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A free-electron laser is able to resonate at two different frequencies, both in free space and
in a waveguide. The two waves have positive and negative slippage. We describe the nonlinear
interaction between the two waves by a set of partial differential equations which in free space do
not require the slowly varying envelope approximation (SVEA). In a waveguide a less restrictive
SVEA is applied to each wave. By injecting a small signal at the low frequency, a strong signal and
bunching are produced at the high frequency. This effect suggests a new method of generating short

wavelength radiation.

PACS numbers: 41.60.Cr, 42.60.Jf

The possibility of controlling the slippage between the
radiation and the electron beam in a free-electron laser
(FEL) by means of a waveguide with narrowly spaced
parallel plates has been first described in Refs. [1,2] and
[3,4], and has stimulated in the past few years consider-
able theoretical [5,6] and experimental [7-10] work. The
waveguide slippage control is particularly important in
the generation of far-infrared and microwave radiation
by means of short electron pulses, of the order of pi-
coseconds, as provided by rf linear accelerators.

Another important feature of the use of a waveguide is
the existence of two different resonant frequencies [4] at
which the FEL can operate, both lower than the usual
free-space resonant frequency and with positive slippage
for the higher frequency and negative for the lower one.
Previous papers [5,6,11] have studied the waveguide oper-
ation in the low-gain regime. Sternbach and Ghalila [12]
have suggested that, in free space, the incoherent, low-
frequency radiation could lower the length of the undu-
lator necessary to achieve large values of high-frequency
power.

In this Letter, we extend the analysis of waveguide op-
eration to the high-gain regime and, above all, we study
the nonlinear space and time interaction between the two
resonant waves, which was not taken into account in Ref.
[12]. The novel and unexpected result that comes out
from our analysis is that, by injecting a signal at the
lower frequency, without any input signal at the upper
frequency, a strong signal and strong electron bunching
at the higher frequency are obtained, suggesting a new
and powerful method for the generation of short wave-
length radiation.

The dispersion relation for off-axis propagation is given
by w = cy/k2 + k3, where k (k.) is the longitudinal
(transverse) radiation wave number. In particular, for
the TEo; mode in a rectangular waveguide, k; = /b,
where b is the smaller transverse dimension of the wave-
guide. The resonance condition on the axial velocity
v = cf of the electron beam requires that the electron
travels a wiggler period A\, = 27/k, in the same time
that the wave travels a distance A, + A (A = 27/k), so
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that Ay /vy = (A + Aw)/vph, where vpn = w/k is the ra-
diation phase velocity. The previous equality can also be
written in the form w = c¢fG(kw + k). By equating this
last formula to the dispersion relation, one obtains, for
ki < Byjkw [where v = (1 — 82)71/2], the expression
for the two resonant frequencies [4,5],

Ws

w1,2=1+ﬁ[1iﬁ\/1fx‘], 1)

with wave numbers k12 = (w,/¢)[8 £ V1 — X]/(1 + B),
where w; = cBky/(1 — B) is the free-space resonant
frequency and X = (ki /By kw)? is the waveguide pa-
rameter [1] 0 < X < 1. Furthermore, the group ve-
locities relative to the resonant frequencies are vg1 2 =
c?(k1,2/w1,2), so that the slippage lengths £,;,2 between
the electron beam and the two waves after a wiggler
length L, = AyNy are €12 = (vg1,2 — v))Luw/v) =
+v/1 — X(27e/w1,2) Ny. We also introduce the frequency
ratio parameter @ = wi/we = (1 + BvV1-X)/(1 —
BV1—=X), with 1 < a < (14 B)/(1 — B); for high rela-
tivistic electron beam (v > 1), w1 ~ aw,/(1 + @) and
£g1 = —Lsa/a = ANy (a — 1) /o, with A\, = 2mc/ws.

The FEL resonance condition is obviously satisfied
at two different frequencies also without waveguide [12]

(X = 0); their expressions are w{o) = w, ~ 2cky7} and

wgo) = cky,B/(1 + B) ~ ckyw/2. The wave at wéo) is coun-
terpropagating with respect to the electron beam and,

(0) (0)
2

since the ratio a = w§°) Jwy’ = 47f, the frequencies w;

and wg‘)) are widely different. In the waveguide, the upper
frequency w; always corresponds to a forward wave with
positive slippage. The lower frequency wz, on the other
hand, corresponds to a backward wave when X <y 2 (or
b > A\y/2), and to a forward wave with negative slippage,
in the opposite condition. For X = 1 (“zero-slippage con-
dition”) w; = wg = w,/(1+P); i.e., only one resonant fre-
quency exists, which is approximately half the frequency
w, in free space and corresponds to a wave whose group
velocity is equal to the electron beam velocity.

