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ABSTRACT

The H+
2 ion is the simplest example in which a chemical bond exists, created by one electron between two protons. As all chemical bonds, it

is usually considered inexplicable in a classical frame. Here, in view of the extremely large velocities attained by the electron near the protons,
we consider a relativistic extension of the standard classical three-body model. This has a great impact since the reference unperturbed system
(clamped protons) is no more integrable, and indeed by molecular dynamics simulations, we find that the modification entails the existence
of a large region of strongly chaotic motions for the unperturbed system, which lead, for the full system, to a collapse of the molecule. For
motions of generic type, with the electron bouncing between the protons, there exists an open region of motions regular enough for producing
a bond. Such a region is characterized by the property that the electron’s trajectories have an angular momentum pϕ along the inter-nuclear
axis of the order of the reduced Planck’s constant ~. Moreover, special initial data exist for which the experimental bond length and oscillation
frequency of the protons (but not the dissociation energy) are well reproduced. Also, well reproduced is the quantum potential, albeit only in
an extended interval about the minimum.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002703

In atomic physics, where one has to deal with ions and electrons,
the role of Newtonian trajectories is far from clear. Indeed, they
are used only for the ions, while it is clear that dealing with tra-
jectories for the full system of ions and electrons would be very
useful since Newtonian trajectories (and thus, for example, also
time-correlation functions, so important in many applications)
are easily computed by molecular dynamics simulations. How-
ever, when dealing with a generic system involving more than
one electron, dynamical instabilities are met, by which all the
electrons but one escape far away from the ions so that atoms
and molecules cannot be formed. Moreover, this occurs also in
the zeroth order approximation of perturbation theory, in which
the ions are clamped. This fact, which is known since the time
of Nicholson and Bohr (see Refs. 1 and 2 and the more recent
Refs. 3 and 4 for the case of helium), is probably the reason why
in molecular dynamics simulations, a very pragmatic, fifty-fifty,
choice is adopted: the ions are dealt with classically, while the
electrons are dealt with by quantum mechanics methods. Now,
the simplest case in which the interplay among ions and electrons
occurs in nature is that of the H

+

2 ion of the hydrogen molecule

H2, which involves two protons and just one electron, the latter
producing a chemical bond among the ions. Such a case is thus
amenable to a classical investigation. This is an interesting oppor-
tunity, if one aims at clarifying the relations between quantum
and classical mechanics. Indeed, on the one hand, in the words of
Gutzwiller (Ref. 5, p. 36), the H

+

2 problem “can be rated, with only
slight exaggeration, as the most important in quantum mechan-
ics.” On the other hand, the chemical bond in H

+

2 is sometimes
“explained” in quantum terms using the superposition princi-
ple so that it might appear to be altogether inconceivable in a
classical frame.6 Here, it is shown that, in the case of H

+

2 , a bind-
ing action between the protons produced by the electron can be
described in terms of trajectories of the full system, protons and
electrons. However, a full quantitative agreement with the exper-
imental data could not yet be obtained since the bond length and
protons’ vibrational frequency, but not the dissociation energy,
could be well reproduced. In any case, the present preliminary
result seems to indicate that something remains to be understood
concerning the significance of Newtonian trajectories in atomic
physics.
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I. INTRODUCTION

Many problems of atomic or molecular physics are dealt with
through models in which one has a certain number of positively
charged ions (considered as point particles) and of electrons, with
mutual Coulomb forces. It is well known that the dynamics of the
ions can be investigated in a sufficiently accurate way by describing
the system through a classical model (namely, one involving New-
ton equations) in which the electrons do not show up, their effect
being substituted by suitable effective potentials acting among the
ions.

An analogous procedure is used in the case of ionic crys-
tals, in which one introduces effective potentials acting among the
ions, now in order to take into account the dynamical role of the
internal shells of electrons. It is thus possible to perform accurate
numerical simulations and compute significant quantities, such as
time-correlation functions and more general response functions,
as is usually done in the research field of molecular dynamics.
In such a way, it was possible to compute, in terms of classical
ionic trajectories, physical macroscopic quantities such as infrared
absorption spectra7,8 and dispersion relations.9 In particular, it was
possible to exhibit the existence of polaritons (see Ref. 9), a bifur-
cation phenomenon concerning the dispersion relations, and due
to retardation, a proof of which in a microscopic quantum model
is still lacking. This is due to the difficulties met by quantum elec-
trodynamics in dealing with retardation of the electric forces in
microscopic models of matter in bulk. Such a difficulty does not
occur in a classical frame due to the Wheeler–Feynman identity,
which was conjectured by those authors in the year 1945 and was
eventually proven first in a particular model10 and then in general.11

For the aims of the present paper, the relevant consequence of such
an identity is that it produces cancelation of the radiation reaction
forces and thus eliminates the radiation losses for matter in bulk,
which constituted the severest obstacle to the use of classical models
in atomic physics.

