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A new simulation tool has been developed for the simulation of the FEL equations 
in both the classical and quantum regimes to be applied to the investigation of 
proposed FEL models and to the exploration of parameter space for new experi
ments. 

1. I n t r o d u c t i o n 

Presently several projects are active in the research and development of 

new bright sources in the soft X-ray range using the free electron laser 

(FEL) mechanism [1,2,3]. Experiments are currently run or proposed to 

run in the self-amplified-spontaneous-emission (SASE) mode. One of the 

key disadvantages of SASE FEL is the large number of uncorrelated spikes 

in the pulse of emitted radiation, which also affects the spectrum of the FEL 

source [4]. A new regime of operation, called quantum SASE, could provide 

a dramatic improvement to the quality of the radiation extracted from an 

FEL [5]. For the realization of quantum SASE, the present paradigm of 

GeV electron bunches combined with a magnetic wiggler is not feasible 
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due to the extremely long gainlength for this operation mode. It has been 
then proposed to test quantum SASE with an electromagnetic wiggler [6]. 
Detailed simulations of the quantum FEL model are necessary in order to 
address the feasibility of future experiments in this new regime. 

2. The Id model equations 

The QFEL code is based on the one-dimensional quantum FEL model pre
sented in [5]. The dynamics of the electron bunch is described by a 
Schrodinger equation for a matter-wave field \I/ interacting with a pendu
lum potential proportional to the dimensionless radiation field amplitude 
A. The evolution of the radiation field is determined by the Maxwell equa
tion for the A field (in the slowly-varying envelope approximation, SVEA) 
interacting with the electron transverse current: 

^ l_^l _ i(Aeie _ A*e-*)* m 
* dz ~ 2p3/2 d02 H ^ e A e )V (1) 

dA dA [2%d9^^ i0 .7 A 

Here W(^i,5,#, z) is a function of zi, the coordinate along the electron 
bunch moving at the resonant velocity, of <5, the detuning parameter, of 0, 
the electron phase, and of z, the dimensionless wiggler length. The radiation 
amplitude A(zi,z) is a function of the relative electron coordinate z\ and 
of the position along the wiggler z. The electron position z\ is expressed in 
units of cooperation length £ c , whereas the wiggler position z is in units of 
gainlength Lg. For the definition of all these lengths and parameters, refer 
to [5]. 
The quantum FEL parameter p represents the maximum number of photons 
emitted by a single electron as the bunch propagates through the wiggler. 
The value of p discriminates between the quantum and the classical regime. 
In the classical regime (p ^> 1), every electron emits and absorbs many 
photons in passing through the wiggler. In the quantum regime instead 
(p < 1), the electron has a small probability of emitting just one photon in 
the whole process. This eventually leads to a completely different behavior 
in the quantum regime, where the above equations describe a two-level 
system. For solving numerically the quantum FEL equations, we chose to 
expand the ^ field into longitudinal momentum eigenstates cn 
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*(*! , 8,9,z) = J2 CniztJ, z)eine , (3) 
n 

so that the equations to solve become 

dcn . ( n2 

dz 
( n2 -\ 

if = - M ^3/2 + n^j C« - (Acn-l + A*Cn+l) (4) 

-dz-+dz-rb{zu~z) (5) 

where the bunching factor b is computed using a weight function G(cT), 
which is a normalized Gaussian distribution centered on the mean detuning 
parameter So: 

b(zuz) = bnJ2 fdSG&Cncl^ (6) 

The normalization factor bn takes into account the dimensionality of the 
simulation, as described later on in this paper. 

3. Higher dimensions and t ransverse t e r m s 

The principal aim of developing the QFEL code was to extend the previous 
analysis and simulation work carried out in one longitudinal dimension by 
adding the transverse dimensions and introducing a description of the trans
verse P E L dynamics. As a consequence, the electron field \&(zi, x, y, 5, 9y z) 
and the radiation amplitude A(z±JxJy^z) acquired two transverse coordi
nates, namely x and y, expressed in units of the initial width of the bunch 
in the transverse plane. The beam profile had a Gaussian profile along 
each transverse direction, with the possibility of simulating axis-symmetric 
beams (ax — ay), and beams with an oblate transverse profile (ax ^ ay). 
The effects due to beam emittance and to the profile of a laser wiggler will 
be discussed in a forthcoming work. 

