in order to rule out warnings of the family. Then, we performed preliminary in vitro drug metabolism and safety studies, and in vivo pharmacokinetics for a selected compound, B06. In vivo studies in a murine model of familial AD (5xFAD) revealed beneficial effects in behavior and cognition. These results are supported by changes in AD biomarkers [3,4]. To sum up, modulation of I2-IR by bicyclic α-aminophosphonates may open a new therapeutic avenue for unmet neurodegenerative conditions.

Figure 1. Bicyclic α-aminophosphonates as high affinity I2-IR ligands

References
Quinolinonyl non-diketo acid derivatives as inhibitors of the HIV-1 ribonuclease H function of reverse transcriptase

Valentina Noemi Madia, a, * Antonella Messore, a Valeria Tudino, a Alessandro De Leo, a Angela Corona, b Luigi Scipione, a Daniela De Vita, a Giorgio Amendola, c Salvatore Di Maro, c Ettore Novellino, d Sandro Cosconati, e Mathieu Métifiot, f Marie-Line Andreola, f Francesca Esposito, f Nicole Grandi, b Enzo Tramontano, b Roberta Costi, a and Roberto Di Santo a

a Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185, Rome Italy. b Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S5554 -09042 Monserrato (CA) Italy. c DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy. d Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy

*valentinanoemi.madia@uniroma1.it

The AIDS is a complex of pathological manifestations characterized by progressive degeneration of the immune system caused by the HIV virus. An essential enzyme for the retroviral life cycle is reverse transcriptase (RT), an heterodimeric enzyme with two associated activities: the DNA polymerase and the ribonuclease H (RNase H) activity that selectively degrades the RNA strand of the hybrid RNA/DNA formed during the reverse transcription.[1] Despite such armamentarium, both acute and chronic toxicities limit the prolonged use of several antiretroviral agents. In addition, the selection of drug-resistant strains and the spreading of such strains in newly infected patients is also an increasing concern, underscoring the pressing demand of novel anti-HIV agents, possibly targeting viral functions not yet explored.[2] In such a scenario, an attractive target turns out to be the RNase H function, which has been little explored although it could be potentially vulnerable to a specific inhibition.[3] Although RT is a multifunctional enzyme, all RT inhibitors currently approved for the treatment of HIV infection target only the RT-associated polymerase function, while none of them block the RNase H activity. Nevertheless, several studies have demonstrated that the abolition of the HIV-1 RNase H function stops the virus replication, proving to be, therefore, a validated and attractive target for the development of new anti-retroviral agents, in order to enhance the anti-HIV-1 drug armamentarium effectiveness. Despite this, it has been little explored and it needs to be further developed through the support of new HIV/AIDS drug discovery programs, in order to identify more efficient anti-HIV drugs that could be used for therapy. To date, only few compounds have been described to inhibit the HIV-1 RNase H function. Among them, arylidiketo acid derivatives proven to inhibit both integrase enzyme and RNase H function of the RT. Pursuing our studies on DKA derivatives as dual inhibitors of IN and RNase H,[4-6] we decided to apply an isosteric approach to our previously reported anti- HIV-1 quinolonyl DKA derivatives to obtain a new class of non-DKA compounds as RNase H inhibitors endowed with antiviral activity. The data coming from the biological assays will be shown and discussed.

References
Multimatrix therapeutic drug monitoring of patients under antidepressant treatment

Camilla Marasca,a,b* Michele Protti,a Roberto Mandrioli,c Andrea Cavalli,b,d Anna Rita Atti,e Diana De Ronchi,e and Laura Mercolini

Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy

Italian Institute of Technology (IIT), Via Morego 30, 16163, Genoa, Italy

Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d’Augusto 237, 47921, Rimini, Italy

Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy

Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Viale C. Pepoli 5, 40123, Bologna, Italy

* camilla.marasca2@unibo.it / camilla.marasca@iit.it

Patients with eating disorders (ED) are affected by comorbidities involving the psychic and physical sphere of individuals. To treat ED-related anxiety and depression, reduce binge-eating behaviours and vomiting, new-generation antidepressants are often prescribed. Moreover, especially in case of polypharmacy regimens, to overcome suspected non-compliance and adverse effects, a frequent therapeutic drug monitoring (TDM) is necessary to evaluate drug and main metabolite concentrations in different biological fluids.[1] In order to have an overall assessment of patient clinical outcomes and being able to personalise pharmacological therapies, in this research work whole blood and oral fluid were investigated as complementary matrices. To make biological fluid collection less invasive and more frequent and feasible, an innovative and promising dried microsampling approach, i.e. volumetric absorptive microsampling (VAMS), was proposed to patients under treatment with fluvoxamine, an antidepressant drug belonging to selective serotonin reuptake inhibitors (SSRIs). VAMS strategy allows to collect an accurate and high reproducible micro-volume of biological fluid, regardless of its density in a minimally invasive way directly from a fingerprick. Moreover, the drying step takes place at room temperature, as well as transport and storage. Finally, stability profiles of dried microsamples are usually comparable with respect to biological fluids stored at controlled temperature.[2] An original analytical workflow based on capillary whole blood and oral fluid VAMS sampling, followed by miniaturised pretreatment procedure by means of microextraction by packed sorbent (MEPS) and a sensitive LC-UV-MS/MS method, was developed and optimised with respect to all the main parameters involved from sampling to instrumental analysis, granting satisfactory validation results (extraction yield > 84%, precision RSD < 8.9%, stability > 85.0% after 3 months). The validated miniaturised approaches were successfully applied to the analysis of blood and oral fluid collected from patients undergoing fluvoxamine treatment. Then, quali-quantitative evaluations were made between the results obtained from both matrices and between drug dosage and concentrations in whole blood and oral fluid, as different but complementary biological matrices with the aim of having an overall assessment of the drug. In order to demonstrate the reliability of the proposed strategies, not commonly used for TDM purposes, comparisons were also made with respect to fluid matrices subjected to standard reference procedures, showing good agreement. The developed methodology has proved to be suitable for the TDM of patients affected by ED and under antidepressant drug therapy and it could be proposed as self-sampling procedure aimed to reach a better personalisation of pharmacological therapies, with the perspective of a patient-centric precision medicine.

References

Identification of selective TERRA-RNA G-quadruplex binders through computational techniques.

Roberta Rocca,a,b* Annalisa Maruca,b,c Anna Artese,b,c PierFrancesco Tassone,a Giosuè Costa,b,c Stefano Alcaro,b,c

a Department of Experimental and Clinical Medicine, Magna Græcia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy.
b Net4Science Acedemic Spin-Off, “Magna Græcia” University of Catanzaro, Campus “S. Venuta”, Viale Europa, Germaneto, 88100, Catanzaro, Italy.
c Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.

*rocca@unicz.it

The telomeric repeat-containing RNA, known as TERRA, is a long non-coding RNA transcribed from telomeres in mammalian cells. TERRA is a G-rich RNA sequence, characterized by a non-canonical structure such as G-quadruplexes (G4s) and it can interact with telomerase, resulting in the inhibition of this enzyme in vitro (1-2). In light of this, TERRA binders can be an innovative strategy for cancer treatment. A previous Structure-based Virtual Screening (SBVS) on bimolecular DNA/RNA G4 leads to the discovery of three best candidates (3). Currently, these promising hits have also been studied through molecular docking simulations on the G4 Tel monomolecular DNA (Tel) and TERRA (TERRA). The computational protocol, which included homology modeling, molecular dynamics and docking studies, provided the selectivity of two compounds towards TERRA with respect to the DNA counterpart, while the third hit acts as dual Tel/TERRA G4-ligand (Figure 1). Biophysical and biological assayes are in progress with the aim to confirm computation predictions and to characterized their potential anti-cancer profile.

Figure 1. Workflow for the discovery of selective monomolecular TERRA binders.

Acknowledgment: This work was supported by Italian Association for Cancer Research (AIRC) research project “Small molecule-based targeting of lncRNAs 3D structure: a translational platform for the treatment of multiple myeloma” (code 21588).

References
Recent modifications and improvements in methodology [1], and has a hot topic of study in both academic and industrial research. The primary driving force underlying the rediscovery of mechanochemistry is green chemistry, [2] in particular the need of chemical and pharmaceutical industries for the development of more sustainable synthetic protocols characterized by energy efficiency of chemical transformations and reduction of solvent use. The use of such approaches offers additional advantages of mechanosynthesis over classical organic chemistry, in terms of excellent selectivity and the possibility to perform previously unknown reactions. Interestingly, an increasing number of mechanochemical procedures for generating pharmaceutically relevant fragments and functionalities led to coining the term “medicinal mechanochemistry” [3].

Here, an efficient and sustainable mechanochemical procedure was developed to obtain PZ-1361, a potent and selective 5-HT7 receptor antagonist, with significant antidepressant properties in rodents [4]. The elaborated protocol offered several advantages over classical thermal methods in solution, including improvement of the overall yield (from 34% to 64%), reduction of reaction time (from 60 h to 5.5 h), limitation of the use of toxic solvents and the formation of by-products. The versatility of the protocol was additionally confirmed by introducing diversification at the aryloxy fragment, central amine core, and the benzenesulfonamide moiety. This approach represents a rare example of organic synthesis of biologically active compounds exclusively performed using mechanochemical and solid/gas reactions [5].

References
[1] Gomollón-Bel, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 2019, 41, 12–17;
Precision targeting of a mitochondrial channel in intruder cells within the brain. A new approach to brain tumors

Sofia Parrasia, Andrea Rossab, Tatiana Varanitac, Paolo Ruzzad, Lucia Biasuttia, e, *

a) Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
b) Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padua, Italy
c) University of Padova, Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
d) CNR Institute of Biomolecular Chemistry, National Research Council, Via Marzolo 1, Padua, Italy
e) CNR Neuroscience Institute, National Research Council, Viale G. Colombo 3, 35131 Padua, Italy

* lucia.biasutto@cnr.it

The voltage-gated potassium channels Kv1.3 located in the inner mitochondrial membrane plays important roles in cancer. High expression of this channel has been found in several cancers such as melanoma, pancreatic cancer (PDAC), glioblastoma and neuroblastoma. Inhibition of mitoKv1.3 leads to pro-apoptotic processes, exploited through the design of selective inhibitors. [1] PAPTP is one of these novel inhibitors of mitoKv1.3. It drastically reduces tumor growth in mouse models of melanoma and PDAC, without severe side effects. [2] Unfortunately, while effective against glioma cells in vitro, it turned out to be inactive in vivo upon systemic administration, because it is not able to cross the blood brain barrier (BBB). [3]

One of the approaches to overcome the BBB reported in the literature relies on cell-penetrating peptides (CPPs), short sequences of amino acids capable of crossing biological membranes and of delivering active drugs. Angiopep2 (TFFYGGSGRKRRNKTEEY) and TAT (GRKKRRQRRRPPQG) are among the most studied for brain delivery. [4-6]

The aim of this study is to synthesize Angiopep2-PAPTP and TAT-PAPTP and to evaluate their absorption into the brain in vivo. The conjugates were designed using the pro-drug approach. To obtain this, the TPP⁺ moiety of PAPTP was modified adding a linker to one of the phenyl groups (PAPTPL) and then conjugated to the CPPs through a bio-reversible carbamate bond. TAT-PAPTP and Angiopep2-PAPTP were both tested in vivo. TAT-PAPTP was abandoned because of evident toxicity signs. Angiopep2-PAPTP was administered to the mice (5 µmol/kg BW) and the mice were sacrificed after 15 (n=5), 30 (n=4) and 60 (n=6) minutes.

The results show that Angiopep2-PAPTP is able to cross the BBB, showing its presence in the brain at 15 and 30 minutes after the injection. The analysis of the liver showed that Angiopep2-PAPTP is mainly metabolized through the cleavage of the peptide chain. In particular, PAPTPL plus the first one, two or three amino acids of the chain were identified via HPLC/MS analysis.

Summarizing, conjugation to Angiopep2 represents a viable strategy to deliver PAPTP to the brain, overcoming the barrier which completely prevents its access when administered as such.

References
Synthesis and preliminary docking evaluation of novel 1-benzyl-N-(4-(4-arylpiperazin-1-yl)phenyl)piperidin-4-amines, as potential acetylcholinesterase inhibitors

Mihajlo J. Krunić, a, * Jelena Z. Penjišević, a Ivana I. Jevtić, a Milovan D. Ivanović, a and Slđana Kostić-Rajačić, a

a Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
b Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia

*mihajlo.krunic@ihtm.bg.ac.rs

Acetylcholinesterase inhibitors (AChEIs) represent an important class of compounds used for the treatment of Alzheimer’s disease symptoms. [1]

As a part of our ongoing research on functionalized piperidines, we designed and synthesized five novel compounds (4a-e) that contain N-benzyl piperidine and N-aryl piperazine moieties, as potential AChEIs. The synthetic route encompasses two steps (Scheme 1) starting from N-benzyl piperidine 1. Conversion of 1 to anilinopiperidine 2 by reductive amination, followed by the Buchwald-Hartwig coupling of 2 and substituted arylpiperazines 3 afforded final products (4a-e).

Scheme 1. Synthesis of novel 1-benzyl-N-(4-(4-arylpiperazin-1-yl)phenyl)piperidin-4-amines 4a-e

Preliminary docking evaluation revealed that all compounds bind to the active site of acetylcholinesterase (AChE) in similar manner as donepezil, a drug used clinically to alleviate symptoms of Alzheimer’s disease. The crystaline structure of donepezil-AChE complex has been published. [2] As evident from Fig. 1, the compound 4a, a representative of the group, fits well in the AChE active site, forming key stacking interactions against Trp86, Trp286 and Tyr341. [2]

Figure 1. a) Orientation of 4a in the active site of AchE (red), overlapped with donepezil (green, PDB: 4ey7); b) interactions of 4a with the active site of AChE (PDB: 4ey7)

AChE inhibitory activity of 4a-e will be assessed as a part of our ongoing work. Depending on the AChE inhibitory activities for the first series, synthesis of more new analogues of 4 will be implemented.

References

Interaction of Zinc Metal Ion With Drug Molecules and the Binding Effect on a Transport Protein

Manos C. Vlasiou,* and Kyriaki S. Pafiti

University of Nicosia, Makedonitissis 46, 2417, Nicosia, Cyprus

*vlasiou.m@unic.ac.cy

Using UV–Vis, FT-IR, fluorescence spectroscopy and protein-ligand docking, the interactions between the zinc complexes with drug analogues and bovine serum albumin were investigated. In addition, considering the ubiquitous presence of zinc ions in the human system, we studied the interactions between this ion with hymecromone, dihydropyridine analogue, and acetamide (Figure 1), as well as the pH influence on these systems. The complexes were synthesized by interaction between the ligands and the Zn (II) ion in a 2:1 M ratio. Elemental analysis, FT-IR, and UV–Vis spectroscopy studies investigated the structure of the synthesized complexes. Fluorescence spectroscopy, UV–Vis, molecular docking and molecular dynamics were used to study the interactions of the Zn complexes with the BSA. The drug-Zn (II) system’s pH effect was investigated using UV–Vis spectroscopy. After the complexation with the zinc, the drug molecules exhibited higher apparent binding affinity to BSA. BSA’s fluorescence efficiency by the drug analogues was enhanced. In addition, molecular modelling was used to classify the residue of amino acids in the BSA playing key roles in this binding interaction. An increase in pH appears to contribute to alkaline hydrolysis of the Zn (II) molecules.

Figure 1. Formation of the complex Zn molecules with the drug analogues as ligands.

References
Human African Trypanosomiasis (HAT), well known also as sleeping sickness, is an infection caused by protozoa of Trypanosoma genus. There are two main forms of HAT: the chronic form caused by Trypanosoma brucei gambiense, particularly widespread in central and western Africa, and the acute form of HAT induced by Trypanosoma brucei rhodesiense occurring in eastern and southern Africa.[1] Due to problems related to the drugs currently available for HAT therapy, like toxicity, route of administration and limited spectrum of action, there is an urgent need to identify new targets for the development of novel drugs for HAT treatment. In this context rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense, due to its key functions, is currently considered an interesting target for the new drug discovery process.[2]

Our research team has been involved in the last decade into the development of potent rhodesain inhibitors. In particular, starting from the structure of the reversible rhodesain inhibitors 1a-c, endowed with K_i values in the low micromolar range[3] (Figure 1), we designed a new series of peptidomimetics 2a-g maintaining the benzodiazepine scaffold as a β-turn mimetic. We introduced a characteristic peptide sequence for rhodesain inhibition, i.e. Phe-HomoPhe P2-P1, finally the 3-bromoisoaxazoline warhead was replaced with a vinyl ester moiety, able to react as Michael acceptor, while at the P1’ site we selected a panel of aliphatic or aromatic nuclei to evaluate the size of the corresponding S1’ pocket.[4] All the synthesized molecules were tested against rhodesain to evaluate their inhibitory properties, at the same time the peptidomimetics were docked into rhodesain binding site to study their binding mode. The results of this investigation will be reported and discussed.

References
Development of a Microscale Thermophoresis-based Method for Screening and Characterizing Inhibitors of the Methyl Lysine Reader Protein MRG15.

Alessandra Feoli,a,* Vincenzo Pisapia,b Monica Viviano,a Sabrina Castellano,a Tanja Bartoschik,b and Gianluca Sbardella.a

aDepartment of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
bNanoTemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany.

*afeoli@unisa.it

Among all the proteins containing methylation reader domains, MRG15 is a transcription factor with a crucial role in embryonic development, cell proliferation and cellular senescence (Figure 1).[1, 2] Despite the involvement of this protein in different physiological and pathological states, to date its role has not been fully elucidated due to the lack of specific and potent chemical probe. Therefore, as for other reader proteins, the interest in developing small-molecule inhibitors is very high.[3]

Here we report the development of a Microscale Thermophoresis (MST) assay for the reader protein MRG15. First, the labeling procedure of the protein was optimized; subsequently the attention was focused on assay development, testing different buffers and the effect of stabilizing agents on the signal. Thus, the assay was validated using the reference compound UNC1215, and the screening of a small library of compounds was performed yielding to the identification of 10 compounds able to interact with the protein with affinities ranging from 37.8 nM to 59.1 µM.

Hence, MST turned out as a robust and fast method for the identification of new ligands of MRG15 and it could be applied for the identification of new chemical probes for other methylation reader domains.

Figure 1. A) Crystal Structure of the human MRG15 chromodomain (PDB: 2F5K) with the detail (B) of the aromatic cage. The picture was prepared using UCSF Chimera (coordinates from Protein Data Bank, PDB ID code 2F5K).[4]

References
Identification and full chemical characterization of novel phytocannabinoids isolated from a medical Cannabis sativa variety

Pasquale Linciano, Cinzia Citti, Fabiana Russo, Livio Luongo, Monica Iannotta, Aldo Laganà, Anna Laura Capriotti, Flavio Forni, Maria Angela Vandelli, Giuseppe Giglio, Giuseppe Cannazza

Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.
Mediteknology s.r.l., Via Arnesano, 73100 Lecce, Italy.
Institute of Nanotechnology of the National Council of Research (CNR NANOTEC), Via Monteroni, 73100, Lecce, Italy.
Department of Experimental Medicine, Division of Pharmacology, Università della Campania “L. Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy.
Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
*Present address: Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
*pasquale.linciano@unipv.it

Cannabis sativa has been for a long time a neglected plant as it is the most widely spread illicit drug worldwide, especially among young adults. However, in the last decade, a renewed interest on Cannabis has arose in the scientific community, especially for its implication in the treatment of several pathologies including glaucoma and epilepsy, definitely becoming one of the most studied plants. Cannabis is the only plant able to produce a peculiar class of organic molecules called phytocannabinoids. The two most important and studied phytocannabinoids are undoubtedly cannabidiol (CBD), a non-psychotropic compound, but with other pharmacological properties including anti-inflammatory, anti-oxidant and anti-convulsant activity, and Δ9-tetrahydrocannabinol (Δ9-THC) which instead possesses psychotropic activity and it is responsible for the recreative use of hemp. Beside CBD and THC, at present, almost 150 phytocannabinoids have been detected in the cannabis plant, although few have been isolated and studied. However, the analysis performed by our research group on a medicinal cannabis variety, the Italian FM2, provided by the Military Chemical Pharmaceutical Institute in Florence by means of UHPLC-HESI-Orbitrap, allowed us to identify some still unknown phytocannabinoids. In particular, the butyl homologues of CBD (called CBDB) and Δ9-THC (called Δ9-THCB) were isolated by semipreparative HPLC purification. For the first time, their absolute configurations were assigned, and their chemical and spectroscopic properties were thoroughly characterized and compared to those of authentic standards obtained via stereoselective synthesis.1–3 Extensive pharmacutic studies were performed on the two new identified THCs. The biological results obtained in the in vitro binding assay indicated an affinity for CB1 receptor comparable (Ki=15 nM, for Δ9-THCB)3 to the one reported for Δ9-THC in the literature. Docking studies confirmed the importance of the length of the alkyl chain on the resorcinyl moiety for CB1 binding affinity. In vivo formalin test was performed on Δ9-THCB revealing potential analgesic and anti-inflammatory properties.3 The tetrad test in mice showed a partial agonistic activity of Δ9-THCB toward the CB1 receptor. Ongoing studies are devoted to the investigation of the pharmacological activity of CBDB and to expand that of Δ9-THCB. These new identified phytocannabinoids are present in traces and therefore they do not represent a threat for the human health. However, these remarkable works highlight how much there is to still learn about the properties of cannabis paving the way to pharmacologists, toxicologists, and clinicians to new therapeutic substances and to correlate the observed biological effects with the chemical composition of the different cannabis varieties employed.

