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Up-Frequency Canversien in a Takeo-Resonant-Wave High-Gain
Free-Electron-Laser Amplifier
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(Received 15 July 1993)

A free-electron laser is able to resonate at two different frequencies, both in free space and
in a waveguide. The two waves have positive and negative slippage. We describe the nonlinear
interaction between the two waves by a set of partial difFerential equations which in free space do
not require the slowly varying envelope approximation (SVEA). In a waveguide a less restrictive
SVEA is applied to each wave. By injecting a small signal at the low frequency, a strong signal and
bunching are produced at the high frequency. This effect suggests a new method of generating short
wavelength radiation.

PACS numbers: 41.60.Cr, 42.60.Jf

The possibility of controlling the slippage between the
radiation and the electron beam in a fr""-electron laser
(FEL) by means of a waveguide with narrowly spaced
parallel plates has been first described in Refs. [1,2] and

[3,4], and has stimulated in the past few years consider-
able theoretical [5,6] and experimental [7—10] work. The
waveguide slippage control is particularly important in
the generation of far-infrared and microwave radiation
by means of short electron pulses, of the order of pi-
coseconds, as provided by rf linear accelerators.

Another important feature of the use of a waveguide is
the existence of two difFerent resonant frequencies [4] at
which the FEL can operate, both lower than the usual
free-space resonant frequency and with positive slippage
for the higher frequency and negative for the lower one.
Previous papers [5,6,11]have studied the waveguide oper-
ation in the low-gain regime. Sternbach and Ghalila [12]
have suggested that, in free space, the incoherent, low-

frequency radiation could lower the length of the undu-
lator necessary to achieve large values of high-frequency
power.

In this Letter, we extend the analysis of waveguide op-
eration to the high-gain regime and, above all, we study
the nonlinear space and time interaction between the two
resonant waves, which was not taken into account in Ref.
[12]. The novel and unexpected result that comes out
from our analysis is that, by injecting a signal at the
lower frequency, without any input signal at the upper
frequency, a strong signal and strong electron bunching
at the higher frequency are obtained, suggesting a new
and powerful method for the generation of short wave-

length radiation.
The dispersion relation for oK-axis propagation is given

by u = cv k2+ k&~, where k (k~) is the longitudinal
(transverse) radiation wave number. In particular, for
the TEeq mode in a rectangular waveguide, k~ = vr/5,
where b is the smaller transverse dimension of the wave-
guide. The resonance condition on the axial velocity

v~~
——cP of the electron beam requires that the electron

travels a wiggler period A = 2n/k in the same time
that the wave travels a distance A~ + A (A = 2m/k), so

that A~/v~~ = (A+ A~)/v~h, where v~h = ~/k is the ra-
diation phase velocity. The previous equality can also be
written in the form cu = cP(k + k). By equating this
last formula to the dispersion relation, one obtains, for

k~ ( ppIk [where p~~
= (1 —p ) ~ ], the expression

for the two resonant frequencies [4,5],

s
1 6P/l —X1+P .

with wave numbers kq, z ——(u, /c) [P 6 v'1 —X]/(1+ P),
where cu, = cPk /(1 —P) is the fr="-space resonant
frequency and X = (k~/Pp~~k ) is the waveguide pa-
rameter [1] 0 ( X ( 1. Furthermore, the group ve-

locities relative to the resonant frequencies are vs', 2 ——

c (kq z/~q, z), so that the slippage lengths f,q, 2 between
the electron beam and the two waves after a wiggler
length L~ = A~X~ are E,z, 2 = (vs' g

—v~~)L~/vI
kv'1 —X(2mc/uq, z)N~ We also in. troduce the frequency
ratio parameter n = vq/cuz —— (1 + Pv'1 —X)/(1—
Pgl —X), with 1 ( n ( (1 + P)/(1 —P); for high rela-
tivistic electron beam (p~~ && 1), uy n~, /(I + n) and
E,g

