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Superradiant, single-supermode and nonlinear regimes
of short pulse free electron laser oscillators
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We study both small signal and nonlinear regimes of free electron laser oscillators driven by short electron
bunches. This work extends and completes a previous work, focusing the analysis first on the spectrum of the
eigenmodes of the linear problem~supermodes! and on the description of the weakly nonlinear regime in terms
of these eigenmodes and second on the fully nonlinear dynamics. Using an orthogonality property of the
supermodes, we derive expressions for the amplitudes of the fundamental and secondary supermodes and we
discuss the single-supermode stable operation. Then we reconsider the superradiant regime in a quasiperfectly
synchronized, high-quality optical cavity. We show that superradiance actually is an intrinsically multi-
supermode regime, which occurs when the spectrum is nearly degenerate. Going next to the nonlinear regime,
we find the nonlinear modes of the system~stationary regimes!, which appear through successive Hopf bifur-
cations when the linear eigenmodes become unstable. We analyze the stability of the fundamental nonlinear
mode and show that it gets unstable through a new supercritical Hopf bifurcation when dissipation is de-
creased, giving rise to a limit cycle. Finally, we reconsider the routes to chaos, showing that although the
dynamical behavior of the system depends in a complicated way on the control parameters, it can be described
to a large extent by the iterations of one-dimensional maps.@S1063-651X~98!11012-7#

PACS number~s!: 41.60.Cr, 42.65.Sf
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I. INTRODUCTION

Free electrons laser~FEL! oscillators are a family of de
vices able to produce tunable coherent radiation from a r
tivistic electron beam@1#. They are made of an accelerat
delivering the driving electron bunches and a wiggler gen
ating a static spatially periodic magnetic field, inserted in
optical cavity storing the produced radiation. Success
electron pulses periodically enter the wiggler, where th
copropagate with the stored optical pulse. The electrons
cillate transversally and bunch on the scale of the radia
wavelength, radiating under the action of the combined fie
of this optical pulse and the wiggler. The generated wa
length is a continuous function of the operating parame
~electron incoming energy, wiggler field magnitude, etc.! so
that it is intrinsically tunable. The amplifying medium is th
electron bunches themselves, which are continuously
newed by the accelerator, so that FELs are expected to
port high power. Tunability and high power are qualities th
make FELs promising radiation sources. Furthermore, t
have been proved to be able to generate very short sup
diant optical pulses@2#. However, the price for this versatil
ity of FELs is their tendency to develop secondary instab
ties leading to unsteady radiation output: spiking in lo
pulse FELs@3–5# and limit cycles in short pulse FELs@6#.
The gain, efficiency, and stability of FELs depend on tw
types of effects: dynamical effects due to the partic
radiation interaction, responsible for bunching and trapp
the electrons, and geometrical effects due to the transpo
the radiation with respect to the electrons~slippage or dif-
fraction!. In particular, the longitudinal overlapping effec
dominate the FEL dynamics when the electron pulses
PRE 591063-651X/99/59~1!/1136~16!/$15.00
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shorter than the slippage lengthlNw , which is the length
overtaken by radiation at a wavelengthl over the electrons
after Nw wiggler periods. A high gain FEL amplifier driven
by electron pulses shorter than the slippage operates in
superradiant regime@7,8#, with the emission of intense an
short radiation pulses. The slippage effect is more comp
in a FEL oscillator, where the radiation, reflected by mirro
back to the wiggler entrance, interacts many times with n
electron pulses periodically injected in the cavity. In fact,
varying the synchronism between the periodic beam inj
tion and the round-trip time of the radiation in the cavity, it
possible to control the overlapping between the radiation
the electron pulses during many round-trips@9#. The trans-
port mechanism induced by cavity detuning and the los
introduced by the cavity make the FEL oscillator driven
short electron pulses an interesting example of dissipat
nonlinear system exhibiting a large variety of nonlinear b
haviors such as limit cycles, chaos, and superradia
@10,11#. A number of currently existing FEL oscillators i
the infrared range are driven by electron pulses shorter t
the slippage length. In particular, the the free-electron la
for infrared experiment~FELIX! experiment already showe
both limit cycles@6# and superradiance@2#.

The aim of this paper is to present analytical results on
theory of short pulse FEL oscillators, within the framewo
already introduced in@11,12#. These results contribute to th
analysis of the short pulse FEL instabilities and their fu
nonlinear behavior to prepare ways of using and controll
the various possible dynamical behaviors of these syst
@13#. We briefly recall our model in Sec. II. In Sec. III w
reconsider the linear eigenvalue problem and the ‘‘ortho
nality’’ properties of the eigenmodes with a method giving
global view of the discrete spectrum. The limit of small ca
1136 ©1999 The American Physical Society
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PRE 59 1137SUPERRADIANT, SINGLE-SUPERMODE AND . . .
ity detuning is investigated in detail, showing how all th
eigenvalues with positive gain~supermodes@14#! converge
toward a common value. Explicit analytical expressions
the eigenvalues and the eigenfunctions are obtained. The
Sec. IV, describing the nonlinear solution in terms of sup
modes, we calculate up to third order the radiation inten
and the frequency shift in the weakly nonlinear regime do
nated by a single supermode. The numerical determinatio
the exact amplitudes of the fundamental and secondary
permodes at saturation allows us to test the domain of va
ity of the single-supermode regime and the third-ord
theory. In Sec. V we demonstrate that the superradiant
gime calculated previously in the frame of an inappropriat
called ‘‘single-supermode approximation’’@11# in the limit
of small cavity detuning actually is a multisupermode regi
that occurs in the limit where all the supermodes conve
toward a unique degenerate supermode. This resolves
previous paradox between the observation of superradia
both in the single-supermode model of Ref.@11# and in the
transient evolution of a perfectly synchronized, lossless
cillator @15#. The second part of the paper deals with t
fully nonlinear regime. Section VI gives results about t
nonlinear modes, which correspond to the stationary
gimes. In Sec. VII we reconsider the weakly nonlinear
gime and show the nature of the limit cycle instability.
Sec. VIII we reconsider the route from the stable station
asymptotic regime to chaos, showing that the main featu
of the dynamics can be described by the iterations of o
dimensional return maps. Finally, conclusions are drawn
Sec. IX.