A linear analysis of the spectrum in the low-gain
regime [5,6] shows that the gain has two maxima around
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the resonant frequencies (1). In the high-gain regime [13],
the gain grows exponentially near the two resonant fre-
quencies, as G(2,w) o exp{2|Im\|g(w)z}; here, A is the
complex root of the cubic equation A3 — §(w)A2 +1 =10
and §(w) = —(w — w;)(w — ws)/2w?p(w) is the detun-
ing parameter, so that the gain curve exhibits maxima
at the zeros of §(w), which occur at the two frequen-
cies (1); g(w) = 2ky(w/ws)p(w) is the gain coefficient
and p(w) = poF(£)?/3(ws/w)?/? is the mode-dependent
FEL parameter, with F(§) = Jo(§) — J1(€), where J,
is the nth-order Bessel function of the first kind and
€ = (w/ws)&o, with & = a2,/2(1 + a2)); the other quanti-
ties are as follows: po = 5 ' (@wwp/4cky)?/3, free space,
fundamental FEL parameter [14], with m.c?y, average
initial electron energy, w, = (4me®n,/m.)*/?, plasma fre-
quency, ne = (2/ab)(I/ec) beam density, I electron cur-
rent, ab/2 effective area of the TEg; transverse mode
in the rectangular waveguide, whose short (long) dimen-
sion is b (a); ay = eBy/vV2m.c?k,,, wiggler parameter;
ws = 2cky,Y2/(1 + a2)), free-space resonant frequency.

In Fig. 1 we summarize the most important fea-
tures of the gain function versus the dimensionless fre-
quency w/ws, both in the low-gain regime (z=~£40, with
£40 = Ay /4mpo, dashed line) and in the high-gain regime
(z = 5440, continuous line), for four values of the wave-
guide parameter: (a) X = 0.75 (o = 3), (b) X = 0.9
(@ =1.92), (¢c) X =096 (¢ =15),and d) X =1
(a = 1, “zero-slip condition”). We observe that, in the
high-gain regime, the gain itself is always positive and
that, by increasing the waveguide parameter toward the
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FIG. 1. Gain versus the dimensionless frequency w/ws,
both in the low-gain (z = {4, dashed line) and in the
high-gain regime (z = 5£40, continuous line), for po = 0.01
and ay = 1, at a fixed position z inside the wiggler and for
(a) X =0.75; (b) X = 0.9; (c) X = 0.96; (d) X = 1; the
values relative to the low-gain regime (dashed line) have been
multiplied by a factor of 500.

zero-slip condition X = 1, the two maxima of the gain
curve move toward one another, until they give rise to a
single broad curve. When X ~ 1, the gain bandwidth is
approximately given by Aw/w ~ 24/3, /pg [see Fig. 1(d)).
By requiring that the frequency separation between the
two maxima be larger than the gain bandwidth, we con-
clude that they are well separated when o —1 > /pq, or
in terms of the waveguide parameter, when 1 — X >> po.

The existence of two resonant frequencies raises the
question of whether coupling can exist between the two
waves as a result of the nonlinear interaction. In order
to study this nonlinear interaction in the limit o — 1 >
V/Po, i.e., when interference effects between the two waves
can be ignored, we derived the following set of partial
differential equations:

8%6,; iaby; i8;
6’z‘2J = — (fA1€"% + Aze® t+cc), (2)
_Q_ 0 _ —iaby
[ o | =7, ®
o 0 —i
[5 + S?"’azl] Ay = e(e7%2), “)

where j = 1,...,N and ((---)) = N7! Ef;l( ). In
deriving these equations, we assumed a transverse mode
TEop; inside a rectangular waveguide, whose short (long)
dimension is b (a), parallel (orthogonal) to the wiggler
field B,, = —y B,, sin(ky2), with the following vector po-
tential:

A(x,t) = —(i/V2)ksin(kLy)