References

Efflux Pump Inhibitors revert Drug Resistance in MDR-\textit{Mycobacterium Tuberculosis} strains

Roberta Ibba,a Paola Corona,a Federico Riu,a Paola Molicotti,b Antonio Cartac,*

a Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, via Muroni 23a, 07100, Sassari, Italy
b Department of Biological and Medicinal Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
c acarta@uniss.it

\textit{Mycobacterium Tuberculosis} (MTB) is nowadays the first cause of death from a single agent, according to the World Health Organization (WHO). It can affect the lungs causing pulmonary tuberculosis (TB), or other organs, causing extrapulmonary TB. In recent years, about 10 million people fell ill with TB every year and in 2018 about 1.2 million TB deaths were registered worldwide.\cite{1} Drug-resistant MTBs continue threatening global health with an increasing number of MTB strains which become drug resistant, multi drug-resistant or extensively drug-resistant (DR, MDR and XDR respectively).\cite{1} MTB strains develop spontaneous gene mutations that provide the bacteria resistance to the anti-TB drugs. Reduction of drug affinity for the target is caused by mutations in the gene coding for the drug target.\cite{2} Continued exposure of MTB cells to anti-TB drugs also results in upregulation of the efflux pump system genes, leading to an increased number of efflux pumps (EPs) on the cell membrane.\cite{3} Efflux pump inhibition represents a valid strategy in anti-TB research: partial suppression of the drug extrusion results in intracellular therapeutic concentration restored or even increased.

A new series of 3-phenoxymethyl-quinoxaline derivatives (PMQs) has been designed, synthesised and investigated as extrusion pump inhibitors (EPIs) against MDR-MTB strains. Nine clinical strains of MTB, two non-tubercular mycobacteria (NTM) clinical strains, and M. \textit{Tuberculosis} H37Rv as reference, were used in REMA assays, testing first and second line antituberculosis drugs both in presence and absence of our PMQs, evaluating how EPIs can impact the drug MICs (minimal inhibitory concentrations) values, and therefore the activity.

The different resistance levels tracked in the clinical strains have been reduced by EPIs and in several cases the susceptibility was completely restored. The results obtained in this study indicated that the intrinsic cell-efflux activity significantly contributes to the overall resistance in resistant clinical isolates of MTB and NTM, and that the inhibition of efflux pumps by the PMQs can enhance the clinical effect of antibiotics.

\textbf{Figure 1.} EPIs mechanism of action.

\textbf{Figure 2.} 3-Phenoxymethyl-quinoxaline derivatives (PMQs) general structure.

\textbf{References}

Discovery of new potential anti-tyrosinase agents through ligand-based pharmacophore strategy focused on competitive inhibitors.

Federico Ricci, a, *Serena Vittorio*, a Gitto Rosaria, a and Laura De Luca, a

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168, Messina, Italy

federicoricci300@gmail.com

Melanogenesis represents the biosynthetic pathway of melanin pigments, which play a pivotal role in the protection of skin against the harmful effects of UV radiation. However, melanin overproduction is related to various hyperpigmentary disorders such as melasma, freckles and melanoma. [1] The first two steps of melanin biosynthesis are the oxidation of L-tyrosine in L-DOPA and its subsequent oxidation in dopaquinone. [1] These steps are the rate-limiting ones of the whole process of melanin synthesis and they are both catalyzed by tyrosinase, a type-3 copper enzyme whose active site is characterized by the presence of two copper ions each coordinated by three histidine residues. [2] Therefore, the inhibition of tyrosinase activity represents an efficient way for the development of depigmenting agents.

According to kinetic studies, several types of tyrosinase inhibitors have been identified and classified into: competitive, non-competitive, uncompetitive and irreversible inhibitors. [3] Nevertheless, the ability of some of them to occupy the catalytic site of the enzyme is still unclear, due to the lack of sufficient crystallographic information.

In this research, 14 competitive mushroom tyrosinase inhibitors of diphenolase activity were selected from literature and employed for the creation of different ligand-based pharmacophores by using LigandScout software. The generated models were ranked and refined basing on the validation made through ROC curves creation.

The selected merged feature pharmacophore model (Figure 1) has been used for the virtual screening of libraries for the discovery of new tyrosinase inhibitors.

To get more insights about the ability of the retrieved hits to occupy tyrosinase active site, docking studies were carried out resulting in the identification of promising tyrosinase inhibitors that were purchased and for which biological evaluation is ongoing.

Figure 1 Representation of the selected merged feature pharmacophore used for the virtual screening procedure.

References

Structure-based identification of P-glycoprotein inhibitors from natural sources

Paolo Governa,a,b Marco Biagi,c Fabrizio Manetti,a,* and Stefano Forli b,*

a Department of Biotechnology, Chemistry and Pharmacy – Department of Excellence 2018-2022; University of Siena, Via A. Moro 2, 53100, Siena, Italy. b Center for Computational Structural Biology, Department of Integrative Structural and Computational Biology; The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA. c Department of Physical Sciences, Earth and Environment; University of Siena, Strada Laterina 8, 53100, Siena, Italy.

*fabrizio.manetti@unisi.it, forli@scripps.edu

ATP-binding cassette (ABC) transporters are a large family of proteins involved in membrane transport of a wide variety of substrates. Among them, ABCB1, also known as MDR-1 or P-glycoprotein (P-gp), is the most characterized. By exporting xenobiotics out of the cell, P-gp activity can affect the ADME properties of several drugs. Moreover, P-gp has been found to mediate multidrug resistance in cancer cells. Thus, the inhibition of P-gp activity may lead to increased absorption and/or intracellular accumulation of co-administered drugs, enhancing their effectiveness.[1]

While some attempts to perform structure-based discovery of P-gp inhibitors have been carried out, many of the currently known P-gp inhibitors were characterized exploiting ligand-based approaches, due to the lack of well-refined human crystal structures.[2] However, recently human cryoEM structures, with and without co-crystallized ligands, have been resolved, giving more structural insights into the different conformations of the protein.[3]

Using the human cryoEM 3D structure of the P-gp in the inhibitor-bound intermediate form (PDBID: 6qee), we virtually screened approximately 200'000 commercially available natural compounds from the ZINC database.[4] Raccoon2 and AutoDock Vina were used for performing the molecular docking simulations.[5]

To build a model able to discriminate between substrate and inhibitors and to filter the virtual screening results, we also docked a dataset of 3250 compounds with known activity, including P-gp inhibitors and substrates, as well as inactive molecules. The AutoDock Vina scoring function was shown to be able to enrich known binders over non binders, with more than 80% of the top quarter of docking results containing known binders. Then, 6 molecular descriptors available in DataWarrior were used to perform structural similarity clustering of known inhibitors and substrates independently.[6] Then, the most representative molecule for each cluster was used to generate 3D common pharmacophores, using their best docked pose in the P-gp binding site.[7] The pharmacophores were then used to re-score virtual screening results, and molecules matching all the inhibitors pharmacophores and none of the substrates pharmacophore were chosen for visual inspection. With this consensus approach, we were able to identify 10 potential candidates which will be tested for their ability to inhibit P-gp.

References

Computational and synthetic approaches for the development of α-synuclein aggregation inhibitors for the treatment of Parkinson’s disease

Serena Vittorio,a,* Ilenia Adornato,a Rosaria Gitto,a Samuel Peña-Díaz,b Salvador Ventura,b and Laura De Lucaa

a Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Palatucci, 13, I-98168, Messina, Italy
b Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

*svittorio@unime.it

Parkinson’s disease (PD) is one of the most common neurological disorders. It is characterized by the degeneration of dopaminergic neurons with the subsequent reduction of dopamine levels, leading to bradykinesia, muscular rigidity and postural instability. The hallmark of PD is represented by the presence of Lewy bodies, neuronal deposits mainly composed by aggregates of the presynaptic protein α-synuclein (α-syn). Currently, the therapy of PD includes the administration of drugs able to restore the level of dopamine thus reducing the motor symptoms. However these drugs are unable to slow or block the neurodegenerative process, therefore there is an increasing interest in the search for new and more effective therapeutic tools. In the last decade, the inhibition of α-syn aggregation turned out to be a promising disease-modifying strategy for reducing the neurodegeneration.[1,2] Herein, we described a rational approach applied for the identification of new α-syn aggregation inhibitors. In particular, we generated a ligand-based pharmacophore model (Figure1) which was used to screen two 3D libraries. The hits selected from the virtual screening were tested in vitro in order to probe their ability to disrupt α-syn aggregation, resulting in the identification of compound 3-(cinnamylsulfanyl)-5-(4-pyridyl)-1,2,4-triazol-4-amine as promising hit for the development of a new series. The designed compounds were synthesized and their capability to inhibit α-syn aggregation was studied in vitro leading to the identification of four interesting derivatives. Finally, the binding mode of this class of inhibitors was deciphered by means of molecular docking simulation.[3]

References
Multi-Targeting Bioactive Compounds Extracted from Essential Oils as Kinase Inhibitors

Annalisa Maruca, Delia Lanzillotta, Francesco Trapasso, and Stefano Alcaro

Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy

Net4Science srl, Università “Magna Græcia”, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy

Department of Experimental and Clinical Medicine, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy

maruca@unicz.it

Traditionally, Essential Oils (EOs) have been used for their biological activities including antibacterial, antifungal, sedative, antioxidant, spasmylytic, carminative, hepatoprotective, and analgesic effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. In particular, we applied computational methods, which offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. Therefore, we performed a Structure-Based Virtual Screening (SBVS) of EOs against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database. The evaluation of the theoretical binding affinity leads to select 13 molecules as new potential kinase inhibitors with a multi-target profile. The 2 hits with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to exhaustively consider possible binding modes and the associated conformational changes within receptor active sites. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify its antiproliferative activity (Figure 1). Thus, the next step will be the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.[1]

Figure 1. The principal steps for the discovery of multi-targeting bioactive compounds extracted from essential oils as kinase inhibitors.

References

Molecular modeling of EmrE, multidrug transporter protein - studies by molecular dynamics simulation

Jakub Jurasz1, Milosz Wieczor2, Jacek Czub2, Maciej Baginski1
1Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
2Department of Physical Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
s142674@student.pg.edu.pl

EmrE is a small multidrug resistance transporter found in Escherichia coli that confers resistance to toxic polyaromatic cations by proton coupling of these substrates. One of the mechanisms by which cells neutralize the action of toxic compounds is the action of membrane transporters [1]. Secondary transporters, such as the EmrE protein, combine the outflow of drugs with the internal movement of protons across the cell membrane [2]. EmrE is a prototype member of the small multidrug resistance (SMR) transporter family and is one of the smallest known transporters in nature, consisting of only 110 amino acid residues. Studies have shown that the basic functional unit of EmrE is an oligomer, as could be expected from a small size membrane protein. It seems that the basic functional unit of EmrE is the anti-parallel homodimer, as shown by oligomerization tests, substrate binding experiments, negative domination studies and cross-linking analysis [3].

The long term aim of this work is to find basic knowledge about molecular mechanism of action of this transporter in order to design future potential inhibitors. In particular, the aim of current part of our work is to present and verify hypothesis regarding the mechanism of transport and the mechanism of recognizing toxic compounds by the EmrE protein using molecular dynamics methods. Furthermore because only a structure consisting purely of alpha carbons with poor resolution is available, this work also focuses on creating a reliable structure needed for simulation. The obtained results present different aspects of thermodynamic and structural properties of studied transporter with regard to their mechanism of action.

References
Synthesis and biological evaluation of a new series of 5,6-difluorobenzotriazole-acrylonitrile derivatives as microtubule destabilising agents (MDAs)

Federico Riu, a,* Roberta Ibba, a Sandra Piras, a Antonio Carta a

a Department of Chemistry and Pharmacy, University of Sassari, via Vienna 2, 07100, Sassari, Italy

*friu1@uniss.it

Cancer is one of the noncommunicable diseases (NCDs) and one of the main characteristics of a tumour cell is its uncontrolled division. A crucial element involved during the cell replication is the mitotic spindle, that is mainly composed by microtubules (MTs). An attractive approach to be considered during therapeutic agents designing is the interference with MT dynamic equilibrium. [1] Nowadays, microtubule targeting agents (MTAs) are some of the most effective drugs used in solid and haematological tumours treatments. Colchicine binding site inhibitors (CBSIs) are microtubule destabilising agents (MDAs): the main representatives are colchicine and combretastatins A-1 (CA-1) and A-4 (CA-4), which bind MT in the colchicine site (CBS) located on β-tubulin at its interface with α-tubulin. [2]

In the proposed study, we further explored structure-activity relationship on the previously synthesised 3-aryl-2-(1H(2H)-benzotriazol-1(2)-yl)acrylonitrile derivatives, already proved to be MDAs. The original structure was properly modified in order to increase the anticancer effect. [3] In order to elucidate the effect of a substituent on the phenyl portion of the main scaffold, in this paper we present a new series of (E)(Z)-2-(5,6-difluoro-(1H)2H-benzo[d][1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile derivatives which were synthesised, characterised and submitted to different biological assessments.

The first anti-cancer screening was performed in vitro through the NCI60 test (NCI, Bethesda, USA, https://dtp.cancer.gov). At the first stage of the assay, at 10 µM of tested compounds, four derivatives showed interesting scores fulfilling the pre-determined inhibition criteria. The compounds progressed to the second step, consisting in five serial dilution-doses assay. Compound 1a (depicted in Scheme 1) was selected as lead compound of this series since it gave the best scores: it showed an average growth inhibition (GI) close to 100% against all leukemia cell lines. Generally, derivative 1a exhibited GI ranging from 60% to 100% in all the sixty solid and haematological cell lines. Compound 1a also showed a cytotoxic effect against seventeen solid and haematological tumor cell lines. At 1 µM, 1a presented GI ranging from 70% to 100% against seven cell lines.

In order to evaluate if this class of compounds could be extruded by the efflux pumps, channel proteins often overexpressed in drug-resistant cancer cells, we tested the lead compound 1a in a cell-based assay. Four cancer cell lines were selected with efflux pumps overexpression. [4] They were treated with compound 1a together with one efflux pump inhibitor (EPI) from our library and it was beneficial in terms of antiproliferative activity of compound 1a.

References
Chemical characterization of non-psychoactive *Cannabis sativa* L. extracts and evaluation of their antiproliferative activity

Lisa Anceschi, a* Alessandro Codeluppi, a Giulio Rastelli, a Lorenzo Corsi, a Federica Pellati, a*

a Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103-287, 41125 Modena, Italy

* lisa.anceschi@unimore.it, federica.pellati@unimore.it

Cannabis sativa L. is an annual cycle herbaceous plant belonging to the Cannabinaceae family. The main classes of compounds present in this plant are cannabinoids, terpenes and flavonoids [1]. Among cannabinoids, the most representative ones are Δ9-tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). These native acidic cannabinoids undergo a spontaneous decarboxylation under the action of light and heat, leading to the formation of their neutral counterparts, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). Non-psychoactive *C. sativa* (also known as hemp) is characterized by a high content of CBD and CBG, and a level of psychoactive Δ9-THC lower than 0.2%. CBD displays several biological activities related to the action on different targets. Recently, the interest in non-psychoactive *C. sativa* extracts is increased due to many biological activities related to both its cannabinoids and terpenes [2-4].

The aim of the project is to study the possible role and application of non-psychoactive *C. sativa* extracts as antiproliferative agents, in particular in combination with conventional chemotherapy, and to identify the compounds responsible for this activity. To this aim, it was necessary to fully characterize the bioactive compounds present in different *C. sativa* extracts of different non-psychoactive varieties through high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) and to evaluate their antiproliferative activity on different human cancer cell lines. In particular, HPLC-HRMS was used for the analysis of the decarboxylated ethanolic extracts from three hemp varieties having a different phytochemical composition (CBD-type, CBG-type and a hybrid one). The antiproliferative activity of the extracts was assessed on different human cancer cells of mesodermal origin. The results indicated that the K562 leukemia cell line was the one that responded better to the treatment and the CBD-type extract was the one that provided the lowest IC50 value. Then, dose-response curves were built for the associations of the CBD-type extract at 5 µg/mL with anticancer drugs currently used in therapy, including vincristine, imatinib and doxorubicin at 48 h of treatment. The same was done for the association between these therapeutic agents and pure CBD at 5 µM for 48 h.

The dose-response curves did not show a significant decrease of the IC50 value for imatinib and doxorubicin in association with the extract or with pure CBD. Differently, vincristine associated with the CBD-type extract showed a 10 times higher efficacy than the vincristine alone. This effect was found to be specific of the CBD-type extract. Since, the pharmacological activity of vincristine is related to its microtubule-destabilizing properties, some bioactive compounds present in the CBD-type extract might act on the same target, thus enhancing the antiproliferative activity of this anticancer drug. The identification of the compound/s responsible for this antiproliferative activity as well as the elucidation of the mechanism/s of action are currently on going.

References

More efficient synthesis, cytotoxicity and \textit{in silico} ADME properties of 3-hydroxy-17-oxa-17a-homoestra-1,3,5(10)-trien-16-one

Milica Ilić,a Dimitar Jakimov,b and Ivana Kuzminaca,*

a University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad, Serbia
b Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia

*ivana.kuzminac@dh.uns.ac.rs

Large number of cancers are hormone-dependent. This means that their growth is induced by hormones (estrogens or androgens). For example, some breast cancers contain estrogen receptors and they are called estrogen receptor positive cancers (ER+). Antiestrogens and aromatase inhibitors are used for treatment of these cancers. With this in mind, synthesis of 3-hydroxy-17-oxa-17a-homoestra-1,3,5(10)-trien-16-one was performed and published\cite{1,2}. This compound has shown significant antiestrogenic activity\cite{2}. In order to obtain it in more efficient way we have synthesised it in three synthetic steps starting from estrone as opposed to seven previously reported. Furthermore, \textit{in silico} ADME profile was evaluated by comparing phisichemical propreties calculated by SwissADME web tool with five different sets of criteria, as well as using the BOILED-Egg model to analyse possibility of the gastrointestinal absorption and brain penetration. Last but not least, cytotoxicity was tested on six tumor and one normal cell line.

Authors would like to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68451-03-68/2020-14/ 200125) for financial support.

References

Discovery of Orexant and Anorexant Agents with Indazole Scaffold Endowed with Peripheral Antiedema Activity

Marilisa Pia Dimmito1, Azzurra Stefanucci1, Alice Della Valle1 and Adriano Mollica1.
1Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100, Chieti.
marilisa.dimmito@unich.it

Metabolic syndrome is a group of multifactorial conditions, characterized by the loss of balance between energy income and caloric needs, that interests a large part of population. In this field, the endocannabinoid system plays a crucial role, representing a neuronal network involved in the control of several functions, such as feeding behavior.1

Rimonabant is an inverse agonist of type-1 cannabinoid receptor (CB1) used as antiobesity drug, suspended in 2008 due to its serious side effects on central nervous system.2

AB-Fubinaca, ADB-Fubinaca and AMB-Fubinaca are synthetic CB1 and CB2 agonists identified in illicit drugs in the Japanese market, their administration is associated with serious side effects, neurotoxicity and cardiotoxicity.3

New synthetic cannabinoids (SCs) as AB-FUBINACA/Rimonabant hybrids have been reported by Stefanucci and coworkers; these new indazole based compounds contain the Lonidamine scaffold with structural analogies to both Rimonabant and Fubinaca derivatives (Figure 1), joined with hydrophobic amino acid residues (tert-Leu, Leu, Val).4,5

In this work we evaluated the ability of novel C-terminal methyl amide Lonidamine hybrids to bind and activate CB receptors; these hybrid compounds have been studied by in vitro binding assays to cannabinoid receptors and by functional receptor assays, using rat brain membranes. The most active among them as an agonist, (LONI 11), and an antagonist, were tested in vivo in mice, to evaluate their ability to stimulate or suppress feeding behavior after intraperitoneal (i.p.) administration.

We also investigated the antinociceptive property of LONI 11, at the central and peripheral levels using formalin test and a tail flick test after an administration by the subcutaneous (s.c.) and intracerebroventricular (i.c.v.) routes, in vivo in mice.

A significant orexant effect has been also observed for LONI 11 and an intense anorexant effect for (LONI2) and LONI4. In zymosan-induced edema and hyperalgesia, LONI 11 reduced the percent of paw volume increase and paw latency after s.c. administration, also suggesting a possible peripheral anti-inflammatory activity.

