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Abstract

Lymphangioleiomyomatosis (LAM) is a multisystem disease of
women, affecting lungs, kidneys, and lymphatics. It is caused by
the proliferation of abnormal smoothmuscle–like LAM cells, with
mutations and loss of heterozygosity in the TSC1 or, more
frequently, TSC2 genes. Isolated pulmonary LAM cells have been
difficult to maintain in culture, and most studies of LAM lung
cells involve mixtures of TSC2 wild-type and TSC2-null cells. A
clonal population of LAM lung cells has not been established,
making analysis of the cells challenging. Cell lines have been
established from angiomyolipomas, a common manifestation of

LAM, and from tumors from patients with TSC. Circulating LAM
cells have also been isolated from blood and other body fluids.
LAM cells may also be identified in clusters apparently derived
from lymphatic vessels. Genetics, patterns of antigen expression,
and signaling pathways have been studied in LAM lung tissue
and in LAM cell models, although rarely all in the same study.
We show here that LAM cells manifest differences in these
characteristics, depending on the source investigated, suggesting
further studies.
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Lymphangioleiomyomatosis (LAM) is a
multisystem disease occurring predominantly
in women, involving lungs, the lymphatic
system, and kidneys (Figure 1). LAM can
occur sporadically or in conjunction with
tuberous sclerosis complex (TSC), an
autosomal dominant disorder characterized
by hamartomatous growths in the central
nervous system, skin, heart, liver, and
eyes. Diagnosis is by biopsy showing positive
reactivity with monoclonal antibody
HMB45 (1), which recognizes the gp100
melanocytic protein, or by high-resolution
computed tomography scan revealing
characteristic pulmonary cysts plus the
presence of TSC, angiomyolipoma (AML),
lymphangioleiomyoma (LLM, lymphatic
masses due to dilation of lymph vessels) (2),
or high serum concentrations of vascular
endothelial growth factor (VEGF)-D (3).

The LAM cell is most commonly defined
as an abnormal smooth muscle–like cell with
inactivating mutations in TSC1 (chromosome

9q34; encoding hamartin) or, predominantly,
TSC2 (16p13; tuberin). In addition, several
molecular markers are beginning to emerge
as characteristic LAM cell antigens (Table 1).
Hamartin and tuberin negatively regulate the
mechanistic target of rapamycin (mTOR),
such that deficiency/dysfunction of hamartin
or tuberin leads to constitutive activation of
mTOR and uncontrolled cell growth and
proliferation, usually quantified by an
increase in phospho-S6 kinase (4, 5). mTOR
inhibitors, such as rapamycin (sirolimus), are
the only proven therapy for LAM, but
although rapamycin slows LAM cell
proliferation, it does not cause cell death
(6–8). The origin of the LAM cell
is unknown. Here, we examine what is
known about the LAM lung cell and
contrast/compare that to knowledge from
models of human cells used to study LAM.
This review focuses on the human LAM cell
and excludes the valuable animal models
(reviewed in Reference 9).

LAM Cell Genetics

LAM cells are usually characterized by
TSC2-inactivating mutations or loss of
heterozygosity (LOH) of specific microsatellite
markers on chromosome 16 (4, 10, 11).
Due to the prevalence of AMLs in patients
with sporadic LAM (12), TSC2 LOH (10)
and somatic TSC2 mutations (4) were first
identified in DNA isolated from renal
AMLs. Identical mutations were found in
cells microdissected from the LAM lung as
in the tissue from the corresponding AML
(4), and TSC2 LOH was also identified,
supporting Knudson’s “two-hit” tumor
suppressor gene model (13) (Figure 2). The
AML and pulmonary LAM cells were
concordant for LOH at each microsatellite
marker, thus suggesting a common genetic
origin for AML and pulmonary LAM (4).

Because sporadic LAM results from
somatic, and not germline, mutations
(Figure 2), it is often difficult to isolate a
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sufficiently pure population of “tumor” cells
to successfully sequence or perform LOH
analysis or biochemical assays without the
data from the wild-type cells overwhelming
the analysis. Badri and colleagues (14) used
next-generation sequencing to look for
TSC2 mutations in DNA isolated from
microdissected LAM lung nodules from
10 patients with sporadic LAM. TSC2
mutations were found in eight samples,
with variant frequencies ranging from 4%
to 60%, despite the enrichment of sample

by microdissection. Four of the eight had
a detectable second-hit inactivation of TSC2
(three with LOH, one with a second mutation),
whereas four had such low mutation
frequencies for the first TSC2 mutation that
it was difficult to experimentally detect
LOH. Interestingly, two of the samples had
neither a TSC2 nor TSC1 mutation, and had
no evidence of mTOR activation, as
determined by the presence of phospho-S6
kinase. These studies underline the
importance of cell enrichment for genetic

analysis and suggest that alternative genetic
changes may be present in LAM.