II. MODEL

In a short pulse FEL oscillator, an optical pulse circula
in a cavity between two reflecting mirrors and interacts
each pass with a new electron pulse along thez axis of a
lwNw long wiggler. The electron pulses delivered by t
accelerator have an effective lengthLb5cQ/I b , whereQ is
the pulse charge andI b is the peak current, considered mu
smaller than the slippage lengthLs5lNw ~the distance of
which the light overtakes the electrons while traveling alo
the wiggler!. Following Ref. @11#, we describe the optica
field in the cavity by its complex slowly varying envelop
A(x,t) at the wiggler entrance, wherex5(ct2z)/Ls is the
position within the optical pulse in units of the slippag
length, z is the position along the common wiggler, bea
and cavity axis, andt5gn is the dimensionless coarse
grained cavity time, withn the cavity round-trip number, an
g5(Lb /Ls)g0 , whereg0 is the usual cw small gain coeffi
cient @1#, g054p(Nw /g0)3(I bf /I 0)(awlwF/r b)2, g0 is the
beam energy in rest mass unitsmc2, aw is the rms wiggler
parameter,F is 1 for a helical wiggler andJ0(j)2J1(j),
with j5aw

2 /2(11aw
2 ) for a planar wiggler,r b is the beam

radius, I 054pe0mc3/e;17 000A is the Alfvén limit cur-
rent, andf is the filling factor describing the transverse ove
lap between the optical and electron pulses.

In the small gain approximationg!1 and for short elec-
tron pulsesLb!Ls , the evolution of the optical pulse is de
scribed by the following model, whose derivation is d
cussed in detail in Ref.@11#:
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]tA5n]xA1h^exp@2 iu#&2~a/2!A, ~1!

]x
2u52$Aexp@ iu#1c.c.%, ~2!

whereh(x)51 for 0,x,1 andh(x)50 elsewhere, andA
is such thatuAu254pNwg0P/Pe , with P the intracavity op-
tical power andPe5mc2g0(I b /e) the electron beam power

Since the electron pulse is much shorter than the slipp
length, the electrons sweep back over the radiation pu
from x50 to x51 during the slippage timeLs /c. The par-
ticle dynamics follows the usual pendulum equation~2! for
the phaseu5(k1kw)z2ckt, where k52p/l52kwg0

2/(1
1aw

2 ) and kw52p/lw . The field amplitude, driven by the
electron bunchinĝexp(2iu)& at the resonant wavelengthl,
decays in the cavity at a ratea/25(12AR)/g, whereR is
the total reflection coefficient of the mirrors. It also drif
from pass to pass due to the cavity detuningn
52(dL)/Lsg, wheredL is the cavity shortening relative to
the vacuum synchronism between the electrons and the
flected optical pulses. A positive cavity shorteningn is nec-
essary to compensate for the lethargy, i.e., the tendenc
the optical pulse to move, in the small signal regime, slow
than in the vacuum, due to the interaction with the electro
@9#.

The evolution of the system can be approximate
described by a reduced number of macroscopic variab
assuming an appropriate truncation in the infinite mom
tum hierarchy @16#. Introducing B5^exp(2iu)&, P
5^pexp(2iu)&, Q5^p&, and S5^p2&, where
p5]xu54pNw(g2g0)/g0 , Eqs. ~1! and ~2! are approxi-
mated by the following reduced model for 0,x,1:

]tA5~n]x2a/2!A1B, ~3!

]xB52 iP, ~4!

]xP52A2 iSB22iQP12iQ2B, ~5!

]xQ52@AB* 1c.c.#, ~6!

]xS522@AP* 1c.c.#. ~7!

Combining Eqs.~3! and ~6!, we write the equation for the
energy balance

]xQ1~]t2n]x!uAu252auAu2. ~8!

We assume an initial cold electron beamQ(0,t)5S(0,t)
50, without prebunchingB(0,t)5P(0,t)50, and a small
uniform seed at the first passA(x,0)5A0 , simulating the
spontaneous emission responsible for start-up. An analys
the prebunching effect is presented in Ref.@17#.

When the cavity is longer than the perfect synchroni
length, i.e., whenn,0, the radiation is retarded from pass
pass and drifts in the positivex direction, leaving the inter-
action region through the boundaryx51. Then the condition
A(0,t)50 is assigned at the same boundaryx50 for the
electronic variables, so that there is no possible gain. C
versely, when the cavity is shorter than perfect synchroni
i.e., whenn.0, the radiation is advanced and drifts towa
the electrons, along the negativex direction, leaving the in-
teraction region through the boundaryx50. Then the condi-
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1138 PRE 59P. CHAIX, N. PIOVELLA, AND G. GREGOIRE
tion A(1,t)50 is assigned at the boundaryx51, whereas
the electronic variables have their boundary conditions ax
50. In this case an absolute instability takes place, where
backward propagation of the radiation provides the neces
feedback for a stationary gain@18#. For a perfectly synchro-
nized cavityn50, a transient, nonexponential growth of th
radiation intensity takes place@15#. Indeed, as we will see
later in more detail, the limitn→0 is singular@the transport
term proportional to]xA in Eq. ~1! disappears atn50]. The
optical field profile at smalln can be analyzed as a bounda
layer @17#.

For n.0, the field drifts out of the region 0,x,1 of
Dx5nt throughx50, decaying at a rate given by the cavi
lossesa: A(x,0,t)5exp(ax/2n)A(0,t1x/n). We define
the dimensionless radiation energy

E~t!5E
2nt

1

dxuA~x,t!u25E
0

1

dxuA~x,t!u2

1nE
0

t

dt8uA~0,t8!u2e2a~t2t8!. ~9!

The efficiency is obtained by integrating Eq.~8! on x and
using Eq.~9!:

h~t![2
Q~1,t!

4pNw
5

1

4pNw
S d

dt
1a D E~t!. ~10!

In the form of Eqs.~3!–~7!, the model has been rescale
so that it depends only on two dimensionless operating
rametersa ~dissipation! andn ~transport!. Both a andn are
inversely proportional to the electron pulse charge and
easily controllable experimentally by varying the cav
length and the outcoupling. Note that the transport also
duces dissipation since it steadily drives a part of the ra
tion out of the interaction regionxP@0,1#. We note that the
use of the reduced model~3!–~7! instead of the multiparticle
equations~1! and ~2! is essentially motivated by compute
time saving and easier analytical treatment. It has b
shown@16# that the reduced model gives the necessary qu
tative behavior to discuss the main physical aspects of
problem.

It is noteworthy that the system is invariant under a glo
phase shift: Indeed, we consider the dynamics of the opt
field envelope and the incoming electrons beam is suppo
to be unbunched@B(x50)50#. It is therefore natural tha
the dynamics does not depend on the choice of the ph
origin. The situation would be different with a prebunch
electron beam@B(x50)Þ0#: Then the relative phase be
tween the optical field and the initial bunching factor wou
play a role. One may go one step further: Our system is
invariant under a time-dependent phase shift. For exam
the imaginary part of the eigenvalue of an eigenmode ha
definite value and represents the phase drift of the opt
field from pass to pass in the optical cavity in the line
regime of Sec. III. However, our system is ‘‘covariant’’ un
der the transformations

A~x,t!→eif~t!A~x,t!, ~11!

B~x,t!→eif~t!B~x,t!, ~12!
e
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P~x,t!→eif~t!P~x,t!, ~13!

Q~x,t!→Q~x,t!, ~14!