———l,2/n = A,N„(n —1)/n, with A, = 2m c/u), .
The FEL resonance condition is obviously satisfied

at two difFerent frequencies also without waveguide [12]

(X = 0); their expressions are ~~ = ~, 2ck
p~~

and(0) 2

cuz(
) ——ck~P/(1+ P) ck~/2. The wave at uz is coun-

terpropagating with respect to the electron beam and,

since the ratio n = uI /~2 4p~~, the frequencies co~
(o)

and uz ~ are widely difFerent. In the waveguide, the upper
frequency uq always corresponds to a forward wave with
positive slippage. The lower frequency cuq, on the other
hand, corresponds to a backward wave when X (

p~~
(or

5 & A /2), and to a forward wave with negative slippage,
in the opposite condition. For X = 1 ("zero-slippage con-
dition") ~q = ~q ——cu, /(1+ P); i.e., only one resonant fre-

quency exists, which is approximately half the frequency
cu, in free space and corresponds to a wave whose group
velocity is equal to the electron beam velocity.

A linear analysis of the spectrum in the low-gain

regime [5,6] shows that the gain has two maxima around
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zero-slip condition X = 1, the two maxima of the gain
curve move toward one another, until they give rise to a
single broad curve. When X 1, the gain bandwidth is
approximately given by bu/u ~ 24~supp [see Fig. 1(d)].
By requiring that the frequency separation between the
two maxima be larger than the gain bandwidth, we con-
clude that they are well separated when a —1 )) ~pp, or
in terms of the waveguide parameter, when 1 —X && po.

The existence of two resonant frequencies raises the
question of whether coupling can exist between the two
waves as a result of the nonlinear interaction. In order
to study this nonlinear interaction in the limit a —1 ))
~pp, i.e. , when interference effects between the two waves
can be ignored, we derived the following set of partial
difFerential equations:

Bz8z~ ———(fA1e' "+ Aze' "+ c.c.), (2)z'

—+s~ A~ =f(e-' '), (3)
W

—+s2 Ag=a(e "), (4)
Z Zg

where j = 1, . . . , N and (( )) = N 1P. ,( .).
deriving these equations, we assumed a transverse mode
TEpq inside a rectangular waveguide, whose short (long)
dimension is b (a), parallel (orthogonal) to the wiggler
field B~ = —yB~ sin(k~z), with the following vector po-
tential:

A(x, t) = —(i/v 2)x sin(key)
2

x ) (cEII, )/~ )e'@ —c.c.
m=1

where g~ = k~z —u~t and u~ (k ) are the resonant
frequencies (wave numbers) defined in (1), with m = 1,2;

EII& (z, t) are slowly varying functions of their arguments
and 82 = k z+ 1ttz is the electron phase obtained as
a combination of the wiggler and the lower frequency
mode phases. We have introduced dimensionless vari-
ables as follows: z = z/Es2, scaled coordinate along
the wiggler, with Es2 = (A /4zIp2)(l + n), gain length;
zq ——2kzp2(z —v~~t), scaled time in the frame moving
with the average electron velocity v~~, pz = p(uz)

ppFz (1+re) ~ and f = F~/Fz, with Fq, 2 = F((q,z) and

(I = rI(z = a(p/(1+ a); A~ = Ez& /Vt'4zm, c Ppn, Pz,
(m) 2

dimensionless wave amplitude; e = v~q/v~2, ratio be-
tween the group velocities of the two waves, that can
be set equal to one for highly relativistic electrons; s~ ——

(n —1)/so. and sz = 1 —a, slippage coefficients. Equa-
tions (2)—(4) are derived neglecting space-charge efFects,
in the Compton limit ~pi