LAM Cells in Tissues

LAM lung nodules are composed of more
proliferative spindle-shaped cells and less
proliferative, differentiated epithelioid cells,
both of which express a-smooth muscle
actin (1, 5, 15). The epithelioid cells are
more likely to react with HMB45 (15–95%
of cells are reactive in lung biopsy or
transplant tissue) (16). LAM nodules also
contain type II pneumocytes, lymphatic
endothelial cells, and mast cells (17–19).
Wild-type fibroblast-like cells have been
identified in LAM lung nodules that may
provide the proper environment for LAM cell
growth (20). Reactivity to antibodies to high-
mobility group A2 was detected in all lung
tissue samples from 21 patients with LAM,
and it is suggested that misexpression of this
gene activates a tumorigenic pathway, leading
to a benign mesenchymal tumor (21).

Lung biopsy and transplant tissue from
patients with sporadic LAM revealed strong
positive reactivity with an anti-podoplanin
antibody in LAM cells and lymphatic
endothelial cells (16), which line enlarged
lymphatic capillaries infiltrating the LAM
lung nodules (18). Antibodies to lymphatic
markers (e.g., vascular endothelial growth
factor receptor [VEGFR]-3) show more
reactivity in tissue from late-stage LAM
(lung explant) than early-stage LAM (lung
biopsy) (16). By immunohistopathology,
LAM lung nodules are reactive to
antibodies against diverse molecules,
including hormone and chemokine
receptors (summarized in Table 1). The
different protein markers on LAM cells
from several sources suggest a potential
process of cell differentiation within specific
microenvironments, and may also suggest
that the gene expression of these markers is
modified by the cell’s microenvironment
(e.g., soluble factors, cell–cell interaction).

AMLs are composed of smooth muscle,
fat, and vascular components. Both isolated
smooth muscle cells and fat cells exhibit
TSC2LOH. Five different vessel types were
identified in AMLs from four patients
with sporadic LAM: cellular, collagenous,
hemangiopericytic, glomeruloid, and
aneurysmatic (22). TSC2LOH was detected
in all but the collagenous type.

LAM cells infiltrate the walls of
lymphatics, causing obstruction of the
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Figure 1. Comparison of the manifestations of sporadic lymphangioleiomyomatosis (LAM)
versus TSC. Patients with sporadic LAM present with lung nodules and cystic lung destruction,
and may have involvement of the kidneys (angiomyolipomas [AMLs]), uterus, lymphatics
(pleural effusions, LLMs), brain (meningioma), and blood (circulating LAM cells). Patients
with TSC may present with brain involvement (tubers, subependymal nodules [SEN],
subependymal giant cell astrocytomas [SEGA]), heart (rhabdomyomas), lung (LAM lung nodules
and cysts), kidney (AML), skin (hamartomas), and blood (circulating LAM cells). LCCs =
lymphangioleiomyomatosis cell cluster; LLMs = lymphangioleiomyoma; TSC = tuberous
sclerosis complex.
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lymph nodes or lymphatic vessels, leading
to lymphangioleiomyoma, adenopathy,
and/or chylous effusions. LAM cell clusters,
nests of HMB45-positive LAM cells
enveloped by lymphatic endothelial cells
that express VEGFR-3 and podoplanin,
have been identified in chylous fluid, the
uterus, and within the lumen of lymphatic
vessels that infiltrate the LAM nodule (23,
24). VEGF-D and VEGFR-3 were also
detected in LAM lung nodules (18).
Because serum VEGF-D levels correlate
with the degree of lymphatic involvement
and disease severity (25, 26), it has
been proposed that VEGF-D, acting through
VEGFR-3, may facilitate the growth of
lymphatic vessels in the LAM nodule and
be involved in metastasis.

Human LAM Cell Models

Pulmonary
Cultures of cells derived from LAM lung,
after biopsy or transplant, grow as a mixture
of TSC2 wild-type and TSC2-null cells,
with increased activation of mTOR (5, 27).