References
New benzylpiperazine derivatives as selective σ_1 receptor ligands: synthesis, \textit{in vitro} and \textit{in vivo} pharmacological characterization

Intagliata Sebastiano,a, Loredana Salerno,a Valeria Pittalà,a Maria N. Modica,a Emanuela Arena,a Lisa L. Wilson,b Jay P. McLaughlin,b Orazio Prezzavento,a Giuseppe Romeo,a

\textit{a} Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
\textit{b} Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA

*s.intagliata@unict.it

The sigma-1 receptor (σ_1R) is a unique endoplasmic reticulum chaperone protein involving in the regulation of the trafficking of a variety of proteins. Due to its ability to regulate both voltage-gated ion channels and non-voltage-gated ion channels, the σ_1R is involved in intracellular calcium homeostasis and neurotransmission.1 Therefore, the σ_1R has been proposed as a valuable therapeutic target for several diseases and conditions, including neuropathic pain, cancer, treatment of drug abuse, and neurodegenerative disease.2

In this work, a new series of selective σ_1R ligands, bearing the benzylpiperazine scaffold as a basic moiety, were developed and preliminarily evaluated for their \textit{in vitro} and \textit{in vivo} pharmacological properties (Fig.1). Among the newly synthesized compounds, 3-cyclohexyl-1-[4-(4-methoxybenzyl)piperazin-1-yl]propan-1-one (8), showed low nanomolar affinity towards the σ_1R, and high selectivity over the σ_2R subtype ($\sigma_1 K_i = 1.6$ nM, and $\sigma_2 K_i = 1418$ nM) in the radioligand binding assay. Besides, the \textit{in vivo} antinociceptive effect exerted by 8, in a mice model of induced inflammatory pain (formalin paw assay), suggested that it acts as an antagonist at the σ_1R.

Altogether, our results support the further development of benzylpiperazine-based derivatives as potential therapeutics and diagnostic agents for the pharmacological modulation of the σ_1R.

Figure 1. Design strategy and result highlights for the new benzylpiperazine-based σ_1R ligands.

References
Modeling Epac1 Interactions with the allosteric inhibitor AM-001 by co-solvent molecular dynamics

Marianna Bufano,a Frank Lezoualc’h,b,c Romano Silvestri,a and Antonio Colucciaa

a Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
b INSERM UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, 31432 Toulouse, Cedex 04, France
c Université de Toulouse - Paul Sabatier, 31432 Toulouse, Cedex 04, France

marianna.bufano@uniroma1.it

The exchange proteins activated by cAMP (EPAC) are implicated in a large variety of physiological processes and they are as considered promising targets for a wide range of therapeutic applications.[1] In particular EPAC1 is considered as a novel protein target for the treatment of various cardiac diseases.[2,3] In that context, we recently characterized a selective EPAC1 antagonist named AM-001.[2] This compound was featured by a non-competitive mechanism of action but the localization of its allosteric site to EPAC1 structure has yet to be investigated. Therefore, we performed cosolvent molecular dynamics with the aim to identify a suitable allosteric binding site. Then, the docking and molecular dynamics were used to determine the binding of the AM-001 to the regions highlighted by cosolvent molecular dynamics for EPAC1. These analyses led us to the identification of a suitable allosteric AM-001 binding pocket at EPAC1. As a model validation, we also evaluated the binding poses of the available AM-001 analogues, with a different biological activity. Finally, the complex EPAC1 with AM-001 bound at the putative allosteric site was further refined by molecular dynamics. The principal component analysis led us to identify the protein motion that resulted in an inactive like conformation upon the allosteric inhibitor binding (Figure 1).

Figure 1. Porcupine plot of the top two eigenvectors. Right panel: eigenvector 1, left panel: eigenvector 2. Epac1 is reported as tube: CNBD and DEP green; REM orange; CDC25-HD blue and RA red. AM-001 is reported as cyan stick. The yellow and grey arrows attached to each a-carbon atom indicate the direction of the movement; the size of each arrow shows the magnitude of the corresponding movement.

References
Shift in activity of ciprofloxacin and norfloxacin “no-light activated” derivatives from antibiotics to anticancer agents: preliminary results

Carla Barbaraci, Antonino Nicolò Fallica, Emanuela Marras, Maria Tindara Ignazzitto, Maria Dichiara, Marzia Gariboldi, Viviana Orlandi, Greta Varchi, Agostino Marrazzo

Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria, 6, 95125, Catania, Italia.
Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Manara, 7, 21052, Busto Arsizio, Varese, Italia.
Istituto CNR per la Sintesi Organica e la Fotoreattività, Via Piero Gobetti, 101, 40129, Bologna, Italia.

carla.barbaraci@unict.it

Quinolones represent an important family of antibacterial drugs, widely prescribed for the treatment of urinary and respiratory infections in humans with great activity and spectrum of action. Recent advances in the development of novel quinolone derivatives demonstrate that this chemical scaffold can be properly modified in order to obtain molecules with promising cytotoxic activity against different cancer cell lines and some of them have already been used in clinics or under clinical trials, making quinolone derivatives efficient candidates for cancer treatment. [1] Nitric oxide (NO) is a short-lived gas whose cytotoxic role depends on its timing, location and concentration. [2] In this work, we conjugated the fluorescent fluoroquinolones ciprofloxacin and norfloxacin scaffold with a proper NO photodonor (NOPD) to achieve a controlled release of NO using a specific light irradiation (Fig.1).

Shift in activity from antibiotics to anticancer agents of twelve new compounds was investigated performing MTT assays in the dark on HCT116, MCF-7, MCF-7/ADR and MDA-MB231 cell lines whereas the lack of any antimicrobial activity has been demonstrated on PAO1 strain.

Photochemical studies regarding NO release are in progress to strengthen the dual cytotoxic activity of these novel hybrids.

References
Screening of [1,2]oxazolo[5,4-e]isoindoles in lymphoma models

Marilia Barreca,a,b* Virginia Spanò,a Maria Valeria Raimondi,a Alessandra Montalbano,a Rouli Bai,c Eugenio Gaudio,a Roberta Rocca,a Stefano Alcaro,d Ernest Hamel,c Francesco Bertoni,b and Paola Barraja,a

a Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
b Lymphoma Genomics, Institute of Oncology Research (IOR), USI University, Bellinzona, 6500-CH Switzerland;
c Screening Technologies Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702 United States;
d Department of Health Sciences, University Magna Græcia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy

*marilia.barreca@unipa.it

Non-Hodgkin lymphoma (NHL) is one of the most common hematological malignancy in the world, with more than 30 distinct subtypes divided into aggressive and indolent. Diffuse large B-cell lymphoma (DLBCL) is the most widespread form of NHL, accounting for 30-40% of all cases. Anti-tubulin agents are widely used in the treatment of lymphoma both alone and in combination chemotherapy regimens such as ABVD and R-CHOP.[1] The [1,2]oxazolo[5,4-e]isoindole system gave excellent results in reducing in vitro cell growth of several cancer cell lines (GI50 0.01-27 µM) and selected derivatives showed in vivo antitumor activity at well-tolerated doses in a diffuse malignant peritoneal mesothelioma (DMPM) xenograft model.[2,3] Moreover, they proved to affect microtubule assembly inducing cell cycle arrest at the G2/M phase and to inhibit the colchicine binding to tubulin up to 80%.

[1,2]Oxazolo[5,4-e]isoindoles were further screened in 4 lymphoma histotypes: germinal center B-cell and activated diffuse large B-cell lymphoma (GCB-DLBCL and ABC-DLBCL), marginal zone lymphoma (MZL) and mantle cell lymphoma (MCL). After 72 h treatment, cell proliferation was measured with the MTT assay. Compounds were pre-screened at the dose of 1 µM in SU-DHL-10 (GCB-DLBCL), HBL1 (ABC-DLBCL), VL51 (MZL) and MINO (MCL) cell lines. Those with percentage of proliferating cells down to 60% were further screened with a wider range of concentrations (0.15-10 µM). After the one-dose treatment, 8 out of 60 derivatives reduced the proliferation rate by 7-61%. At concentrations of 0.15-10 µM, they confirmed their anti-proliferative activity with IC50 values in the low micromolar - nanomolar range. The most potent compound reached nanomolar activity against MINO (IC50= 0.07 µM), SU-DHL-10 (IC50= 0.07 µM) and HBL-1 (IC50= 0.08 µM), followed by VL51 with a slightly higher IC50 value (0.12 µM). Structure-activity relationship (SAR) suggest that 3,4 and/or 5 methoxy substituted benzyl groups at the pyrrole nitrogen are crucial in conferring potent activity (Figure 1).

In conclusion, [1,2]oxazolo[5,4-e]isoindoles are very promising compounds for the treatment of lymphoma, confirmed by the strong anti-proliferative effect. Elucidation of the mechanism of action indicates a strong inhibition of the colchicine binding to tubulin.

Figure 1. [1,2]oxazolo[5,4-e]isoindoles

References
Neurotensin, a multi-faceted peptide

Santo Previti,a Mélanie Vivancos,b Adrien Chastel,c,d Emmanuelle Rémond,a Clément Morgat,c,d Philippe Sarret,b and Florine Caveliera,*

aInstitut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, ENSCM, Université de Montpellier, France.
bDepartment of Pharmacology & Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, QC, Canada.
cINCIA, UMR-CNRS 5287, Université de Bordeaux; dService de médecine nucléaire, CHU de Bordeaux, France.
spreviti@unime.it / florine.cavelier@umontpellier.fr

Neurotensin (NT) an endogenous tridecapeptide, firstly isolated from bovine hypothalamus,[1] is involved in various biological processes, such as blood pressure and body temperature modulation, analgesia, regulation of dopaminergic transmission and gastrointestinal function.[2] NT effects are mediated by the activation of two G protein-coupled receptors, NTS1 and NTS2, and NTS3, a sortilin-like receptor.[3] Several studies have demonstrated that the C-terminal portion H-Arg8-Arg9-Pro10-Tyr11-Ile12-Leu13-OH, namely NT(8-13), is the minimum peptide fragment required for producing NT effects. Given the overexpression of NTS1 in various cancers, such as breast cancer, pancreatic adenocarcinoma, lung cancer and some prostate cancers, we developed three series of NT conjugates as potential agents for imaging and therapy of cancers. In more detail, NT(8-13) sequence was chemically modified and several linkers, along with a chelating agent, were inserted. Novel NT conjugates were radiolabelled with 68Ga for PET imaging and 111In as surrogate for therapy, and fully characterized on human cancer cells and small animals.[4]

Besides, a panel of proteolytically stable NTS1 agonists was synthesized to target hypothermia. Backbone modifications and unnatural amino acids, such as pseudopeptide LysΨ[CH2NH]Lys, trimethylsilylalanine (TMSAla) silaproline (Sip) and D-amino acids were inserted. Biological evaluation showed significant hypothermic effect (-3°C for 1h) and increased metabolic stability (up to > 24h).[5]

On the other hand, NTS2-selective ligands led to analgesic effects without inducing vasodilation and hypothermia. For this reason, NTS2-selectivity is promising for developing alternatives to opioid medications in pain treatment. A set of modified hexapeptides was developed following a rational approach. When evaluated in different pain models, JMV5296 (H-LysΨ[CH2NH]Lys-Sip-Tyr-Ile-TMSAla-OH) showed a strong and prolonged antinociceptive effect without hypothermia.[6]

References
Design and synthesis of small molecules to disrupt XIAP/Caspase interaction

Nicolas Guedeney, aChiara Lo Caputo, a Jana Sopková de Oliveira Santos, a Anne Sophie Voisin-Chiret, a and Charline Kieffer a

aCentre d’Etude et de la Recherche sur le Médicament de Normandie (CERMN), EA 4258 FR CNRS 3038 INC3M, SF 4206 ICORE, Université de Caen Normandie, 14000 Caen, France

*c.locaputo1@studenti.uniba.it

The ovarian cancer is the most lethal gynaecologic malignancy and one of the most causes of female death in the world. [1] From the factories that contribute to malignant transformation, there is a down-regulation of the apoptosis process, due to mutations of suppressor genes. [2] In this contest, IAP (Inhibitor of Apoptosis Protein) proteins have an important role in the regulation of apoptosis, especially XIAP (X-linked Inhibitor of Apoptosis Protein). Among the different protein domains, XIAP-BIR2 domain mediates the interaction with Caspase-3 and Caspase-7, while XIAP-BIR3 domain binds Caspase-9, to block their activation. SMAC/Diablo protein, an endogenous peptidic inhibitor release by the mitochondria, can antagonize IAP proteins binding both BIR2 and BIR3 domains to carry out its function and to regularise the apoptotic cell process. [3] Several peptidomimetic compounds mimicking SMAC have been developed in recent years to inhibit XIAP or cIAP. [4] But the most difficult part is to achieve and to obtain selective compounds between members of the IAP proteins family, and between XIAP-BIR2 and XIAP-BIR3 domains to improve pharmacokinetics parameters.

Our aim is to design non-peptidic molecules that can mimic the interaction of the moiety (IBM), responsible of the interaction between XIAP and Caspases (Figure 1). Disrupting these interactions could promote the apoptosis of cancer cells and overcome the chemoresistance associate to the classical therapy in ovarian cancer. [5] As part of a fragment-based drug design (FBDD) approach, a previous library of compounds has been synthesized and screened against domains of XIAP. Actually, we are working on the scaffold optimization of the best hit to improve both its affinity and its selectivity. All our work is supported by molecular modelling and in vitro assays (Alphascreen, Fluorescence Polarization Assay).

Figure 1. Design of new non-peptidic fragments to target XIAP/Caspases interaction.

References
Molecular Docking Studies of Promising P-Glycoprotein Inhibitors obtained from Plectranthus spp

Vera M. S. Iscaa,b, Ricardo J. Ferreirab,f, Catarina Garciaa,c, Carlos M. Monteirob, Jelena Dinicd, Suvi Holmstedte, Milica Pesicd, Daniel J. V. A. dos Santosb, Nuno R. Candeiase, Carlos A.M. Afonsob, Patrícia Rijoa,b *

a Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal; b Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; c Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Spain; d Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia; e Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland; f Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden

*patricia.rijo@ulusofona.pt

The development of multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Development of MDR is often associated with overexpression of P-glycoprotein (P-gp).\cite{1}

Plectranthusspp. (Lamiaceae) are important sources of bioactive compounds, namely, royleanone diterpenes.\cite{2} The antitumoral compounds 6,7-dehydroroyleanone (DHR, 1) and 7α-acetoxy-6β-hydroxyroyleanone (AHR, 2), are lead compounds isolated from Plectranthusspp.\cite{3,4}

Several royleanone derivatives were prepared through hemi-synthesis from natural compounds 1 and 2, to achieve a small library of products with improved P-glycoprotein inhibition potential. Molecular docking and molecular dynamics studies were performed on several derivatives in order to clarify the molecular mechanisms by which they may exert their inhibitory effect in P-gp activity. Molecular docking and Molecular dynamics studies suggested that steric factors play a role when choosing which substituent can be placed at position C-12. Furthermore, results suggested that the presence of aromatic moieties increases the binding affinity of royleanone derivatives towards P-gp. Future generation of novel royleanone derivatives will comprise i) a selective modification of position C-12 with chemical moieties smaller than unsubstituted benzoyl rings and ii) the modification of the substitution pattern of the benzyloxy moiety at position C-6.

References

\begin{enumerate}
\end{enumerate}
In silico ADME and inverse docking of A,B-modified steroidal D-homo lactones with cytotoxic properties

Milica Ilić, a,*, Marina Savić, a and Ivana Kuzminac a

a University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, Novi Sad, Serbia

*ilicmilica@rocketmail.com

According to World Health Organisation, cancer is the second leading cause of death globally. Finding new potent anticancer compounds is one of fundamental goals of modern medicinal chemistry. This has led to large number of structurally diverse compounds that are used in treatment of this vast group of diseases. Some of those compounds have steroidal structure. For example, testolactone was one of the first compounds used in breast cancer treatment. This steroid contains D-homo lactone ring and its was motive for synthesis of large number of A,B-modified 17-oxa-17α-homoandrost-16-ones. [1-3] These compounds have shown significant cytotoxic activity on a number of cancer cell lines, eg breast, lung, prostate etc. In order to gain further insight in possibility of medicinal use for this compounds, we have selected 30 most active and evaluated their in silico ADME profile. This was done comparing phisicchemical proprieties calculated by SwissADME web tool with five different sets of criteria (Lipinski, Veber, Egan, Ghose and Muegge), as well as using the BOILED-Egg model to analyse possibility of the gastrointestinal absorption and brain penetration. Finally, ligand-based 3D similarity search was used to propose molecular targets potentially responsible for their cytotoxic activity.

Authors would like to thank the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68451-03-68/2020-14/ 200125) for financial support.

References

N-Acylethanolamine Acid Amidase (NAAA): Mechanism of Palmitoylethanolamide Hydrolysis Revealed by Mechanistic Simulations

Laura Scalvini,* Andrea Ghidini,a Alessio Lodola,a Donatella Callegari,a Silvia Rivara,a Daniele Piomelli,b,c,d and Marco Mor*a

*a Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle scienze 27/A, I-43124 Parma, Italy
b Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625
c Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625
d Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625

*N-acylethanolamines (NAEs) are a large family of endogenous lipid transmitters characterised by an acyl chain, which differs among the NAEs for length and degree of unsaturation, linked to ethanolamine through an amidic bond. NAEs exert several biological effects, and among them N-palmitoylethanolamine (PEA) takes a major role in analgesia and in anti-inflammatory and neuroprotective processes mediated by the activation of PPARα.1 The activity of PEA is terminated by its degradation to palmitic acid and ethanolamine catalysed by N-acylethanolamine acid amidase (NAAA), a member of the N-terminal nucleophile (Ntn) hydrolases superfamily, mainly expressed in B lymphocytes and macrophages,2,3 where it concentrates in lysosomes and shows an optimal activity at acidic pH.4 NAAA is produced as proenzyme autocatalytically activated through the proteolysis that releases the N terminal cysteine C126, which is the catalytic residue.3 As revealed by recent X-ray experiments,5 the catalytic cysteine is placed at the entrance of a narrowed and hydrophobic channel that accommodates the benzothiazole-piperazine scaffold of the non-covalent inhibitor ARN19702,6 and the lipophilic chain of the covalent inhibitor ARN726.7 On the solvent-exposed access of the channel, the N-terminal amino group is caged between the side chain of D145, R300, and N287, which forms the oxyanion site with the backbone of E195. In this work, the mechanism of NAAA-mediated catalysis was investigated at the atomic level using a model based on the X-ray structure of the human enzyme by applying molecular dynamics simulations and quantum mechanical/molecular mechanics simulations coupled with enhanced sampling. The attribution of the correct protonation state of carboxylate groups surrounding the catalytic site was critical for the identification of a stable model. Starting from a stable complex of the Michaelis complex, the free-energy surfaces of the acylation and deacylation reactions were estimated through Umbrella sampling simulations. These calculations outlined that the acylation is the rate limiting step, with the catalytic residue C126 acting both as an acid, protonating the ethanolamine leaving group, and as a nucleophile attacking the PEA carbonyl group. Consistently with experimental data, showing that NAAA hydrolyzes N-methylpalmitoylamide with high catalytic efficiency, the ethanol moiety of did not appear to contribute to the acylation reaction.

References

Preparation and HuR interaction studies of BOPC1 enantiomers combining DEEP-STD NMR and molecular modeling analysis

Francesca Alessandra Ambrosio,a,* Giosuè Costa,a,b Stefano Alcaro,a,b and Simona Collina

aDepartment of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, 88100, Catanzaro, Italy;
bNet4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, Germaneto 88100, Catanzaro, Italy;
cDepartment of Drug Sciences, Medicinal Chemistry and Technology Section, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy

*ambrosio@unicz.it

The Human antigen R protein (HuR) is an RNA binding protein which plays a pivotal role in the stabilization of various RNAs (Figure 1).[1] This protein is considered an intriguing target for discovering novel anticancer drugs.[2,3] From our previous data, N-(2-(benzylamino)ethyl)-2-(3,5-dimethoxyphenyl)-1-isobutyl-6-oxo-piperidine-3-carboxamide (BOPC1) compound was found able to bind HuR.[4]

In this work, we carried out the enantio-resolution, the assignment of the absolute configuration and the recognition study of enantiomerically pure trans-BOPC1 with HuR.[5] The DEEP (differential epitope mapping)-STD NMR were applied to study the interaction between BOPC1 and HuR. Starting from the crystal structure of the two N-terminal RRM domains of HuR complexed with RNA, deposited in the Protein Data Bank (PDB) with the 4ED5 PDB code,[6] we performed our modeling analysis in order to investigate the binding mode and the theoretical binding affinity of the two trans-BOPC1 enantiomers towards HuR protein.[8]

Figure 1. 3D representation of HuR-mRNA complex; the protein and the m-RNA are shown as raspberry and palegreen cartoon, respectively.