—(pp) ~
&( (7p). Equations (3)

and (4) describe the evolution of the two resonant waves
separately and have been derived assuming the resonant
frequency ratio a to be a rational number, mq/mz. With
this assumption, a temporal average over the interval
2mm2/~z removes the fast-oscillating terms proportional
to exp(2igq, 2) and exp[i(@q + @z)] in the wave equations.
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FIG. 1. Gain versus the dimensionless frequency sr/w„
both in the low-gain (z = t~, dashed line) and in the
high-gain regime (z ~ 5E~p, continuous line), for pp = 0.01
and a = 1, at a fixed position z inside the wiggler and for
(a) X = 0.75; (b) X = 0.9; (c) X = 0.96; (d) X = 1; the
values relative to the low-gain regime (dashed line) have been
multiplied by a factor of 500.

the resonant frequencies (1). In the high-gain regime [13],
the gain grows exponentially near the two resonant fre-
quencies, as g(z, u) oc exp(2~1mA~g(IJ)z); here, A is the
complex root of the cubic equation As —b(~)A + 1 = 0
and b(u) = —(~ —uq)(&u —Id2)/2~ p(cu) is the detun-
ing parameter, so that the gain curve exhibits maxima
at the zeros of b(u), which occur at the two frequen-
cies (1); g(u) = 2k (u/u, )p(~) is the gain coefficient
and p(IJ) = ppF(()z~s(~, /Id)z~s is the mode-dependent
FEL parameter, with F(() = Jp(() —Jq((), where J„
is the nth-order Bessel function of the first kind and

( = (Id/~, )(p, with (p = a2 /2(1+ az ); the other quanti-
ties are as follows: pp = pp (a Id~/4ck )z~s, free space,
fundamental FEL parameter [14], with m, czpp, average
initial electron energy, u„= (4z eon, /m, )~~z, plasma fre-
quency, n, = (2/ab)(I/ec) beam density, I electron cur-
rent, ab/2 effective area of the TEpq transverse mode
in the rectangular waveguide, whose short (long) dimen-
sion is b (a); a = eB /v 2m, czk, wiggler parameter;
u, = 2ck~pp/(1 + az~), free-space resonant frequency.

In Fig. 1 we summarize the most important fea-
tures of the gain function versus the dimensionless fre-
quency u/u„both in the low-gain regime (z =Esp, with

esp = A~/47rpp, dashed line) and in the high-gain regime

(z = 5lsp, continuous line), for four values of the wave-

guide parameter: (a) X = 0.75 (o. = 3), (b) X = 0.9
(n = 1.92), (c) X = 0.96 (n = 1.5), and (d) X = 1

(a = 1, "zero-slip condition"). We observe that, in the
high-gain regime, the gain itself is always positive and
that, by increasing the waveguide parameter toward the
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This approximation requires an electron beam several
low-frequency periods 27r/a2 long. Equations (2)—(4) are
formally similar to those describing the excitation of the
harmonics in a planar wiggler [15,16], where Ai appears
as a "pseudoharmonic" field of the "fundamental" A2.
However, they differ from those of Ref. [16] in three main

aspects: erst, a is not an odd number and can be varied
continuously by changing the waveguide height; second,
the slippage depends on n and is difFerent for the two

waves; third, the Bessel factor f in Eqs. (2) and (3) dif-

fers from the usual factor for the odd harmonics in the
planar wiggler [15], fb = J(b i)yz(h(p) —J(h+i)/z(h(p)
(ti odd), and tends to F((o) for large n.