S~x,t!→S~x,t!, ~15!

a/2→a/21 idtf~t!. ~16!

The interpretation of this symmetry is as follows. Let
introduce in the optical cavity a device with the only effe
of phase shifting the optical field byvc(n) at each passn.
Then Eq.~3! is modified to

]tA5@n]x2a/21 iv~t!#A1B, ~17!

wherev(t) is proportional tovc(n). Because of the cova
riance under Eqs.~11!–~16!, the solution of the system with
the phase shifting device differs from the unperturbed sys
only by a time-dependent phasee2 if wheredtf5v: The
phase shifting device does not affect the amplitude of
optical field or its phase gradient. In other words, the dyna
ics of the optical field amplitude and phase gradient is
coupled to the dynamics of the global phase. Writi
A(x,t)5r(x,t)eif(x,t), the relevant degrees of freedom
our system are the amplituder and the phase gradient]xf.

III. SMALL SIGNAL REGIME

When the optical signal is small, Eqs.~3!–~7! reduce to
the linear system for 0,x,1,

~]t2n]x1a/2!A5B, ~18!

]B

]x
52 iP, ~19!

]P

]x
52A, ~20!

with the boundary conditionA(1,t)50 for n.0 and
A(0,t)50 for n,0. In this section we will characterize th
spectrum of the linear regime, study the eigenstates of
problem~supermodes@14#!, and give an accurate descriptio
of their behavior as a function of cavity detuningn. In par-
ticular, we will show an othogonality property of the supe
modes, which will be used in Sec. IV to expand the gene
solution of the nonlinear problem in terms of supermode

We setA(x,t)5exp@(m2a/2)t#Am(x) ~and similarly for
B andP), wherem is the complex eigenvalue andAm(x) is
the associated eigenfunction. Amplification occurs on
when 2 Rem.a and the phase of each eigenfunction drifts
a constant rate Imm. Integrating Eqs.~19! and ~20! with
boundary conditionsBm(0)50 andPm(0)50 and substitut-
ing in Eq. ~18!, we obtain

n]xAm1 i E
0

x

dx8~x2x8!Am~x8!5mAm . ~21!

In the casen,0, i.e., for a cavity longer than the synchro
nism length, the boundary condition imposesAm(x)50.
Hence, as we already stated, no amplification can occur
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n,0. We will assumen.0 in the rest of the paper. Th
general solution of Eq.~21! is then

Am~x!5AN@k1
2~k22k3!e2 ik1x1k2

2~k32k1!e2 ik2x

1k3
2~k12k2!e2 ik3x#, ~22!

whereAN is a constant andkj , with j 51,2,3, are the com-
plex roots of the characteristic equation

nk32 imk21150. ~23!

The eigenvaluesm are determined by the boundary conditio
Am(1)50, i.e., by the equation

C~m!5k1
2~k22k3!e2 ik11k2

2~k32k1!e2 ik2

1k3
2~k12k2!e2 ik350. ~24!

The spectrum is the set of zeros of the complex funct
C(m) and is therefore discrete. SinceC(m) is a complicated
oscillating function, the zeros must be found using a num
cal algorithm. A part of the spectrum has already been fo
in Ref. @11# by an iterative method. For eachn, we first
approached numerically the minimum of the real, posit
function uC( iv)u by scanning the real argumentv; this way
we determined the eigenvalues with zero real part at somn,
corresponding to the gain threshold. Then, varyingn from
the threshold, the eigenvaluem was determined by continu
ity, investigating the vicinity in the complex plane. Althoug
this method allowed us to identify the three most unsta
eigenvalues, it has several drawbacks. First, it does not a
one to find the eigenvalues whose real part does not va
for somen. Second, it does not give a global view of th
spectrum in the complexm plane. Third, it is difficult to
follow a given eigenvalue in the smalln region, where the
eigenvalues get very close to each other.

We present here a different method to search the eig
values, which gives a global view of the spectrum at fixedn:
We calculate the complex functionC(m) and plot the con-
tour lines ReC(m)50 and ImC(m)50 in the complexm
plane. The intersections of these lines satisfy Eq.~24! and are
the desired eigenvalues. Once the global view of the sp
trum at the givenn is obtained, it is possible to determin
with any desired accuracy each eigenmode by a local se
of the zero ofuC(m)u. The reason why it is preferable t
consider first separately the real and imaginary parts ofC(m)
is because they change sign around their zeros, in contra
tinction to the amplitudeuC(m)u, which is always positive:
This makes it much easier to find the contour lin
ReC(m)50 and ImC(m)50 than the vanishing minima o
uC(m)u. Figure 1 shows an example of the spectrum in
complex m plane for n50.0205: The solid lines represen
ReC(m)50, the dash-dotted lines ImC(m)50, and the in-
tersections between the two sets of lines are the eigenva
The spectrum is twofold: The first set of eigenvalues h
negative real parts and negative imaginary parts@19#;
we number these eigenvalues with a negative indexn
521,22, . . . . Thesecond set of eigenvalues has posit
imaginary parts and real parts positive only for 0,n,nn ;
we number them with a positive indexn51,2, . . . . Hence
there are only a finite number of unstable eigenvalues fo
n
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given n, but this number increases forn decreasing toward
zero ~small cavity detuning or high current limit!.

Figure 2 shows the behavior, as a function ofn, of the
real and imaginary parts of the eigenvaluesmn for n
51, . . . ,5 ~solid lines! and n521,22,23 ~dashed lines!,

FIG. 1. Eigenvalue chart forn50.0205. Solid line, ReC(m)
50; dash-dotted line, ImC(m)50. The eigenvalues are located
the intersections of the two sets of lines.

FIG. 2. ~a! Real part and~b! imaginary part of the eigenvalue
with a positive index~solid lines! and a negative index~dashed
lines! versus the cavity detuningn.
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scaled with ~a! Re(m)/@(3A3/2)(n/2)2/3# and ~b!
Im(m)/@(3/2)(n/2)2/3#. The eigenmodes with Rem.a/2 will
be amplified in the small signal regime. The linear dynam
is dominated by the fundamental supermoden51, with a net
gain of G5g(2Rem2a). Figure 3 shows the positive va
ues of 2 Rem vs n for n51, . . . ,5: Nogain occurs forn
.n150.13, whereas then52, . . . ,5 eigenvalues have a
positive real part forn,nn , wheren250.02, n350.01, n4
50.005, andn550.003. We observe in Fig. 2 at smalln that
the eigenvalues with n.0 behave like m
53(n/2)2/3exp(ip/6), whereas the eigenvalues withn,0
behave likem523i (n/2)2/3.

