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We review some applications of self-consistent Green’s function theory to studies of
one- and two-nucleon structure in finite nuclei. Large-scale microscopic calculations that
employ realistic nuclear forces are now possible. Effects of long-range correlations are seen
to play a dominant role in determining the quenching of absolute spectroscopic factors.
They also enhance considerably (e,e′pn) cross sections in superparallel kinematics, in
agreement with observations.

Single-particle (SP) states at the Fermi surface of shell closures [or quasipar-

ticles (QPs)] play a crucial role in nuclear structure. Both SP energies and the

interactions between states of two QPs are essential inputs to standard shell-model

(SM) calculations. The strengths of QPs [the spectroscopic factors (SFs)] and the

many-body mechanisms that determine them have also direct implications for the

effective charges in the SM. It follows that the evolution of SP properties with

changing proton-neutron asymmetry is central to the physics of exotic beams. The

behavior of SP energies has been linked to the averaged monopoles of the nuclear

interaction.1,2 Microscopic calculations of other QP properties will hopefully aid in

gaining greater insight into the structure of exotic nuclei.

This talk considers microscopic calculations of QPs properties using Green’s

function theory in the Faddeev random phase approximation (FRPA) method.3,4

The FRPA is an expansion of the many-body problem in terms of particle-vibration

couplings which allows ab-initio calculations based on modern realistic nuclear

forces. A similar formalism that could accommodate multiple vibrations has also

been considered recently in the form of Parquet theory.5 Here, we discuss two recent

applications of FRPA to the one- and two-body spectral functions.
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Fig. 1. Left. One of the self-energy diagrams resummed by the FRPA formalism. Arrows
up (down) refer to quasiparticle (quasihole) states, the Π(ph) propagators include collective
particle-hole and charge-exchange resonances, and the gII include pairing between two-particle or
two-hole vibrations. The FRPA method sums analogous diagrams, with any numbers of phonons,
to all orders.3,4 Right. Calculated single-particle spectral function for neutrons in 56Ni. Energies
above (below) EF are for transitions to excited states of 57Ni (55Ni).

Single-particle spectral function

The single-particle spectral function is defined as
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which is interpreted as the joint probability of adding or removing a nucleon at

position r while leaving the residual system in an eigenstate |ΨA±1
n 〉 of energy EA±1

n .

Fig. 1 shows the spectral function for neutrons in 56Ni, calculated in the FRPA

scheme.4 The chiral N3LO interaction6 was used with a monopole correction to

account for missing three-nucleon forces. Integrating Eq. (1) over ω ∈] − ∞, EF ]

yields the matter distribution [the density matrix ρ(r)], while for ω > 0 one has

elastic scattering states for n+56Ni. The QPs associated with the orbits in the pf

shell are also visible in the figure and are normalized to their respective SFs,
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where Σ⋆
n̂n̂(ω) is the self-energy calculated for each given QP state, n.

One-nucleon removal cross sections result from a non-trivial folding of Eq. (1),

transition operators, and final state interactions (FSI). Nevertheless, (e,e′p) reac-

tions in particular kinematics can be dominated by the spectral function7,8 and

reveal the structure of Fig. 1 in an unequivocal manner (see, for example, Ref. 9).

The FRPA formalism allows to separate the contributions of short- and long-

range correlations (SRC and LRC) to Eq. (2)10. The SFs obtained are given in the

fourth and fifth columns of Tab. 1: LRC are responsible for most of the quenching. In

order to investigate the importance of configuration mixing near the Fermi surface

(not included in the FRPA formalism), both SM and FRPA were also calculated

in the sole pf model space and with the same modified N3LO interaction. Tab. 1
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Table 1. Energies (in MeV) and spectroscopic factors (as a fraction of the independent-particle model)
for transitions to the pf valence orbits around 56Ni.4,10 The fourth and fifth columns correspond to the
contributions from SRC only and to the full FRPA result (including both SRC and LRC). The corrections
∆Zα are obtained by comparing shell model and FRPA in the pf shell alone.

