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Quantum fluctuations and entanglement in the collective atomic recoil laser
using a Bose-Einstein condensate

N. Piovella, M. Cola, and R. Bonifacio
Dipartimento di Fisica, Universita` Degli Studi di Milano, INFN & INFM, Via Celoria 16, Milano I-20133, Italy

~Received 11 July 2002; revised manuscript received 30 September 2002; published 31 January 2003!

We present a quantum description of the interaction between a Bose-Einstein condensate and a single-mode
quantized radiation field in the presence of a strong far-off-resonant pump laser. In the linear regime, the
atomic medium is described approximately by two momentum states coupled to the radiation mode. We
calculate the evolution of the operators in the Heisenberg picture and their expectation values, such as average
and variance of the occupation numbers, atom-atom and atom-field correlations, and two-mode squeezing
parameters. Then, we disentangle the evolution operator and obtain the exact evolution of the state vector in the
linear regime. This allows us to demostrate that the system can be atom-atom or atom-field thermally en-
tangled. We define the quasiclassical and the quantum recoil limits, for which explicit expressions of the
average population numbers are obtained.
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I. INTRODUCTION

The realization of Bose-Einstein condensates~BECs! of
dilute alkali-metal gases@1# has made it possible to study th
coherent interaction between light and an ensemble of at
prepared in a single quantum state. Among the multitude
the experiments studying the behavior of a BEC under
action of external laser beams, only a small number h
been devoted to the active role caused by the atoms in
condensate on the radiation@2#. In particular, collective light
scattering and matter-wave amplification caused by cohe
center-of-mass motion of atoms in a condensate illumina
by a far-off-resonant laser were recently observed and in
preted@3–5# as super-radiant Rayleigh scattering. The ba
mechanism of the collective light scattering observed
these experiments is described by the collective atomic re
laser~CARL!, proposed by Bonifacio and co-workers@6–8#.
However, the original CARL theory which treats the atom
center-of-mass motion classically fails when the tempera
of the atomic sample is below the recoil temperatureTr

52\k2/MkB , wherek is the wave vector of the pump-lase
field back scattered by the atom,M is the atomic mass, an
kB is the Boltzmann constant.

An extension of the semiclassical CARL Hamiltonia
model to include a quantum-mechanical description of
center-of-mass motion of the atoms has been presente
Bonifacio @9# and successively by Moore and Meystre@10#,
by Berman@11#, and by Linget al. @12#. Furthermore, a more
detailed description of the exponential instability in a BE
has been given in Ref.@13#. However, the previous analyse
in Refs. @10–13# were restricted to a general description
the exponential regime where the collective instability tak
place without studying explicitly the quasiclassical and qu
tum recoil limits of the CARL in a BEC. Instead, this poin
has been addressed in Ref.@14#, where, starting from the
same model of Ref.@10#, the full nonlinear regime and th
quasiclassical and quantum regimes of the CARL were s
ied. In particular, in Ref.@14#, the nonlinear evolution of the
system has been studied numerically, solving the Heisen
1050-2947/2003/67~1!/013817~11!/$20.00 67 0138
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equations for the operators treated as classical variables,
neglecting quantum correlations and fluctuations. Analyti
results were also presented in Ref.@14# for the dynamical
evolution of the field and the atoms in the linear regime a
in the ‘‘two-level approximation’’ for the atomic motion in
the quantum recoil limit.

The objective of this article is to further investigate an
lytically some properties of the quantum system BEC rad
tion in the linear regime, such as quantum fluctuations a
entanglement. Although these topics have been already s
ied in Ref. @13#, we explicitly calculate the statistical prop
erties for atoms and photons in the quasiclassical and q
tum recoil limits and evaluating explicitly the state of th
coupled BEC-light system evolved from vacuum. This
lows to study more carefully the entanglement properties
the system. More precisely, it results that, in the limit
undepleted atomic ground state and unsaturated probe fi
the quantum CARL Hamiltonian reduces to that for thr
coupled modes, the first two modes corresponding to ato
having lost or gained a quantum recoil momentum 2\k in
the two-photon Bragg scattering between the pump and
probe, and the third mode corresponding to the photons
the probe field. Calculating the exact evolution of the st
from the vacuum of the three modes,u01,02,03&, we demon-
strate@see Eq.~47!# that the evolved state is

uC&5
1

A11^n1&
(

m,n50

`

~r aeifa!m~r beifb!nA~m1n!!

m!n!

3um1n,n,m&, ~1!

wherer a5@^n3&/(11^n1&)#1/2, r b5@^n2&/(11^n1&)#1/2 and
^n1&5^n2&1^n3&. This shows that, in general, the system
entangled and the distribution function over the different o
cupation numbers,n1 , n2 and n3, is thermal. In particular,
the state reduces to a two-mode squeezed state@15# for
^n3&!^n1&;^n2&, showing entanglement between atom
with different momenta, or̂n2&!^n1&;^n3&, showing en-
tanglement between atoms and photons. We demonstrate
©2003 The American Physical Society17-1
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these two kinds of entanglement may be obtained in the q
siclassical and quantum recoil regimes, respectively. Furt
more, we show that in the exponential regime, the maxim
average number of photons scattered byN atoms in the qua-
siclassical recoil limit isrN/2 ~where r is the collective
CARL parameter proportional toN1/3 @6#!, whereas in the
quantum recoil limit isN.