The integro-differential operator defined by Eq.~21! is
neither self-adjoint nor normal~it does not commute with its
adjoint! and as a consequence the eigenmodes belongin
different eigenvalues are not orthogonal in the usual ‘‘e
ergy’’ scalar product (f ug)1[*0

1dx f(x)* g(x). It is possible,
however, to show that the supermodesAn satisfy the or-
thogonality relation@20#

~mn2mm!~AnuAm!250 ~25!

for the pseudoscalar product

~ f ug!25E
0

1

dx f~x!g~12x!, ~26!

where f and g are two complex functions defined on th
interval @0,1#. We note that the product~26! is not a scalar
product because (f ug)25(gu f )2 and (f u f )2 is not in general
real and positive. Nevertheless, using the property~25!, one
can extract the componentsan of any combination of super
modes: If

A~x,t!5(
n

an~t!An~x!, ~27!

then the componentsan are

an5
~AnuA!2

~AnuAn!2
. ~28!

FIG. 3. Positive reduced gainG/g52 Re(m) for the first five
supermodes versusn.
s

to
-

We will make the assumption that the set of the supermo
An is complete and write the time-dependent solutions of
nonlinear problem as a combination~27!. Then the relation
~28! will be used to study the time-dependent amplitudes
the solution.

In order to find an approximate solution for the eigenv
ues in the case of small, positiven, we observe that forn
50 the solution is identically zero. Furthermore, Eq.~24! is
verified when two roots of the cubic equation coincide, e
k25k3 , with the solution~22! identically zero. Then we ex-
pect that, in the case of smalln, all the eigenvalues will be
close to the degenerate valuem0 for which two of the three
roots of the cubic equation are equalk25k3 . This occurs for
m0

35 i (27/4)n2, with k25k35(2i /3n)m0 and k152( i /
3n)m0 . Two of the three possible complex values ofm0 ,
m053(n/2)2/3eip/6 and m052 i3(n/2)2/3, respectively, are
observed to be the limit for smalln of the eigenvalues with
positive and negative indices, as can be observed in Fig
Expanding k and m around their degenerate valuesk0
5(2i /3n)m0 and m0 in Eq. ~23!, we obtain k2,3.k0

6(2i /3n)Am0(m2m0)1O(m2m0). Inserting these values
into the expression of the eigenfunction~22! and neglecting
the nondegenerate rootk1 , we obtain

Am~x!.~3AN /n!e2 ik0x$e~2/3n!Am0~m2m0!2e2~2/3n!Am0~m2m0!

1O~A~m2m0!/m0!%.

Then the condition Am(1)50 is fulfilled when
(2/3n)Am0(m2m0)5 ipn, wheren is an integer, i.e., when
m5m029p2n2n2/4m0 , and the eigenfunctions are

An~x!.A0n@e2 ik0xsinnpx1O~n1/3!#. ~29!

Hence the eigenvalues with positive index are

mn53~n/2!2/3@eip/62p2n2~n/2!2/3e2 ip/6#, ~30!

with eigenfunctions

An~x!.~3A3/n2p2n!1/2e2~2/n!1/3~A31 i !~12x!/2sinnpx.
~31!

The eigenvalues with a negative index are

mn523i ~n/2!2/3@11p2n2~n/2!2/3#, ~32!

with eigenfunctions

An~x!5A2ei ~2/n!1/3~12x!sinnpx. ~33!

The normalization constants have been chosen in orde
have

E
0

1

dxuAn~x!u251. ~34!

We observe that the approximated expression~29! satisfies
the orthogonality relation
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~AnuAm!25E
0

1

dx An~12x!Am~x!

5dn,m~21!n~A0n
2 /2!e2 ik0. ~35!

For n sufficiently small, the exponential factor in the expre
sion of the supermodes~31! is large and the function is ap
preciably different from zero only in the trailing edge regio
close tox51, with a width sx;(n/2)1/3 ~boundary layer!.
Hence we may assume sinnpx.np(12x) and

An~x!.~3A3/n!1/2~12x!e2k~12x!, ~36!

wherek5(2/n)1/3(A31 i )/2. The associated expressions f
the bunching and the momentum bunching are, respectiv

Bn~x!.~3A3/n!1/2~n/2!2/3eip/6~12x12/k!e2k~12x!,
~37!

Pn~x!.~3A3/n!1/2~n/2!1/3e5ip/6~12x11/k!e2k~12x!.
~38!

We observe that in the limit of very smalln and using the
normalization~34!, the supermodes are independent ofn.
The maximum of the intensity is located atx512(2/
A3)(n/2)1/3, with uAumax

2 5(2A3/e2)(2/n)1/3.
Figures 4 and 5 show the profiles of the supermodesuAnu

for n51,3,5 ~solid line!, compared with the approximate
expressions~31! ~dashed line! and ~36! ~dotted line! for n
52.531023 ~Fig. 4! and n52.531024 ~Fig. 5!, together
with their phase derivativef8. The dashed line represen
the approximated valuef85(1/2)(2/n)1/3, derived from Eq.
~31!. Naturally, we observe that the expression~36!, which is
independent ofn, approximates better the exact express
for smallern andn.

IV. THIRD-ORDER NONLINEAR THEORY
AND SINGLE-SUPERMODE OPERATION

We have determined the eigenmodes of the linear sys
~supermodes! and the complex internal product~25! for
which the eigenmodes are orthogonal. In this section we
the supermodes to describe saturation by expanding in te
of supermodes the solution of an approximated model at
third order in the field amplitude. The determination of t
evolution equations for the amplitudesan(t) of the expan-
sion ~27! up to third order will allow us to characterize th
weakly nonlinear regime, testing the domain of validity
the model. After deriving the exact equations for the coup
supermode amplitudes, we will focus our analysis on
single-supermode approximation, comparing the analyt
result for a1 with the value calculated from the numeric
solution of Eqs.~3!–~7!.

The reduced model of Eqs.~3!–~7! can be approximated
in the weakly nonlinear regime retaining the nonlinear ter
up to the third order in the field amplitudeA:

~]t2n]x1a/2!A5B~1!2E
0

x

dx8~x2x8!@S~2!B~1!

12Q~2!P~1!#, ~39!
-

ly,

n

m

se
s

e

d
e
al

s

Q~2!52E
0

x

dx8@A* B~1!1c.c.#5B~1!P~1!* 1c.c., ~40!

S~2!522E
0

x

dx8@A* P~1!1c.c.#52uP~1!u2, ~41!

whereB(1) andP(1) are the solutions of the linear equation
~19! and ~20!. Using Eqs.~27! and ~21! in Eq. ~39!, we
obtain

(
n

ȧnAn5(
n

~mn2a/2!anAn2 (
m,k,l

Lmklamak* al ,

~42!

where the overdot stands for a derivative with respect tot,

Lmkl52E
0

x

dx8~x2x8!$PmPk* Bl1PmBk* Pl1BmPk* Pl%,

~43!

and we have setB(1)5(nanBn andP(1)5(nanPn . We ob-
serve thatLmkl5L lkm . Using the orthogonality relation~25!
in Eq. ~42!, we obtain

ȧn5~mn2a/2!an2 (
m,k,l

bmkl
n amak* al , ~44!

where

bmkl
n 5

~AnuLmkl!2

~AnuAn!2
52 i

~BnuLmkl9 !2

~AnuAn!2
. ~45!