References

A follow-up study on new synthetic thyroid hormone analogues: identification of new treatments for Transthyretin Amyloidosis

Massimiliano Runfola,a,* Simona Sestito,b Andrea Bacci, a Grazia Chiellini, c Gabriella Ortore, a Jin Hae Kim d and Simona Rapposelli a

a University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
b University of Sassari, Via Vienna 2, 07100, Sassari, Italy
c University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
d Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA

*massimiliano.runfola@farm.unipi.it

Wild-Type Transthyretin Amyloid (WTTA) is a systemic amyloidotic disease, with high impact on elder’s life conditions and a growing incidence; to date, no pharmacological solution has been found for this pathology.[1] WTTA is characterized by amyloid formations following the misfolding and aggregation of Transthyretin (TTR), a 55 kDa homotetramer functioning as a transporter of thyroxine (T4) and holoretinol-binding protein (RBP). Amyloid formation by TTR requires rate-limiting tetramer dissociation into monomers, which subsequently yields the aggregation-prone amyloidogenic intermediate. Among the several therapeutically approaches proposed, stabilizing the TTR structure and so preventing its dissociation into monomers seems a valuable strategy to be pursued in the drug discovery process of WTTA treatments. Recently, we designed and synthetized a chemical library of approximately thirty synthetic compounds able to exert a selective agonist action towards the Thyroid Hormone Receptor Beta.[2] All the synthetized compounds have been screened against a full panel of ADME-tox in vitro assay, including cytotoxicity, CYP450-related metabolic stability, cardiotoxicity, and off-target liability. Most of this chemical library showed a safe profile on all assays performed. Among this set of compounds we identified two new lead candidates, namely TG68 and IS25, able to interfere with the misfolding and aggregation of TTR by pharmacologically stabilizing its tetramer. Moreover, administration of TG68 and IS25 demonstrated a highly safe profile in vivo, without the side effects commonly associated with thyroid hormones administration.[3] Finally, preliminary data acquired by computational studies and 1H-15N NMR technique showed a high capacity of these two molecules to stabilize the TTR tetramer, suggesting their potential role as new pharmaceutical treatments for WTTA.

References
Enzymatic and cell-based characterization of the inhibitory mechanism of UPR1444 on EGFR by TR-FRET-based assays and liquid chromatography-mass spectrometry analysis

Francesca Ferlenghi,*, Federica Vacondio,a Riccardo Castelli,a Alessio Lodola,a Silvia La Monica,b Roberta Alfieri,b Piergiorgio Petronini,b Roberta Minari,c Marcello Tiseo,b Silvia Rivara,a Marco Mor²

a Food and Drug Department, University of Parma, Parma, Italy
b Department of Medicine and Surgery, University of Parma, Parma, Italy
c Medical Oncology, University Hospital of Parma, Parma, Italy

* francesca.ferlenghi@unipr.it

Osimertinib is a third generation EGFR inhibitor which targets activated EGFR mutants such as L858R/T790M and del19/T790M, while it spares the wild type form. This drug exerts its biological activity by covalently modifying Cys797. However, the clinical use of osimertinib in non-small cell lung cancer (NSCLC) induces mutations conferring drug resistance, including C797S. [1] Design of EGFR inhibitors able to bind Lys745, a residue fundamental for the kinase activity, emerged as a promising strategy [2] to overcome acquired resistances. UPR1444 (Figure 1) is a novel compound which possesses the 2,4-dianilino-pyrimidine scaffold found in third generation EGFR inhibitors and incorporates a benzensulfonyl fluoride warhead designed to selectively react with Lys745 of activated EGFR. In the present work, we characterized the inhibition mechanism of UPR1444 on recombinant L858R/T790M/C797S (TM) and wild type (WT) EGFR by combining time resolved fluorescence energy transfer (TR-FRET) and high-performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HRMS) techniques. In TR-FRET-based activity assays, UPR1444 inhibited EGFR TM in a time-dependent manner with a progressive decrease of its half-maximal inhibitory concentration (IC₅₀) that reached 1.6 nM after 3 h of pre-incubation, a value at least 150-fold lower than osimertinib IC₅₀ (Figure 2). In the TR-FRET-based rapid dilution assay UPR1444 irreversibly inhibited EGFR TM activity after 30 min from dilution while it allowed 70% recovery of EGFR WT activity, thus providing EGFR TM selectivity. To corroborate the covalent modification of Lys745, EGFR TM was incubated for 3 h with and without UPR1444 and then subjected to tryptic digestion overnight before HPLC-HRMS analysis. The peptide carrying Lys745 was identified by MS/MS analysis in both control and UPR1444-treated samples. In the latter, the targeted peptide showed a 42% decreased intensity but no covalent adduct was detected, suggesting the need to optimize experimental conditions. After characterizing UPR1444 inhibition mechanism on the isolated enzyme, the compound was tested in PC9 cells expressing del19/T790M/C797S. UPR1444 showed a moderate activity by inhibiting autophosphorylation at 72% after 1 h incubation at 2 µM, a result comparable to osimertinib. Conversely to what observed for osimertinib, intracellular dosages by HPLC-MS/MS indicates UPR1444 poorly penetrated the cellular membrane: in that sense an optimization of the physicochemical properties of UPR1444 may lead to inhibitors able to block EGFR C797S activity also in cells.

References
(-)-(S)-usnic acid from *Cladonia foliacea*: microwave assisted extraction and cytotoxic profile

Valeria Cavalloro, a,*, Giorgio Marrubini, b Alessio Malacrida, c Mariarosaria Miloso, c, Emanuela Martino a and Simona Collina b

a Department of Earth and Environmental Sciences, University of Pavia, via Sant’Epifanio 14, 27100, Pavia, Italy;
b Department of Drug Sciences, University of Pavia, viale Taramelli 12, Pavia, Italy;
c School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy;

*valeria.cavalloro01@universitadipavia.it

Due to their centennial uses, lichens have attracted the attention of the scientific community, and many secondary metabolites with interesting biological activities have been identified.[1] The most studied one is usnic acid, a dibenzofuran derivate characterized by a stereogenic center (Figure 1).

Both enantiomers occur in nature, depending on the producing organism and show different biological properties and toxicity. In the present work we focus on (-)-(S)-usnic acid, an underestimated metabolite produced by many lichens.[2] Being the less abundant enantiomer in nature and owing very high commercial costs, so far it is poorly investigated. In the present work, we studied the lichen *Cladonia foliacea*, as a potential potent source of this metabolite. Once it has been verified that only the (-)-(S)-usnic acid is present in the matrix, we optimize a Microwave-Assisted Extraction (MAE) to exhaustively extract the metabolite of interest. For selecting the best extraction conditions, we applied a Design of Experiment approach. The resulting procedure was then applied to extract and isolate (-)-(S)-usnic acid. So far, MAE approach has never been applied to the extraction of usnic acid from natural sources.

Lastly, (-)-(S)-usnic acid was then subjected to preliminary vitality tests on four different cancer cell lines. Of particular interest is the activity against glioblastoma U87-MG, and that this activity is strictly related to the chiral center. Indeed, the eudismic ratio (IC50(R)-usnic acid/IC50(S)-usnic acid) is about 5000.[3]

![Chemical structure of racemic usnic acid](image)

Figure 1: Chemical structure of racemic usnic acid

References

Rational design and synthesis of heme oxygenase 2 (HO-2) inhibitors by targeting the secondary hydrophobic pocket of the HO-2 western region

Antonino N Fallica,a Valeria Pittalà,a Antonio Rescifina,a Valeria Ciaffaglione,a Sebastiano Intagliata,a Giuseppe Florestaa

a Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, V.le A. Doria 6, 95125, Catania, Italia
antonio.fallica93@gmail.com

The cytoprotective heme oxygenase (HO) family of enzymes is accountable for heme breakdown. Two isozymes have been currently detected: the stress-induced isoform HO-1 and the basally expressed isoform HO-2. [1] Although the effects of HO-1 induction and inhibition have been well documented, HO-2 specific role and its druggability have not been clarified because of the lack of selective ligands. [2] HO inhibitors, whose chemical structure derives from the lead compound azalanstat (Fig. 1) principally differ for the nature of the central linker and the substituent in the western region of the molecule. This portion interacts with a highly flexible lipophilic pocket in both enzymes. Moreover, crystallographic studies highlighted the presence of a smaller secondary hydrophobic pocket in both isozymes, whose interaction with proper substituents seems beneficial for the inhibitory activity. [3] Our research team recently reported that the HO-1 binding site is better able to host molecules with an average Van der Waals volume of 274.34 Å³. At the same time, the catalytic pocket of the HO-2 is able to interact better with larger molecules, with an average Van der Waals volume of 284.10 Å³. [4] With this in mind, we rationally designed three novel HO-2 inhibitors by selecting two of the most potent and selective HO-1 inhibitors (compounds 1,2, Fig. 1) and increasing their volume by adding a cyano group in the para position of the benzyloxy moiety (Fig. 1). Synthetic strategies, inhibitory potencies, and docking studies of these novel HO-2 ligands will be described.

![Figure 1. Azalanstat and HO-1 selective inhibitors 1 and 2 used for this work.](image)

References
Identification of new inhibitors of Protein Arginine Methyltransferases by a Multi-substrate-adduct approach

Giulia Iannelli, a Ciro Milite, a Alessandra Feoli, a Jean Cavarelli, b Sabrina Castellano, a Gianluca Sbardella. a
aEpigenetic Med Chem Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy; b Istitut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS UMR 7104, INSERM U 964, Illkirch, F-67404, France.

giannelli@unisa.it

The methylation of arginine residues is a common post-translational modification, performed by a family of methyltransferases known as PRMTs (Protein Arginine Methyltransferases). In humans, methylation is carried out by nine members of the PRMTs that are ubiquitously expressed. Arginine methylation is known to play a key role in gene regulation due to the ability of the PRMTs to deposit activating or repressive “histone marks”.[1] This modification correlates PRMTs to several biological processes, including transcription, DNA repair, protein stability, cell signaling, pre-mRNA splicing and receptor trafficking. Therefore, aberrant activity of PRMTs is involved in many pathological conditions like inflammation, neurodegeneration and cancer. According to these evidences, PRMTs have been identified as promising therapeutic targets.[2,3]

Starting from EML108, an inhibitor of PRMTs previously identified by us,[4] we deconstructed our compound and then performed a medicinal chemistry optimization campaign.

Here we report a multi-substrate-adduct approach to develop new powerful and selective compounds (Figure 1).

![Figure 1. Multi-substrate-adduct approach](image)

References
Looking for new agents against multiple myeloma:
exploration of the chemical space of the PAN-sigma receptor modulator RC-106

Roberta Listro a*, Giacomo Rossino a, Alessio Malacrida b, Michela Cortesi c, Anna Tesei, Daniela Rossi a, Mariarosaria Milos b, and Simona Collina a

a Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
b School of Medicine and Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, 20900 Monza, Italy
c Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Via Piero Maroncelli 40, 4701 Meldola, Italy.

*roberta.listro01@universitadipavia.it

Cancer is a dangerous threat for human health due to its multifactorial origin. The cancer molecular basis has not been completely explained yet, but nowadays it is well known that proteasome plays a crucial role in cancer. So far, three proteasome inhibitors (above all, Bortezomib should be mentioned) are used for treating cancer and particularly Multiple Myeloma (MM), a hematological disorder caused by an uncontrolled proliferation of monoclonal plasma cells in bone marrow. Nevertheless, the use of proteasome inhibitors is accomplished with several side effects in central nervous system and it is also responsible for drug resistance. For all these reasons, new effective therapies are still considered an urgent medical need. Since several years our group was focus on the identification and development of new active molecules against MM. Starting from the engagement of Sigma Receptors (SRs) in proteasome dysfunction and in molecular cascades of cell proliferation, we investigated the anticancer potential of RC-106, a pan-sigma receptor ligand recently discovered by our research team. Briefly the RC-106 capability to inhibit proteasome and to impair the cell viability of RPMI8226 cell line has been evaluated. The promising results obtained prompted us to investigate the chemical space around RC-106.

The synthesis and in vitro evaluation of the piperazine analogue RC-206 proved that the substitution of piperidine with piperazine moiety does not affect the activity. Therefore, a compounds library of 40 piperazine derivatives have been designed and their in silico druglikeness properties evaluated. Afterwards, starting from the specific key intermediate, the library was synthesized applying a combinatorial approach. All compounds have been tested on RPMI 8226 cell line and the most effective compounds have been subjected to proteasome inhibition assay. Above all, three new molecules showed a good in vitro cytotoxic properties and have been selected for further investigation. Particularly, our efforts are now directed to better understanding their mechanism of action.

Figure 1. RC-106 derivatization

References
Investigating the inhibition mechanism and catalytic cycle of MbtI, the salicylate synthase from *Mycobacterium tuberculosis*

Matteo Mori,a,* Stefania Villa,a Arianna Gelain,a Elena Pini,a Giovanni Stelitano,a Laurent R. Chiarelli,b Marco Bellinzoni,c and Fiorella Meneghetti a

a Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
b Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy
c Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, F-75015 Paris, France

*matteo.mori@unimi.it

According to the latest annual report published by the World Health Organisation, tuberculosis is the first cause of death from a single infectious agent worldwide. Moreover, the growing emergence of resistant strains of *Mycobacterium tuberculosis* (Mtb) poses a serious threat to the public’s health. Therefore, the discovery of new antitubercular agents has still a critical importance.[1]

In this context, the mycobacterium-specific salicylate synthase MbtI has been recently validated as a promising pharmacological target. This Mg²⁺-dependent enzyme is involved in the siderophore-mediated iron uptake, a key pathway for the survival and pathogenicity of Mtb in the host.[2]

A structure-based virtual screening allowed us to identify a competitive furan-based inhibitor of MbtI, which was taken as a starting point for a thorough structure-activity investigation. Our studies led to the development of potent enzymatic inhibitors, also exhibiting a promising antimycobacterial action.[3,4]

In an attempt to deeply understand the inhibition mechanism of this class of compounds, we performed biochemical investigations: these studies suggested the possibility of a Mg²⁺-independent binding, despite the interaction with the catalytic metal had been a cornerstone of MbtI inhibition for years. Further computational analyses and experimental data seemed to support our hypothesis, but it was only with crystallisation studies that we obtained a definitive characterisation of the binding mode. Our structural investigations also provided new insights into the conformational shifts of the active site, in relation to the catalytic state of the enzyme.[5]

Overall, these results pave the way for the rational modification of our scaffold, which will hopefully lead to the obtainment of improved antitubercular candidates.

References

Dihydroquinolone pyrazoline-based compound as a new RAD51-BRCA2 protein-protein disruptor to trigger synthetic lethality in pancreatic cancer

Greta Bagnolini, a,b* Marcella Manerba, a Andrea Balboni, a,b* Jose Antonio Ortega, a Dario Gioia, a Francesca De Franco, c Marinella Roberti, b and Andrea Cavalli a,b

aComputational and Chemical Biology (CCB), Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy
bDepartment of Pharmacy and Biotechnology (FaBit), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
cTES Pharma S.r.l., I-06073, Corciano, Perugia, Italy

*greta.bagnolini@iit.it

Synthetic lethality is an innovative framework for the discovery of new anticancer drugs. Cancer cells are strictly dependent on efficient DNA repair pathways due to their pervasive genomic instability. Targeting different DNA repair pathways provides the opportunity to apply the synthetic lethality as a novel anticancer therapeutic strategy.[1]

In this context, we proposed to trigger a fully small-molecule-induced synthetic lethality, combining a RAD51-BRCA2 protein-protein interaction (PPI) disruptor with Olaparib, a known PARP inhibitor, to target pancreatic cancer, one of the major unmet oncological needs. RAD51-BRCA2 PPI is essential to repair DNA double strand breaks (DSBs) through the homologous recombination (HR). According to our working hypothesis, a RAD51-BRCA2 PPI inhibitor would chemically mimic the enhanced sensitivity to Olaparib observed in BRCA2-defective tumors, leading to a synthetic lethal effect (Figure 1A).[1] The RAD51-BRCA2 complex is mediated by two critical “hotspots” on RAD51 surface, zone I and II, which lodge eight highly conserved BRCA2 motifs.[2] These two pockets make the RAD51-BRCA2 interaction suitable for a structure-based design of PPI small molecule disruptors.

Herein, we focused on zone II, which has proved to be crucial in RAD51’s mechanism of action.[2] To date no inhibitors targeting zone II have been reported. Through a virtual screening campaign, we identified a dihydroquinolone pyrazoline-based molecule 1 as promising hit compound, which showed an inhibitory activity of RAD51-BRCA2 PPI in the competitive ELISA assay (EC50 = 16 ± 4 μM).[3] To discover more effective compounds and depict general structure-activity relationship (SAR) studies, we explored the chemical space around 1 by optimizing a general synthetic strategy and building a library that contains a variety of aromatic substitutions (green region) in combination with modifications of the acyl chain moiety (red region) (Figure 1B).[1] SAR efforts yielded 2 with the desired biological profile. As expected, 2 proved to disrupt the RAD51-BRCA2 PPI, inhibiting HR in pancreatic cancer cell line BxPC-3 and reproducing the paradigm of synthetic lethality in combination with Olaparib (Figure 1B).[1]

Figure 1. A) Fully small molecule-induced synthetic lethality concept; B) Identification of compound 2.

References
Isolation and pharmacological evaluation of \(\Delta^9 \)-tetrahydrocannabiphorol, the new heptyl homologue of tetrahydrocannabinol: new insights on cannabis research

Cinzia Citti\(^{a,b,c}\), Pasquale Linciano\(^{c}\), Fabiana Russo\(^{c}\), Livio Luongo\(^{d}\), Monica Iannotta\(^{d}\), Sabatino Maione\(^{d}\), Aldo Laganà\(^{b,e}\), Anna Laura Capriotti\(^{e}\), Flavio Forni\(^{c}\), Maria Angela Vandelli\(^{c}\), Giuseppe Gigli\(^{b}\), and Giuseppe Cannazza\(^{b,c,*}\)

\(^{a}\) Mediteknology (CNR spin-off company), Via Arnesano, 73100 Lecce, Italy
\(^{b}\) CNR NANOTEC, Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
\(^{c}\) Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
\(^{d}\) Department of Experimental Medicine, Division of Pharmacology, Università della Campania “L. Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
\(^{e}\) Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

\[\text{cinzia.citti@unimore.it}\]

Cannabis sativa L. produces characteristic terpenophenolic compounds called phytocannabinoids, among which the most studied is \(\Delta^9 \)-tetrahydrocannabinol (\(\Delta^9 \)-THC). The wide structural variety of such compounds derives from the combination of a terpene and a resorcinyl moiety, the latter bearing an alkyl side chain.\(^{[1]}\) It has been reported that the length of this carbon chain influences the biological activity of tetrahydrocannabinol.\(^{[2]}\) In particular, synthetic analogues of \(\Delta^9 \)-THC with a longer side chain have shown cannabimimetic properties far higher than \(\Delta^9 \)-THC itself.\(^{[3]}\) To date, no phytocannabinoid with a linear side chain longer than five carbon units has been reported. In this work, a new phytocannabinoid with the same structure of \(\Delta^9 \)-THC but with a seven-term alkyl side chain was identified in a medicinal cannabis variety. Isolation, full characterization and stereochemical configuration assignment of the natural compound were carried out. This new phytocannabinoid has been called \((-\)-\(\text{trans}\)-\(\Delta^9\)-tetrahydrocannaphorol (\(\Delta^9\)-THCP) (Fig. 1a). Similarly, the heptyl homologue of the well known phytocannabinoid cannabidiol (CBD), named cannabidiphorol (CBDP), was unambiguously identified. The binding activity of \(\Delta^9\)-THCP against human CB\(_1\) receptor in vitro resulted over 30-fold higher than that of \(\Delta^9\)-THC (\(K_i=1.2\) nM vs \(K_i=40\) nM respectively). In vivo tests showed that \(\Delta^9\)-THCP reduced locomotion (Fig. 1b-c), decreased rectal temperature (Fig. 1d) and induced catalepsy (Fig. 1e) and analgesia (Fig. 1f) suggesting a THC-like cannabimimetic activity.

![Figure 1](image_url)

Figure 1. a) Structure of \(\Delta^9\)-THCP. b-f) Dose-dependent effects of \(\Delta^9\)-THCP administration (2.5, 5, or 10 mg/kg, i.p.) on the tetrad phenotypes in mice in comparison to vehicle.

References

Targeting the viral envelope: synthesis and biological evaluation of novel broad-spectrum antivirals

Claudia Ardino,a,* Nastasja Palombi,a Annalaura Brai,a,b Federica Poggialini,a Claudio Zamperini,a,b Valeria Cagno,c and Maurizio Botta,a,b

a Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
b Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, Castelnuovo Berardenga, 53019 Siena, Italy
c Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy

*ardinoclaudia@gmail.com

Some of the most infectious emerging and re-emerging viruses are endowed with a lipid membrane called envelope. Despite the viral envelope derives from the lipid membrane of the host cell, several differences can be highlighted between them, such as the lack of biogenic and reparative pathways that makes these viruses vulnerable to envelope’s injury.

In our previous papers, [1,2] we reported some rhodanine and aminothiazolone derivatives endowed with submicromolar activities against HIV-1 infected cells. The compounds were found to be only moderately active on HIV-1 integrase and HIV-1 gp120, but their submicromolar activity in vitro on HIV-1 replication and time of addition experiment suggested a diverse mechanism of action.