The paper is organized as follows. In Sec. II, we give
full quantum description of the interaction between a BE
considered as an ideal gas, and a single-mode quantize
diation field. Then, we reduce the model to a system of lin
equations for three coupled harmonic oscillator operators
Sec. III, we calculate the approximate solution valid for sh
times. In Sec. IV, we give the exact solution of linear Heise
berg equations and we deduce from it some general res
In particular, we evaluate the average occupation numb
^ni& ( i 51,2,3) and their variances, the correlation functio
and the expectation value for the linearized bunching op
tor and the two-mode squeezing parameters, proportiona
the variance of the difference between two-mode occupa
numbers. Finally, we calculate the exact evolution of
state vector writing a Baker-Hausdorff equation for the e
lution operatorU(t)5exp(2iHt). In Sec. V, we obtain ex-
plicit expressions of the average occupation numbers of
three modes in the exponential regime and in the quasic
sical and quantum limits. In Sec. VI, we show that the CAR
mechanism in a BEC can provide a valuable source
atom-atom or atom-field entanglement. Conclusions are
nally summarized in Sec. VII.

II. THE HAMILTONIAN MODEL

Our starting point is the classical model of equations foN
two-level atoms exposed to an off-resonant pump la
whose electric fieldEW 05êE0 cos(kW2•xW2v2t) is polarized
along ê, propagates along the direction ofkW2, and has a
frequencyv25ck2 with a detuning from the atomic reso
nance,D205v22v0, much larger than the natural linewidt
of the atomic transition,g. We assume the presence of
scattered field~‘‘probe beam’’! with frequencyv1, wave
numberkW1 making an anglef with kW2, and electric fieldEW

5(ê/2)@E(t)ei (kW1•xW2v1t)1c.c.# with the same polarization o
the pump field. In the absence of an injected probe field,
emission starts from fluctuations and the propagation di
tion of the scattered field is determined either by the geo
etry of the condensate~as in the experiment of Ref.@3#,
where the condensate has a cigar shape! or by the presence
of an optical resonator tuned on a selected longitud
mode. By adiabatically eliminating the internal atomic d
gree of freedom, the following semiclassical CARL equ
tions have been derived@6–8#:

du j

dt
5 p̄ j , ~2!

dp̄j

dt
52@Ãeiu j1c.c.# ~3!
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dÃ

dt
5

1

N (
j 51

N

e2 iu j1 i D̃Ã, ~4!

wheret5rv r t is the interaction time in units of the collec
tive recoil bandwidth,rv r , v r5\q2/2M is the recoil fre-
quency, M is the atomic mass,q5uqW u and qW 5kW12kW2 is
the difference between the scattered and the incident w
vectors. In Eqs.~2!–~4!, u j5qW •xW j5qzj and p̄ j5qvz j /rv r
are the dimensionless position and velocity of thej th atom
along the axis ẑ directed along qW , Ã

52 i (e0 /ns\v2r)1/2E(t)ei D̃t, D̃5(v22v1)/rv r , r
5(V0/2D20)

2/3(v2m2ns /\e0v r
2)1/3 is the collective CARL

parameter,V05mE0 /\ is the Rabi frequency of the pump
ns5N/V is the average atomic density of the sample~con-
taining N atoms in a volumeV), m is the dipole matrix
element, ande0 is the permittivity of the free space. Where
was possible, we have assumed abovev2'v1. In particular,
the recoil momentum can be written as\q
'2\k2usin(f/2)u. Equations~2!–~4! are formally equivalent
to those of the free electron laser~FEL! model @16#.

In order to quantize both the radiation field and the cen
of-mass motion of the atoms, we consideru j , pj5(r/2)p̄ j

5Mvz j /\q anda5(Nr/2)1/2Ã as quantum operators sati
fying the canonical commutation relations@u j ,pj 8#5 id j j 8
and @a,a†#51. With these definitions, Eqs.~2!–~4! are the
Heisenberg equations of motion associated with the Ham
tonian @9#

H5(
j 51

N Fpj
2

r
1 ig~a†e2 iu j2H.c.!2

D̃

N
a†aG

5(
j 51

N

H j~u j ,pj ,a,a†!, ~5!

whereg5Ar/2N. We note that@H,Q#50, whereQ5a†a
1( j 51

N pj is the total momentum in units of\q. The single-
particle HamiltonianH j in Eq. ~5! can be second quantize
as @17#

Ĥ5E
0

2p

duĈ†~u!HS u,2 i
]

]u
,a,a†D Ĉ~u!, ~6!

where the atomic-field operatorĈ(u) obeys the bosonic
equal-time commutation relations@Ĉ(u),Ĉ†(u8)#5d(u
2u8), @Ĉ(u),Ĉ(u8)#5@Ĉ†(u),Ĉ†(u8)#50 and the nor-
malization condition*0

2pduĈ(u)†Ĉ(u)5N. We introduce
creation and annihilation operators for the atoms of a defi
momentum p, i.e., Ĉ(u)5(mcm^uum&, where pum&
5mum& ~with m52`, . . . ,̀ ), ^uum&5(2p)21/2exp(imu)
andcm are bosonic operators obeying the commutation re
tions @cm ,cm8

†
#5dmm8 and@cm ,cm8#50. This description of

the atomic motion in a BEC assumes that the atoms
delocalized inside the condensate and that, at zero temp
ture, the momentum uncertaintyspz

'\/sz can be neglected

with respect to\q. Whensz'L, whereL it the size of the
7-2
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condensate, this approximation is valid forL@l. The
Hamiltonian~6! becomes@10,14#

Ĥ5 (
n52`

` H n2

r
cn

†cn1 ig~a†cn
†cn112H.c.!J 2D̃a†a ~7!

and the Heisenberg equations forcn anda are

dcn

dt
52 i @cn ,Ĥ#52 i

n2

r
cn1g~a†cn112acn21!, ~8!

da

dt
52 i @a,Ĥ#5 i D̃a1g (

n52`

`

cn
†cn11 . ~9!