Concerning the effective potentials, if historically, starting
from Born that they were introduced in a phenomenological way

through analytical expressions containing several parameters, in
recent times, with the advent of more and more powerful computers,
the tendency is to obtain them making use of the quantum dynamics
of the electrons in a suitable approximate form, for example, through
the Carr–Parrinello12 method or through path integral molecular
dynamics (see, for example, Ref. 13). Now, from the computational
point of view, quantum dynamics is much more demanding than
the classical one. One thus sees how important is the problem of
understanding whether the effective potentials due to the motion of
the electrons, dealt with in a classical frame, may give correct results
or not. Said in a more explicit way, the question is whether initial
data for the electrons exist such that, by (numerically) solving the
Newton equations for the complete system (ions plus electrons), the
motion of the ions turns out to be consistent with the experimental
data.

As mentioned in the preface, such a program meets with an
apparently insurmountable difficulty in the general case of systems
containing more than one electron, whereas the difficulty does not
show up for systems with just one electron. Therefore, in the present
work, the program of dealing with electrons was pursued for the

paradigmatic case of the H+
2 ion, which is the simplest molecule

constituted of just one electron, in addition to two protons. Solving
the Newton equations for the three particles, we showed that, for
suitable initial data, the motion of the ions can be described as
a two-body system (the protons) with a central effective potential
Veff(r), in which the motion of the electron does not explicitly show
up. In fact, there exist initial data such that the potential presents
well so that the molecule is formed and the distance among the
ions oscillates around a well definite mean value. Therefore, both
the “bond length” and the protons’ vibrational frequency have well
definite values, which depend on the energy (temperature) of the
ions. Obviously, the effective potential depends on the electronic
state chosen (i.e., on the electron’s initial data). In fact, it has also
been possible to determine the existence of at least one initial state
(in a certain sense an exceptional one, leading to a trajectory in
the equatorial plane, as will be better discussed later) that accounts
for the experimental bond length and frequency of the infrared
oscillations. The effective potential corresponding to such a case is
reported in Fig. 1, together with that predicted14 by the quantum
Born–Oppenheimer approximation;15 in the enlargement exhibited
in the right panel, the harmonic approximation too is reported. As
one sees, the classical and the quantum potentials agree in a surpris-
ingly good way in an extended interval about the minimum, up to
not too large vibrations (say, for vibrational levels with n < 5, which
corresponds to 1E = 0.05 hartree), whereas they are very different
for r → +∞. The latter fact implies, in particular, that the dissocia-
tion energy is not well reproduced. On the other hand, no systematic
research was performed for the initial data that may best reproduce
the whole phenomenology, which actually was not the scope of our
work.

The model we consider is a semi-relativistic extension of the
standard Coulomb three-body problem, inasmuch as the energy of
the electron was taken in its relativistic form. While such a modifica-
tion (which is necessary; due to the very high velocities, the electron
attains near the protons16) might appear to be just a minor one, it
will be seen to have a relevant impact for the existence of the effec-
tive potential. The reason is understood if one looks at the existence
of the potential in the spirit of perturbation theory, in which the per-
turbation parameter is the ratio m/M of the electron to proton mass
so that the zeroth approximation corresponds to clamped protons,
as in the work of Born and Heisenberg,17 which was performed in a
classical frame in the year 1924.18 Indeed, in the non-relativistic case,
the unperturbed approximation is integrable, in the familiar sense
of admitting action-angle variables (a fact known since the time of
Euler), so that the perturbation theory in principle can be applied
in its standard form. Instead, in the relativistic case, the system is
no more integrable, and in fact, as will be shown later, extended
regions of strong chaoticity show up already in the unperturbed
case. Thus, one has a coexistence of regular and chaotic regions, and
a binding effect can exist only in the regular (or nearly integrable)
ones. For generic motions (in which the electron bounces between
the two protons), near-integrability was found to hold only if the
angular momentum pϕ of the electron along the inter-nuclear axis is
above thresholds of the order of the reduced Planck constant ~ and
this in a model that contains, as atomic parameters, only the elec-
tronic and protonic masses, the electronic charge e, and the speed
of light c. This implies that, for motions of a generic type, in the
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FIG. 1. Effective potential as a function of proton distance, computed for suitably chosen initial data (continuous line), together with the quantum potential in the
Born–Oppenheimer approximation (stars). Distance and potential are given in atomic units (a.u.). Left: comparison in the whole explored distance range, with the logarithmic
scale on the horizontal axis. Right: detail of the minimum region and comparison with the harmonic approximation (dotted line). One can appreciate that the agreement with
the quantum potential holds up to rather large nonlinearities, actually up to an energy of −0.55 hartree.