New thiobarbituric derivatives [3] displayed a broad-spectrum antiviral activity against different enveloped viruses (i.e. HSV-1, HCMV, RSV, ZIKV, INFLUENZA A, VSV) and resulted to be completely inactive against non-enveloped ones (i.e. Ad5, HPV and HRoV), suggesting that their mechanism of action could involve the viral envelope, affecting the dynamics of viral fusion and altering the fluidity and integrity of the lipid bilayer.

We gratefully acknowledge use of the facilities provided by Lead Discovery Siena S.r.l. This work was partially supported by the European Union’s Horizon 2020 Research and Innovation Programme under ZIKAlliance Grant Agreement no. 734548 and by POR-CREO project PANVIR.NET.

References

Hit optimization for the development of novel RNF5 inhibitors as therapeutic strategy in cystic fibrosis

Irene Brusa,a,b* Dario Gioia,b Elvira Sondo,c Marinella Roberti,a Nicoletta Pedemonte,c and Andrea Cavalli,a,b

aDepartment of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
bComputational & Chemical Biology, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
cU.O.C. Genetica Medica, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, Genova 16147, Italy.

irene.brusa2@unibo.it

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) anion channel is associated to misfolding and premature degradation of the mutant protein. RNF5 is an ubiquitin-ligase promoting F508del-CFTR degradation. Recently, our group reported that genetically suppressing in vivo RNF5 increases CFTR activity in intestinal epithelial cells, suggesting that RNF5 inhibition could trigger F508del-CFTR rescue.[1] Therefore, through computational methods, we discovered inh-2, a drug-like small molecule that efficiently inhibits RNF5 ligase activity (Fig. 1 - A). Evaluation of inh-2 efficacy on CFTR rescue showed that inh-2 decreased ubiquitylation of mutant CFTR and increased chloride current in human primary bronchial epithelia.[2]

Based on the promising biological results obtained with inh-2, we focused on the design and synthesis of a library of inh-2 analogues. The series of new derivatives show structural variants introduced around the central 1,2,4-thiadiazol-5-ylidene core (Fig. 1 - B), in order to explore the structure activity relationship of this class of compounds. A preliminary biological evaluation of the activity of the new analogues was performed by using the microfluorimetric YFP-based assay on CFBE41o- cells. Some of the new analogues displayed a greater efficacy than inh-2, demonstrating that the 1,2,4-thiadiazolylidene scaffold is a versatile architecture for the identification of RNF5 inhibitors, able to rescue F508del-CFTR trafficking defect in human bronchial epithelia. These finding validate RNF5 as a drug target for CF and provide evidences to support its druggability.

Figure 1. A) inh-2 stucture and activity; B) library of planned inh-2 analogues.

References
[1] V. Tomati; E. Sondo; A. Armirotti; E. Caci; E. Pesce; M. Marini; A. Gianotti; Y. J. Jeon; M. Cilli; A. Pistorio; L. Mastracci; R. Ravazzolo; B. Scholte; Z. Ronai; L. J. V. Galietta; N. Pedemonte. Genetic Inhibition Of The Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated To F508del Cystic Fibrosis Mutation. Sci. Rep. 2015, 5, n. 12138.
Human carbonic anhydrases (hCAs, E.C. 4.2.1.1) are metalloenzymes catalyzing the reversible hydration of carbon dioxide to bicarbonate and proton. The hCA family comprises fifteen genetically distinct α-CA isozymes which differ for kinetic properties, oligomeric structure, structural fold as well as tissue and cellular distribution. A part for physiological processes, hCAs are involved in numerous pathological events such as epilepsy, obesity, and tumorigenicity[1]. Therefore, several hCAs represent well-recognized targets to develop hCA inhibitors (hCAIs) as innovative theranostic agents. Among them, acetazolamide (AAZ) and topiramate (TPM) are well-known hCAIs, that are considered useful for the treatment of neurological disorders, whereas the 4-ureido-benzenesulfonamide derivative SLC -0111 recently entered cancer drug clinical trials for the treatment of hypoxic tumors. However, the classical hCAIs are not selective towards druggable hCAs; do that they might induce unwanted side effects. On this basis, the identification of new hCAIs with a lower affinity toward the ubiquitous off-target isoforms has become the goal of research in the field of hCAs.

Herein we reported the synthesis and biochemical evaluation of a series of 4-(4-aroylpiperazine-1-carbonyl)benzenesulfonamides, that were designed by decorating the benzoyl tail with hydrophobic/hydrophilic groups able to establish additional interactions within the middle/top area of hCA catalytic site[2]. We focused our interest on the development of newer analogs bearing hetero aroyl systems in place of aroyl-substitued one. All synthesized compounds were screened against selected druggable isoforms (e.g. hCA VII, IX, XII and XIV) and the K_i values were compared with the inhibitory effects against ubiquitous hCA I and II. Notably, this hCAI series was effective at low nanomolar range and several compounds demonstrated an unexpected favorable selectivity ratio for inhibition of the target isoforms over the ubiquitous hCA I and II. X-ray crystallography and docking studies confirmed that this class of benzenesulfonamides binds hCAs through the canonical anchoring of the benzenesulfonamide moiety to the zinc ion (Figure 1), while further interactions between the tail and the protein residues located in the middle/top area of the active site cavity stabilize the binding. Overall, this study furnished new suggestions about the structural requirements controlling affinity and or selectivity towards druggable hCAs.

Acknowledgements

This work was supported by the Italian Ministry of University and Research MIUR (grant number PRIN2017_201744BN5T)

References

Small-molecule inhibitors targeting AKT1 active and allosteric sites

Deborah Palazzotti, a, * Andrea Astolfi, a Jose Brea, b Maria Chiara Pismataro, a Serena Massari, a Maria Isabel Loza, b Violetta Cecchetti a and Maria Letizia Barreca a

a Department of Pharmaceutical Sciences, “Department of Excellence 2018-2022”, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
b CIMUS Research Center, University of Santiago de Compostela, Avenida Barcelona s/n, 15782, Santiago de Compostela, Spain

*deborah.palazzotti@studenti.unipg.it

AKT (also known as protein kinase B - PKB) is a serine/threonine protein kinase, belonging to the AGC kinase family and involved in PI3K-AKT pathway. Activated by the phosphorylation of PI3K, AKT plays a pivotal role in essential signaling cellular mechanisms including cell growth, cell cycle progression, invasion, angiogenesis, cell apoptosis inhibition, regulation of glucose metabolism, genome stability, transcription, protein synthesis and neovascularization. [1] Given its prominent role, a dysregulation of AKT activity is associated with several disorders like cancerogenesis, neurological diseases, insulin signaling and diabetes, cardiovascular processes, pulmonary fibrosis, inflammation and autoimmune diseases. [2] This plethora of effects makes AKT an attractive target for drug discovery. Although allosteric and ATP-competitive small molecule inhibitors targeting AKT are currently in clinical trials, to date no drugs against this protein have yet been approved by the FDA. [3]

It should also be noted that the protein AKT comprises three isoforms (AKT1, AKT2, and AKT3), AKT1 being the most expressed and best characterized isoform in many tumors, reflecting its tissue versatility and context-specific effect. [4]

Against this backdrop, our research project is focused on the identification of new chemotypes of selective and potent AKT1 inhibitors. To this end, an in-depth analysis of the available crystal structures of AKT1 in complex with its inhibitors was conducted, obtaining useful insights both on the impact of inhibitor binding to target protein conformation and the key ligand chemical features.

Then, different protein conformations were selected as target for a funnel-like virtual screening campaign of our proprietary UNIPG chemical library. Virtual hits were submitted to biological testing to measure the inhibitory potency against the explored target AKT1.

As results, we identified three promising novel AKT1 inhibitors showing IC50 values ranging from 1.6 μM to 2.12 μM and associated ligand efficiency (LE) ≥ 3. Further experiments carried out on the validated hits in order to reveal their mode of inhibition, i.e. competitive, allosteric o mixed, confirmed the validity and predictivity of the in silico inhibitor discovery approach.

The promising results have paved the way for Hit-to-Lead-optimization strategies, and the chemical synthesis of rationally designed derivatives is now ongoing.

References
Straightforward synthesis of highly functionalized benzo[c]chromenes by Diels-Alder cycloaddition/aromatization sequence

Marco Ballarottoa,*, Andrea Temperinia

&Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1, 06123, Perugia, Italy

*marco.ballarotto@chimfarm.unipg.it

The 6H-benzo[c]chromene core is a common motif observed in numerous natural products and synthetic biologically active molecules.[1,2] A few notable examples can be found in the cannabinoid family, of which Tetrahydrocannabinol (THC) and cannabinol (CBN) are well known representatives. Due to its considerable pharmacological importance, the development of an efficient protocol for its synthesis is an ambitious target for both medicinal and organic chemists.

The classical synthesis is based on transition metal chemistry, where two aryl fragments are coupled using a metallic catalyst and then cyclized. Although this approach allows for the rapid synthesis of variably substituted compounds for screening purposes, the low functional group tolerance and the required purification from the catalyst hinder the possibility for production on a larger scale.[3]

Here we report our results towards the development of a modular and transition metal-free synthetic protocol for highly substituted benzo[c]chromene. We envisioned a Diels-Alder cycloaddition disconnection for a de novo construction of the 3,4-fused benzene ring, followed by oxidation/aromatization of the intermediate cycloadduct to obtain the desired substituted 6H-benzo[c]chromene compounds.

The chromene core is quickly assembled in a 3-step sequence from commercially available salicylaldehydes, α, β-unsaturated carbonyl compounds and alkynes substituted with an electron withdrawing group. Due to this modular nature of this approach, the degree of substitution of the final product can be easily modulated by choosing the appropriate starting material.

![Scheme 1. General scheme for the synthesis of benzo[c]chromenes.](image)

- 3 steps
- transition metal-free
- high degree of substitution

References

Further exploration of different nitrogen heterocycle scaffolds as potent HNE inhibitors

Niccolò Cantini, a, * Letizia Crocetti, a Igor A. Schepetkin, b Mark T. Quinn, b Andrei I. Khlebnikov, c Giuseppe Floresta a

*NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy. bDepartment of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. cKizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia. dInstitute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK

*niccolo.cantini@unifi.it

Chronic inflammatory diseases represent a wide number of common and highly disabling pathologies that are characterized by a perpetuating and persistent long-term inflammation. These pathologies, such as rheumatoid arthritis, chronic obstructive pulmonary disease, psoriatic arthritis, and inflammatory bowel disease, are strongly debilitating and have a deep impact on people’s quality of life. [1] Furthermore, there are not effective therapies to eradicate chronic inflammation, and new methods are required to treat and control these types of diseases. Human neutrophil elastase (HNE) represents a relatively new target in chronic inflammation treatment. It plays an important physiological role in many processes, such as inflammation, and it is involved in a variety of pathologies affecting the respiratory system. [2] In medicinal chemistry, nitrogen heterocycles scaffolds play an important role in drug design, being part of more than 85% of biologically-active chemical molecules. Thus, we designed, synthesized, and performed pharmacological evaluation of new HNE inhibitors as further elaboration of indazole and 7-azaindole nuclei, which were previously studied in our research laboratory. [3-6] We obtained potent HNE inhibitors, whose structure is presented in Figure 1, exhibiting IC50 values in the low nanomolar range (10-89 nM) and good chemical stability (t1/2 > 6h). In silico ADMET studies suggested that most of the new compounds are optimally absorbed, distributed, metabolized, and excreted. Finally, molecular modeling studies highlighted the differences in interaction of these inhibitors with the enzyme depending on the number and position of the nitrogen atoms.

![Figure 1: Indazole and 7-Azaindole derivatives elaboration](image)

References

Capillary volumetric microsampling for the evaluation of methadone use and misuse

Marco Cirrincione, a,* Anderson Makoto Nomura, a,b Fernando Remiao, b
Michele Protti, a and Laura Mercolini,a

a Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna (Italy)
b Research group of UCIBIO/REQUIMTE-Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy of University of Porto. Rua Jorge Viterbo Ferreira 228, 4050-313 Porto (Portugal)

*marco.cirrincione2@unibo.it

In recent years, the synthetic opioid methadone ((RS)-6-(dimethylamino)-4,4-diphenylheptan-3-one, MTD, Figure 1) is being increasingly used for recreational purposes with several health and safety problems. At the same time, MTD is an important drug prescribed in different therapy such as methadone maintenance treatment (MMT) programs. For these reasons, it is essential monitoring the use and misuse of this drug. Traditionally, assessment of MTD levels is performed by blood plasma analysis and samples are collected by venepuncture. The patients are often reluctant to this invasive practice which also requires proper facilities and specialised personnel. For these reasons, the development of novel and accurate sampling strategies able to increase subject compliance is of great relevance in MTD level monitoring process. To this aim, the use of biological fluid microsamples collected and dried on specific supports represents a valid alternative with several advantages, regarding sample storage and shipment (controlled temperature precautions are not required and samples can be stored in a reduced space), increasing sample stability and patient compliance with the possibility for home-sampling. Microsampling strategies have found several applications in several fields in these last years, as in the analysis of illicit drugs and therapeutic drug monitoring (TDM).[1] In this study, microsample collection was designed and developed by exploiting a novel handheld technology, hemaPEN, able to simultaneously generate four replicates of fixed-volume dried blood samples (DBS) from a single drop of capillary blood obtained by finger pricking.[2] All sample collection and pretreatment steps were thoroughly optimised for the extraction and evaluation of MTD in spiked blood samples. The developed strategy was validated in terms of sample extraction, selectivity, precision and sample stability, also evaluating possible haematocrit effects on sampling and analysis performances. Microsamples were analysed by an original method based on HPLC coupled to coulometric electrochemical detector (ED) and successfully validated in terms of extraction yield (always higher than 90%), sensitivity (LOQ = 5.0 ng/mL) and precision (RSD% < 10.0). Different electrochemical conditions were carefully studied and set up in order to define and optimise the best parameters for MTD detection. In particular, the detection was carried out in oxidation mode, using a potential of +0.700 V and a pH of 6.4 for the buffer solution. Once extensively applied to the analysis of real samples from patients or abuser subjects, obtaining a significant amount of data allows the correlations between MTD levels assessed in dried microsamples with those obtained by employing reference methods on fluid matrices. At the same time, ED detection, compared to other advanced analysis systems such as mass spectrometry (MS), showed comparable accuracy and sensitivity, also providing satisfactory reliability and robustness. This can allow to propose the strategy developed herein as a valuable alternative for MTD monitoring, to be applied in a range of fields, such as the prevention of illicit use or in the TDM in patients undergoing MMT in order to adjust and personalise therapy regimens.

References
[1] Spooner, N; Anderson, KD; Siple, J; Wickremesinhe, ER; Xu, Y; Lee, M. Microsampling: considerations for its use in pharmaceutical drug discovery and development. Bioanalysis 2019, 11(10), 1015-1038
[2] Protti, M; Marasca, C; Cirrincione, M; Cavalli, A; Mandrioli, R; Mercolini, L. Assessment of capillary volumetric blood microsampling for the analysis of central nervous system drugs and metabolites. Analyst 2020, in press
A dual-target approach in anti-tuberculosis therapy: new MptpB/MbtI inhibitors

Giulia Cazzaniga, Matteo Mori, Arianna Gelain, Elena Pini, Giovanni Stelitano, Laurent R. Chiarelli, Fiorella Meneghetti and Stefania Villa

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università degli Studi di Pavia, via A. Ferrata 9, 27100 Pavia, Italy

*giulia.cazzaniga4@studenti.unimi.it

Tuberculosis (TB) is an ancient disease that still remains the world's top killer among infectious illnesses, despite the considerable global effort to reduce its incidence.[1] TB is mainly caused by Mycobacterium tuberculosis (Mtb) and spreads through respiratory droplets, produced by infected individuals.[2] As shown in the last WHO Global TB Report, 7 million people were diagnosed and treated for TB in 2018, and 1.5 million people died.[1] New and more effective anti-TB drugs acting on novel targets are needed to shorten treatment time, and to contrast drug resistance and progressive loss of antibiotic efficacy.

An innovative strategy to achieve this goal may consist in the development of selective multi-target drugs. In this context, MptpB, a mycobacterial protein tyrosine phosphatase (PTP), and MbtI, a salicylate synthase, were found to be promising targets for the development of innovative antitubercular agents. MptpB dephosphorylates a variety of substrates, playing a key role in the survival of the bacilli during the infection. Moreover, it can attenuate the immune response of the host, by interfering with signal transduction pathways; it inhibits macrophage apoptosis, by activating Akt and blocking caspase 3 activity, and depletes PI3P, arresting the maturation of the vacuoles.[3] MbtI is a Mg-dependent salicylate synthase, which catalyses the first step of the synthesis of siderophores, iron-chelating molecules that bind iron and internalize it into the mycobacterial cell. Since iron is essential for the survival of the bacilli during the infection, the inhibition of siderophore synthesis is an important target for novel antitubercular agents.[4]

On these bases, the aim of this study was the design, synthesis, characterization, and biological evaluation of innovative MptpB/MbtI inhibitors. With this purpose, we selected a representative group of 5-phenylfuran-2-carboxylic acid derivatives from our in-house library of MbtI inhibitors and assayed them against MptpB. Based on the results of these tests, we synthesised some analogues to improve their activity. The results of these preliminary studies, which led to the selection of some promising dual-targeting candidate inhibitors, will be presented here.

References
Nutraceutical Extract from autochthonous Tuscan olive leaves incorporated in poly(Hydroxybutyrate-co-Hydroxyvalerate) (PHBHV) for medical application

Jasmine Esposito Salsano,a,b,*, Joese Gustavo De la Ossa,a,c Francesca Felice,c Bahareh Azimi,d,e Andrea Lazzerid, Marco Macchia,b,f Rossella Di Stefano,c Serena Danti,c and Maria Digiacomo,b,f

a Doctoral School in Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
b Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126, Pisa, Italy
c Cardiovascular Research Laboratory, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, via Paradisa 2, 56126, Pisa, Italy
d Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy;
e Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), via G. Giusti 9, 50121, Florence, Italy
f Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy

*ja.espositosalsano@student.unisi.it

Olive leaves extract (OLE), derived from discarded leaves of olive tree, represents an important biowaste source of phenolic compounds whose the main representative is oleuropein. Oleuropein is a polyphenol endowed with nutraceutical properties, such as antiproliferative, cardioprotective, antidiabetic and gastroprotective actions, due to its antioxidant and anti-inflammatory activities.[1] Besides oleuropein, in olive leaves there are also natural compounds such as flavonoids and simple phenols which are also endowed with antioxidant activity. The aim of this project is to incorporate an OLE, obtained from Olivastra seggianese groves, in a biobased polymer scaffold, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) (Figure 1A), and demonstrate the potential use of this agrifood waste in biomedical applications. PHBHV is a natural polyester produced by a great variety of microorganisms through fermentation and endowed with biocompatibility and biodegradability properties which production and degradation have no negative ecological impact.[2]

Initially the qualitative and quantitative analysis of phenols present in OLE were performed by High Performance Liquid Chromatography (HPLC) confirming that the main phenolic compounds present were oleuropein and luteolin-7-O-glucoside. Then the OLE-loaded PHBHV (Figure 1B) was prepared by electrospinning technique, and characterized by FT-IR and Scanning Electron Microscopy (SEM) analysis. Moreover the release profile of phenols from OLE-loaded in PHBHV was evaluated.

![Figure 1. SEM images of PHBHV fiber (A) and PHBHV + OLE fiber (B). The scale bar in inserts is 30 μm.](image)

References
Oligo(ethylene imine)-grafted Linear and Star Homopolymers for DNA delivery: Odd-Even Correlated Transfection Efficiency

Kyriaki S. Pafiti a,∗ Elena J. Kepola b and Costas S. Patrickios b

aSchool of Sciences and Engineering, University of Nicosia, P. O. Box 24005, 1700 Nicosia, Cyprus
bDepartment of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus

pafiti.k@unic.ac.cy

The development of safe and efficient gene carriers is one of the prerequisites for successful gene therapy.[1] Synthetic amine-containing polycations, such as branched and linear poly(ethylene imine) (PEI) of different molecular weights, have been widely studied toward DNA and siRNA delivery in vitro. In particular, DNA complexes with high molecular weight PEIs (molecular weight ~ 25 000 g mol–1 (PEI25k)) show high transfection efficiencies. However, this high efficiency is accompanied by high cytotoxicity due to the strong interactions with the cytoplasmic and mitochondrial membranes. In contrast, DNA complexes with low molecular weight PEIs (oligo(ethylene imine)s, OEI) present a lower cytotoxicity but also an insufficient transfection efficiency, with the latter limiting their usefulness for gene transfer. Studies in the past years indicated that a combination of a high transfection efficiency with a low cytotoxicity could be achieved if high molecular weight uncharged polymers grafted with OEIs were employed. These studies showed that transfection and cytotoxicity depended on the number of ethylene imine repeating units, and the presence of other functional groups on the OEI grafts.[2]

The present study aims to further investigate the effect of the number of ethylene imine repeating units on transfection efficiency and cytotoxicity. In particular, the odd-even effect of the number of ethylene imine units in the side-groups of totally abiotic synthetic polymers on their efficiency in DNA transfection is studied. One star homopolymer and one linear homopolymer series based on glycidyl methacrylate (GMA) were used as these synthetic polymers. Each polymer separately grafted with one of five linear oligo(ethylene imine)s (OEI), comprising from one to five ethylene imine repeating units: ethylene diamine (EDA), diethylene triamine (DETrA), triethylene tetramine (TrETA), tetraethylene pentamine (TEPA) and pentaethylene hexamine (PEHA), thereby resulting in ten different polymers. All polymers were evaluated in terms of their efficiency to transfer to C2C12 mouse myoblast cells plasmid DNA encoding firefly luciferase. The transfection efficiency indeed displayed an odd-even pattern, with all OEI-grafted polymers with an odd number of ethylene imine repeating units exhibiting higher transfection efficiency compared with those possessing an even number of ethylene imine repeating units. This trend was the reverse from the one originally observed by Kataoka and coworkers[2] on a series of polyaspartamides N-substituted with the same OEI. This difference can be attributed to one of the OEI nitrogen atoms participating in the formation of a non-ionizable amide group in Kataoka’s polymers compared with the amine nitrogen atoms in the polymers in the present study that are all ionizable. The odd-even effect was more pronounced for the star polymers, while in case of the linear polymers, the odd-even effect was only observed for the lowest polymer loading. The cytotoxicity of all OEI-grafted polymers also followed an odd-even pattern.[3]

References
Identification of benzimidazole-based compounds as selective ligands for the first bromodomain of BET proteins: rational design, synthesis and in vitro evaluation.