The equations have been integrated along the charac-
teristics with boundary conditions for the fields on the
trailing [Ai(z, 0) = Aio] and on the leading [Az(z, lb) =
Azp] edges of the electron bunch, where Eb = 2kzpzEb

and Eb is the electron bunch length. Furthermore, we

have assumed Ai(z = 0) = Aip, Az(z = 0) = Azp,

(882~/Bz)(z = 0) = 0 (j = 1, . . . , N) and the distribu-
tion of Hq~ at z = 0 such that both bunching parameters
bi = (exp( —in8z)) and b2 = (exp( —i82)) are zero, with

n = mi/mz.
The numerical integration shows that if a wave at the

upper frequency ui is injected into the wiggler, no ap-
preciable deviations from the customary results obtained
with the one-wave model in the slowly varying envelope
approximation (SVEA) appear. In fact, Ai exhibits the
usual behavior, while A2 and the bunching parameter
b2 on the lower frequency remain almost zero. Much
more interesting and unexpected is the opposite situa-
tion, when a low-frequency wave is injected into the wig-

gler. In fact, in this case, an intense signal and strong
bunching grow on the upper frequency u~. The inten-
sity and the characteristics of this emission depend on
the parameter n. In Fig. 2, for example, ~Ai~ and ~A2~

as well as Jbi~ and ~bz~ versus z are shown for n = 10,
zi = 2.9, EI, = 4, and ~Aqo~ = 2.5 x 10 . As can be
seen, the first maximum of ~Ai

~

reaches a value of about
0.08 and appears at the same position in the wiggler as
the first maximum of ~Az ~, but a maximum of larger am-
plitude (~Ai~ 0.3) develops farther down the wiggler.
As regards the shape of the bunchings, one can see that
they attain comparable values (~bi~ 0.5 and ~bz~ 0.7).
Summarizing, we are able to generate a strong bunching
and a signal approximately 2 orders of magnitude more
intense than the injected signal and at a frequency 10
times higher.

The dependence of the emission on the parameter n
has also been studied. The results of this analysis are
summarized in Fig. 3 which gives the first maximum of
~Ai~ and the corresponding value of ~bi~ at zi = 2 as a
function of n As c. an be seen, ~Ai~ and ~bi~ develop a
series of maxima for integer values of n, which decrease
rather slowly with a scaling low approximately given, for
n = n, by ~Ai~~s„oc n ~ and ~bi~ms„oc n ~ (the
dashed lines in the figure). For noninteger n, the val-

ues attained by ~Ai~ are smaller, but slightly increasing
with a, so that the difference between the cases a integer
and n noninteger tends to diminish. Furthermore, cases
performed with noninteger n show that emission compa-
rable to that obtained with integer n can be achieved,
provided the length of the wiggler be suitably increased.
For instance, for n = 2.66, ~Ai~ 0.5 at zi = 3 and
z =18.

A simple physical interpretation of all preceding results
can be given in the following terms: strong bunching
on a wavelength Az also gives rise to an equally strong
bunching on a wavelength Ai = Az/n, since the electrons
as seen in the short wavelength field are packed together
every n wavelength A~.

It is also possible to have an analytical evidence that,
for integer n, a strong bunching on the upper fre-
quency is generated by nonlinear coupling with the lower-

frequency field, when a small signal at the lower fre-
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FIG. 2. Emitted intensity and bunching at the lower and
upper frequency, as a function of z, when a small signal at the
lower frequency is injected, ~A2e~ = 2.5 x 10, for zi = 2.9,
Eg, = 4, a = 1, and n = 10; (a) JAif; (b) JA2(; (c) fbi]; (d)
fb2)
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FIG. 3. Dependence of the maximum of ~Ai~ (a), and ~bi

~

(b), on the frequency ratio n, at zi = 2 and for Ib = 4,
z = 15, Ago ——0, and a = 1; open circles refer to
simulations with integer o, and Agp = 0.05; black triangles
refer to simulations with half-integer a and A2p = 0.01;
dashed lines are numerical fits, ~Ai~~~~ = 0.58 x n and
~b,