semi-relativistic model, the effective potential can exist only for ini-
tial data, which are dynamically constrained to lie within a realistic
domain so that a consistent fit of the experimental data is possible,
and this is perhaps the most physical relevant result of the present
paper. Whether this fact be a simple coincidence or may have a
deeper significance, we are unable to say at the moment.

The studies dealing with the possibility of describing the chem-
ical bond of the H+

2 ion in terms of its Newtonian trajectories have a
long history, with a first phase2,19–23 initiated by the Bohr paper of the
year 1913 and centered about the 60-page long paper of Pauli of the
year 1922 and a more recent phase.24–27 Such works were performed
in the spirit of the “old quantum theory,” in which classical trajec-
tories are considered, and quantization enters only in the choice
of the initial data in the phase space. A different approach, more
similar to ours, is taken in the paper of Fuchigami and Someda.28

Such authors study the full non-relativistic three-body problem by
classical mechanics, with the aim of investigating the evolution of
the adiabatic invariants near resonant regions, whereas the prob-
lem of the effective potential is not investigated. Furthermore, such
a study is confined to motions taking place in a plane through the
inter-nuclear axis.

The present paper is organized as follows. In Sec. II, we first
illustrate the three-body model used in our study. In the same
section, we also discuss how the theory of adiabatic invariants can
explain that the dynamics of the electron may decouple from that of
the ions, producing a binding effect describable, in a first approxi-
mation, by an effective potential. We finally point out what relevance
the presence of chaotic motions has for of the stability of the H+

2 ion.
In Sec. III, we first illustrate the method we devised for determin-
ing the effective potential from the trajectories of the full system and
also illustrate the results obtained. The conclusions then follow.

II. THE MODEL AND THE AVERAGING PRINCIPLE

We now illustrate how, in the familiar spirit of perturbation
theory (essentially, the principle of the mean), the possibility itself
exists in describing classically the motion of the protons as decou-
pled from that of the electron, the only effect of the latter being
producing an “effective” binding force among the protons. The rea-
son is that, in virtue of the great mass difference between electron
and protons, in the full system, there exist “fast”degrees of freedom
related to the motion of the electron and “slow” ones related to the
protons. On the other hand, in perturbation theory, the averaging
principle states that the system obtained by averaging over the fast
variables describes well (up to a certain time scale) the motion of the
slow ones, on which the system still depends. In the standard model
of the ion H+

2 , i.e., a single non-relativistic electron of the mass m
interacting with two (point-like) protons having a much larger mass
M, all with a charge of the same modulus e, the hamiltonian is

H =
p2

2m
−

e2

|r − x1|
−

e2

|r − x2|
+

P2
1

2M
+

P2
2

2M
+

e2

|x1 − x2|
, (1)

where p and r are the coordinates (momentum and position) of the
electron, while Pi and xi are the coordinates of the two protons. It is
well known that for the electronic hamiltonian,

He =
p2

2m
−

e2

|r − x1|
−

e2

|r − x2|
, (2)

with x1 and x2 fixed (the Euler two fixed-center problem), there
exists a canonical transformation leading to action-angle variables
J, ϕ such that it takes the form

He = He(J, R), (3)
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which depends only on the actions, in addition to a parametric
dependence on the distance,

R = |x1 − x2|, (4)

among the protons; i.e., the system is integrable. Indeed, in addi-
tion to energy and angular momentum along the inter-nuclear
axis, a further integral � exists, which is the analog of the
Laplace–Runge–Lenz integral occurring in the case of a spherical
symmetry. Such an integral turns out to have the form [see formula
(2.6) of Ref. 25]

� = L1 · L2 + mRe2 (cos θ1 − cos θ2) ,

where Li are the angular momenta of the electron with respect to the
two protons and θi are the angles between the position vectors of the
electron with respect to the protons and the inter-nuclear axis.