Alessandra Cipriano, Ciro Milite, Alessio Ciulli, Panagis Filippakopoulos, Sabrina Castellano, Gianluca Sbardella

Epigenetic Med Chem Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy.
Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom.
Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.

acipriano@unisa.it

Bromodomains (BRDs) are epigenetic readers able to selectively recognize the acetyl-lysine group on histone and non-histone proteins. The Bromo and Extra-Terminal Domain (BET) family is perhaps the most important group of BRD-containing proteins, whose members (BRD2, BRD3, BRD4, and BRDT) contain two highly homologous bromodomains: BD1 and BD2. Their role in different biological processes makes them attractive therapeutic targets. To date, several ligands have been identified as potent BET ligands and some compounds have been entered in clinical trials. However, most of these compounds are pan BET ligands, with no selectivity between each BET member and/or their singular BD1/BD2 domains. Herein, we report the design, the synthesis and the in vitro evaluation of a small library of benzimidazole-based compounds (Figure 1). The benzimidazole nucleus was formally obtained applying a frozen analogue approach to MS436, a potent and selective BD1 ligand of BETs.

References
Biocatalytic synthesis of two pharmacologically active compounds: (S)-pramipexole and its enantiomer, dexpramipexole

Samuele Ciceri,a,* Patrizia Ferraboschi,a Paride Grisenti,b Matteo Moric and Fiorella Meneghettic

a Department of Medical Biotechnology and Translational Medicine, University of Milan, Via C. Saldini 50, 20133 Milano, Italy
b Chemical-Pharmaceutical Consulting and IP Management, Viale G. da Cermenate 58, 20141 Milano, Italy;
c Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milano, Italy;
*samuele.ciceri@guest.unimi.it

Many pharmaceutically active compounds contain a chiral core inside their structure. Therefore, compounds formed highly selectively are valuable products. The chemo-, regio-, and stereo-selectivity required could be achieved using biocatalysts (enzymes or microorganisms), which can work on a wide range of substrates, in mild reaction conditions and not only in aqueous solutions, but also in organic solvents. Moreover, biocatalysis meets the green chemistry principles.

Our research work focuses on the biocatalytic synthesis of key building blocks affording to pharmaceutically active compounds, currently used in therapy [1, 2]. Following this approach, we were able to synthesize the enantiopure key intermediates of (S)-pramipexole, a synthetic dopaminergic agonist utilized as anti-Parkinson drug, and (R)-pramipexole, which has been studied as therapeutic agent against Amyotrophic Lateral Sclerosis (ALS) and now it has found new interest for the potential treatment of Eosinophilic Asthma and Hypereosinophilic Syndrome.

\[
\text{H}^+ \text{H}^+ \text{N} \text{S} \text{NH}_2 \text{S} \text{NH}_2 \text{H} \text{H} \text{N}
\]

(S)-pramipexole

\[
\text{H}^+ \text{H}^+ \text{N} \text{S} \text{NH}_2 \text{S} \text{NH}_2 \text{H} \text{H} \text{N}
\]

(R)-pramipexole

Two different biocatalytic approach allowed us to stereoselectively synthesize these compounds:
1) After the investigation of the activity and selectivity of different microorganisms (especially yeasts), we obtained the enantiomerically pure synthons for the preparation of (S)- and (R)-pramipexole by means of \textit{Saccharomyces cerevisiae}, the common baker’s yeast, a cheap and easy to handle microorganism.
2) The two enantiomerically pure synthons were achieved by means of a double kinetic resolution catalyzed by a commercially available purified enzyme, Lipase A from \textit{Candida antarctica}, under irreversible transesterification conditions.

The definition of the stereochemistry of the two enantiomers was also carried out by means of single crystal X-ray analysis.

References
Molecular Recognition Properties of IDO1 Crystal Structures: Computational and Biophysical Studies

Andrea Mammoli*, Alice Coletti, Alessandra Riccio, Andrea Carotti, Emidio Camaioni, and Antonio Macchiarulo

*Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo n. 1, 06123-Perugia, Italy
Department of Pharmacy, University of Chieti-Pescara, Via dei Vestini n. 31, 66100 Chieti, Italy

andrea.mammoli@chimfarm.unipg.it

Indoleamine 2,3-dioxygenase 1 (IDO1) works as oxidoreductase along the Kynurenine Pathway (KP), catalyzing the first and rate limiting step responsible for the conversion of L-Tryptophan (L-Trp) into N-Formylkynurenine (NFK). IDO1 is a heme-containing enzyme and is involved in the oxidative cleavage of the indole C2-C3 double bond of L-Trp through the incorporation of O2. A dysregulation of IDO1 levels is observed in patients affected by neoplasia, with high levels of IDO1 expression, or autoimmune/neuroinflammatory diseases, where IDO1 levels are defective. Considering the failures behind the drugs in clinical trials as IDO1 inhibitors, e.g. Epacadostat, the challenge in the area of IDO1 drug discovery is still open and an improvement is needed. At this point in order to find and optimize different chemical scaffolds, Structure-Based Drug Design (SBDD) becomes a pivotal strategy. SBDD has been widely applied on IDO1 drug discovery, and since 2006 many crystals have been published. The large available crystallographic data of IDO1 allowed the chance to analyze their features. In this poster, computational studies are used to analyze which is the structural information that can still be exploited for successful SBDD, and biophysical studies are carried out in order to prove the in-silico results. Only 54% of the released crystals has been used in computational studies, and among them only 25% has been employed in the SBDD and Virtual Screening (VS) methods. Computational studies assessed the presence of secondary structural motifs, caused by the presence of different ligands, which affect the binding site and the small domain features. These structural differences led us to deeply analyze how these differences can influence docking results. Employing the docking results as input in a Principal Component Analysis (PCA), a grouping of the proteins based on the crystallized ligands emerged. The PCA results have been analyzed critically highlighting which are the structures already used in SBDD and VS, showing that not all the conformational space of IDO1 has been exploited. According to these results, a VS has been performed employing three different IDO1 proteins from different groups. Next, the top 100 and 1000 ranking poses have been compared. Finally, the results have been clusterized and the cluster centroids have been tested through a MicroScale Thermophoresis (MST) protocol, and the obtained data have been analyzed both in-vitro and by evaluating their physicochemical properties.

References
A challenge in the treatment of neuropathic pain: synthesis of new photostable dihydropyridines

Giuseppina Ioele, a* Miyase Gözde Gündüz, b Michele De Luca, a Fedora Grande, a Maria Antonietta Occhiuzzi, a Antonio Garofalo a and Gaetano Ragno a

a Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ed. Polifunzionale, 87036, Rende, Italy
b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey

*giuseppina.ioele@unical.it

Voltage-gated calcium channels play a fundamental role in essential body functions and the molecules that block these channels are of potential use in the treatment of various diseases. L-type calcium channel blockers, are widely used in the treatment of cardiovascular diseases, particularly hypertension and angina pectoris [1]. T-type calcium channels also attract great interest because of their potential in treating a variety of disorders, including pain and epilepsy [2]. 1,4-Dihydropyridines (DHPs) are always been used as L-type calcium channel blockers in the hypertension specially. Ongoing efforts to modify the DHP scaffold to modulate calcium channel blocking activity have led to a new class of compounds with a condensed ring system (hexahydroquinoline) [3]. Among them, the compound benzyl 4-(2-hydroxy-5-nitrophenyl)-2,6,6-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate has been verified to block the L-type calcium channel (Cav1.2), the main target of DHPs, but also the T-type calcium channel isoform Cav3.1. It was concluded that this compound could serve as a new scaffold for the treatment of hypertension by reducing aldosterone secretion through inhibition of the T-type calcium channel along with the well-known antihypertensive effect by inhibition of the L-type calcium channel. Modification of the ester moiety determined the blocking affinity for both L- and T-type channels. Exemplarily, 3-pyridylmethyl moiety as the alkyl group in the ester function provided the development of DHPs with high selectivity for T-type calcium channels over L-type [3-4]. These findings suggested that focusing on the modifications of the ester side chain is a rational approach to identify more efficient calcium channel blockers in the treatment of neurological diseases. Exposure of these molecules to natural or artificial light leads to a significant production of singlet oxygen, superoxide, or both of them, which in most cases are responsible of photosensitive/phototoxic effects [5]. All the synthesized compounds were subdued to photodegradation tests, in accordance with the ICH international rules [6]. Concentration of parent compounds and by-products was calculated by multivariate curve resolution - alternating least squares (MCR-ALS) applied to the spectral data. The kinetic degradation parameters of all compounds were calculated and all the DHPs photoproducts estimated by MCR-ALS [5]. Because of their well-known instability to light, several studies have been proposed for producing formulations able to provide a valid photoprotection for this class of drugs. The incorporation in supramolecular systems has been proposed as a means to increase the stability of drugs. In particular, cyclodextrins have shown the most promising results due to their ability to improve aqueous solubility, chemical stability and bioavailability for several drug molecules by incorporating them in their core. The use of edible polymeric matrices as new photoprotective systems is under investigation.

References
(2-Imidazolin-4-yl)phosphonates as Imidazoline I₂ Receptor Ligands for Neurodegenerative Diseases

A. Bagán, a S. Rodríguez-Arévalo, a F. Vasilopoulou, a C. Griñán-Ferré, a M. Pallàs, a I. Brocos-Mosquera, b C. Muguruza, b L. F. Callado, b M. Radan, c T. Dijikic, c K. Nicolic, c C. Escolano, a

a Laboratory of Medicinal Chemistry (Associated Unit to CSIC) and Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Neurociències, University of Barcelona, Spain.
b Department of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain.
c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.

abaganpolonio@ub.edu

Imidazoline I₂ receptors (I₂-IRs) are distributed in the CNS and altered in brain disorders such as Huntington, Parkinson’s and Alzheimer’s diseases and depression. So far, few I₂-IRs ligands have been used to decipher the pharmacological implications of these receptors. We propose to add new I₂-IR ligands to the scarce arsenal and study the pharmacological potential of I₂-IR ligands to treat unmet neurodegenerative diseases (ND). In this context, we have described an efficient and user-friendly synthetic process involving the combination of isocyanide-based multicomponent reaction and microwave heating that generates unprecedented (2-imidazoline-4-yl)phosphonates. Radioligand binding studies in human brain samples showed that the new family displayed a higher affinity for I₂-IRs than standard idazoxan, and high I₂/I₃ selectivity. [1] Theoretical studies were carried out for designing compounds with enhanced activity and selectivity upon I₁-IRs based on created 3D-QSAR model. In vivo studies in the female senescence accelerated mouse-prone 8 mice (SAMP8) with two representative compounds, MCR5 and MCR9, showed beneficial effects in behavior and cognition. Changes in molecular pathways implicated in oxidative stress, inflammation, synaptic plasticity, and apoptotic cell death were also studied. Treatments with these I₂-IR ligands diminished the amyloid precursor protein processing pathway and increased Aβ degrading enzymes in the hippocampus of SAMP8 mice. These results collectively demonstrate the neuroprotective role of these new I₂-IRs ligands in a mouse model of brain aging through specific pathways and suggest their potential as therapeutic agents in brain disorders and age-related ND. [2] Herein, we present further studies in the effect of MCR5 on behavioral and psychological symptoms of dementia (BPSD) and cognitive decline in SAMP8. MCR5 oral administration improved cognitive performance and BPSD-like phenotype, demonstrating anti-depressant and anti-anxiety-like effects in older SAMP8 mice. In line with the behavioral improvement, changes in molecular pathways underlying depression and anxiety phenotype were observed after MCR5 treatment. This is the first study in which both cognitive and non-cognitive effects have been demonstrated in AD mice for an I₂-IR ligand. [3]

Figure 1. Synthesis of (2-imidazoline-4-yl)phosphonates

References
Benzofuranylimidazoles: synthesis, affinity for imidazoline I₂ receptors and improvement in the cognition of 5xFAD mouse model

Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Neurociències, University of Barcelona. Spain. Department of Pharmacology, University of the Basque Country, UPV/EHU, E-48940 Leioa, Bizkaia, and Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain. IUNICS University of the Balearic Islands (UIB), and IdiSba, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain. Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, Barcelona, Spain. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Cerdanyola del Vallès, Spain. Innopharma screening platform, BioFarma research group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.

cescolano@ub.edu

Imidazoline I₂ receptors (I₂-IR) are widely distributed in the CNS and appear increased in the patients that suffer from Alzheimer’s disease (AD). Since structural data for I₂-IR remains unknown, the discovery of selective I₂-IR ligands is necessary for their pharmacological characterization. [1] Recently, we focused our attention in the development of structurally new families of compounds endowed with an outstanding affinity and selectivity upon I₂-IR. [2,3] Here, we describe the synthesis and full characterization of 10 members of a family embodying a 2-(2-benzofuranyl)-2-imidazole nucleus, we assessed their pharmacological profile and selectivity through competition binding studies in human tissues against the selective I₂-IR radioligand [³H]-2-BFI, and we performed 3D-QSAR studies of the family and in silico ADME properties. Then, a representative compound, LSL60101, was selected to carry out preliminary DMPK studies, including chemical stability, PAMPA-BBB permeability assay, solubility, cytotoxicity, microsomal stability, and cytochromes inhibition. Finally, we assessed the neuroprotective effect of LSL60101 by evaluating specific oxidative stress markers under oxidative damage and transcription factors related with OS machinery in 5xFAD, an early-onset mouse transgenic model of AD. We found a significant cognitive improvement in the treated animals and the biomarkers related to neurodegeneration (Figure 1). To sum up, we propose a new I₂-IR ligand that supports that I₂-IR constitute a relevant pharmacological target for the therapeutic strategy against AD.

Figure 1. Neuroprotection studies of LSL60101

References
A single-molecule based polypharmacological approach against Alzheimer’s disease

Claudia Albertini,a,* Marina Naldi,a Sabrina Petralla,a Barbara Monti, a Manuela Bartolini a and Maria Laura Bolognesia

Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.

*claudia.albertini3@unibo.it

Alzheimer’s disease (AD) is the most common cause of dementia worldwide, only in Europe, it affects 10 million people and its incidence is expected to double by 2030.[1] Nevertheless, the research of an effective treatment still represents a critical challenge. Indeed, because of the multifactorial nature of AD, the classic drug discovery paradigm one-target-one-drug-one-disease results ineffective, suggesting a polypharmacological approach as the most promising to treat complex diseases.[2] Currently, one of the most promising polypharmacological approaches in AD is an ongoing phase 3 clinical trial focused on the synergistic modulation of neuroinflammation by co-administration of two well-known anti-inflammatory drugs, i.e., ibuprofen (IBU) and cromolyn (CR). In the trial, the two drugs are administrated by two different pharmaceutical forms, IBU as oral tablet and CR as inhaled powder formulation.[3] Inspired by the clinical results, this project aims to harness the IBU-CR drug combination to develop a polypharmacological approach based on codrugs,[4] aimed to obtain an anti-neuroinflammatory effect synergistic with the advantages of a single molecule. With this in mind, we rationally designed and synthesized a small library of IBU-CR co-drugs, by introducing cleavable bonds, which can be released in vivo, after hydrolysis.[5] The new molecules have been designed by fusing or linking strategies, reproducing a 1:1 (1-4) or a 2:1 IBU:CR (5-8) ratio (Figure 1). Moreover, the designed co-drugs might improve the pharmacokinetic profile of the two starting drugs. Indeed, the negative charges of the acid groups of both IBU and CR have been masked and the overall co-drugs’ lipophilicity has been improved favoring blood–brain barrier (BBB) permeation and oral administration avoiding the CR inhalation powder, which seems not suitable due to the loss of coordination typical of AD patients. In detail, the design of the 1:1 co-drugs exploited a fusing strategy by the direct esterification of the carboxylic group of IBU with the hydroxyl function of CR. In the case of the 2:1 co-drugs, a linking strategy between the two carboxylic groups of CR and the amine or hydroxyl function of the ethylene glycol, ethanolamine, and ethylenediamine linkers, with different metabolic stability. Co-drugs’ (1-8) metabolic stability (up to 6 hours) has been evaluated in human plasma. The results demonstrated that 2:1 co-drugs having amide bonds are at least 75% stable, suggesting their availability in crossing the BBB without metabolic modifications, and the possibility to release the parent drugs directly in the same target neuronal cells and at the same time. Concomitantly, 1-8 cytotoxicity assay has been performed on primary cell line of cerebellar granule neurons (CGNs) showing comparable or lower toxicity to the parent drug combinations. Future studies will include the evaluation of the immunomodulatory effect of the synthesized molecules compared to the IBU-CR combination. In addition, based on the antiaggregating properties of CR, the study of co-drug anti-amyloid profile will be pursued.

References
Fluorine Impact on the Drug-like Profile of MTDLs against Alzheimer’s Disease

Mariagrazia Rullo,a,* Marco Catto,a Carolina Colliva,b Marco Cipolloni,b Roberto Pellicciari,b Cosimo D. Altomare,a and Leonardo Pisani a

a Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, via Orabona 4, 70125, Bari, Italy
b TES Pharma s.r.l., Corso Vannucci 47, 06121, Perugia, Italy

*mariagrazia.rullo@uniba.it

Among neurodegenerative diseases, a major role is played by Alzheimer’s Disease (AD), the most common cause of senile dementia. Given the multifactorial nature of this pathology and the lack of curative treatments, the multitarget approach represents a promising strategy [1] aiming at disease-modifying effects through the simultaneous modulation of several mechanisms with a unique chemical entity. Our work has long been devoted to rationally designed coumarin-based Multi-Target-Directed Ligands (MTDLs), leading to highly active dual selective inhibitors of two key enzymes in AD, monoamine oxidase B (MAO B) and acetylcholinesterase (AChE).[2, 3]

Fluorine and fluorinated motifs are widely used in medicinal chemistry to improve a molecule’s efficiency and drug-like features.[4] In this contest we were interested on studying the impact of fluorine atom(s) on both the in vitro activity and in vitro early-ADME profile of our most potent and selective dual hits, by placing gem-difluoromethyl groups as bioisosters for primary alcohols and by introducing a m-fluoro substituent on the phenyl ring (Figure 1) to mitigate its metabolic liability.

![MTDLs](image)

Figure 1. Fluorinated MTDLs and non fluorinated analogues included in the in vitro drug-like evaluation.

References

P62
A new therapeutic approach for alzheimer’s disease: novel P2X7 receptor antagonists

Andreea Larisa Turcu,a* So-Deok Lee,b Marta Barniol-Xicota,a José Brea,c M. Isabel Loza,c Yong-Chul Kimb,Santiago Vázquez a

a Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, E-08028, Spain.
b School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro, Buk-gu, 123, Gwangju 61005, Korea.

*aturcu@ub.edu

Aetiology of Alzheimer’s disease (AD) is not fully understood. It has been revealed that the inflammation in the early stages is its major component. Therefore, the identification of anti-neuroinflammatory drugs could lead to novel treatments for AD. [1]

The P2X7 receptors (P2X7R) are implicated in the regulation of inflammatory response playing a crucial role in the neurodegeneration process. These receptors belong to the family of ionotrophic receptor being present on neurons, microglial cells and macrophages. The activation of the P2X7R by ATP in high concentration leads to increased cytokine IL-1β, making this receptor an attractive therapeutic target to reduce neuroinflammation. [2] Despite a variety of potent antagonists P2X7R have become available, and several of them have entered clinical trials, so far, none has been tested against Alzheimer’s disease. [3] Bearing in mind the aforementioned problem, the knowledge that adamantane moiety is a common structural feature in several P2X7 antagonists and the expertise of our group in polycyclic hydrocarbons, we decided to design, synthesize and pharmacologically evaluate a series of analogues of the known Abbott’s adamantane P2X7 antagonist 1. [4] Replacement of the adamantane subunit of 1 led to our new hit 2, endowed with higher potency (IC50 = 0.3 nM) (Figure 1). Herein, we will present the synthesis and in vitro proof of concept of our new P2X7 antagonists as well as the screening cascade in order to identify the best candidate for an in vivo study in an animal model of AD.