In the expression~45! we have integrated twice per part u
ing An52 iBn9 . Equation~44! is an exact result of the third
order theory and rules the temporal evolution of all the
permode amplitudesan(t).

When the real part of the eigenvaluen51 is close to the
loss a/2, the first supermode is close to the gain thresh
and the other supermodes are strongly damped. If we s
pose that the component of the fundamental supermode
mains always much larger than the components of the ot
supermodes,uanu!ua1u!1 for n>2, then

ȧn5~mn2a/2!an2bnua1u2a1 , ~46!

where bn5b111
n . Equation ~46! for n51 is the usual

Landau-Ginzburg equation@Eq. ~42! of Ref. @11## for the
single-supermode regime, generalized for all the second
supermodes (n>2) driven by the fundamental supermod
n51. Equation~46! has been obtained from the exact so
tion using the orthogonality relation~25!. Conversely, Eq.
~42! of Ref. @11# was derived assuming the single-supermo
approximation before extracting the fundamental compon
and the saturation coefficient was calculated using the en
scalar product for which the supermodes are not orthogo
as b15(A1uL111)15*0

1dx A1* (x)L111(x). Hence it was ac-
tually not a true single-supermode regime, but, as we will
below, a limit regime for cavity detuning close to zer
where all the supermodes tend to the same expression~36!
independent ofn. This is referred to as the superradiant r
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FIG. 4. Left column: supermodes profilesuAn(x)u ~solid line! for n51,3,5 andn52.531023; dashed lines, Eq.~31!; dotted lines, Eq.
~36!. Right column: phase derivativef8(x); dashed lines,f85(1/2)(2/n)1/3.
yn

s

de
gime, already demonstrated analytically in a perfectly s
chronized, lossless FEL oscillator@15#.

In the steady state, the amplitude of the fundamental
permode can be writtena15r1sexp(iv1st). Then Eq.~46!
gives

r1s5Ag1/2 Reb1, ~47!
-

u-

v1s5 Im~m12b1r1s
2 !, ~48!

where

gn52 Remn2a ~49!

is the net gain of thenth supermode. In the single-supermo
regime, the steady-state efficiency is therefore, from Eqs.~9!
and ~10!,
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FIG. 5. Same as Fig. 4, but forn52.531024.
t

d
a

g
d

en
h5
r1s

2

4pNw
@a1nuA1~0!u2#, ~50!

where the second term in the square brackets is due to
radiation freely propagating in the region2nt,x,0. Equa-
tion ~46! for n>2 determines the amplitudes of the secon
ary supermodes driven by the fundamental in the station
regime. Definingan5ānsexp(iv1st) for n>2, we obtain
from Eq. ~46!
he

-
ry

āns5
r1s

3 bn

mn2 iv1s2a/2
. ~51!

Figures 6–8 showuanu vs n for the first supermodes fora
50.18,a50.16, anda50.05, respectively, calculated usin
Eq. ~28!, i.e., by projecting the numerical solution obtaine
by integration of Eqs.~3!–~7! on the supermodeAn . In Figs.
6 and 7 the solid lines represent the analytical values giv
by Eqs. ~47! and ~51!. We first note the agreement~and
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therefore cross validation! between numerical simulation an
third-order theory, where the conditionuanu!ua1u!1 for n
>2 is satisfied. We furthermore observe that the amplitu
of the fundamental is much larger than the amplitudes of
other modes, so the single-supermode approximation
good. On the contrary, in Figure 8 at smalln, the first two
supermodes have comparable amplitudes and the sin
supermode approximation is irrelevant. Figure 9 shows
scaled efficiency 4pNwh vs n for a50.18 anda50.16 as
obtained from the numerical solution of Eqs.~3!–~7! ~circles
and squares!, compared with the analytical result of Eq.~50!
~solid lines!.

V. SUPERRADIANT REGIME

We have seen that the single-supermode approxima
fails nearn50 anda50, where the amplitudesan are of the
same order of magnitude and tend toward a common va
This is consistent with our results of Sec. III, where we ha
shown that the eigenmodes for smalln become degenerat
and tend to a common expression given by Eq.~36!, inde-
pendent ofn. In this limit case, we can use the explicit e
pressions of the eigenmodes to obtain again an ana

FIG. 6. uanu vs n for the supermodesn51 and n52 for a
50.18; solid lines, analytical values; circles and squares, Eq.~28!,
whereA(x,t) is the numerical solution.

FIG. 7. Same as Fig. 6, but fora50.16.
e
e
is

le-
e

n

e.
e

tic

evaluation of the saturated intensity. Instead of the expan
Eq. ~27!, which is now useless because it would require
large number of components, we assumeA(x,t)
.aS(t)AS(x), where AS(x) is the approximate solution
~36!, which is the common approximate shape of all t
nearly degenerate supermodes. Then Eq.~44! reduces to the
simpler equation

ȧS5~mS2a/2!aS2bSuaSu2aS , ~52!

wheremS53(n/2)2/3eip/6,

bS5E
0

1

dx AS~x!* LS~x!5 i E
0

1

dx BS~x!LS9~x!

2@PS* ~1!LS~1!1 iBS* ~1!LS8~1!#, ~53!

andLS has the same form as Eq.~43!, with BS andPS given
by Eqs.~37! and ~38!. In order to evaluate the limit of the
saturation coefficientbS for small n, it is convenient to in-

FIG. 8. uanu vs n for the supermodesn51, n52, andn53 for
a50.05, calculated using Eq.~28!, whereA(x,t) is the numerical
solution.

FIG. 9. Scaled efficiency 4pNwh vs n for a50.18 anda
50.16. Solid lines, analytical solution, Eq.~50!.
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troduce the new integration variabley5(2/n)1/3(12x) and
extend the upper integration limit toy5`. Then Eqs.~36!–
~38! can be written as

AS5~n/2!21/6Ã~y!, ~54!

BS5~n/2!1/2B̃~y!, ~55!

PS5~n/2!1/6P̃~y!, ~56!

where

Ã~y!5~3A3/2!1/2ye2cy, ~57!

B̃~y!5~3A3/2!1/2~21cy!e2cy, ~58!

P̃~y!5~3A3/2!1/2~11cy!e2ip/3e2cy, ~59!

andc5eip/6. We observe thatÃ, B̃, andP̃ are independen
of n. Using Eqs.~55!–~59! in Eq. ~53!, we obtain

bS5~n/2!5/3H E
0

`

dy K~y!@ iB̃* ~y!2P* ~0!y2 iB* ~0!#J
5~n/2!5/3@4.092 i4.59#, ~60!

where

K~y!52@2uP̃~y!u2B̃~y!1 P̃2~y!B̃* ~y!# ~61!

and the integral in Eq.~60! has been evaluated numericall
Then the steady-state efficiency for small cavity detuning

h5
a

4pNw

2 RemS2a

2 RebS
.

a

4pNw

3A3~n/2!2/32a

8~n/2!5/3
.