2
X Z(cEéT)/wm)e"’"" —cc.|, (5)
m=1

where ¥y, = km2z — wnt and wy, (kn) are the resonant
frequencies (wave numbers) defined in (1), withm =1,2;
Eé'l") (2, t) are slowly varying functions of their arguments
and 02 = kyz + 12 is the electron phase obtained as
a combination of the wiggler and the lower frequency
mode phases. We have introduced dimensionless vari-
ables as follows: Z = 2z/{g2, scaled coordinate along
the wiggler, with £53 = (Ay/4mp2)(1 + ), gain length;
Z1 = 2kypo(z — v”t), scaled time in the frame moving
with the average electron velocity v); p2 = p(wz) =
poF2/3(14a)?/3 and f = Fy/F,, with Fy 5 = F(¢1,2) and
& = oy = abp/(1+a); Am = (()’1”)/\/47Fme02’70nepz,
dimensionless wave amplitude; € = vq1/vg2, ratio be-
tween the group velocities of the two waves, that can
be set equal to one for highly relativistic electrons; s; =
(e — 1)/ec and sz = 1 — a, slippage coefficients. Equa-
tions (2)-(4) are derived neglecting space-charge effects,
in the Compton limit |y; — (70)| < (70). Equations (3)
and (4) describe the evolution of the two resonant waves
separately and have been derived assuming the resonant
frequency ratio a to be a rational number, m; /mo. With
this assumption, a temporal average over the interval
2mmgy /wy removes the fast-oscillating terms proportional
to exp(2i%1,2) and exp[i(¥1 £ ¢2)] in the wave equations.
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This approximation requires an electron beam several
low-frequency periods 27 /ws long. Equations (2)-(4) are
formally similar to those describing the excitation of the
harmonics in a planar wiggler [15,16], where A; appears
as a “pseudoharmonic” field of the “fundamental” A,.
However, they differ from those of Ref. [16] in three main
aspects: first, a is not an odd number and can be varied
continuously by changing the waveguide height; second,
the slippage depends on a and is different for the two
waves; third, the Bessel factor f in Egs. (2) and (3) dif-
fers from the usual factor for the odd harmonics in the
planar wiggler [15], fn = J(n-1)/2(h&0) — J(h+1)/2(héo)
(h odd), and tends to F'(§) for large c.

The equations have been integrated along the charac-
teristics with boundary conditions for the fields on the
trailing [A;(Z,0) = Ajo] and on the leading [42(Z,6) =
Ag] edges of the electron bunch, where o = 2k2p20
and ¢, is the electron bunch length. Furthermore, we
have assumed A;(Z = 0) = Ajg, A2(Z = 0) = A,
(862;/8%Z)(Z = 0) =0 (j = 1,...,N) and the distribu-
tion of #2; at Z = 0 such that both bunching parameters
b1 = (exp(—iabs)) and by = (exp(—if2)) are zero, with
a =mg / ma.

The numerical integration shows that if a wave at the
upper frequency w; is injected into the wiggler, no ap-
preciable deviations from the customary results obtained
with the one-wave model in the slowly varying envelope
approximation (SVEA) appear. In fact, A; exhibits the
usual behavior, while A; and the bunching parameter
by on the lower frequency remain almost zero. Much
more interesting and unexpected is the opposite situa-
tion, when a low-frequency wave is injected into the wig-
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FIG. 2. Emitted intensity and bunching at the lower and
upper frequency, as a function of Z, when a small signal at the
lower frequency is injected, |A20|? = 2.5 x 1073, for Z; = 2.9,
% =4, ay =1, and a = 10; (a) |41]% (b) |A2|%; () |bal; (d)
|b2].
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gler. In fact, in this case, an intense signal and strong
bunching grow on the upper frequency w;. The inten-
sity and the characteristics of this emission depend on
the parameter a. In Fig. 2, for example, |A4;|? and |A2|?
as well as |b1| and |bz| versus Z are shown for a = 10,
Z; = 2.9, £, = 4, and |Ag|? = 2.5 x 1073, As can be
seen, the first maximum of |A; |2 reaches a value of about
0.08 and appears at the same position in the wiggler as
the first maximum of |A42|?, but a maximum of larger am-
plitude (|A1|2 ~ 0.3) develops farther down the wiggler.
As regards the shape of the bunchings, one can see that
they attain comparable values (|b1| ~ 0.5 and |b2| ~ 0.7).
Summarizing, we are able to generate a strong bunching
and a signal approximately 2 orders of magnitude more
intense than the injected signal and at a frequency 10
times higher.

The dependence of the emission on the parameter o
has also been studied. The results of this analysis are
summarized in Fig. 3 which gives the first maximum of
|A1| and the corresponding value of |b;| at Z; = 2 as a
function of a. As can be seen, |A;| and |b;| develop a
series of maxima for integer values of o, which decrease
rather slowly with a scaling low approximately given, for
a = n, by |Ai|lmax x n~1/2 and |by|max x n~1/3 (the
dashed lines in the figure). For noninteger a, the val-
ues attained by |A;| are smaller, but slightly increasing
with a, so that the difference between the cases a integer
and a noninteger tends to diminish. Furthermore, cases
performed with noninteger a show that emission compa-
rable to that obtained with integer o can be achieved,
provided the length of the wiggler be suitably increased.
For instance, for a = 2.66, |A;| ~ 0.5 at Z; = 3 and
zZ=18.

A simple physical interpretation of all preceding results
can be given in the following terms: strong bunching
on a wavelength A2 also gives rise to an equally strong
bunching on a wavelength A; = A2/n, since the electrons
as seen in the short wavelength field are packed together
every n wavelength A;.