Furthermore, the angles ϕ turn out to be, in general, fast
variables; i.e., their frequencies ω = ∂He/∂J are in general much
larger than the speeds of the other electronic variables. If now one
applies such a transformation to the full hamiltonian (1), in the new
variables, the hamiltonian takes the form

H = He(J, R) +
P2

1

2M
+

P2
2

2M
+

e2

R
+ F(J, ϕ, P1, P2, R), (5)

with a certain function F so that the full hamiltonian appears as a
“small” perturbation of the hamiltonian,

H0 =
P2

1

2M
+

P2
2

2M
+

e2

R
+ He(J, R) (6)

(we recall that the perturbing function F comes in because R enters
parametrically in He and thus also in the generating function S of the
canonical transformation so that the modulus |P1 − P2| transforms
into |P1 − P2| + ∂S/∂R).

Now, perturbation theory shows (for a modern development,
see, for example, Ref. 29) that if the frequencies ω are sufficiently
large, then the motion of the system should be “well” described by
the full hamiltonian averaged over the angles, i.e., essentially by the
hamiltonian H0 (6). On the other hand, such a hamiltonian exhibits
in a manifest way the main fact of interest here, namely, that the elec-
tronic energy He(J, R) plays the role of an effective potential among
the protons, analogously to what occurs in the quantum case. A fur-
ther study would then establish whether such an effective potential
may overcome the repulsion between the protons, thus ensuring the
existence of a stable state of the ion H+

2 . Actually, one should rather
speak of a “possibly metastable” state because the theorem of the
mean ensures that the result (i.e., the constancy of the actions J)
holds only over a certain time scale, which is long, but not infinitely
long. The existence of really stable states would require the use of
Kolmogorov, Arnol, and Moser theory (which we disregard here,
as we also do for a study of the non-resonant set, which would be
required for a rigorous application of the theorem of the mean).

However, physically, the standard model defined by hamilto-
nian (1) is not completely coherent because, for initial data in the
atomic domain, the velocities of the electron may become a rele-
vant fraction of the speed of light c. Therefore, we chose to use the

partially relativistic model with the hamiltonian

H = mc2

√

1 +
p2

m2c2
−

e2

|r − x1|
−

e2

|r − x2|

+
P2

1

2M
+

P2
2

2M
+

e2

|x1 − x2|
. (7)

However, then, the electronic energy (with x1, x2 fixed),

He = mc2

√

1 +
p2

m2c2
−

e2

|r − x1|
−

e2

|r − x2|
, (8)

is no more completely integrable since it presents only two (rather
than three) integrals of motion, i.e., the energy and the component
pϕ of the angular momentum along the inter-nuclear axis, while the
analog of the Laplace–Runge–Lenz integral is lost.

The non-integrability of the clamped semi-relativistic hamil-
tonian (8) is very clearly exhibited through the familiar tool of the
“surfaces of section,” which we now recall. Exploiting the constancy
of the angular momentum pϕ , one can pass to the corresponding
reduced hamiltonian, and using cylindrical coordinates with the z
axis along the protons, the electronic hamiltonian (8) takes the form

He = mc2

√

1 +
1

m2c2

(

p2
z + p2

ρ +
l2

ρ2

)

−
e2

√

ρ2 + (z − z1)
2

−
e2

√

ρ2 + (z − z2)
2
, (9)

where ρ =
√

x2 + y2 is the distance of the electron from the inter-
nuclear axis and l is a given value of the angular momentum pϕ of the
electron along that axis. Therefore, one is now dealing with a system
with two degrees of freedom in a phase space R

4, and thus, as in the
familiar Hénon–Heiles case,30 by fixing the value of energy, one is
reduced to a three-dimensional subset (the “energy surface”). The
mapping on a Poincaré surface of section is finally constructed by
computing orbits and intersecting them by a given two-dimensional
surface.