~62!

The maximum efficiencyhmax.1.43/4pNwAa occurs at
nopt52(5a/9A3)3/2;0.363a3/2, with a peak poweruAumax

2

51.2/a2 and a widthsx;0.56Aa. Hence the optical pulse
is Ns5Nwsx50.56NwAa optical wavelengths long, the ef
ficiency is h51/5pNs , and the peak power isPs

51.2(e2c/pe0r b
2) f @awF/(11aw

2 )#2Q 2(Eb /mc2)2, where
Q51/ga is the quality factor of the cavity andEb
5Pe(Lb /c) is the beam energy. The emission
superradiant, with the peak power proportional to the squa
of the beam current and the width inversely proportional
the square root of the beam current. Following the notat
of Ref. @8# and introducing the high gain FEL parameter
r5g0

1/3/4pNw and the cooperation lengthLc5l/4pr, the
optimum efficiency and the peak power can be written
spectively as h51.43rAQLb /Lc and Ps
51.2rPe(QLb /Lc)

2. These expressions relate the superra
ant emission in high gain, single-pass FEL amplifiers to
superradiant emission in short pulse FEL oscillators@2,21#.
Actually, in the first case the superradiant analysis has
same expressions for the efficiency and peak power, w
Q51. If we image the emission in the perfectly tuned cav
as produced by a train of many electron pulses interac
with the radiation in the cavity forn;Q round-trips, then
s

o
n

-

i-
e

e
th

g

the emission is equivalent to the single-pass high gain in
action of the radiation with a beam of ‘‘effective’’ lengt
QLb .

In Fig. 10 we compare the efficiency fora50.05 vsn as
obtained from the numerical integration of Eqs.~3!–~7!, with
the expression~62! obtained under the assumption that f
small cavity detuningn all the eigenmodes are equal. F
this value ofa, the amplitudes of the first two supermod
are almost equal, as may be seen in Fig. 8. The agreem
with the superradiant limit is good enough near the peak
small n, considering that there are only two eigenvalues
most equal. Indeed we see from Eq.~30! that the eigenvalues
mn become equal forn!2/(np)3, that is, for very smalln
whenn>3. Unfortunately, decreasinga andn, the station-
ary superradiant solution is in general unstable~see Sec. VII!
and the superradiant limit can be reached only in an aver
sense or in a narrow region nearn50 anda50.

VI. NONLINEAR MODES

An important step in the study of a dynamical system
the determination of its stationary regimes. Time-depend
numerical simulations@11# have already shown that for cav
ity lossesa and detuningn in region 0 of the phase diagram
Fig. 11, the system converges to a stable equilibrium. T
region is limited on one side by the lasing threshold that
already been analyzed and on the other side by a limit cy
instability threshold. However, the time-dependent numer
simulations do not indicate what happens to the equilibri
at the limit cycle instability threshold or whether or not oth
stationary regimes exist.

In our case, it can be shown easily that the solutions
Eqs. ~3!–~7! with constant amplitude are necessarily of t
form

A~x,t!5eivtA~x!, ~63!

wherev is some constant phase drift. Inserting Eq.~63! into
Eqs. ~3!–~7! with the appropriate boundary conditions, on
gets the equations for the nonlinear modes

FIG. 10. Scaled efficiency 4pNwh vs n for a50.05 from the
numerical solution~circles! and from the analytical solution, Eq
~62! ~solid line!.
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nA85~ iv1a/2!A2B, ~64!

B852 iP, ~65!

P852A2 iSB22iQP12iQ2B, ~66!

Q8522 Re~AB* !, ~67!

S8524 Re~AP* !, ~68!

x50→B5P5Q5S50, ~69!

x51→A50, ~70!

where the prime represents the derivation with respect tx.
Due to the global phase invariance, this mixed bound
value problem is overdetermined and has no solution in g
eral, except for specificv values. Thesev values play the
same role in our nonlinear stationary problem as the eig
values in the linear evolution problem. One way of findi
~numerically! the v ’s and the corresponding nonlinea
modes is as follows. For every value of the phase driftv and
for every A0 , one can solve the differential system Eq
~64!–~68!, from x50 to x51, with the initial conditions~69!
and with a condition at the optical pulse headA(0)5A0 .
The solution is an actual nonlinear mode if it also satisfi
the boundary condition at the optical pulse tail Eq.~70!. Now
the valueA(1) at the tail is a function of the phase driftv
and the initial valueA0 : Let us noteA(1)5A1(v,A0). The
search for nonlinear modes finally reduces to solving
nonlinear equation

A1~v,A0!50. ~71!

It seems hopeless to obtain closed form solutions of
problem. However, it can be handled numerically in the f
lowing way. First, due to the global phase invariance, we
restrict ourselves toA0 real. Then the complex quantit
A1(v,A0) can be calculated on the (v,A0) plane by numeri-

FIG. 11. Phase diagram giving the asymptotic behavior a
function of the operating parametersa and n. Region 0, stable
stationary regime; region 1, limit cycle. For smalla andn see Fig.
15.
y
n-

n-

.

s

e

is
-
n

cal integration of Eqs.~64!–~68!. This allows one to find the
level lines ReA150 and ImA150. The nonlinear modes ar
at the intersections of these two sets of lines.

Two examples are given in Figs. 12 and 13. Although
n5a50.022 the system does not evolve to an equilibriu
but to a limit cycle~see Fig. 11!, we find in the top part of
Fig. 12 that an equilibrium still exists: Its phase drifts wi
v'0.15 and its shape is given in the bottom part of Fig. 1
This shape allows an exact compensation between leth
and detuning, but is very different from the shape of t
fundamental mode at the samen50.022: The optical field
has a maximum close to the head, so the electrons stro
bunch in the first part of the wiggler.

In the second example, forn5a50.015~see Fig. 13!, we
find two coexisting stationary solutions. Both their phas
drift with v'0.15. Although their shapes and amplitudes a
quite different, they both realize an exact compensation
tween lethargy and detuning.