Figure 1. Structure and activity of the known Abbott’s P2X7 antagonist and, of our new potent hit 2 provided with low nanomolar activity in P2X7R

Abbott’s compound 1
(hP2X7, IC50 = 10 nM)

2
(hP2X7, IC50 = 0.3 nM)

References
Novel 3-Aroyl-1,4-diarylpyrroles against Solid Tumors and Hematological Malignancies

Michela Puxeddu, Antonio Coluccia, Marianna Nalli, Ernest Hamel, Romano Silvestri, Giuseppe La Regina

Laboratory Affiliated with the Institute Pasteur Italy e Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy

Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States

michela.puxeddu@uniroma1.it

Microtubules (MTs) are an attractive target for the development of efficient anticancer agents. Evidence has accumulated correlating inhibition of tubulin polymerization and leukemic cell proliferation. [1] The activity of colchicine site agents in chronic myeloid leukaemia (CML) has not been adequately explored yet. [2] Recently, starting from previously reported aroylindoles and aroilpyrroles, we developed novel 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives to explore structure-activity relationships at the phenyls at the position 1 and 4 of the pyrrole. [3] Several compounds strongly inhibited tubulin assembly through binding to the colchicine site, the bests derivatives present the amino group in both phenyls (Table 1). Compound 1 was generally more effective as an inhibitor of the glioblastoma, colorectal and urinary bladder cancer cells (Table 2). whereas 2 consistently was more active as an inhibitor of the CML cell lines (Table 3). In animal models, the first promising compound exhibited significant inhibition of the growth of T24 bladder carcinoma and ES-2 ovarian clear cell carcinoma tumours (Figure 1). These derivatives represent robust lead compounds for the design of new anticancer agents active in different types of solid and haematological tumours.

Figure 1. Biological activity of compounds 1 and 2.

References
Natural Cytotoxic Diterpenoids, as Potential Source of Drug Leads for cancer Therapy

Epole Ntungwe a,b, Vera Iscaa,c, Máté Vágvölgyied, Rachel Coimbra a, Domínguez Martín Eva María a, Attila Hunyadid, Noélia Duarte c, Ana María Díaz-Lanzab Patrícia Rijo a,c*
a CBIOS – Center Research for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
bDepartment of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra. A2, Km 33.600 – Campus Universitario, 28871 Alcalá de Henares, Spain
c Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisbon, Portugal
d Institute of Pharmacognosy, University of Szeged, Eötvös str. 6. 6720 Szeged, Hungary

patricia.rijo@ulusofona.pt

Natural products from medicinal plants represent a major resource of novel therapeutic substances for combating serious diseases including cancer. The *Plectranthus* genus (Family: Lamiaceae) represents a large and widespread group of species with a diversity of traditional uses for the treatment of several ailments. Cytotoxicity screenings have identified *Plectranthus* plants as potential sources of antitumor lead compounds [1,2]. *P. mutabilis* Codd. chemical constituents have been cited on its HPLC analysis that revealed the presence of Nepetoidins A and Nepetoidins B [3]. We therefore aimed to study the composition and biological activity of this plant to reinforce the low phytochemical information. In this study, the air-dried *P. mutabilis* whole plant was extracted in acetone using the ultra-sound assisted extraction method. Furthermore, a bio-guided fractionation was performed followed by an *Artemia salina* general toxicity assay [4]. The extract was subjected to different column chromatographies using silica or polyamide with increasing polarity to afford the metabolite Coleon U quinone (1), 8α,9α-Epoxycoleon U quinone (2), coleon U (3) and 7-hydro,14-deoxycoleon U (4). The fully structure characterization was done by 1D- and 2D-NMR, LC/MS and comparison with literature data. The *P. mutabilis* extract chromatographic profile and corresponding quantification of the four isolated compounds was performed. All the compounds were identified in the extract with Coleon U and Coleon U quinone being the major compounds in the *P mutabilis* extract.

References
Bio-Inspired G-Quadruplex Binders Powered by Multicomponent Reactions

Sveva Pelliccia 1*, Jussara Amato 1, Alberto Massarotti 2, Gian Cesare Tron 2, Ettore Novellino 1 and Mariateresa Giustiniano 1

1Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131, Naples, Italy
2Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy

sveva.pelliccia@unina.it

The G4s are a heterogeneous class of structural topologies composed of hydrogen-bonding arrangements of four guanine bases, namely, the G-tetrads. G4-forming motifs have also been identified in oncogene promoter regions, bringing to light the therapeutic potential for targeted gene regulation at the transcriptional level.

In the search for new drug-like selective G-quadruplex binders, a bio-inspired design focused on the use of nucleobases as synthons in a multicomponent reaction (MCR) proved to be viable and successful. Hence, a new class of multi-functionalized imidazo[2,1-i]purine derivatives, easily synthesized with a convergent approach, allowed the identification of the first dual BCL2/c-MYC gene promoter G-quadruplex ligand (Figure 1). Biophysical studies along with biological investigations have been carried out to assess the potency and to characterize the binding mode of the newly identified lead compound. The absence of toxicity towards normal cells, together with the small molecular weight (≈ 500), the water solubility, the ease of functionalization, and the selectivity profile are promising and desirable features to develop G-quadruplex binders as safe and effective anticancer agents.1

Figure 1. Multi-functionalized imidazo[2,1-i]purine derivatives as first dual BCL2/c-MYC G4 Binders.