Equations~8! and~9! have been obtained in a similar way b
Moore and Meystre in Ref.@10#, treating the electromagneti
field classically. They are formally equivalent to the CAR
equations~2!–~4!, but they describe more conveniently th
CARL when the atoms are initially in the ground state with
definite center-of-mass momentum, as for a BEC. The so
of the field equation~9! is the bunching operator, defined b
B̂5(1/N)*0

2pduĈ(u)†e2 iuĈ(u)5(1/N)(ncn
†cn11. We

note that Eqs.~8! and~9! conserve the number of atoms, i.e
(ncn

†cn5N, and the total momentumQ5a†a1(nncn
†cn .

Let us now consider the equilibrium state with no pro
field and all the atoms in the same initial momentum st
n0, i.e.,cn'ANe2 in2t/rdn,n0

. This is equivalent to assumin
that the temperature of the system is equal to zero and al
atoms are moving with the same momentumn0\qW , without
spread. The system is unstable for certain values of the
tuning D̃. In fact, by linearizing Eqs.~8! and ~9! around the
equilibrium state, the only equations depending linearly
the radiation field are these forcn021 andcn011. Hence, in
the linear regime, the only transitions involved are tho
from the staten0 towards the levelsn021 andn011. Intro-
ducing the operators

a15cn021ei (n0
2t/r1D̃t), ~10!

a25cn011ei (n0
2t/r2D̃t), ~11!

a35ae2 i D̃t, ~12!

the atomic-field operator reduces to

Ĉ~u!'
1

A2p
$AN1a1~t!e2 i (u1D̃t)

1a2~t!ei (u1D̃t)%ei (n0u2 in0
2t/r) ~13!

and Eqs.~8! and ~9! reduce to the linear equations for thre
coupled harmonic-oscillator operators@18#

da1
†

dt
52 id2a1

†1Ar/2a3 , ~14!
01381
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da2

dt
52 id1a22Ar/2a3 , ~15!

da3

dt
5Ar/2~a1

†1a2!, ~16!

with the Hamiltonian

H5d1a2
†a22d2a1

†a11 iAr/2@~a1
†1a2!a3

†2~a11a2
†!a3#,

~17!

where d65d61/r and d5D̃12n0 /r5(v22v1
12n0v r)/rv r . Hence, the dynamics of the system is that
three parametrically coupled harmonic oscillatorsa1 , a2,
and a3 @19#, which obey the commutation rules@ai ,aj #50
and @ai ,aj

†#5d i j for i , j 51,2,3. Note that the Hamiltonian
~17! commutates with the constant of motion

C5a2
†a22a1

†a11a3
†a3 . ~18!

It is worth to introduce also the atomic density operat
n̂(u)[Ĉ(u)†Ĉ(u), which by using Eq.~13!, has the fol-
lowing linearized form:

n̂~u!'
N

A2p
~11Be2 iu1B†eiu!, ~19!

where B5eidt(a1
†1a2)/AN is the linearized bunching op

erator. Furthermore, it is easy to show that the variance of
atomic density is

@D~ n̂!#25^n̂2&2^n̂&252S N

2p D 2

~^B†B&2^B†&^B&!.

~20!

Then, the expectation values^B& and^B†B& of the bunching
operator are related to the average and variance of the at
density, respectively.

III. SPONTANEOUS EMISSION AND SMALL-GAIN
REGIME

Before solving exactly the linear equations~14!–~16!, we
calculate the perturbative solution valid for short timest.
Solving Eqs.~14! and ~15! keepinga3(t)'a3(0) constant,
we obtain

a1
†~t!'e2 id2t$a1

†~0!1a3~0!Ar/2t sinc~d2t/2!%,
~21!

a2~t!'e2 id1t$a2~0!1a3~0!Ar/2t sinc~d1t/2!%.
~22!

Where sinc(x)5sin(x)/x. If the radiation field is initially in
a coherent state with amplitudea and the atoms are in th
vacuum for the staten021 and n011, i.e., if uc(0)&
5u0,0,a&, then

^n1&5^a1
†a1&5~11uau2!S2 , ~23!

^n2&5^a2
†a2&5uau2S1 , ~24!
7-3
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N. PIOVELLA, M. COLA, AND R. BONIFACIO PHYSICAL REVIEW A67, 013817 ~2003!
^n3&5^a3
†a3&5S21uau2@11G#, ~25!

whereS65(rt2/2)sinc2(d6t/2) is the dimensionless spon
taneous emission line shape andG5S22S1 is the gain. In
Eq. ~25! we used the constant of motion~18! to obtain
^n3&5uau21^n1&2^n2&. The first termS2 in Eq. ~25! is the
average number of photons emitted spontaneously along
z axis with the usual line shape centered atd51/r, i.e. at
v15v21(2n021)v r . The second term of Eq.~25! is the
stimulated contribution with the familiar antisymmetric d
pendence on the detuning@8#. In the limit r@1, we obtain

G'2~t3/2!
d

dx
@sinc2~x!#x5dt/25

4t3

d3
@12cos~dt!

2~dt/2!sin~dt!#. ~26!

