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The self-consistent Green’s functions method is employed to study the spectroscopic
factors of quasiparticle states around 16,28O and 40,60Ca. The Faddeev random phase
approximation (FRPA) is used to account for the coupling of particles with collective
excitation modes. Results for 16O are reviewed first. The same approach is applied to
isotopes with large proton-neutron asymmetry to estimate its effect on spectroscopic
factors. The results, based on the chiral N3LO force, exhibit an asymmetry dependence
similar to that observed in heavy-ion knockout experiments but weaker in magnitude.
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1. Introduction

In the independent particle model (IPM) of atomic nuclei, protons and neutrons
move freely in a common mean-field potential. Obviously, this is an approximate
picture since the residual interaction smears the Fermi surface and leads to partial
occupation of each orbit. For states close to the Fermi level, this effect is observed
through a reduction of the experimental knockout and pickup cross sections. Ex-
perimental spectroscopic factors (SFs) are defined as the quenching of the observed
reaction rate with respect to that calculated assuming full occupancy. Hence, they
are interpreted as the occupation of a given orbit. However, from a strict theoreti-
cal point of view SFs are not occupation numbers. Instead, they give a “measure”
of what fraction of the final wave function can be factorized into a (correlated)
core plus an independent particle or hole state. Strong deviations from unity signal
the onset of substantial correlation effects and imply the existence of non trivial
many-body dynamics.

As far as stable nuclei are concerned, a large body of data has been accumu-
lated from (e,e′p) experiments yielding the best estimates of absolute spectroscopic
factors. These studies showed that proton SFs for isotopes all across the nuclear
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Fig. 1. Diagrams contributing to the irreducible self-energy Σ�(ω). The double lines represent
a dressed propagator and the wavy lines correspond to a G-matrix (that is used in this work as
an effective interaction). The first term is the Brueckner-Hartree-Fock potential while the others
represent two-particle–one-hole / two-hole–one-particle (2p1h/2h1p) or higher contributions that
are approximated through the Faddeev RPA equations.

chart are uniformly quenched to 60-70% of the IPM value 1,2. This information is
however limited to protons and stable isotopes. More recently, experimental infor-
mation on SFs of dripline isotopes has been obtained by means of nucleon knockout
using intermediate energy heavy-ion beams 3,4. These results also include neutron
data, and suggest a strong dependence of SFs on the N/Z ratio.

In nuclear structure studies, one usually distinguishes between short-range
(SRC) and long-range and correlations (LRC). The former are induced by the strong
repulsive core and the tensor component of the nuclear force at small distances.
These remove strength from the Fermi sea to very high energies and momenta
and have long been proposed as one possible mechanism for the quenching of SFs.
However, different theoretical evaluations predicted that SRC can account for at
most a 10-15% reduction (see Refs. 5,6 for 16O). This result is now supported by
electron scattering experiments 7 at high energies, where the reactions can be an-
alyzed using a Glauber-inspired approach 8,9,10 (see also Ref. 11). Calculations like
those reported in Sec. 3 shows that the largest part of the quenching is instead
due to LRC. In particular, couplings between single nucleons and collective surface
phonons is important 12.

This talk reviews our theoretical understanding of SFs obtained from calcu-
lations based on Green’s function theory. The formalism used in these studies is
summarized in Sec. 2 and its application to 16O, as a test case, is discussed in Sec. 3.
Sec. 4 reports on a first investigation of correlations in asymmetric isotopes.

2. Faddeev-RPA Method

We consider the calculation of the single-particle (sp) Green’s function 13
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reflect the energy transfer observed in pickup and knockout reactions. The corre-
sponding SFs for transitions to a quasihole (quasiparticle) state are obtained as
Zk =

∑
α

∣∣Yk
α

∣∣2 (Zn =
∑

α |Xn
α |2).

The one-body Green’s function is computed by solving the Dyson equation

gαβ(ω) = g0
αβ(ω) +

∑
γδ

g0
αγ(ω)Σ�

γδ(ω)gδβ(ω) , (2)

where the irreducible self-energy Σ�
γδ(ω) acts as an effective, energy-dependent, po-

tential. The latter can be expanded in a Feynman-Dyson series 13 in terms of the
exact propagator gαβ(ω), which itself is a solution of Eq. (2). In this expansion,
Σ�

γδ(ω) can be represented as shown in Fig. 1 by the sum of a Hartree-Fock-like po-
tential and the polarization propagator, R(ω), that account for deviations from the
mean-field 12. It is at the 2p1h/2h1p level that the correlations involving couplings
of sp to collective modes need to be included. The SCGF approach is initiated by
solving the self-energy and the Dyson Eq. (2) in terms of an unperturbed propaga-
tor (e.g. Hartree-Fock). The (dressed) solution gαβ(ω) is then taken as a new input
and the whole calculation is iterated until convergence is reached.