4. Numer ica l scheme 

In order to integrate the quantum PEL equations, the phase space was 
sampled on a discrete grid and the dynamical variables, namely A and the 
cn states, were evaluated on this grid. A combination of different finite 
difference (FD) schemes were adopted in an operator splitting algorithm. 
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riiobar=0.1f deltabar=5» A0=0, bO=0.01 

Figure 1. Id steady-state simulation in the quantum regime (p =0.1): normalized ra
diation intensity \A\2 and bunching factor 6 as a function of the position z along the 
wiggler. 

An explicit FD scheme coupled to a Runge-Kutta stepper was used for 
integrating the interaction of the field and the electron bunch [8]. A cubic-
interpolation propagation (CIP) method was implemented for solving the 
advection equation of the radiation field in the electron bunch rest frame [9]. 
The high dimensionality of the simulation phase space (up to N = 5) and 
the large number of unknowns (typically from 106 to 108) demanded for 
a parallel implementation of the code. To this end we adopted a fixed 
linear domain decomposition technique using a master-slaves paradigm. 
The whole code has been written in F90 using the MPI library. 

5. Q u a n t u m 2d s teady-s ta te 

To illustrate some typical effects studied using QFEL, we present here the Id 
and 2d steady-state evolution in the quantum regime. These results were 
reproduced to test the high-gain FEL dynamics. It is important to note that 
for the simulation of SASE FEL the radiation propagation is an essential 
ingredient. The simulations were carried out for p =0.1 and with a mean 
detuning centered on the quantum resonance, i.e. 5o = 5. The initial field 
amplitude was set to zero, Ao = 0, whilst the beam was initialized in a state 
with bunching 6Q = 0.01. Such a small value served as a seed to initiate the 
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beam-radiation interaction. The one-dimensional case, see figure 1, shows 
the typical quantum FEL evolution for the steady-state regime, were the 
electrons swing back and forth from the initial momentum state Co to the 
first recoil state c_i. Trace of this mechanism remains in the cyclic pulsing 
of the radiation intensity \A\2. The peak value of the intensity is equal to 
1 as implied by the quantum scaling used in the FEL equations. 

Figure 2. 2d steady-state simulation in the quantum regime (p =0.1): transverse radi
ation intensity \A\2 streaked vertically along the wiggler position z. 

Figure 2 presents a 2d simulation for the same initial parameters, with the 
exception that the beam has now a finite transverse width. The figure 
shows the field intensity map streaked vertically along the wiggler. No 
transverse terms are switched on here, so that each part of the beam evolves 
independently from the others. The peak intensity is reached on axis (x = 
0) and the maximum value is reduced to 0.4. The gain length and the 
lethargy period are longer compared to the Id case. This is because the 
bunching factor 6, which is the source term for the radiation field, is a 
function of the local electron "density". Hence the wings of the beam 
effectively see a reduced bunching factor with respect to the center of the 
beam and evolve on a longer scalelength. 
The effects of radiation diffraction were then included in the model by 
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adding a term proportional to the transverse laplacian of the radiation 
field A: 

dA dA . „« . 
az az\ 

b(zi,x,z) , (7) 

where a is an adimensional parameter [7]. Figure 3 shows the effects of 
radiation diffraction: the intensity of the radiation reduces even more with 
respect to the Id case, because the field can now escape in the transverse 
direction and is not further amplified by the interaction with the electrons. 

Figure 3. 2d steady-state simulation in the quantum regime (p =0.1) with radiation 
diffraction: transverse radiation intensity \A\2 streaked vertically along the wiggler po
sition z. 