Expression ~26! is known in the FEL literature as th
‘‘Madey gain’’ @20# and was originally obtained by Made
~for an electron beam traveling along a wiggler magne
field! as the difference between the emission and absorp
rates, shifted by the recoil frequency. In the limit of smallr,
the solutions~23!–~25! is valid for rt2!1, whereas, in the
limit r@1, the Madey gain~26! is valid for t!1. Figure 1
showsG as a function ofd for 1/r50 andt51 ~continuous
line! and for 1/r510 andt52 ~dashed line!. We observe
that the Madey gain~26! does not depend explicitly onr and
has the maximum valueGmax'0.27t3 at dt52.6. Instead, in
the limit r!1, the maximum gain isGmax5rt2/2, occurring
at the center of the spontaneous emission lined51/r.

IV. SOLUTION OF THE LINEAR QUANTUM REGIME

The exact solution of Eqs.~14!–~16!, obtained using the
Laplace transform, is the following@9,19#:

a1
†~t!5e2 idt@g1~t!a1

†~0!1g2~t!a2~0!1g3~t!a3~0!#,
~27!

FIG. 1. Small-gain regime:G vs d for 1/r50 andt51 ~con-
tinuous line! and for 1/r510 andt52 ~dashed line!.
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a2~t!5e2 idt@h1~t!a1
†~0!1h2~t!a2~0!1h3~t!a3~0!#,

~28!

a3~t!5e2 idt@ f 1~t!a1
†~0!1 f 2~t!a2~0!1 f 3~t!a3~0!#,

~29!

where the explicit expressions off i , gi andhi are given in
Appendix A, while the initial valuesf i(0)5d i3 , gi(0)
5d i1 andhi(0)5d i2 verify the initial conditions forai . The
functions f i , gi and hi are the sum of three terms propo
tional to eil jt, wherel j are the complex roots of the cubi
equations:

~l2d!~l221/r2!1150. ~30!

The characteristic equation~30! has either three real solu
tions, or one real and a pair of complex-conjugate solutio
In the first case, the system is stable and exhibits only sm
oscillations around its initial state. In the second case,
system is unstable and grows exponentially, even from no
In Fig. 2 we plot the imaginary part ofl as a function ofd
for different values ofr. The classical limit is obtained fo
r@1 @see Fig. 2~a!#. In this case, the system is unstable f
d,3/21/3 with a maximum instability rate atd50 and
an unstable rootl35(12 iA3)/2. When r,1 @see Figs.
2~c!–2~f!#, the instability rate decreases and the peak
Im(l) moves atd51/r. This can be seen explicitly observ
ing that the characteristic equation~30! has two resonances
one atd521/r and the other atd51/r, corresponding to a
mismatch between the probe and the pump field frequen
equal tov12v25(2n071)v r . In the first case, the photo
is absorbed from the probe and emitted into the pump, r
ing the atomic energy fromn0

2\v r to (n011)2\v r . In the
second case, the photon is absorbed from the pump and e
ted into the probe, decreasing the atom energy ton0
21)2\v r . The study of the solutions of Eq.~30! shows that
the only unstable process is the second one. Whenr@1, the
gain bandwidth (dv1)Gain5rv rsd @wheresd is defined as
the interval ofd, for which Im(l) is at half of its maximum

FIG. 2. Imaginary part of the unstable root of the cubic equat
~30! vs d for 1/r50 ~a!, 0.5 ~b!, 3 ~c!, 5 ~d!, 7 ~e!, and 10~f!.
7-4
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value# is of the order ofrv r@v r and the shift due to the
energy recoil\v r is negligible, also if the system is initially
at the zero temperature, i.e., without thermal broadening.
cause forr@1 the gain bandwidth is larger than the sepa
tion between the emission and absorption line-shape cen
each atom may absorb the photon either from the pump
from the probe. In this case, the probe field is amplifi
because, as we will see later, the average number of pho
scattered from the pump into the probe is larger than
absorbed from the probe and emitted into the pump.

On the other hand, the quantum recoil effect becom
visible when r,1. In this case, the unstable root of th
characteristic equation~30! is approximatelyl'1/r1d2/2
2(1/2)Ad2

2 22r. The imaginary part ofl reaches the maxi
mum valueAr/2 for d250 ~i.e., d51/r), with a gain band-
width (dv1)Gain5(2r)3/2v r less thanv r . In this case, the
absorption line-shape center,d521/r, is outside of the gain
bandwidth, and the atom can only absorb the photon fr
the pump and emit it into the probe, whereas the inve
process is not allowed due to the energy conservation. T
can be seen explicitly assuming that in the exponential
gime a1

† anda2 are proportional to exp@i(l32d)t#, wherel3

is the unstable root of Eq.~30! with negative imaginary part
Then, from Eqs.~14! and ~15!, it follows that:

a2;S 12rl3

11rl3
Da1

† . ~31!

In the caser@1, a2;a1
† , and the atoms have almost th

same probability of transition from the momentum leveln0
to n011 or n021, absorbing or emitting a photon, respe
tively. On the contrary, in the caser!1, l3;1/r and Eq.
~31! shows thata2!a1

† : the atoms can only emit a photo
into the probe due to the energy conservation. This makes
CARL in the quantum recoil limitr!1 an interesting ex-
ample of two-level system coupled to a radiation mode,
tially inverted and without incoherent spontaneous decay

In the remaining part of this section, we derive some g
eral analytical results from the solution of the quantum lin
model, whereas the quasiclassical (r@1) and quantum re-
coil (r,1) limits will be discussed in the Sec. V.