2.1. Faddeev RPA method for the self-energy

The polarization propagator R(ω) can be expanded in terms of simpler Green’s
functions that involve the propagation of one quasiparticle [Eq. (1)] or more. This
approach has the advantage that it allows the identification and inclusion of key
physics ingredients of the many-body dynamics. By truncating to particular subsets
of diagrams, one can then construct suitable approximations to the self-energy.
Moreover, since infinite sets of linked diagrams are summed, the approach is non-
perturbative and satisfies the extensivity condition. This expansion also serves as
a guideline for systematic improvements of the method.

In the following we are interested in describing the coupling of sp motion to
particle-hole (ph) and particle-particle (hole-hole) [pp(hh)] collective excitations of
the system. Following Refs. 14,15, we first consider the ph polarization propagator
describing excited states in the A-particle system
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and the two-particle propagator, for the addition/removal of two particles
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Fig. 2. Example of a diagram appearing in the all-order summation
generated by the set of Faddeev equations. This diagram contributes
to the R2h1p(ω) propagator seen in Fig. 1.

In the calculation of Sec. 3, these have been approximated by solving the dressed
random phase approximation (DRPA) equations 13, which account for the effects
of the strength distribution of the particle and hole fragments.

The ph (3) and pp(hh) (4) propagators are inserted in the self-energy by solving
a set of Faddeev equations for the 2p1h and 2h1p propagators of Fig. 1. The details
of the Faddeev RPA (FRPA) approach are given in Ref. 14,15. For the present discus-
sion it is sufficient to note that collective excitations are coupled to sp propagators
generating an infinite series of diagrams, including the one shown in Fig. 2.

3. Hole Spectroscopic Factors for 16O

The calculations for 16O, in Ref. 16, were performed in an harmonic oscillator basis
with parameter b = 1.76 fm (corresponding to �ω = 13.4 MeV). The first four
major shells (from 0s to 1p0f) plus the 0g9/2 orbit where included. Inside the
model space, a Brueckner G-matrix derived from the Bonn-C potentialwas used
as an effective interaction. The short-range core of this NN interaction induces an
additional 10% reduction of the spectroscopic factors for main quasiparticle peaks,
by moving strength to very high energies 12. This effect was included in the solution
of the Dyson equation by treating the energy dependence of the G-matrix explicitly.

The FRPA calculations were then iterated to self-consistency, thus including
the effects of fragmentation. In doing this, the largest fragments that appear—close
to the Fermi energy—in the (dressed) sp propagator, Eq. (1), are maintained. The
remaining strength is collected, at each iteration, into effective poles 16.

3.1. Spectroscopic factors and role of low excited states in 16O

The one-hole strength distribution obtained upon convergence of the SCGF is shown
in Fig. 3, where it is compared with the experiment (top panels). Similar results are
obtained for the particle strength, including large peaks near the Fermi surface and
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Fig. 3. One-proton removal strength as a function of the hole sp energy ε−k = EA
0 − EA−1

k for
16O for angular momenta � = 1 (left) and � = 0, 2 (right). For the positive parity states, the
solid bars correspond to results for d5/2 and d3/2 orbitals, while the thick lines refer to s1/2. The
top panels show the experimental values taken from 17. The central panels give the theoretical
results for the self-consistent spectral function. The bottom panels show the results obtained by
constraining the lowest excited states [i.e. the poles of Eq. (3)], to the corresponding experimental
energies. A small amount of p3/2 strength is observed experimentally at around -23 MeV (top
panel) and obtained theoretically at -26 MeV (bottom panel).

a fragmented distribution at larger energies. The spectroscopic factors obtained for
removal of a proton amount to 0.75 of the IPM value for the p3/2 peak and 0.77 for
the p1/2. These refer to the middle panels of this figure.

Failures to fully reproduce the observed removal strength can be traced to the
difficulties of the RPA to describe the low-energy spectrum. To clarify this point we
repeated the above calculations of the sp propagator by shifting, at each iteration,
the first RPA 0+ eigenstate in 16O. This eigenvalue is obtained at larger energies
but the corresponding pole of Eq. (3) was constrained to the experimental energy of
the first excited state. This is expected to represent qualitatively the cluster state
which is also excited by a M(E0) transition (see e.g. the contribution of Funaki and
Schuck to these proceedings).a This change leads to the appearance of satellite p3/2

fragments around -26.3 MeV, which might be identified with the fragments seen

aThe RPA wave function is a particle-hole configuration and is intrinsically different from the
experimental first excited level, which is a cluster state. However, both states are strongly excited
by one-body operators. Since this is the mechanism that couples nucleons to collective modes in
the FRPA, Fig. 2, the two are expected to have similar effects on the results discussed here.
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Table 1. Dependence of theoretical spectroscopic factors (as a fraction of the IPM value) on the
inclusion of various SRC and LRC effects. The value in parentheses is the summed strength of
small p3/2 fragments near the quasihole peak.