Acknowledgments: AIRC (MFAG 18793) is acknowledged

References

List of partecipants

<table>
<thead>
<tr>
<th>Surname</th>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu Hassirah</td>
<td>Doaa</td>
<td>Umm alqura University</td>
</tr>
<tr>
<td>Albertini</td>
<td>Claudia</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Alcaro</td>
<td>Stefano</td>
<td>University Magna Graecia of Catanzano</td>
</tr>
<tr>
<td>Aldini</td>
<td>Giancarlo</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Alharbi</td>
<td>Fatima</td>
<td>King Saud University</td>
</tr>
<tr>
<td>Alkhairi</td>
<td>Shrouch</td>
<td>King Saud University</td>
</tr>
<tr>
<td>Almerico</td>
<td>Anna Maria</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Alrishi</td>
<td>Noor</td>
<td>Jeddah University</td>
</tr>
<tr>
<td>Altmare</td>
<td>Alessandra Anna</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Altmare</td>
<td>Cosimo Damiano</td>
<td>University of Bari Aldo Moro</td>
</tr>
<tr>
<td>Amangeldiuly</td>
<td>Nurlybek</td>
<td>Skolkovo Institute of Science and Technology</td>
</tr>
<tr>
<td>Ambrosio</td>
<td>Francesca Alessandra</td>
<td>University Magna Graecia of Catanzano</td>
</tr>
<tr>
<td>Amel</td>
<td>Bensedira</td>
<td>Faculty of medicin, pharmacy departement therapeutic laboratory</td>
</tr>
<tr>
<td>Anceschi</td>
<td>Lisa</td>
<td>University of Modena and Reggio Emilia</td>
</tr>
<tr>
<td>Andrisano</td>
<td>Vincenza</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Angelo</td>
<td>Liliana</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Annunziato</td>
<td>Francesca</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Annunziato</td>
<td>Giannamaria</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Ardino</td>
<td>Claudia</td>
<td>University of Siena</td>
</tr>
<tr>
<td>Artasensi</td>
<td>Angelica</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Astolfi</td>
<td>Andrea</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Atobe</td>
<td>Masakazu</td>
<td>Asahi Kasei Pharma</td>
</tr>
<tr>
<td>Atobe</td>
<td>Masakazu</td>
<td>Asahi Kasei Pharma</td>
</tr>
<tr>
<td>Aude</td>
<td>Ouvrier-buffet</td>
<td>-</td>
</tr>
<tr>
<td>Avino</td>
<td>Giulia</td>
<td>University of Trieste</td>
</tr>
<tr>
<td>Babar</td>
<td>Mustafeez Babar</td>
<td>Shifa College of Pharmaceutical Sciences</td>
</tr>
<tr>
<td>Babiaka</td>
<td>Smith Borakaeyabe</td>
<td>University of Buea</td>
</tr>
<tr>
<td>Bagan Polonio</td>
<td>Andrea</td>
<td>University of Barcelone</td>
</tr>
<tr>
<td>Baglini</td>
<td>Emma</td>
<td>University of Pisa</td>
</tr>
<tr>
<td>Bagnolino</td>
<td>Greta</td>
<td>Italian Institute of Technology</td>
</tr>
<tr>
<td>Bagnolino</td>
<td>Greta</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Balbinot</td>
<td>Marta</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Balestri</td>
<td>Lorenzo</td>
<td>University of Siena</td>
</tr>
<tr>
<td>Ballarotto</td>
<td>Marco</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Bandiera</td>
<td>Tiziano</td>
<td>Istituto Italiano di Tecnologia</td>
</tr>
<tr>
<td>Barbaracsi</td>
<td>Carla</td>
<td>University of Catania</td>
</tr>
<tr>
<td>Barile</td>
<td>Daniela</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>Baron</td>
<td>Giovanna</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Barreca</td>
<td>Maria Letizia</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Barreca</td>
<td>Marilia</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Basagni</td>
<td>Filippo</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Bayraktar</td>
<td>Gulshah</td>
<td>Ege University</td>
</tr>
<tr>
<td>Bellavita</td>
<td>Rosa</td>
<td>University of Naples, Federico II</td>
</tr>
<tr>
<td>Benetti</td>
<td>Carlo</td>
<td>Merck Life Science Srl</td>
</tr>
<tr>
<td>Beretta</td>
<td>Giangiacomo</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Bernardes</td>
<td>Lilian</td>
<td>Federal University of Santa Catarina</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Biancucci</td>
<td>University of Palermo</td>
<td></td>
</tr>
<tr>
<td>Blicharz</td>
<td>Jagiellonian University Faculty of Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Bordoni</td>
<td>Manchester Institute Cancer Research</td>
<td></td>
</tr>
<tr>
<td>Borgini</td>
<td>University of Pittsburgh</td>
<td></td>
</tr>
<tr>
<td>Bortolami</td>
<td>Sapienza, University of Rome</td>
<td></td>
</tr>
<tr>
<td>Boschi</td>
<td>University of Turin</td>
<td></td>
</tr>
<tr>
<td>Bozza</td>
<td>Aptuit (Verona) Srl, An Evotec Company</td>
<td></td>
</tr>
<tr>
<td>Braconi</td>
<td>University of Firenze</td>
<td></td>
</tr>
<tr>
<td>Bridoux</td>
<td>Middle East</td>
<td></td>
</tr>
<tr>
<td>Brigg</td>
<td>Stellenbosch University</td>
<td></td>
</tr>
<tr>
<td>Brindisi</td>
<td>University of Naples Federico II</td>
<td></td>
</tr>
<tr>
<td>Bruffaerts</td>
<td>UCB</td>
<td></td>
</tr>
<tr>
<td>Bruno</td>
<td>Cor. Con. International</td>
<td></td>
</tr>
<tr>
<td>Brusa</td>
<td>University of Bologna Alma Mater Studiorum</td>
<td></td>
</tr>
<tr>
<td>Buccolo</td>
<td>University of Messina</td>
<td></td>
</tr>
<tr>
<td>Budassi</td>
<td>University of Ferrara</td>
<td></td>
</tr>
<tr>
<td>Bufano</td>
<td>Sapienza, University of Rome</td>
<td></td>
</tr>
<tr>
<td>Bülbül</td>
<td>Martin Luther Universitat</td>
<td></td>
</tr>
<tr>
<td>Buonfiglio</td>
<td>Angelini Pharma SpA</td>
<td></td>
</tr>
<tr>
<td>Cabrelle</td>
<td>University of Bologna</td>
<td></td>
</tr>
<tr>
<td>Cacciatore</td>
<td>University of Chieti-Pescara</td>
<td></td>
</tr>
<tr>
<td>Caciolla</td>
<td>University of Bologna</td>
<td></td>
</tr>
<tr>
<td>Campora</td>
<td>University of Genova</td>
<td></td>
</tr>
<tr>
<td>Canale</td>
<td>Department of Medicinal Chemistry, Jagiellonian University Medical College</td>
<td></td>
</tr>
<tr>
<td>Cantini</td>
<td>University of Florence</td>
<td></td>
</tr>
<tr>
<td>Carbone</td>
<td>University of Palermo</td>
<td></td>
</tr>
<tr>
<td>Carbone</td>
<td>University of Palermo</td>
<td></td>
</tr>
<tr>
<td>Carnovale</td>
<td>Accelera S.r.l. (NMS group)</td>
<td></td>
</tr>
<tr>
<td>Carofiglio</td>
<td>University of Bari Aldo Moro</td>
<td></td>
</tr>
<tr>
<td>Carotenuto</td>
<td>University of Naples, Federico II</td>
<td></td>
</tr>
<tr>
<td>Cascioferro</td>
<td>University of Palermo</td>
<td></td>
</tr>
<tr>
<td>Castellano</td>
<td>University of Salerno</td>
<td></td>
</tr>
<tr>
<td>Catalano</td>
<td>University Magna Graecia of Catanzaro</td>
<td></td>
</tr>
<tr>
<td>Catalano</td>
<td>Eth - Zürich</td>
<td></td>
</tr>
<tr>
<td>Cavalloro</td>
<td>University of Pavia</td>
<td></td>
</tr>
<tr>
<td>Cazzamalli</td>
<td>Philochem</td>
<td></td>
</tr>
<tr>
<td>Cazzaniga</td>
<td>University of Milan</td>
<td></td>
</tr>
<tr>
<td>Ceccarelli</td>
<td>University of Perugia</td>
<td></td>
</tr>
<tr>
<td>Cele</td>
<td>Council for Scientific and Industrial Research (CSIR)</td>
<td></td>
</tr>
<tr>
<td>Cerra</td>
<td>University of Perugia</td>
<td></td>
</tr>
<tr>
<td>Cescon</td>
<td>University of Trieste</td>
<td></td>
</tr>
<tr>
<td>Cescon</td>
<td>University of Trieste</td>
<td></td>
</tr>
<tr>
<td>Charlotte</td>
<td>University of Strasbourg</td>
<td></td>
</tr>
<tr>
<td>Chines</td>
<td>Technische Universität Dortmund</td>
<td></td>
</tr>
<tr>
<td>Christian</td>
<td>University of Chieti-Pescara</td>
<td></td>
</tr>
<tr>
<td>Cianciulli</td>
<td>Aptuit An Evotec Company</td>
<td></td>
</tr>
<tr>
<td>Ciceri</td>
<td>University of Milan</td>
<td></td>
</tr>
<tr>
<td>Cipriano</td>
<td>University of Salerno</td>
<td></td>
</tr>
<tr>
<td>Cirrincione</td>
<td>University of Bologna</td>
<td></td>
</tr>
<tr>
<td>Cirrincione</td>
<td>University of Palermo</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Citti Cinzia</td>
<td>Mediteknology s.r.l. (spin-off company of CNR)</td>
<td></td>
</tr>
<tr>
<td>Codony Sandra</td>
<td></td>
<td>University of Barcelona</td>
</tr>
<tr>
<td>Coimbra Raquel</td>
<td></td>
<td>Universidade Lusófona</td>
</tr>
<tr>
<td>Coluccia Antonio</td>
<td></td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>Comeo Eleonora</td>
<td></td>
<td>University of Nottingham And Monash University</td>
</tr>
<tr>
<td>Conti Paola</td>
<td></td>
<td>University of Milan</td>
</tr>
<tr>
<td>Coricello Adriana</td>
<td></td>
<td>University Magna Graecia of Catanzaro</td>
</tr>
<tr>
<td>Cornier Patricia</td>
<td></td>
<td>Universidad Nacional de Rosario</td>
</tr>
<tr>
<td>Costa Savvas</td>
<td></td>
<td>University of Patras</td>
</tr>
<tr>
<td>Costa Giosuè</td>
<td></td>
<td>University Magna Graecia of Catanzaro</td>
</tr>
<tr>
<td>Culletta Giulia</td>
<td></td>
<td>University of Messina</td>
</tr>
<tr>
<td>Da Settimo Federico</td>
<td></td>
<td>University of Pisa</td>
</tr>
<tr>
<td>D'agostino Ilaria D'agostino</td>
<td></td>
<td>University of Siena</td>
</tr>
<tr>
<td>D'Amato Alfonsina</td>
<td></td>
<td>University of Milan</td>
</tr>
<tr>
<td>D'Arrigo Giulia</td>
<td></td>
<td>University of Turin</td>
</tr>
<tr>
<td>Das Sonali</td>
<td></td>
<td>CSIR-Indian Institute of Chemical Biology</td>
</tr>
<tr>
<td>Davani Lara</td>
<td></td>
<td>University of Bologna</td>
</tr>
<tr>
<td>De Leo Alessandro</td>
<td></td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>de Oliveira Galvão</td>
<td></td>
<td>Universidade Federal de Santa Catarina</td>
</tr>
<tr>
<td>De Vita Elena</td>
<td></td>
<td>Imperial College</td>
</tr>
<tr>
<td>De Vita Daniela</td>
<td></td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>Degani Genny</td>
<td></td>
<td>University of Milan</td>
</tr>
<tr>
<td>Del Grosso Erika</td>
<td></td>
<td>University of Piemonte Orientale</td>
</tr>
<tr>
<td>Della Valle Alice</td>
<td></td>
<td>University of Chieti</td>
</tr>
<tr>
<td>Desai Vidya</td>
<td></td>
<td>Dnjanprassarak Mandal's college and Research Centre</td>
</tr>
<tr>
<td>Di Chio Carla</td>
<td></td>
<td>University of Messina</td>
</tr>
<tr>
<td>Di Leva Francesco Saverio</td>
<td></td>
<td>University of Naples Federico II</td>
</tr>
<tr>
<td>Di Maria Salvatore</td>
<td></td>
<td>University of Siena</td>
</tr>
<tr>
<td>Di Santo Roberto</td>
<td></td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>Diamanti Eleonora</td>
<td></td>
<td>Helmholtz</td>
</tr>
<tr>
<td>Diana Patrizia</td>
<td></td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Dichiaro Maria</td>
<td></td>
<td>University of Catania</td>
</tr>
<tr>
<td>Dighalkar Cindiya</td>
<td></td>
<td>Dnjanprassarak Mandal's college and Research Center</td>
</tr>
<tr>
<td>Digiaccomo Maria</td>
<td></td>
<td>Department of Pharmacy</td>
</tr>
<tr>
<td>Dimmito Marilisa Pia</td>
<td></td>
<td>University of Chieti</td>
</tr>
<tr>
<td>Domínguez-Martín Eva María</td>
<td></td>
<td>University of Alcalá</td>
</tr>
<tr>
<td>Duca Margherita</td>
<td></td>
<td>Utrecht University</td>
</tr>
<tr>
<td>Dykes Graeme</td>
<td></td>
<td>Independent</td>
</tr>
<tr>
<td>Elisi Gian Marco</td>
<td></td>
<td>University of Parma</td>
</tr>
<tr>
<td>Ely Ely Setiawan</td>
<td></td>
<td>Universitas Gadjah Mada</td>
</tr>
<tr>
<td>Escolano Carmen</td>
<td></td>
<td>University of Barcelona</td>
</tr>
<tr>
<td>Esposito Salsano Jasmine</td>
<td></td>
<td>University of Siena</td>
</tr>
<tr>
<td>Failla Mariacristina</td>
<td></td>
<td>University of Turin</td>
</tr>
<tr>
<td>Fallica Antonino Nicolò</td>
<td></td>
<td>University of Catania</td>
</tr>
<tr>
<td>Federico Stephanie</td>
<td></td>
<td>University of Trieste</td>
</tr>
<tr>
<td>Feoli Alessandra</td>
<td></td>
<td>University of Salerno</td>
</tr>
<tr>
<td>Ferlenghi Francesca</td>
<td></td>
<td>University of Parma</td>
</tr>
<tr>
<td>Ferrisi Rebecca</td>
<td></td>
<td>University of Pisa</td>
</tr>
<tr>
<td>Fiorito Serena</td>
<td></td>
<td>University of Chieti</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Company</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Franchini Silvia</td>
<td>University of Modena</td>
<td></td>
</tr>
<tr>
<td>Frazão De Faria Catarina</td>
<td>Merck Life Science S.R.L</td>
<td></td>
</tr>
<tr>
<td>Gangarapu Kiran</td>
<td>Anurag University</td>
<td></td>
</tr>
<tr>
<td>Gastaldi Simone</td>
<td>University of Turin</td>
<td></td>
</tr>
<tr>
<td>Gawandi Sinthiya</td>
<td>Dnyanprassarak Mandals College and Research Centre</td>
<td></td>
</tr>
<tr>
<td>Gazzola Silvia</td>
<td>University of Insubria</td>
<td></td>
</tr>
<tr>
<td>Gelain Arianna</td>
<td>University of Milan</td>
<td></td>
</tr>
<tr>
<td>Gholampour Maryam</td>
<td>Shiraz University of Medicinal Sciences</td>
<td></td>
</tr>
<tr>
<td>Ghoteimi Rayane</td>
<td>Université De Montpellier</td>
<td></td>
</tr>
<tr>
<td>Gianquinto Eleonora</td>
<td>University of Turin</td>
<td></td>
</tr>
<tr>
<td>Gilardoni Ettore</td>
<td>University of Milan</td>
<td></td>
</tr>
<tr>
<td>Gioia Bruna</td>
<td>ISPB</td>
<td></td>
</tr>
<tr>
<td>Giordani Lara</td>
<td>Zentek Srl</td>
<td></td>
</tr>
<tr>
<td>Giorgi Simone</td>
<td>Aptuit</td>
<td></td>
</tr>
<tr>
<td>Giraudo Alessandro</td>
<td>Istituto Italiano di Tecnologia</td>
<td></td>
</tr>
<tr>
<td>Giuliani Marta</td>
<td>Evotec</td>
<td></td>
</tr>
<tr>
<td>Gomes da Silva Marco Aurelio</td>
<td>UFJF</td>
<td></td>
</tr>
<tr>
<td>Gonzalez Alonzo</td>
<td>Instituto Politécnico Nacional</td>
<td></td>
</tr>
<tr>
<td>Governa Paolo</td>
<td>University of Siena</td>
<td></td>
</tr>
<tr>
<td>Grieco Ilenia</td>
<td>University of Trieste</td>
<td></td>
</tr>
<tr>
<td>Grieco Paolo</td>
<td>University of Naples Federico II</td>
<td></td>
</tr>
<tr>
<td>Guccione Salvatore</td>
<td>University of Catania</td>
<td></td>
</tr>
<tr>
<td>Gurbani Girish</td>
<td>Bombay College of Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Iannelli Giulia</td>
<td>University of Salerno</td>
<td></td>
</tr>
<tr>
<td>Iba Roberta</td>
<td>University of Sassari</td>
<td></td>
</tr>
<tr>
<td>Ilić Milica</td>
<td>University of Novi Sad</td>
<td></td>
</tr>
<tr>
<td>Intagliata Sebastiano</td>
<td>University of Catania</td>
<td></td>
</tr>
<tr>
<td>Ioele Giuseppina</td>
<td>University of Calabria</td>
<td></td>
</tr>
<tr>
<td>Iralde Leire</td>
<td>University of Siena</td>
<td></td>
</tr>
<tr>
<td>Isca Vera</td>
<td>University of Lisbon</td>
<td></td>
</tr>
<tr>
<td>Iuni Trist Iuni Margaret Laura</td>
<td>Aptuit (Verona) s.r.l.</td>
<td></td>
</tr>
<tr>
<td>Jahanidargahi Danial</td>
<td>University of Barcelona</td>
<td></td>
</tr>
<tr>
<td>James Akash</td>
<td>University of Turku</td>
<td></td>
</tr>
<tr>
<td>Jurasz Jakub</td>
<td>Gdańsk University of Technology</td>
<td></td>
</tr>
<tr>
<td>Kala Nidhi</td>
<td>Saraswathi College of Pharmacy</td>
<td></td>
</tr>
<tr>
<td>KherAllah Areej</td>
<td>Umm Al-Qura Uneversity</td>
<td></td>
</tr>
<tr>
<td>Krunić Mihaĳlo</td>
<td>University of Belgrade</td>
<td></td>
</tr>
<tr>
<td>Kuzminac Ivana</td>
<td>University of Novi Sad</td>
<td></td>
</tr>
<tr>
<td>Latorrata Alessia</td>
<td>National Hellenic Research Foundation</td>
<td></td>
</tr>
<tr>
<td>Linciano Pasquale</td>
<td>University of Pavia</td>
<td></td>
</tr>
<tr>
<td>Lindström Milla</td>
<td>University of Eastern Finlands</td>
<td></td>
</tr>
<tr>
<td>Listro Roberta</td>
<td>University of Pavia</td>
<td></td>
</tr>
<tr>
<td>Lo Caputo Chiara</td>
<td>Centre d’Études et de Recherche sur le Médicament de Normandie (CERMN)</td>
<td></td>
</tr>
<tr>
<td>Lozza Anna Maria</td>
<td>University of Perugia</td>
<td></td>
</tr>
<tr>
<td>Lupia Antonio</td>
<td>Net4Science Academic Spin-Off</td>
<td></td>
</tr>
<tr>
<td>Luque Navarro Pilar Maria</td>
<td>University of Perugia</td>
<td></td>
</tr>
<tr>
<td>Macchia Marco</td>
<td>University of Pisa</td>
<td></td>
</tr>
<tr>
<td>Maciejewska Natalia</td>
<td>Gdansk University of Technology</td>
<td></td>
</tr>
<tr>
<td>Madia Valentina Noemi</td>
<td>University of Roma Sapienza</td>
<td></td>
</tr>
<tr>
<td>Madia Valentina Noemi</td>
<td>University of Roma Sapienza</td>
<td></td>
</tr>
<tr>
<td>Madia Valentina Noemi</td>
<td>University of Roma Sapienza</td>
<td></td>
</tr>
<tr>
<td>Madia Valentina Noemi</td>
<td>University of Roma Sapienza</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Last Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mammoli</td>
<td>Andrea</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Mancini</td>
<td>Giulia</td>
<td>University of the Sciences</td>
</tr>
<tr>
<td>Mancuso</td>
<td>Francesca</td>
<td>University of Messina</td>
</tr>
<tr>
<td>Manuela</td>
<td>Bartolini</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Mapari</td>
<td>Taniya</td>
<td>Dnyanprassarak mandals college and research Centre, Assagao Goa.</td>
</tr>
<tr>
<td>Marasca</td>
<td>Camilla</td>
<td>Alma Mater Studiorum - University of Bologna</td>
</tr>
<tr>
<td>Mari</td>
<td>Michele</td>
<td>University of Urbino "Carlo Bo"</td>
</tr>
<tr>
<td>Marinelli</td>
<td>Luciana</td>
<td>University of Naples Federico II</td>
</tr>
<tr>
<td>Marinelli</td>
<td>Davide</td>
<td>Evotec</td>
</tr>
<tr>
<td>Marotta</td>
<td>Giambattista</td>
<td>Alma Mater Studiorum - University of Bologna</td>
</tr>
<tr>
<td>Marrazzo</td>
<td>Agostino</td>
<td>University of Catania</td>
</tr>
<tr>
<td>Martina</td>
<td>Maria Grazia</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Martínez Arce</td>
<td>Elsa</td>
<td>Universitat de Barcelona</td>
</tr>
<tr>
<td>Maruca</td>
<td>Annalisa</td>
<td>University Magna Graecia of Catanzaro</td>
</tr>
<tr>
<td>Maspero</td>
<td>Marco</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Massarico Serafim</td>
<td>Ricardo Augusto</td>
<td>SGC-Unicamp</td>
</tr>
<tr>
<td>Massarotti</td>
<td>Alberto</td>
<td>University of Piemonte Orientale</td>
</tr>
<tr>
<td>Masuaka</td>
<td>Raban</td>
<td>University of Zimbabwe</td>
</tr>
<tr>
<td>Mayo Mariscal de Gante</td>
<td>Paloma</td>
<td>Universidad Autónoma de Madrid</td>
</tr>
<tr>
<td>Mendes Machado</td>
<td>Marcella Gabrielle</td>
<td>University of São Paulo State - UNESP</td>
</tr>
<tr>
<td>Menestrina</td>
<td>Luca</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Mesiti</td>
<td>Francesco</td>
<td>University Magna Graecia of Catanzaro</td>
</tr>
<tr>
<td>Messore</td>
<td>Antonella</td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>Micheli</td>
<td>Fabrizio</td>
<td>Evotec</td>
</tr>
<tr>
<td>Miciaccia</td>
<td>Morena</td>
<td>University of Bari</td>
</tr>
<tr>
<td>Milite</td>
<td>Ciro</td>
<td>University of Salerno</td>
</tr>
<tr>
<td>Mirabile</td>
<td>Salvatore</td>
<td>University of Messina</td>
</tr>
<tr>
<td>Mishra</td>
<td>Prem Shankar</td>
<td>Galgotias University</td>
</tr>
<tr>
<td>Moi</td>
<td>Davide</td>
<td>University of Modena e Reggio Emilia</td>
</tr>
<tr>
<td>Mollica</td>
<td>Adriano</td>
<td>University of Chieti</td>
</tr>
<tr>
<td>Montanari</td>
<td>Serena</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Montel De La Roche</td>
<td>Noelia</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Moraca</td>
<td>Federica</td>
<td>University of Naples, Federico II</td>
</tr>
<tr>
<td>Morales</td>
<td>Paula</td>
<td>Spanish National Research Council</td>
</tr>
<tr>
<td>Mori</td>
<td>Matteo</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Morigi</td>
<td>Rita</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Moroni</td>
<td>Giada</td>
<td>University of Bologna, Alma Mater Studiorum</td>
</tr>
<tr>
<td>Morreale</td>
<td>Francesca Ester</td>
<td>IMP - Research Institute of Molecular Pathology</td>
</tr>
<tr>
<td>Motamedi</td>
<td>Negin</td>
<td>Tor Vergara university</td>
</tr>
<tr>
<td>Muema</td>
<td>Jackson Mbithi</td>
<td>Jkuat</td>
</tr>
<tr>
<td>Narducci</td>
<td>Daniele</td>
<td>National Hellenic Research Foundation</td>
</tr>
<tr>
<td>Nautiyal</td>
<td>Manesh</td>
<td>KU Leuven</td>
</tr>
<tr>
<td>Ntungwe</td>
<td>Epole</td>
<td>University of Alcalá</td>
</tr>
<tr>
<td>Nué Martinez</td>
<td>Jorge Jonathan</td>
<td>Instituto de Química Médica - CSIC</td>
</tr>
<tr>
<td>Occhiusi</td>
<td>Maria Antonietta</td>
<td>University of Calabria</td>
</tr>
<tr>
<td>Onnis</td>
<td>Valentina</td>
<td>University of Cagliari</td>
</tr>
<tr>
<td>Otto Walter</td>
<td>Laura</td>
<td>Federal University of Santa Catarina (Brazil)</td>
</tr>
<tr>
<td>Pafiti</td>
<td>Kyriaki</td>
<td>University of Nicosia</td>
</tr>
<tr>
<td>Name</td>
<td>First Name</td>
<td>Institution</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Palazzotti</td>
<td>Deborah</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Palermo</td>
<td>Giulia</td>
<td>University of California Riverside</td>
</tr>
<tr>
<td>Pandharpatte</td>
<td>Mahesh</td>
<td>Nowrosjee wadia college</td>
</tr>
<tr>
<td>Panerati</td>
<td>Alice</td>
<td>Zentek</td>
</tr>
<tr>
<td>Panzea</td>
<td>Giovanna</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Parrasia</td>
<td>Sofia</td>
<td>University of Padova</td>
</tr>
<tr>
<td>Parrino</td>
<td>Barbara</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Passannanti</td>
<td>Raffaele</td>
<td>University of Siena, DBCF</td>
</tr>
<tr>
<td>Patil</td>
<td>Vaishali</td>
<td>KIET Group of Institutions</td>
</tr>
<tr>
<td>Pavone</td>
<td>Marialaura</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Pecoraro</td>
<td>Camilla</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Pellati</td>
<td>Federica</td>
<td>University of Modena And Reggio Emilia</td>
</tr>
<tr>
<td>Pelliccia</td>
<td>Sveva</td>
<td>University of Naples, Federico II</td>
</tr>
<tr>
<td>Pérez Areales</td>
<td>Francisco</td>
<td>University of Cambridge</td>
</tr>
<tr>
<td>Perry</td>
<td>Maria</td>
<td>Universidade de Lisboa</td>
</tr>
<tr>
<td>Petracca</td>
<td>Rita</td>
<td>Imperial College London</td>
</tr>
<tr>
<td>Petrova-Szcziuk</td>
<td>Kseniia</td>
<td>MedChem.fi</td>
</tr>
<tr>
<td>Petrovic-Hunjadi</td>
<td>Martina</td>
<td>Fidelta</td>
</tr>
<tr>
<td>Picconi</td>
<td>Pietro</td>
<td>Nerviano Medical Sciences</td>
</tr>
<tr>
<td>Pieron</td>
<td>Marco</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Pinna</td>
<td>Cecilia</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Pittala</td>
<td>Valeria</td>
<td>University of Catania</td>
</tr>
<tr>
<td>Poggialini</td>
<td>Federica</td>
<td>University of Siena, DBCF</td>
</tr>
<tr>
<td>Ponte</td>
<td>Fortuna</td>
<td>University of Calabria</td>
</tr>
<tr>
<td>Prati</td>
<td>Federica</td>
<td>Angelini Pharma</td>
</tr>
<tr>
<td>Previti</td>
<td>Santo</td>
<td>University of Montpellier</td>
</tr>
<tr>
<td>Prezioso</td>
<td>Francesca</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Prieto-Díaz</td>
<td>Rubén</td>
<td>University of Santiago De Compostela</td>
</tr>
<tr>
<td>Pujadas</td>
<td>Gerard</td>
<td>Universitat Rovira I Virgili</td>
</tr>
<tr>
<td>Pujol</td>
<td>Eugènia</td>
<td>University of Barcelona</td>
</tr>
<tr>
<td>Puxeddu</td>
<td>Michela</td>
<td>Sapienza, University of Rome</td>
</tr>
<tr>
<td>Ramos</td>
<td>Cássio</td>
<td>UFSC</td>
</tr>
<tr>
<td>Rango</td>
<td>Enrico</td>
<td>University of Siena</td>
</tr>
<tr>
<td>Rangu</td>
<td>Prasad</td>
<td>University of Hyderabad</td>
</tr>
<tr>
<td>Rapetti</td>
<td>Federica</td>
<td>University of Genoa</td>
</tr>
<tr>
<td>Rapposelli</td>
<td>Simona</td>
<td>University of Pisa</td>
</tr>
<tr>
<td>Retamal</td>
<td>Bernardo</td>
<td>Cambridge Agile Solutions Ltd</td>
</tr>
<tr>
<td>Reuillon</td>
<td>Tristan</td>
<td>AstraZeneca</td>
</tr>
<tr>
<td>Ricci</td>
<td>Federico</td>
<td>University of Messina</td>
</tr>
<tr>
<td>Riccio</td>
<td>Alessandra</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>righetti</td>
<td>giada</td>
<td>University of Genova</td>
</tr>
<tr>
<td>Righetti</td>
<td>Giada</td>
<td>University of Genova</td>
</tr>
<tr>
<td>Riu</td>
<td>Federico</td>
<td>University of Sassari</td>
</tr>
<tr>
<td>Rocca</td>
<td>Roberta</td>
<td>University Magna Graecia of Catanzaro</td>
</tr>
<tr>
<td>Rodriguez</td>
<td>Sergio</td>
<td>Universitat de Barcelona</td>
</tr>
<tr>
<td>Romanelli</td>
<td>Maria Novella</td>
<td>University of Florence</td>
</tr>
<tr>
<td>Romeo</td>
<td>Isabella</td>
<td>University of Calabria</td>
</tr>
<tr>
<td>Romussi</td>
<td>Alessia</td>
<td>IFOM-FIRC Institute of Molecular Oncology</td>
</tr>
<tr>
<td>Rullo</td>
<td>Mariagrazia</td>
<td>University of Bari Aldo Moro</td>
</tr>
<tr>
<td>Runfola</td>
<td>Massimiliano</td>
<td>University of Pisa</td>
</tr>
<tr>
<td>Saccoliti</td>
<td>Francesco</td>
<td>Istituto Italiano di Tecnologia</td>
</tr>
<tr>
<td>Name</td>
<td>Surname</td>
<td>Institution</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Sader</td>
<td>Saafa</td>
<td>Auburn University</td>
</tr>
<tr>
<td>Salerno</td>
<td>Alessandra</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Salerno</td>
<td>Loredana</td>
<td>University of Catania</td>
</tr>
<tr>
<td>Santos Barbosa</td>
<td>Patrícia</td>
<td>UNICAMP</td>
</tr>
<tr>
<td>Sarvari</td>
<td>Sajad</td>
<td>West Virginia University</td>
</tr>
<tr>
<td>Saylam</td>
<td>Merve</td>
<td>Izmir Katip Celebi University</td>
</tr>
<tr>
<td>Sbardella</td>
<td>Gianluca</td>
<td>University of Salerno</td>
</tr>
<tr>
<td>Scalvini</td>
<td>Laura</td>
<td>University of Parma</td>
</tr>
<tr>
<td>Seghetti</td>
<td>Francesca</td>
<td>University of Bologna</td>
</tr>
<tr>
<td>Selvam</td>
<td>Rajkumar</td>
<td>Dr. Kalam college of pharmacy</td>
</tr>
<tr>
<td>Serafini</td>
<td>Marta</td>
<td>University of Piemonte Orientale</td>
</tr>
<tr>
<td>Sessa</td>
<td>Romina</td>
<td>University of Salerno</td>
</tr>
<tr>
<td>Sestiò</td>
<td>Simona</td>
<td>University of Sassari</td>
</tr>
<tr>
<td>Sgignani</td>
<td>Jacopo</td>
<td>Istituto di ricerca in Biomedicina</td>
</tr>
<tr>
<td>Sidhu</td>
<td>Jaspreet Kaur</td>
<td>University Patiala</td>
</tr>
<tr>
<td>Silva</td>
<td>Lisandra</td>
<td>UFSC</td>
</tr>
<tr>
<td>Slaborska</td>
<td>Joanna</td>
<td>Gdansk University of Technology</td>
</tr>
<tr>
<td>Sodano</td>
<td>Federica</td>
<td>University of Turin</td>
</tr>
<tr>
<td>Spadoni</td>
<td>Gilberto</td>
<td>University of Urbino "Carlo Bo"</td>
</tr>
<tr>
<td>Spyraèks</td>
<td>Francesca</td>
<td>University of Turin</td>
</tr>
<tr>
<td>Stefanucci</td>
<td>Azzurra</td>
<td>University of Chieti</td>
</tr>
<tr>
<td>Talarico</td>
<td>Carmine</td>
<td>Dompé Farmaceutici S.P.A.</td>
</tr>
<tr>
<td>Tali Shandiz</td>
<td>Shiva</td>
<td>University of Perugia</td>
</tr>
<tr>
<td>Tamborini</td>
<td>Lucia</td>
<td>University of Milan</td>
</tr>
<tr>
<td>Terrana</td>
<td>Francesca</td>
<td>University of Palermo</td>
</tr>
<tr>
<td>Themoteo Varela</td>
<td>Marina</td>
<td>Universidade Federal de Sao Paulo</td>
</tr>
<tr>
<td>Thomas</td>
<td>Aji</td>
<td>Charnwood Molecular</td>
</tr>
<tr>
<td>Trist</td>
<td>Iuni Margaret Laura</td>
<td>Aptuit (Verona) s.r.l.</td>
</tr>
<tr>
<td>Trnov</td>
<td>Gian Cesare</td>
<td>University of Piemonte Orientale</td>
</tr>
<tr>
<td>Turcu</td>
<td>Andreea Larisa</td>
<td>Universidad de Barcelona</td>
</tr>
<tr>
<td>Turgutalp</td>
<td>Bengisu</td>
<td>Yeditepe University</td>
</tr>
<tr>
<td>Vacatello</td>
<td>Manuela</td>
<td>Merck</td>
</tr>
<tr>
<td>Varasi</td>
<td>Mario</td>
<td>IFOM-FIRC Institute of Molecular Oncology</td>
</tr>
<tr>
<td>Vaschetto</td>
<td>Mariana</td>
<td>Collaborative Drug Discovery</td>
</tr>
<tr>
<td>Vittorio</td>
<td>Serena</td>
<td>University of Messina</td>
</tr>
<tr>
<td>Viviano</td>
<td>Monica</td>
<td>University of Salerno</td>
</tr>
<tr>
<td>Vlasiou</td>
<td>Manos</td>
<td>University of Nicosia</td>
</tr>
<tr>
<td>Vukovic</td>
<td>Jaksa</td>
<td>Faculty of Chemistry</td>
</tr>
<tr>
<td>Williams</td>
<td>Andrew</td>
<td>Slowave Therapeutics</td>
</tr>
<tr>
<td>Zappalà</td>
<td>Maria</td>
<td>University of Messina</td>
</tr>
<tr>
<td>Zuccotto</td>
<td>Fabio</td>
<td>Drug Discovery Unit - Dundee University</td>
</tr>
<tr>
<td>Zwergel</td>
<td>Clemens</td>
<td>Sapienza, University of Rome</td>
</tr>
</tbody>
</table>
ITALIAN YOUNG MEDICINAL CHEMISTRY
VIRTUAL MEETING

22-24 JULY, 2020

Sponsors