We assume that the initial state isu0,0,a&, i.e., the vacuum
state fora1 anda2 and a coherent state with amplitudea for
a3. The average occupation numbers^ni& and the number
variances2(ni)5^ni

2&2^ni&
2 can be calculated from Eqs

~27!–~29! yielding

^ni&5^ni&sp1^ni&st, ~32!

s2~ni !5^ni&~11^ni&!2e i^ni&st
2 ~33!

for i 51,2,3, where

^n1&sp5ug2u21ug3u2, ^n1&st5uag3u2, ~34!

^n2&sp5uh1u2, ^n2&st5uah3u2, ~35!

^n3&sp5u f 1u2, ^n3&st5ua f 3u2 ~36!
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the average number of atoms with momentumpW 5(n0

71)\qW , i.e., ^n1& and ^n2&, are the sum of two terms rep
resenting the spontaneous and the stimulated emission
tributions. The first term originates from the fluctuations
the vacuum state and it is the only contribution in the a
sence of the initial probe field. We observe that the statis
of the spontaneous emission~for a50) is that of a chaotic
~i.e., thermal! state, with number variances i

2'^ni&sp(1
1^ni&sp). Instead, if the stimulated emission dominates
spontaneous emission (^ni&st@^ni&sp), then s i

2'^ni&st@1
12^ni&sp1(12e i)^ni&st#. We note that we obtain the Pois
son statistics for a coherent field, i.e.,s i

2'^ni&st, only for
^ni&sp!1.

We also calculate the expectation value^B†B& for the
linearized bunching operatorB,

^B†B&5
1

N
@ ug11h1u21uau2ug31h3u2#, ~37!

from which, using Eq.~20!, we obtain the atomic density
fluctuations@13#

D~ n̂!5
1

p
AN

2
ug11h1u. ~38!

We calculate now the equal-time intensity correlation a
cross-correlation functions@13,18# defined, respectively, as

gi
(2)5

^ai
†~t!ai

†~t!ai~t!ai~t!&

^ni~t!&2
, ~39!

gi , j
(2)5

^ni~t!nj~t!&

^ni~t!&^nj~t!&
, ~40!

with i 51,2,3 andiÞ j . For a classical field, there is an upp
limit to the second-order equal-time cross-correlation fu
tion given by the Cauchy-Schwartz inequality

gi , j
(2)~t!<@gi~t!#1/2@gj~t!#1/2.

Quantum-mechanical fields, however, can violate this
equality and are instead constrained by

gi , j
(2)~t!<Fgi

(2)~t!1
1

^ni&
G1/2Fgj

(2)~t!1
1

^nj&
G1/2

, ~41!

which reduces to the classical results in the limit of lar
occupation numbers. We obtain the following expression

gi
(2)522e i

^ni&st
2

^ni&
2

, ~42!

g1,2
(2)521

^n2&sp1^n1&st~12e1^n2&st!2uau2^n3&sp

^n1&^n2&
,

~43!
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g1,3
(2)521

^n3&sp1^n1&st~12e1^n3&st!2uau2^n2&sp

^n1&^n3&
,

~44!

g2,3
(2)521

^n1&st2^n2&st̂ n3&st2uau2^n1&sp

^n2&^n3&
. ~45!

When the system builds up from noise (a50), gi
(2)52, as

expected for a thermal or chaotic field. More interesting
formations are obtained from the cross-correlation functio
In the spontaneous casea50, g1,2

(2)5g1,3
(2)5211/̂ n1&, and

g2,3
(2)52. Hence, bothg1,2

(2) and g1,3
(2) violate the Cauchy-

Schwartz inequality, whileg2,3
(2) is consistent with it. Further-

more, becausên1&5^n2&1^n3&, g1,2
(2) and g1,3

(2) are consis-
tent with the quantum inequality~41!, and close to their
upper value for̂ n3&50 and^n2&50, respectively@13,18#.
Hence, we expect the existence of nonclassical correlati
as for instance, two-mode entanglement between the m
1 and 2 or between the modes 1 and 3 when the ave
occupation numbers of the two modes are equal.

In order to study the entanglement of atoms and photo
it can be useful to calculate also the two-mode relative nu
ber squeezing parameter@21#,

j i , j5
s2~ni2nj !

^ni&1^nj&
, ~46!

although, as pointed correctly in Ref.@21#, squeezing in the
relative number of particles between states isnot equivalent
to entanglement. In fact, if the two states are independ
and coherent, thenj i , j51, whereas if they are squeeze
s2(ni2nj )50, which impliesj i , j50 @22#. Hence, it is ex-
pected that whenj i , j decreases, the entanglement betwe
the two states could improve. However, the conditi
s2(ni2nj )50 is not a sufficient one for a signature for e
tanglement, showing only that the state is two-mo
squeezed or, more generally, nonclassically correlated. In
der to demonstrate the existence of the entanglement,
necessary to show that the state of the system can no
factorized into the product of the single-mode states@22#.

Now, we show that the CARL mechanism applied on
BEC can provide a valuable source for entanglement. In f
because in the spontaneous casea50, j1,25^n3&(^n3&
11)/@^n1&1^n2&#, and j1,35^n2&(^n2&11)/@^n1&1^n3&#,
maximum entanglement between the modes 1 and 2 or
modes 2 and 3 should occur when^n3&50 or ^n2&50, re-
spectively. To demonstrate that this is not only a necess
condition, but also a sufficient one, we have calculated
exact state vectoruc(t)&5U(t)u0,0,0& at the timet when
the system evolves from vacuum. At this point, we ha
disentangled the evolution operatorU(t)5exp(2iHt),
whereH is given by Eq.~17!, writing it as the product of
individual operators. The calculation, reported in detail
Appendix B, yields

uc~t!&5
1

A11^n1&
(

n,m50

`

a1
ma2

nA~m1n!!

m!n!
um1n,n,m&,

~47!
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a15
f 1g1*

11^n1&
, ~48!

a25
h1g1*

11^n1&
. ~49!