6. Normalization and Scaling 

The electron field is slice-normalized for each z\ to the constant current 
profile Io(zi) 

dx dy dS / — | t f (z i ,x , j / ,M;z) | 5 = / o ( * i ) . (8) 

Since the Maxwell equation for A is quadratic in the electron field, it not 
possible to renormalize the Schrodinger equation for the electron beam 
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without affecting the source term in the Maxwell equation. The dynamics 
of Id, 2d and 3d models is intrinsically different due to the spreading out 
of the electron wavefunction, even in absence of transverse coupling terms. 
This leads to different gain and peak intensity values depending on the 
dimensionality of the simulation. In order to recover consistency between 
the three models, a renormalization factor bn has been introduced in equa
tion 6, which carries the information about the number of dimensions. The 
complete 3d model was taken as a reference, whereas the Id e 2d models 
were rescaled in order to match the gain of the 3d equations. Effectively 
this corresponds to considering the Id model as a description of just the 
inner core of the beam, whilst the 2d equations are those for a longitudinal 
slice of the beam. As a consequence the gain of the Id model and of the 
central part of the 2d model are equal to the gain of the axial part of the 
beam in the fully 3d model. Clearly the total radiation intensity, integrated 
over the transverse directions, becomes smaller going from 3d to Id, as just 
a part of the whole beam is considered. These observations are summarized 
in figure 4, which presents the log plot of the integrated field intensity for 
the three models when the renormalization factor bn was introduced. 

0.1 

0.01 

0.001 

1 le-05 

! 
le-06 

le-07 

le-08 

1^09 

Figure 4. Comparison of the integrated radiation intensity as a function of position z 
along the wiggler for the Id (red), 2d (green) and 3d models (blue). 

7. SASE regime and grid-independent noise 

One of the most fundamental requirements in addressing the accuracy and 
stability of a numerical simulation is that the solution to the dynamical 

Steady-state, rhobar=0.1, deltabai=5,AO=0 ,b0=0.01 
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equations is not dependent on the choice of a particular discretization of 
the integration domain. It is therefore common practice to refine the sim
ulation mesh until the numerical solution stabilizes. This condition often 
represents the best compromise, balancing the accuracy of the computation 
and the resources (memory and CPU time) required to achieve it. Several 
criteria exist for monitoring the stability of a particular numerical scheme 
(e.g. time-step limiters for implicit or explicit FD schemes), but it is only 
through a trial-and-error process that the stability of the final solution can 
be addressed. It is important to note that in a non-linear system, as the 
one solved by QFEL, this process as to be repeated for every choice of the 
dynamical parameters (in our case the most sensible one is clearly the p 
parameter). In the simulation of the SASE operation, we included the ra
diation propagation, and the electron bunch was initialized with a small 
bunching (usually b < 0.01) and with a random phase e1^. The phase 
<^(zi,y, z) is a function of the point coordinate and is used to cancel cor
relations between the different parts of the electron beam. Instead of just 
sampling the random phase on the grid points, we developed an algorithm 
for generating a noise function in the Fourier-transformed space and remap
ping it onto the simulation grid. This allowed us to set a particular level of 
phase noise, controlling amplitude and waveform in a grid-independent way. 
It was then possible to check the stability of the simulation as described at 
the beginning of this section. Figure 5 presents the same pseudo-random 
phase mapped to a coarse mesh and to a finer one, where the grid has 5 
times more points. 

Figure 5. Random noise for a bidimensional simulation: coarse grid (left) and fine grid 
(right). 
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8. Conclusions 

A new tool, the QFEL code, has been developed for studying quantum FEL 
systems in a full 3d spatial geometry. The choice of a 3d cartesian model 
over a 2d cylindrical geometry was motivated by the necessity of simulating 
the start-up from noise in the SASE operation mode. To this end, initial
izing a random annular phase, as in the 2d cylindrical case, would have 
introduced unwanted correlations far from the actual beam conditions. As 
a consequence, the model equations required up to 100 million grid points 
for the accurate description of the FEL dynamics. To tackle such a large 
number of unknowns, the numerical scheme was coded to run on a par
allel computer using standard and efficient software solutions. The QFEL 
code can be easily run in 1, 2 or 3 spatial dimensions in a consistent way. 
Therefore feasibility studies of proposed experiments can be carried out in 
lower dimensions, which require less time and computing resources. Fine 
tuning of the parameters and exploration of the details of the full dynami
cal content of the model equations can then be obtained by going to higher 
dimensions, including transverse terms and propagation effects. 
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