It is also possible to have an analytical evidence that,
for integer «, a strong bunching on the upper fre-
quency is generated by nonlinear coupling with the lower-
frequency field, when a small signal at the lower fre-

- e
* o
_E

1 max
o

1A 1
b

= a

S
0.0 10.

FIG. 3. Dependence of the maximum of |A;| (a), and |b|
(b), on the frequency ratio a, at Z3 = 2 and for T = 4,
Zmax = 15, A0 = 0, and a, = 1; open circles refer to
simulations with integer a and A2 = 0.05; black triangles
refer to simulations with half-integer @ and Az = 0.01;
dashed lines are numerical fits, |A1|max = 0.58 x &~ %*3 and
|b1]max = 0.76 x o034,
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quency is injected. In fact, following the method dis-
cussed in Ref. [17] for an optical klystron configura-
tion, it is easy ta show that, solving Eq. (2) for 6, in
the absence of the upper frequency field A;, the high-
frequency bunching b;, induced by the low-frequency
emission when o = n, is by = e™%2J,[2nB,|, where
Bae1 = [ d7'(Z—7')Ax(Z',Z1), whereas it vanishes for
noninteger values of a. Neglecting the slippage, a direct
calculation of the linear solution gives ¢ ~ —27/3+%/2
and By ~ (Az/3)exp[v/3%/2]. Since J,(x) behaves as
z™ for small values of its argument, the growth rate of
the upper frequency bunching b; is n times larger than
the growth rate of the lower-frequency bunching. More-
over, since the maximum value of J, decreases slowly
with n, the bunching b; is quite large also for large val-
ues of the frequency ratio n. With similar calculation, it
is possible to demonstrate that the low-frequency bunch-
ing induced by the growth of the upper-frequency field
A; is zero for any values of a. This demonstrates that
the upper-frequency radiation cannot produce radiation
at the lower frequency.

Equations (2)-(4) have been derived assuming the
SVEA separately for the two wave packets A; and Aj,
whereas the usual waveguide FEL model [1] takes only
the forward wave A; into account. It can be shown
that a set of partial differential equations similar to Egs.
(2)-(4) can be obtained for free-space propagation, with
a helical wiggler and a circularly polarized electromag-
netic field, without using the SVEA. In fact, assuming
E(z2,t) = Ey(z,t)é + c.c. and B(z,t) = —i[By(z,t)é —
c.c.], with & = (X + iy)/2, and a wiggler field B,, =
—(mec?ky /€)ay (€ exp(—iky z)+c.c.], the set of Egs. (2)-
(4) are indeed obtained, provided that s; = 1, s2 = a,
f =1, and € = —1. In addition, the quantities appearing
in Egs. (2)-(4) must be defined as follows:

Ey + B, .
Ajp= 0 9 = exp[:tzwg?% (tFz/c), (6)
2\/ 4mmec2yone pg

zZ= (2kwp§°)/a)z and zZ; = —2w§°)p§°) (t = z/v)), where

05" = poa?/?,

4v3/(1 +dl,).

In free-space propagation, A, is a counterpropagating
wave of central frequency wéo) and is usually neglected in
the SVEA. It is important to note that the transforma-
tion (6) reduces in an exact way the second-order wave
equation into two first-order partial differential equations
for the waves A; and A; separately, which are coupled
only via the bunching factor. The main difference be-
tween the propagation in waveguide and in free space is
that in this last case A, is a backward wave, and that
different boundary conditions on Z must be properly as-
sumed. With a waveguide, the longitudinal field compo-
nent couples the two transverse components; the use of
the SVEA is therefore necessary to separate the second-
order wave equation in two first-order equations for each
resonant frequency. As discussed in Ref. [18], the limit

wg?z) have been defined previously and a =

of validity of the SVEA is that the radiation pulse length
£, must be much larger than A(1 — B) ~ A/~

In conclusion, we have studied the nonlinear interac-
tion between the two resonant waves in a FEL, one with
higher frequency and positive slippage and the other one,
which is usually neglected in the SVEA, with lower fre-
quency and negative slippage. We have shown that by
injecting a small signal at the lower frequency, strong
bunching and signal at the upper frequency can be ob-
tained. This up-frequency conversion process is maxi-
mum when the frequency ratio is an integer number. This
method can be of most practical interest in the genera-
tion of microwave or infrared radiation, when conven-
tional input sources are not easily available. We envision
the following set of parameters for a proof-of-principle
experiment to generate radiation at 430 GHz with an in-
put source at 43 GHz: A\, = 10 cm, N, = 100, a,, = 2,
waveguide dimensions, 10 x 50 mm?, electron beam en-
ergy, 9.6 MeV, I = 100 A, beam duration, 100 ps, input
power at 43 GHz, 150 kW, output power at 430 GHz, 18
MW, efficiency, 2%. An extension to higher frequency
is in principle possible but requires longer wigglers and
beams.
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