We observe thatua1,2u25^n3,2&/(11^n1&). Similar results
have been recently obtained also in Ref.@23#. Ideally
squeezed states between the modes 1 and 2 or the mo
and 3 can be obtained when^n3&50 or ^n2&50, respec-
tively, giving

uc1,2&5
1

A11^n1&
(
n50

`

a2
nun,n,0&, ~50!

uc1,3&5
1

A11^n1&
(
n50

`

a1
nun,0,n&. ~51!

The states~50! and ~51! are pure bipartite states and a
entangled because the two modes are only generated in p
It is known that the von Neumann entropy is a good meas
of entanglement for bipartite pure states@24#. So, for these
states we can give a measure of the degree of entanglem
If we consider the reduced density operatorsr i5Tr1@r1i #,
where r1i5uc1i&^c1i u and i 52,3, we obtain the therma
state

r i5
1

11^ni&
(
m

S ^ni&
11 ^ni&

D m

um&^mu, ~52!

for which the entropySi5Tr@r i lnri# is maximum, so that the
states~50! and ~51! are maximally entangled. The presen
of the third mode, in general, reduces the entanglement
tween the other two modes@21#. We observe also that no
two-mode entanglement is possible between the states 2
3.

V. HIGH-GAIN REGIME

We discuss the above results in the high-gain regime,
for uIml3ut@1, wherel3 is the root of Eq.~30! with nega-
tive imaginary part. In this limit, the term proportional t
exp(il3t) will be dominant in the sum of the expression
~A1!–~A6!.

A. The quasiclassical recoil limit rš1

For r@1 andd50, l3'(12 iA3)/2 and

^n1&'
1

18
@r2/21r1uau2~r11!#eA3t, ~53!

^n2&'
1

18
@r2/21uau2~r21!#eA3t, ~54!
7-6



.
o

is
na
is

e
tte
e
r

ge

-
a

he

t
m

la
ad

tive

it
s,

nta-

um

m.
ab-

e,
is

nd

QUANTUM FLUCTUATIONS AND ENTANGLEMENT IN . . . PHYSICAL REVIEW A67, 013817 ~2003!
^n3&'
1

9
~r/21uau2!eA3t. ~55!

We observe that̂n1&2^n2&5^n3&, in agreement with Eq
~18!. The stimulated emission dominates the spontane
emission whenuau2@r/2. Furthermore,^n1&'^n2& and
^n3&'(2/r)^n1&, so that the number of emitted photons
much smaller than the occupation number of the motio
states. The expectation value of the bunching parameter

^B†B&'
1

9N
@11~2/r!uau2#eA3t'

2

rN
^n3&. ~56!

Assuming that̂ B†B& approaches a maximum value of th
order of one, then the maximum average number of emi
photons is aboutrN/2. Hence,r/2 can be interpreted as th
average number of photons emitted per atom. In orde
check the validity of the asymptotic expressions~53!–~56!,
we have solved numerically the nonlinear Eqs.~8! and ~9!,
treatingcn anda asc numbers. Figure 3 shows the avera
population fractionŝni&/N with i 51,2,3~continuous lines!
and (r/2)^B1B& ~dashed line!, as they result from the simu
lation with r520, d50 and a small initial seed simulating
small bunching att50. We observe that Eq.~56! is in a
good agreement with the simulation untilt'12, up to a
maximum value of 0.77 of the expectation value of t
bunching operator̂ B1B&. Instead, Eqs.~53! and ~54! fit
well the numerical result only untilt'8, up to the maxi-
mum value^n1,2&'0.34N, in agreement with the constrain
^n1,2&<N/2 required by the conservation of the atomic nu
ber.

When the exponentially growing terms dominate, the re
tive uncertainty of the occupation numbers reaches a ste
state value given by

s~ni !

^ni&
'

Ar~r14uau2!

r12uau2
~57!

FIG. 3. Nonlinear evolution of the population fractions^ni& for
i 51,2,3 ~continuous lines! and of (r/2)^B1B& ~dashed line!, for
r520 andd50.
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for i 51,2,3. We see that foruau2!r, s(ni)/^ni&'1, as
should be for a thermal field when̂ni&@1. Instead, for
uau2@r, Eq. ~57! yieldss(ni)/^ni&'Ar/uau!1. Hence, the
presence of an initial coherent field decreases the rela
uncertainty of the occupation number@9,13#. Finally we note
that in the high-gain regime and in the quasiclassical lim
r@1, the intensity correlation function for the three mode
Eq. ~42!, yields

gi
(2)522e iS uau2

r/21uau2
D 2

, ~58!

which tends to 1 foruau2@r @13#.

B. The quantum recoil limit rÏ1

For r<1, the maximum rate of instability occurs atd
51/r, with l3'1/r2 iAr/2 and

^n1&'
1

4
@11~r/2!31uau2#eA2rt, ~59!

^n2&'
1

4 S r

2D 3

~11uau2!eA2rt, ~60!

^n3&'
1

4
~11uau2!eA2rt. ~61!