~
.„=0.76x n-"4.
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quency is injected. In fact, following the method dis-
cussed in Ref. [17] for an optical klystron configura-
tion, it is easy to show that, solving Eq. (2) for ez in
the absence of the upper frequency field Ai, the high-
frequency bunching bi, induced by the low-frequency
emission when a = n, is bi = e'"4"J„[2nBz), where
Bze'~'—:fz' dz'(z —z')Az(z', zi), whereas it vanishes for
noninteger values of a. Neglecting the slippage, a direct
calculation of the linear solution gives P2 —2z/3+ z/2
and B2 (Azp/3) exp[~3z /2] Since J„(x) behaves as
z" for small values of its argument, the growth rate of
the upper frequency bunching bi is n times larger than
the growth rate of the lower-frequency bunching. More-
over, since the maximum value of J„decreases slowly
with n, the bunching bi is quite large also for large val-
ues of the frequency ratio n Wit. h similar calculation, it
is possible to demonstrate that the low-frequency bunch-

ing induced by the growth of the upper-frequency field

Ai is zero for any values of n This . demonstrates that
the upper-frequency radiation cannot produce radiation
at the lower frequency.

Equations (2)—(4) have been derived assuming the
SVEA separately for the two wave packets Ai and Az,
whereas the usual waveguide FEL model [1] takes only
the forward wave Ai into account. It can be shown
that a set of partial difFerential equations similar to Eqs.
(2)—(4) can be obtained for free-space propagation, with
a helical wiggler and a circularly polarized electromag-
netic field, without using the SVEA. In fact, assuming

E(z, t) = Eo(z, t)e+ c c and .B.(z, t) = —i[Be(z, t)e-
c.c.], with e = (x+ iy)/2, and a wiggler field B
—(rn, c k~/e)a~[eexp( —tk~z)+c.c.], the set of Eqs. (2)—
(4) are indeed obtained, provided that si = 1, s2 = cr,

f = 1, and s = —1. In addition, the quantities appearing
in Eqs. (2)—(4) must be defined as follows:

Ay, g = Ep +Bp
exp[+i(ui z(t p z/c)], (6)(p)

2 4Ãmec PpA&P2
(p)

(0)z = (2k pz /cr)z and zi = —2uz pz (t —z/v~~), where(o) (o)

p(z
) ——pons)'s, uI z have been defined previously and n =

4~.'/(I+". )
In fr""-space propagation, Az is a counterpropagating

wave of central frequency uz and is usually neglected in
the SVEA. It is important to note that the transforma-
tion (6) reduces in an exact way the second-order wave
equation into two first-order partial differential equations
for the waves Ai and A2 separately, which are coupled
only via the bunching factor. The main difFerence be-
tween the propagation in waveguide and in free space is
that in this last case A2 is a backward wave, and that
diferent boundary conditions on z must be properly as-
sumed. With a waveguide, the longitudinal field compo-
nent couples the two transverse components; the use of
the SVEA is therefore necessary to separate the second-
order wave equation in two first-order equations for each
resonant frequency. As discussed in Ref. [18], the limit

of validity of the SVEA is that the radiation pulse length
E„must be much larger than A(l —P) A/p~z~.

In conclusion, we have studied the nonline~ar interac-
tion between the two resonant waves in a FEL, one with
higher frequency and positive slippage and the other one,
which is usually neglected in the SVEA, with lower fre-

quency and negative slippage. We have shown that by
injecting a small signal at the lower frequency, strong
bunching and signal at the upper frequency can be ob-
tained. This up-frequency conversion process is maxi-
mum when the frequency ratio is an integer number. This
method can be of most practical interest in the genera
tion of microwave or infrared radiation, when conven-
tional input sources are not easily available. We envision
the following set of parameters for a proof-of-principle
experiment to generate radiation at 430 GHz with an in-

put source at 43 GHz: A = 10 cm, N = 100, a = 2,
waveguide dimensions, 10 x 50 mmz, electron beam en-

ergy, 9.6 MeV, I = 100 A, beam duration, 100 ps, input
power at 43 GHz, 150 kW, output power at 430 GHz, 18
MW, efficiency, 2'. An extension to higher frequency
is in principle possible but requires longer wigglers and
beams.
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