Quasi- FRPA Exp.11 FRPA FRPA ∆Zn FRPA

particle (SRC) +∆Zα Exp.12

orbit (10 shells) (10 sh.) (10 sh.) (pf shell) (10 sh.)
57Ni: ν1p1/2 -11.43 -9.134 0.96 0.63 -0.02 0.61

ν0f5/2 -10.80 -9.478 0.95 0.59 -0.04 0.55

ν1p3/2 -12.78 -10.247 0.95 0.65 -0.03 0.62 0.58(11)
55Ni: ν0f7/2 -19.22 -16.641 0.95 0.72 -0.03 0.69

57Cu: π1p1/2 -1.28 +0.417 0.96 0.66 -0.04 0.62

π0f5/2 -0.58 0.96 0.60 -0.02 0.58

π1p3/2 -2.54 -0.695 0.96 0.67 -0.02 0.65
55Co: π0f7/2 -9.08 -7.165 0.95 0.73 -0.02 0.71

shows that the corrections ∆Zn, due to extra correlations in the SM, are almost

negligible in this case. The total results after adding this correction are given by

the seventh column and nicely agree with the experiment. Similar conclusions were

obtained for 48Ca.10 Thus, the overall quenching of absolute SFs of valence orbits

is mainly explained by the coupling of particles to collective modes, and requires

model spaces that cannot be approached by standard SM calculations. It remains

clear that SM effects have an important impact on open-shell nuclei where they

determine relative SFs (i.e., the fragmentation pattern at low energy).13

Two-nucleon emission

The cross section for the electromagnetic emission of two nucleons can be fully

written in terms of the scattering state of the two final nucleons, the electromagnetic

current operator and the two-nucleon overlap function (TOF). The Pavia model for

(e,e′pN) has been developed over the years to a sophisticated treatment of the

operator: both one-body (acting on only one nucleon of each correlated pair) and

two-body currents are added. The latter include π-seagull, pion-in-flight, and ∆-

isobar terms. See Refs. 14, 15 and references therein for details. FSI are treated

using optical models for nucleon-core scattering and the two-nucleon interaction

between the emitted particles at first order.

The information regarding correlations in the initial state is contained in the

TOF, ψn(r1, r2) ≡ 〈ΨA−2
n |ar1ar2 |Ψ

A
0 〉. In the FRPA scheme this is computed solving

the RPA equations for two-hole states and it is a partial step in the calculation of

the single-particle spectral functions [see the propagator gII(ω) in Fig. 1, left].

Fig. 2 shows the 16O(e,e′pN) cross section to the 1+2 excited stated of 14N at

3.95 MeV in superparallel kinematics, as obtained with different approximations

for the TOF. In this particular case LRC effects are dominant. This is seen by

comparing to a Jastrow ansatz for the TOF which includes only central SRC and

leads to a clear underestimation of the cross sections. The coupled cluster (including
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Fig. 2. Left. Theoretical cross sections for 16O(e,e′pN)14N to the 1+2 state as obtained with
different models for nuclear correlations.14,16,15 Right. FRPA results from Ref. 15, including all
currents (full line), compared to the experiment.17 The data includes both the 1+2 , 2+1 and 0+1
final states of 14N. Broken lines are obtained by partially neglecting some two-body currents.14,17

up to double excitations)16 and the FRPA15 calculations include both LRC and

SRC effects. The FRPA yields a larger contribution for small missing energies. The

latter result is compared with the experimental cross section of Refs. 17 in Fig. 2.
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16. C. Giusti, H. Müther, F. D. Pacati, and M. Stauf, Phys. Rev. C 60, 054608 (1999).
17. D. G. Middleton et al., Eur. Phys. J. A 29, 261 (2006); ibid., 43, 137 (2010);

http://arxiv.org/abs/1004.1635