In this case, the stimulated emission dominates the spo
neous emission whenuau@1. Furthermore,̂ n1&'^n3& and
^n2&'(r/2)3^n1&, so that the number of atoms^n2& which
absorb a photon from the probe gaining a recoil moment
\q is much smaller than the number of atoms^n1& which
emit a photon into the probe loosing a recoil momentu
Hence, in the quantum recoil limit, emission dominates
sorbtion.

The expectation value of the bunching parameter is

^B†B&'
1

4N
@11uau2#eA2rt5

1

N
^n3&. ~62!

When^B†B& reaches a maximum value of the order of on
then the maximum average number of emitted photons
aboutN, i.e., all the atoms are transferred from the grou
motional staten0 to the side-mode staten021.

In the asymptotic limitA2rt@1, the relative uncertainty
of the occupation numbers are

s~n1!

^n1&
'

1

A11uau2
, ~63!

s~n2!

^n2&
'

s~n3!

^n3&
'

A112uau2

11uau2
, ~64!

whereas
7-7
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gi
(2)522e iS uau2

11uau2D 2

, ~65!

tending again to 1 foruau2@1 @13#.

VI. ATOM-ATOM AND ATOM-PHOTON ENTANGLEMENT

Now, we show the existence of two different regimes
the CARL, in which the initial vacuum state evolves into
entangled state. In particular, atom-atom entanglement
be obtained only in the limitr@1 and in a detuned, not fully
exponential regime. On the contrary, in the limitr,1, atom-
photon entanglement can be obtained in the exponentia
gime if the average occupation number^n2& remains smaller
than one. Relative atom-photon number squeezing has
considered also in Refs.@21,25#. In these works it has bee
noted that, for typical experimental parameters, the squ
ing can be strongly limited by collisions and dissipative p
cesses.

As an example of atom-atom entanglement, we show
Fig. 4 the average occupation numbers^ni& ( i 51,2,3! ~a!
and the two-mode squeezing parameterj1,2 ~b! as a function
of d for r5100, a50, and t52. Since ^n3&!^n1&
'^n2&, there exists a region wherej1,2 is less than one, and
the state has a form similar to that of Eq.~50!. In general,

FIG. 4. Atom-atom entanglement: occupation numbers^ni& ( i
51,2,3! ~a! and two-mode squeezing parameterj1,2 ~b! as a func-
tion of d for r5100, t52 anda50.
01381
f

an

e-

en

z-
-

in

this kind of entanglement is not very efficient because
number of atoms in each quantum state does not grow e
nentially and it remains of the order ofr.

Atom-photon entanglement is more easily obtained in
limit r,1 because in this case^n2&!^n1&'^n3& also in the
exponential regime. In fact, in this case

j1,35
s2~n2!

^n1&1^n3&
5

^n2&~11^n2&!

^n1&1^n3&
, ~66!

where ^ni& are given by Eqs.~59!–~61!. Since ^ni&, for i
51,2,3, grow exponentially,j1,3 remains smaller than on
only for ^n2&,1. Hence, from Eq.~60!, it follows that atom-
photon entanglement occurs for

t,
1

A2r
~5 ln 223 lnr!. ~67!

In Fig. 5, we show^ni&, (i 51,2,3! ~a! and the two-mode
squeezing parameterj1,3 ~b! between atoms in the momen
tum staten021 and photons as a function oft for 1/r5d
510 anda50. We observe that the average number of
oms in the momentum staten011, ^n2&, is more than three
decades smaller than the average number of atoms in
momentum staten021. Hence, the state of the system r

FIG. 5. Atom-photon entanglement: occupation numbers^ni&
( i 51,2,3! ~a!, and two-mode squeezing parameterj1,3 ~b!, as a
function of t for 1/r5d510 anda50.
7-8



e,

f t
n
g
lyt
an
w

an
he
e
ow
a
t
a
a

e
th
n
te
c

in

e
m
e
x

tio
ca
e

ris
e

a

r

e
he

QUANTUM FLUCTUATIONS AND ENTANGLEMENT IN . . . PHYSICAL REVIEW A67, 013817 ~2003!
duces from the three-mode entangled state~47! to the two-
mode entangled state described by Eq.~51!. As a confirma-
tion of this,j1,3 in Fig. 5~b! remains much smaller than on
also in the exponential regime, until^n2& becomes larger
than one.

VII. CONCLUSIONS

We have presented a complete quantum description o
collective atomic recoil laser, in which a Bose-Einstein co
densate driven by a detuned laser field is coupled to a sin
mode quantized radiation field. We have calculated ana
cally the temporal evolution of the Heisenberg operators
of the state when the system starts from vacuum, and
have investigated the statistical properties of the atom
photon distributions. The calculation of the evolution of t
state allows for a detailed description of the entanglem
between atoms and photons. In particular, we have sh
that the general state may reduce to a thermal atom-atom
atom-photon entangled state. Finally, we have calculated
asymptotic expression of the average numbers of photon
atoms in the exponential regime and in the quasiclassical
quantum limits.