We give now a general picture of what is observed mo
ing from largea andn down to the more nonlinear regime
of smallera and n. For largea and n, the only stationary
regime is the basic stateA50 and it is stable: Large dissi
pation and fast transport out of the interaction region prev
laser amplification. The first nontrivial nonlinear mod
which we call the fundamental nonlinear mode, appe
when the basic stateA50 loses its stability. This happens a
the thresholda52 Rem1(n), wherem1(n) is the eigenvalue

a

FIG. 12. Nonlinear mode forn5a50.022. Top: map
A1(A0 ,v); solid lines, Re(A1)50; dash-dotted lines, Im(A1)50.
The amplitudeA0 at x50 and the phase driftv of the nonlinear
mode are given by the intersection of solid and dash-dotted lin
Bottom: shape of the nonlinear mode.
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with the largest real part of the linearized problem. At th
bifurcation point,A050 andv5 Im m1(n). As long as one
remains close to threshold, the nonlinear mode rema
stable, small, and nearly proportional to the fundamental
ear mode, as shown by the third-order study of the wea
nonlinear regime. Further from threshold, the nonline
mode becomes larger, changes its shape, and event
loses its stability~see Sec. VII!, but continues to exist a
observed in Fig. 12. At threshold for the second linear mo
i.e., for a52 Rem2(n), wherem2(n) is the eigenvalue with
second larger real part, the basic stateA50 become again
unstable in a second direction, corresponding to the sec
linear mode. A new bifurcation occurs and a new nontriv
nonlinear mode emerges, withA050 andv5 Im m2(n), as
shown by Fig. 13~along the bisector of the phase diagra
the threshold for the second linear mode occurs ata5n
50.0157). This nonlinear mode is itself unstable and w
typically never be observed. In a similar way, a new bifu
cation occurs at every thresholda52 Remn(n), leading to
the emergence of a new unstable nonlinear mode close to
basic stateA050 andv5Immn and associated with thenth
linear mode. Finally, at very smalla andn, the system has
an increasing number of~unstable! stationary regimes.

VII. LIMIT CYCLE INSTABILITY

We consider now the stability of the fundamental nonl
ear mode. We already know from experiments and previ
numerical simulations@11# that for operating parametersn
and a decreasing away from the lasing threshold, one

FIG. 13. Two coexisting nonlinear modes forn5a50.015.
Top: mapA1(A0 ,v). Bottom: shapes of the nonlinear modes.
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serves successively the following behaviors.
The development of the limit cycle instability is exemp

fied in Fig. 14, which shows the evolution of the optical fie
amplitude profileuA(x)u calculated from Eqs.~3!–~7! and
the trajectory of the system in the phase space of the am
tudes of the first two linear modes (r1 and ā2 ; see below!.
Close to the lasing threshold, the energy steadily increa
up to saturation: When the optical field gets large enou
the electron beam cannot bunch proportionally any long
Since the bunching is a cumulative effect along the wigg
this saturation appears first at the wiggler exit~i.e., at the tail
of the optical pulsex'1). As a consequence, the gain dro
at the tail of the pulse and the pulse peak slightly slips ah
~i.e., the lethargy drops!. This slight forward deformation
tends to increase the electron bunching and therefore c
pensates for the gain drop, thus leading to a steady satur
regime. See the right-hand side of Fig. 14~a!.

Further from the lasing threshold, the system reac
saturation after damped oscillations: Just like before, sat
tion starts at the pulse tail (x'1). However, due to the
smaller cavity detuningn, the transport towards the puls
head (x'0) of this nonlinear effect is slower and the gain
the tail drops under the cavity losses before the pulse has
time to slip ahead to compensate. Therefore, the optical fi
at the tail decreases. This perturbation is finally transpor
to the pulse head by the cavity detuning, leading to a sli
increase of the bunching and the gain at the tail. The proc
is then repeated, producing damped oscillations propaga
from the tail to the head of the optical pulse. See the rig
hand side of Fig. 14~b!.

Still further from the lasing threshold, the system nev
reaches a stationary regime and evolves towards a l
cycle: Again, the gain drops first at the pulse tail, while t
optical field still grows at the head, reaches a high level, a
is finally evacuated forward by the cavity detuning, thus
lowing a new start-up of the gain at the tail. The process
iterated, but the losses are now too low and the transport
slow to damp the oscillations and a limit cycle instead o
stationary saturated regime occurs. See the right-hand sid
Fig. 14~c!.

In order to understand these different behaviors, toge
with the fact that the fundamental nonlinear mode contin
to exist, as shown by the analysis of Sec. VI, we reconsi
the third-order two-mode weakly nonlinear approximatio
introduced in Ref.@11#. Keeping the leading nonlinear term
for the first two modes in the approximationua2u!ua1u!1,
Eqs.~27! and ~46! reduce to

A~x,t!5a1~t!A1~x!1a2~t!A2~x!, ~72!

ȧ15~m12a/2!a12b1ua1u2a1 , ~73!

ȧ25~m22a/2!a22b2ua1u2a1 . ~74!

The solution of Eq.~73! is ~up to a constant phase!

a15r1eif1, ~75!

r1~t!5
r1s

A11Gexp~2g1t!
, ~76!
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FIG. 14. Development of the limit cycle instability. On the right is the evolution of the optical field amplitude profileuA(x)u calculated

from Eqs.~3!–~7!. On the left is the trajectory in the phase space ofr15ua1u and ā25a2exp(2if1). ~a! Weakly nonlinear master-slav
regime.~b! Damped oscillations to stable stationary regime.~c! Unstable equilibrium and limit cycle.
s,
an of
ḟ1[v1~t!5 Im m12
Im b1r1s

2

A11Gexp~2g1t!
, ~77!

where G5(r1s
2 2r10

2 )/r10
2 , r105r1(0), and thesaturated

amplituder1s , the phase driftv1s , and the net gain of the
first two supermodesg1,2 are given by Eqs.~47!–~49!. Since
a global phase of the system in irrelevant to the dynamic
is useful to factor out the phase of the fundamental mode
write
it
d

a25ā2eif1 ~78!

so that Eq.~74! becomes

aG 25~m22 iv12a/2!ā22b2r1
3 . ~79!

If the second mode is strongly damped while the net gain
the fundamental is positive (0,g1!2g2), we may assume
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the adiabatic approximation, which neglects the time deri
tive in Eq.~79!, so that the second mode~slave! is driven by
the fundamental~master!

ā25
b2r1

3

m22 iv12a/2
, ~80!

which at saturation goes toā2s , given by Eq.~51!. We ob-
serve, from Eqs.~76! and~80!, a monotonic evolution of the
system from low signal up to saturation. This behavior
observed on the left-hand side of Fig. 14~a!, showing the
trajectory of the system fora50.12 andn50.013, in the
three-dimensional phase space of the amplitudesr1 , Reā2 ,
and Imā2 (ā2 is complex and represents two degrees
freedom!. The amplitudesa1 and a2 are calculated by Eq
~28!. The net gains of the first two modes areg1'0.013 and
g2'20.095, respectively.

If the net gain of the second mode is still negative but
much larger in amplitude than the net gain of the fundam
tal mode (g2,0,g1), the evolution ofā2 is no longer adia-
batic. However, once the fundamental component
reached its stationary value, theā2 spirals down to the equi
librium ā2s : We therefore observe damped oscillations b
fore saturation. Indeed, a simple linear stability analysis
the system of equations~73! and~74! around the equilibrium
r15r1s and ā25ā2s shows that it is stable as long asg2
,0. This behavior is observed on the left-hand side of F
14~b! for a50.07 andn50.013. In this case the net gains
the first two modes areg1'0.063 andg2'20.045, respec-
tively.