Spectroscopic factors of 16O Zp1/2 Zp3/2

SRC only 5,6 ∼0.90 ∼0.90
SRC + LRC(FRPA + sp dressing) 16 0.77 0.75

SRC + LRC(FRPA + sp dressing + 0+
2 state) 16 0.77 0.72(0.026)

Experiment 18,19 0.64-0.71 0.54-0.61

experimentally at slightly higher energy. These are calculated to have total strength
of 2.6%, while the dominant peak is reduced to 0.72 (see Table 1). The associated
spectral function is shown in the lower-left panel of Fig. 3. Thus one concludes that
the additional p3/2 fragments are generated by propagating a hole on top of excited
0+ level of the 16O core.

The other two low-lying states of 16O that may be of some relevance are the
isoscalar 1− and 3−, and are calculated at ∼3 MeV above the experimental value.
Constraining their energies to the experimental values leads to analogous improve-
ments. In particular a d5/2 hole peak is obtained at a missing energy of -17.7 MeV,
in nice agreement with the experiment (lower-right panel in Fig. 3).

3.2. Status of theoretical calculations for 16O

The contributions to the reduction of SFs are summarized in Table 1 for the p shell
orbits of 16O. The range of values labeled as “experiment” reflects the quenching
factors needed by theoretical analyses to reproduce the observed (e,e′p) data. As
mentioned in Sec. 1, SRC account for a modest part of the reduction of SFs. For
the case of hole states in 16O, both Green’s function theory 5 and variational Monte
Carlo 6 methods predict a 10% depletion. The agreement between different methods
and interactions (Bonn and Argonne forces were used) give us confidence that short-
range physics is under control and that, at low energies, its overall effect exhibits
little dependence on how realistic forces are modeled. The calculations of Sec. 3.1
shows that the largest part of the quenching is instead due to LRC effects, such as
couplings between single nucleons and collective surface phonons and configuration
mixing in the valence shell. Based on the findings of Ref. 16, it is plausible that
clustering degrees of freedom are the missing ingredient in this particular isotope.
We note that 16O is an exceptionally difficult nucleus in this respect and so far it has
defeated a complete theoretical understanding of knockout cross sections. Thus it
provides a stringent benchmark for theoretical calculations. Successful calculations
have been obtained for other nuclei 20,21.

4. Extension to Larger Systems and Asymmetric Nuclei

Experimental and theoretical studies of electron scattering reactions have led to a
global picture of the properties of protons for stable nuclei 12. The first information
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on how these features change toward the driplines has only recently become avail-
able. In particular, one-nucleon knockout experiments in inverse kinematics have
found that SFs do change with proton-neutron asymmetry. In general, the quench-
ing of quasiparticle orbits (and hence correlations) become stronger with increasing
separation energy 4.

The extension of FRPA calculations from 16O to large isotopes faces technical
challenges due to the increasing model space and computational load. A first break-
through has been obtained in Ref. 22, where self-consistent calculations of 16O were
obtained in a large basis (up to 8 oscillator shells). Similar calculations can now be
performed in the pf shell. In this case self-consistency is implemented only partially
(for now), according to Ref. 23.

Figure 4 shows first FRPA results for the spectroscopic factors of quasiparticles
around 16,28O and 40,60Ca. These are obtained form a G-matrix 24 based on the
chiral N3LO interaction and following the calculation scheme of Ref. 23. A depen-
dence on the proton-neutron asymmetry is indeed observed in the FRPA, with the
spectroscopic factors becoming smaller with increasing nucleon separation energy.
A dispersive optical model analysis, which is constrained to data up to 48Ca, has
also been extrapolated to proton rich Ca isotopes, with similar findings 25,26. How-
ever, for both analyses the change in magnitude is significantly smaller than the
one deduced from direct knockout data 4. The most asymmetric isotope in Fig. 4 is
28O with an asymmetry parameter α = (N −Z)/A ≈ 0.43. In this case, the FRPA
SFs for knockout of a proton and a neutron differ by about 11% of the IPM. This
result is in agreement with calculations of nuclear matter where, however, the only
mechanism considered was SRC 27. It must be stressed that collective excitations
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Fig. 4. SFs obtained from partially self-consistent FRPA. All numbers are given as a fraction
of the IPM value and refer to transitions from ground state to ground state. The points refer to
knockout of a nucleon from the isotope indicated nearby. The lines are a guide to the eye.
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are the most important degrees of freedom governing the reduction of SFs. These
are properly accounted for by the FRPA approach. However, realistic two-nucleon
forces such as the one used here have a tendency to overestimate the excitation
energy of giant resonances, and therefore to underestimate their importance. It
is plausible that the dependence on asymmetry seen in Fig. 4 will become more
substantial once FRPA calculations with improved forces will be available.

5. Conclusions

The Faddeev RPA method has been used to investigate the effects of SRC and
couplings of nucleons to collective excitations. The latter give the most substantial
contribution to the quenching of spectroscopic factors. Applications to asymmetric
isotopes shows a reduction of the SFs for quasiparticle orbits with increasing sepa-
ration energy. This dependence is considerably weaker than the one deduced from
heavy-ion knockout experiments. It is argued that improved forces and calculations
will be needed to resolve this issue.
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