A homogeneous clonal population of
TSC2-null pulmonary cells has not been
established. An attempt to reprogram LAM
lung cells derived from transplant resulted in
induced pluripotent stem cells (iPSC) lines
that exhibited normal TSC2 and
TSC1 expression, suggesting that TSC2
deficiency inhibited production of iPSC lines
(28). LAM lung cells, as defined by TSC2
mutation and/or LOH, do not seem to grow
as a clonal population in cell culture; these
cells are only detected in the presence of
TSC2 wild-type cells after enrichment.

Kidney
AML cells have been used as surrogates to
understand LAM lung cells. The 621–101
cells were derived from an AML and have a
TSC2 mutation (G1832A or R611Q) and
TSC2LOH at chromosome 16
marker D16S291 (29). These cultures
have been used to elucidate the role of
estrogens (29, 30), prostaglandins (31), and
autophagy (32). 621–101 AML cells have
also been used in co-cultures with LAM-
associated fibroblasts (WT fibroblast-like
cells from LAM lung nodules) to

demonstrate the need for both cell types to
provide the proper environment for
cathepsin K activation (33). The 621–101
line was immortalized by transfection with
HPV E6/E7 and telomerase (34). Upon
transfection of this cell line with TSC2, the
cell morphology changed from spindle-
shaped (TSC22) to cuboidal (TSC21).
These cells also took on a lymphatic
endothelial phenotype with expression of
markers such as VEGFR-3 and podoplanin,
suggesting a lymphatic origin for the
LAM cell (35).

Lesma and colleagues isolated cells
from AMLs from a female (36) and male
patient with TSC (37). Although both cell
lines had germline mutations in TSC2, one
line had TSC2LOH, whereas the other had
promoter methylation, and thereby
epigenetic silencing, of TSC2. The cell lines
expressed CD44v6, and both required
epidermal growth factor for growth.

Skin
Because of the challenges obtaining a
homogeneous clonal population of TSC2-null
pulmonary cells, we have used other

Table 1. Characteristics of Human Lymphangioleiomyomatosis Cells (besides gp100 and Smooth Muscle Actin) from Various
Tissues

Lungs Kidneys Uterus Skin
Lymphatic
System Circulating Cells

Genetics Mutation, LOH (4, 10) Mutation, LOH,
promoter
methylation
(4, 10, 37)

Mutation (40) LOH in lymph
nodes (10)

LOH (41)

Markers ER (53–55), PR (53, 56), CD44 (57),
CD44v6 (57), PRLr (58), EPOR
(44), syndecan-1/2 (27), EGFR
(55), CD90 (59), chemokine
receptors (43, 60), CD63 (61),
b-catenin (62), E-cadherin (55),
podoplanin (55), TRAIL (27),
RANKL (27), galectin-3 (63),
MMPs (54, 64), RAS (19), IGF
system (65), COX-2 (31), HMGA2
(21), VEGFR-3 (66), TRP-1 (67),
TRP-2 (67), MART-1 (67), CA IX
(33), tyrosine kinase Syk (75)

Chemokine receptors
(60), EGFR (36, 37),
CD44v6 (36, 37),
galectin-3 (63),
COX-2 (31)

VEGFR-3
(23, 68)

CD9 (41),
galectin-3 (63)

VEGFR-3 (18, 23,
68), podoplanin
(18, 23), ER
(69), PR (69)

CD235a (blood), CD9
and CD44v6 (urine,
chyle, BALF) (41)

mTOR Activated (70, 71) Activated (72) Activated (47) Activated (73)
Growth factors/

chemokines
PRL (58), OPG (27), EGF (55), CCL2

and other chemokines (43),
VEGF-C (23, 66), VEGF-D (25, 66),
estradiol (54), PDGF (71)

EGF (36, 37), CXCL12
(60), CX3CL1 (60),
CCL11 (60), CCL24
(60), CCL28 (60),
estradiol (29)

VEGF-C (23),
VEGF-D
(25)

CCL2 (42),
epiregulin (74)

VEGF-C (23, 66),
VEGF-D (25, 66)

Motility OPG (27), CCL2 (43)