In Figs. 2 and 3, such a surface is the plane pξ = 0, where ξ

and η are the familiar elliptic coordinates defined (using Arnold’s
conventions) by ξ = |r − x1| + |r − x2| and η = |r − x1| − |r − x2|,
while pξ , pη are the corresponding conjugate momenta. In Fig. 2, the
values of η and pη are reported for E = −0.606 and l = 0.1 (l denot-
ing the value of pϕ), while the distance between the protons is taken
equal to 2 (in atomic units). The whole section is shown in the upper
panel, where one sees that the points corresponding to the different
orbits, instead of being all located on regular curves, as would occur
if a third integral did exist, occupy fuzzy regions, particularly in the
central part. This feature is emphasized in the enlargement of the
central part, which is reported in the middle panel. A single orbit is
seen to invade a two-dimensional region, and other structures are
exhibited, that one may be tempted to qualify as fractals. In such
a case, it is no more possible to introduce action-angle variables,
which would make the electronic hamiltonian depend on the actions
only, as occurs in the (integrable) non-relativistic case, which is illus-
trated, for the sake of comparison, in the lower panel. Instead, if for
the angular momentum pϕ one fixes a larger value such as l = 0.6,
the surface of section, shown in Fig. 3, appears to be much more
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FIG. 2. Poincaré section pξ = 0 (see the text), for the relativistic two fixed-center
model, for energy E = −0.606 and angular momentum l = 0.1 (in atomic units),
upper andmiddle panel. For the sake of comparison, the non-relativistic integrable
model is exhibited in the lower panel. Notice that η = 0 corresponds to the equa-
torial plane. The upper panel shows a large chaotic zone, in a region where an
orbit should lie in order to be binding. In the middle panel, an enlargement of the
chaotic zone is shown, exhibiting some of the structures that are present.

FIG. 3. Same as Fig. 2, still for energy E = −0.606 but now for a higher value
l = 0.6 of the angular momentum. The upper panel shows that now the central
chaotic zone did shrink, while the vast majority of the orbits appears to lie on
smooth curves. In the central panel, an enlargement (ten times greater than in
Fig. 2) of the chaotic zone is shown. The lower panel refers to the non-relativistic
model.
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regular, suggesting that in such a case, a “quasi-integral of motion”
exists, the different values of which do identify each of the invariant
curves exhibited. Such a further integral, by the way, constitutes in
atomic physics the analog of the celebrated “third integral” of celes-
tial mechanics, to which the whole scientific life of G. Contopoulos
was devoted (a very recent review is given in Ref. 31). In the presence
of such a third integral, a transformation can be found that elim-
inates the angles from the electronic hamiltonian (possibly up to a
very small remainder) in a very extended open set in the phase space.
In such a situation, one might presume that the full semi-relativistic
hamiltonian (7) averaged over the angles provides a good approxi-
mation for the motion of the slow variables, i.e., for the motion of
the protons. As previously explained, in such a situation, the elec-
tronic energy plays the role of a potential, which complements the
repulsive Coulomb potential between the protons.

III. THE FULL THREE-BODY SYSTEM

In Sec. II, it was explained how, in the spirit of perturbation the-
ory, it is possible at all to conceive that, analogously to what occurs
in quantum mechanics, in classical mechanics too, the motion of the
protons can be described by eliminating the motion of the electron
and replacing it by a suitable contribution to an effective potential
acting between the protons. More precisely, this is expected to occur
only in a suitable domain of the phase space, where the dynamics
of the system is regular rather than chaotic; i.e., a “third integral”
exists. However, the actual implementation of such a program for
the full semi-relativistic hamiltonian (7) considered in this paper
requires the establishment of delicate results within perturbation
theory, which, in view of their complexity, we refrain from explicitly
facing here. By the way, for the aims indicated in the introduction,
such an investigation would not even be fruitful.

Therefore, we resolved to limit ourselves, in the present work,
to just check numerically that a bond exists for suitable initial data
of the electron. Actually, the check is required to devise a suitable
procedure in order to determine the effective potential, making ref-
erence only to the trajectories, i.e., concretely, to the numerically
computed ones. As shown in Sec. II, the effective potential would
emerge if one were able to pass from the actual motion of the elec-
tron to a motion averaged over the associated fast angles. As such,
angles are not well defined in the relativistic case (which we have
shown to be non-integrable in the Liouville sense), and we decided
to replace such an averaging procedure by time averages. The very
simple idea is to consider the relative distance vector x1(t) − x2(t)
of the protons, and its time average, that we denote simply by R(t),
over a suitable time interval 1t. Then, one checks whether the radial
part aR of R̈ is a function of R, and in such a case, a radial force turns
out to be defined.