The present theory is valid only in the linear regim
when the atomic ground-state depletion and saturation of
radiation mode are neglected. Furthermore, we have
glected inhomogeneous effects due to the finite spatial ex
sion of the atomic cloud and two-atom collisions. The effe
of collisions has been considered recently in Ref.@25#, show-
ing that it can seriously limit the coherence of the scatter
process and the entanglement. Following the approach
Ref. @25#, it will be of considerable interest to extend th
analytical description of the linear regime of the quantu
CARL to include this and other possible sources of decoh
ence. Moreover, the CARL Hamiltonian model may be e
tended to include a dissipative mechanism for the radia
mode, allowing for a quantum description of the statisti
properties of the super-radiant regime, recently observed
perimentally@3,5#.
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APPENDIX A

The expressions of the quantitiesf i , gi and hi ( i
51,2,3) which appear in the general solution of the line
problem, Eqs.~27!–~29!, are

f 1~t!52 iAr

2 (
j 51

3

~l j11/r!
eil jt

D j
5g3~t!, ~A1!

f 2~t!52 iAr

2 (
j 51

3

~l j21/r!
eil jt

D j
52h3~t!, ~A2!
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f 3~t!5(
j 51

3

~l j
221/r2!

eil jt

D j
; ~A3!

g1~t!5(
j 51

3

@~l j2d!~l j11/r!2r/2#
eil jt

D j
, ~A4!

g2~t!52
r

2 (
j 51

3
eil jt

D j
52h1~t!, ~A5!

h2~t!5(
j 51

3

@~l j2d!~l j21/r!1r/2#
eil jt

D j
, ~A6!

whereD j5l j (3l j22d)21/r2 and l1 , l2 and l3 are the
roots of the cubic Eq.~30!. Since the commutation rules fo
the operatorsai and ai

† are preserved at the timet, they
imply the following relations between the functionsf i , gi ,
andhi :

11u f 1u25u f 2u21u f 3u2, ~A7!

ug1u2511ug2u21ug3u2, ~A8!

11uh1u25uh2u21uh3u2; ~A9!

g1f 1* 5g2f 2* 1g3f 3* , ~A10!

g1h1* 5g2h2* 1g3h3* , ~A11!

h1f 1* 5h2f 2* 1h3f 3* . ~A12!

APPENDIX B

We show that the evolution operatorU(t)5exp(2iHt),
whereH is given by Eq.~17!, can be disentangled into thos
of individual operators. This allows us to calculate how t
stateuc(t)& evolves from the vacuum stateu0,0,0&.

Introducing the five operatorsJ15a1a1
†1a3

†a3 , J2

5a3
†a32a2

†a2 , J5a2a†
3 , K5a1a3 and M5a1a2, the

Hamiltonian~17! can be written in the following form:

H5C81
d

3
~J22J1!1

1

r
~J11J2!1 iAr/2~J2K2J†1K†!,

~B1!

whereC85(d/3)(112C)21/r andC is the constant of mo-
tion ~18!. The operatorsJ1 , J2 , J, K, and M satisfy the
following commutation relations:

@J,J†#52J2 , ~B2!

@K,K†#5J1 , ~B3!

@M ,M†#5J11J2 , ~B4!

@J1 ,J#5J, ~B5!

@J2 ,J#522J, ~B6!
7-9
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@K,J1#52K, ~B7!

@K,J2#52K, ~B8!

@M ,J1#5@M ,J2#5M , ~B9!

@K,J#5M , ~B10!

@M ,J†#5K, ~B11!

@M ,K†#5J, ~B12!

and @J1 ,J2#5@J†,K#5@J,M #5@K,M #50. Hence, they
form a closed algebra. We observe that the operatorsJx
5 i (M2M†), Jy5 i (K2K†) andJz5 i (J2J†) are the gen-
erators of SU~1,1! Lie algebra, whose statistical propertie
have been extensively discussed in Refs.@26,27#. SinceC8
commutes withH, we can writeH5C81H8 and neglect the
inessential phase factore2 iC8t in the evolution operator
U(t), that can be written in the form of a Baker-Hausdo
equation

U~t!5e2 iH 8t5ea1K†
ea2M†

ea3J†
ea4J1ea5J2ea6Jea7Kea8M,

~B13!

wherea i ( i 51, . . . 8) arecomplex functions depending o
t. Applying U(t) to the vacuum state, we obtain

uc&5U~t!u0,0,0&5ea4ea1K†
ea2M†

u0,0,0&

5ea4 (
m,n50

`

a1
ma2

nA~m1n!!

m!n!
um1n,n,m&. ~B14!

The constanta4 can be obtained from the normalization co
dition

^cuc&515e2 Re(a4) (
m,n50

`
~m1n!!

m!n!
ua1u2mua2u2n

5
e2Re(a4)

12ua1u22ua2u2
, ~B15!

where we used the formula

(
n50

`

G~a1n!
zn

n!
5G~a!~12z!2a ~B16!
an

V.I

er

,

01381
and G(a) is the Gamma function. Hence, neglecting t
imaginary part ofa4,

ea45A12ua1u22ua2u2. ~B17!

The calculation of the average occupation numbers for
modes 2 and 3, using the state~B14!, yield

^n2&5
ua2u2

12ua1u22ua2u2
, ~B18!

^n3&5
ua1u2

12ua1u22ua2u2
, ~B19!

which, once inverted and because^n1&5^n2&1^n3&, gives

ea45
1

A11^n1&
. ~B20!

The two functionsa1 anda2 can be obtained by calculatin
the expectation values ofa1a3 and a2

†a3 and using the
Heisenberg picture of the operators, Eqs.~27!–~29!,

^a1a3&5 f 2g2* 1 f 3g3* 5 f 1g1* , ~B21!

^a2
†a3&5 f 1h1* , ~B22!

where we used Eq.~A10!. Conversely, evaluating these e
pectation values using the state~B14!, we obtain

^a1a3&5e2a4a1 , ~B23!

^a2
†a3&5e2a4a1a2* . ~B24!

Finally, combining the two results, we obtain after some
gebra:

a15
f 1g1*

11^n1&
, ~B25!

a25
h1g1*

11^n1&
. ~B26!
ds
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