Finally, if the net gain of the second mode is not negat
(0,g2,g1), the equilibrium ā2s is now the center of an
unstable spiral. The asymptotic behavior of the system t
depends on the nonlinearities in the vicinity of the equil
rium. Numerical simulations show that these nonlinearit
stabilize the system, so we observe a small limit cy
around the unstable equilibrium. This description of the d
namics within the third-order two-mode approximation
rather crude, but it shows that the fundamental nonlin
mode becomes unstable via a supercritical Hopf bifurca
when pushing the operating parametersa andn in the region
where secondary linear modes can be excited. Note tha
the nonlinear regime, the actual gain of the second mod
affected by the amplitude of the fundamental, so the lim
cycle instability threshold is not accurately given byg250
~i.e., a52 Rem2), but is already reached forg2,0, so the
domain of stability is actually smaller than expected fro
simple third-order two-mode approximation. This can
seen in Fig. 14~c! for a50.04 andn50.013, where the ne
gains of the first two modes areg1'0.093 and g2'
20.0015, respectively.

VIII. ROUTE TO CHAOS

The stability of the limit cycles themselves and the d
namical behavior for parametersa andn going very close to
zero have already been considered in@10,11# within different
approaches. Both period doubling and type-I intermitten
@10# were observed in numerical simulations. We come ag
-
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to this point to show that other types of bifurcations al
occur ~basin boundary crossing, type-III intermittency!, that
the phase diagram, which is the separation of the param
plane (a,n) into regions of definite asymptotic behavior,
much more intricate than previously stated, and finally t
the dynamics can be described, to a large extent, by the m
iterations of a one-dimensional map. This description
terms of the iterations of a one-dimensional map is import
because it allows us to identify the nature of the obser
bifurcations in an easier and safer way. It may also be us
to devise future control strategies.

The results presented in this section are obtained by
merical integration of the model~3!–~7! and projection in the
three-dimensional (ā2 ,r1) phase space. They are summ
rized in Fig. 15, which shows the asymptotic behavior of t
FEL depending on the reduced operating parametersa and
n, starting from a low signal initial conditionA'0.

For decreasinga and n, one first recognizes a standa
period doubling cascade~regions 1, 2, and 4! leading to high
periodicity and chaotic regimes~region N). The essential
features of this cascade of bifurcations are captured by
discrete dynamics of the successive maxima of the sig
given to a good approximation by the iterations of a on
dimensional return map as shown in Fig. 16~a! for param-
eters given by the pointa of Fig. 15. We observe that th
attractor has the simple structure of a Ro¨ssler band@22#, with
a ‘‘one-bump’’ return map.

The phase diagram also presents other kinds of bifu
tions, which can be also analyzed by plotting first retu
maps of the successive maxima of the amplituder1 of the
fundamental mode. For example, pointb in Fig. 15 is close
to a bifurcation line between period-1 limit cycles and cha
This is a subcritical period doubling bifurcation where t
slope of the return map goes from slightly larger than21

FIG. 15. Phase diagram giving the asymptotic behavior a
function of the operating parametersa andn in the smalla andn
region. Regions 1, limit cycle; regions 2, period-2 limit cycle; r
gions 4, period-4 limit cycle; regionsN: chaos or period-larger-
than-4 limit cycle; see the text and Fig. 16 for pointsa (n
50.013, a50.0145), b (n50.007, a50.0145), c (n50.005, a
50.027), d (n50.012, a50.0067), and e (n50.011, a
50.0026).
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FIG. 16. Dynamics in the (r1 ,ā2) amplitudes phase space and the corresponding return maps giving each maximum of the fund
amplituder1 as a function of the previous one at~a! the chaotic pointa of Fig. 15, close to the period doubling bifurcation cascade;~b! the
chaotic pointb of Fig. 15, close to the type-III intermittency subcritical bifurcation; and~c! the periodic pointc of Fig. 15, where two
period-1 limit cycles coexist, each one with its own basin of attraction.
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the
~stable limit cycle of the system corresponding to a sta
fixed point of the map! to slightly smaller than21 ~weakly
unstable limit cycle and fixed point!. This leads to type-III
intermittency@23,24#: Nearly periodic episodes~close to the
weakly unstable limit cycle! are separated by chaotic burs
~over the whole attractor!. Each chaotic burst eventuall
brings the system back to the weakly unstable limit cyc
ready for a new nearly periodic episode. See Fig. 16~b!.
e

,

Another type of bifurcation of the system occurs in t
region of pointc of Fig. 15, where two period-1 limit cycles
coexist, each one with its own basin of attraction. Figu
16~c! shows, on the left-hand side, the two stable limit cyc
corresponding to two stable fixed points of the return m
and, on the right-hand side, the return map including
transients, the unstable fixed points~slope larger than 1!, and
the stable fixed points~positive slope smaller than 1!. At
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point c and on the corresponding bifurcation line, the front
between the basins of attraction of the two cycles swe
over the low signal initial conditionA'0, which then
changes from one basin to the other, thus leading to
cycle or the other. Note that in this region, slow changes
the operating parameters during the macropulse would
to hysteresis phenomena. In a similar way, the bifurcat
occurring at pointd is a subcritical destabilization of
period-2 limit cycle, leading to a type-III intermittent chao
with period-2 nearly periodic episodes separated by cha
bursts, and the bifurcation occurring at pointe is a basin
boundary crossing with a coexistence of a period-1 lim
cycle and a period-2 limit cycle.

IX. CONCLUSIONS

In this paper we reconsidered the linear, weakly non
ear, and nonlinear dynamics of short pulse free electron l
oscillators from a dynamical system point of view. The s
perradiant behavior appears in the limit of very small cav
i,
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detuningn, where all the supermodes converge and beco
nearly degenerate. In this sense, the superradiant regim
oscillators occurs when many supermodes of similar pro
contribute to the total radiation field. In contrast, the sing
supermode regime occurs for relatively largea, close to the
fundamental supermode thresholdg150. We first showed
that at smalla andn, i.e., small cavity losses and detunin
or high current, the system had several possible station
solutions, but all unstable due to the ‘‘emancipation’’ of se
ondary modes. We found that the phase diagram~Figs. 11
and 15! of the system is quite intricated, making a fine co
trol of the different dynamical behaviors in these devic
difficult in practice. However, we also showed that the ana
sis of the transitions between the various possible unste
regimes was made easier by the fact that the attractor of
system remains low dimensional, so that the dynamics on
attractor can be understood, to a large extent, in terms
iterations of one-dimensional return maps. This might help
the future for the design of control or stabilization schem
cl.
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