The numerical implementation is then obvious. The equations
of motion were numerically integrated with a regularized symplec-
tic algorithm that will be described later (regularization is indeed
necessary since nothing forbids the electron from coming arbi-
trarily close to the protons during its motion). Trajectories r(tj),
x1(tj), and x2(tj) were thus obtained for the electron and the two
protons. Then, having fixed a suitable time interval 1t (actually,
1t ' 6.4 × 10−16 s32 in our computations), time averages were

taken of the relative distance vector, namely,

R(tj)
def
=

1

2N

j+N
∑

k=j−N+1

(

x1(tk) − x2(tk)
)

, (10)

where N is determined by the condition tj+N − tj−N+1 = 1t, whereas
the values of j were chosen as multiples of 2N. The relative acceler-
ation R̈ at time tj was then computed through the usual approxima-
tion,

R̈(tj)
def
=

R(tj+1) + R(tj−1) − 2R(tj)

(1t)2
. (11)

The existence of an effective potential implies that the radial part
aR(tj) of the relative acceleration is a function of R(tj) only so that

reporting in a graph with the pairs
(

R(tj), aR(tj)
)

, the points should
be distributed on well defined curves. This is exhibited by Fig. 4,
where such points are reported for three trajectories, in which the
ion was found to remain stable for the whole integration time, i.e.,
for times of the order of picoseconds. The points are seen to lie on
pretty well defined curves so that in each case, there exists a function
f(R) (depending parametrically on the initial data) such that

aR =
1

µ
f(R), (12)

where µ denotes the reduced mass of the protons. Then, taking a
primitive V(R) (with the changed sign) of the function f(R), one gets

aR = −
1

µ
∂RV(R). (13)

Now, the figure shows that the three curves are evidently differ-
ent, depending on the chosen initial data. However, this had to be

FIG. 4. Radial component of the mean relative acceleration of protons vs their
mean distance for three different trajectories. The points are seen to lie on different
curves, depending on the initial data.
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FIG. 5. Same as Fig. 4 for three different initial data with the same electronic
state. The curves now superpose.

expected because, according to perturbation theory, the effective
potential depends not only on the protons distance, but also on the
values of the adiabatic invariants of the electronic hamiltonian.

We thus decided to integrate the equations of motion for sev-
eral initial data chosen in a suitable way, i.e., by keeping fixed both
the initial value of R and the electronic state, while changing only the
kinetic energy of the protons. Indeed, in such a way, one is assured
that the value of each integral of motion of the electronic system with
clamped protons is the same for all such trajectories. As one sees
in Fig. 5, which refers to three such trajectories, the points defined
by all pairs

(

R(tj), aR(tj)
)

of the trajectories are apparently located
on a single pretty well defined curve. Then, the potential V(R) can
be determined by integrating numerically, as a function of R, and
the values of µaR are found: actually, this obviously determines the
potential up to an additive constant.

We now describe the results for the potential, starting from
those obtained for the initial data of a “generic type,” i.e., leading
to motions in which the electron continues to bounce from one pro-
ton to the other. A typical form of the effective potential thus found
is exhibited in Fig. 6. The initial data for the electron were chosen
as follows: the energy E was fixed at the experimental value, while
the value l of the component of the angular momentum pϕ along the
inter-nuclear axis was set equal to 0.6. In this way, one is assured that
the electronic hamiltonian with a clamped potential, as shown in
Fig. 3, is essentially integrable. Then, we find that there exists a value
for the “third integral” (i.e., one of the “invariant curves” exhibited
in the upper panel of the figure) such that the equilibrium distance
is equal to the experimental one. The additive constant was chosen
in such a way that the minimum of the effective potential coincides
with the minimum of the Born–Oppenheimer quantum potential.

FIG. 6. Effective potential as a function of proton distance, computed for initial
data more generic than the one chosen in Fig. 1 (continuous line), together with
the quantum potential in the Born–Oppenheimer approximation (stars). Distance
and potential are given in atomic units (a.u.).

From the qualitative point of view, the result might be con-
sidered satisfactory since it exhibits that a binding effect exists in
a classical frame. Quantitatively, however, the result is not so good
because not only the quantum potential is not well reproduced, but
also the vibrational frequency is found to be about one and a half
times larger than the experimental one. One should thus perform a
systematic exploration of the possible electronic states in order to
check whether a better agreement with the experimental data can be
found, which we did not do. We only observed that the result just
illustrated is the best one in a neighborhood of the particular state
considered because larger values of the oscillation frequency were
always found.

However, following an old suggestion advanced by Langmuir22

and particularly by Urey,23 it occurred to us to find that there exist
electronic states in a different region, which lead to results that are
apparently much better, the best of which is reported in Fig. 1. We
considered in fact, as the mentioned authors, electronic motions in
the equatorial—or the median—plane (i.e., the plane of symmetry
for the ions, normal to the inter-nuclear axis). The electronic state
was chosen in order to fit the experimental values of the bond length
and of the vibrational frequency of the protons, i.e., the quadratic
part of the potential. Instead, startlingly, as can be seen in Fig. 1,
the effective potential obtained is seen to actually fit the quantum
one not only in the linear regime (in terms of which the initial data
had been selected), but also in an extended nonlinear one. However,
while in the case of Fig. 6, the ion was stable with respect to changes
of the initial data in an open domain, in the latter case (motion on
the equatorial plane), the ion turns out to be stable only for initial
electron velocities in the equatorial plane and for protons’ initial
velocities along the inter-nuclear axis. Otherwise, the ion splits into
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a proton and a hydrogen atom. In the case of Fig. 1, the electronic
angular momentum along the inter-nuclear axis was given the value
of 0.96 (i.e., essentially equal to ~, since we are using atomic units),
whereas the energy was taken equal to E = −0.89.

We finally end this section with a short description of the
integration method, which is indeed standard in stellar dynamics
simulations, and we actually took from Ref. 33. As was already
pointed out, during its motion, the electron can come very close to
any of the two protons, and thus, in order to keep the precision of
the numerical integration, the integration step has to be reduced.
However, this is likely to prejudice the symplectic character of the
integration algorithm. To avoid this, in the above cited paper, it was
proposed to regularize the equations of motion by using, in place of
the time t, the variable s defined by

ds
def
=

dt

U
, (14)

with U being the potential energy of the system. After the change
of the variable, the equations of motion preserve the hamiltonian
form, with the only difference that instead of the original hamilto-
nian H = T + U, where T and U are the kinetic and the potential
energies, the hamiltonian now takes the form

H′ def
= log(T − E) + log(−U), (15)

where E is the value of H determined by the initial data. The only
difference is that for the kinetic energy T of the electron, we used the
relativistic formula; moreover, in U, there appears a repulsive part,
which obviously does not show up in the case of stellar dynamics.
However, one easily checks that if the total energy E is negative, the
potential U remains negative, and thus, the hamiltonian H′ turns out
to be well defined. The equations of motion were integrated using
the leap-frog algorithm (which is well known to be symplectic),

whereas t was obtained by computing the definite integral
∫ t

0
Uds

through the trapezoidal rule.

IV. CONCLUSIONS

It seems to us that the most relevant result emerging from the
present study is that in atomic physics, the use of Newtonian trajec-
tories, normally employed for the ions, can in principle be extended
to electrons, at least in the simplest possible case involving just one
electron, which occurs for the H+

2 ion. Indeed, in such a case, it was
found that initial data exist, which lead to trajectories that present
a chemical bond, reproducing pretty well experimental data such
as the bond length and the protons’ vibrational frequency, albeit
not the dissociation energy. Moreover, the corresponding effective
potential can actually be computed, being qualitatively (but only
partially, quantitatively) similar to the quantum one.

A further interesting point concerns the role of the relativis-
tic correction that had to be introduced in the model, in order to
take into account the high velocities of the electron. This has a
great impact, as the unperturbed reference system of clamped pro-
tons loses its integrable character so that it presents a coexistence
of regular and strongly chaotic domains in the phase space. Con-
sequently, the binding effect exists only in the sufficiently regular
domains, and these, for generic motions, turn out to be realistic

domains in which the electron trajectories have an angular momen-
tum larger than an action of the order of the reduced Planck
constant ~.

These are concrete dynamical properties of the relativistic
extension of the standard classical model of the H+

2 ion and to
have established them constitutes the actual contribution of our
work.

This having been ascertained, one may then ask how well can
experimental phenomena such as the bond length, ions’ vibrational
frequency, and dissociation energy be reproduced. The provisional
answer indicated here seems to be: two out of the three, with many
problems remaining open. Our hope is that some further physi-
cal features may be found, analogous to the relativistic correction
introduced here, which may allow at the same time overcoming
the qualitative difficulty met in dealing with more than one elec-
tron and the quantitative difficulties still met in dealing with the
H+

2 ion.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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