Definition of abbreviations: BALF = BAL fluid; CA IX = carbonic anhydrase IX; COX-2 = cyclooxygenase-2; EGF = epithelial growth factor; EGFR =
EGF receptor; EPOR= erythropoietin receptor; ER = estrogen receptor; HMGA2 = high-mobility group A2; IGF = insulin-like growth factor; LOH = loss of
heterozygosity; MART-1 =melanoma antigen recognized by T cells; MMPs =matrix metalloproteinases; mTOR =mechanistic target of rapamycin; OPG =
osteoprotegerin; PDGF = platelet-derived growth factor; PR = progesterone receptor; PRL = prolactin; PRLr = PRL receptor; RANKL = receptor activator of
NF-kB ligand; RAS = renin–angiotensin system; TRAIL = TNF-related apoptosis–inducing ligand; TRP = tyrosinase-related protein; VEGF-D = vascular
endothelial growth factor D; VEGFR-3 = VEGF receptor 3.
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tumors with loss of TSC1 or TSC2,
especially skin tumors, to gain insights that
have shown relevance to LAM. Patients
with TSC are predisposed to developing
tumors in multiple organs (Figure 1) due
to germline mutation in TSC1 or TSC2
(38) (Figure 2). We found that TSC
skin tumors (39) contain fibroblast-like
cells with two inactivating mutations in
TSC1 or TSC2, and that primary cells
from some TSC skin tumors are
greatly enriched for two-hit cells (40).
Studies using these TSC skin tumor cells
have advanced LAM research. The
observation of increased CD9 expression
in TSC skin tumor cells led to successful
use of this marker in the enrichment of
LAM cells from BAL fluid (BALF) and
urine (41). TSC skin tumor cells
overexpressed CCL2 (42), and this
chemokine was also implicated in LAM
pathogenesis (43). TSC skin tumor cells
were used to show that erythropoietin, a
factor that may increase disease
progression in LAM, stimulates the
proliferation of TSC22/2 cells more than
TSC21/2 cells (44). Cells grown from
TSC skin tumors and normal-appearing
skin were reprogrammed into TSC21/2

iPSC lines that recapitulate features of
LAM (28).

Skin tumor cells have also been used
to create a xenograft model for TSC. The
incorporation of TSC2-null cells into skin
xenografts in mice causes histological
changes that mimic those observed in
native tumors (e.g., increased blood
vessels, proliferation of the overlying
epidermis, recruitment of mononuclear
phagocytes) (45). Treatment with sirolimus
reverses these abnormalities in xenografts
(45) and improves patient skin lesions when
given orally (46) or topically (47). It is
notable that these improvements were
observed despite the continued presence of
TSC2-null cells in treated xenografts (45)
and patients (46).

Circulating Cells
LAM cells, as defined by TSC2LOH,
have been isolated from blood, urine,
expectorated chyle, pleural and abdominal
chylous fluids, and BALF (41, 48–50). As
with tissue, circulating LAM cells need to be
enriched to be studied genetically. Density
gradient centrifugation of blood is used to
enrich tumor cells, followed by FACS with
CD45 and CD235a (41, 48). Circulating
LAM cells are found independent of disease
stage (41, 48). Cells with TSC2LOH were
found in urine, mostly in patients with
AMLs, and in chylous fluid (41), after FACS
with antibodies to CD44v6 and CD9,
prometastatic molecules that may enable cell
mobilization and anchorage to sites of
metastasis (41).

LAM cells isolated from different
body fluids are phenotypically different:
LAM cells from urine and BALF cannot be
isolated using anti-CD45 and anti-
CD235a antibodies, and those from blood
cannot be isolated with anti-CD44v6 and
anti-CD44 or anti-CD44v6 and anti-CD9
antibodies (41). In most patients with
sporadic LAM, LAM cells isolated from
different body fluids of the same patient
showed identical TSC2LOH patterns for
specific microsatellites, consistent with a
common genetic origin. However, almost
26% of patients had different patterns of
TSC2LOH in blood subpopulations (51),
suggesting that a patient may have
different clones of LAM cells. Different
patterns of TSC2LOH were also detected
in cells from blood versus urine (51).
Cells with TSC2LOH were isolated from

blood of patients with LAM after bilateral
lung transplantation, suggesting that
circulating LAM cells may originate
from somewhere other than the lung
(51). Treatment with rapamycin
significantly decreased, in a time-
dependent manner, the ability to detect
cells with TSC2LOH in blood and
urine (49).

The specificity of TSC2LOH in
circulating cells as a marker for LAM is
not definitive, although it may be a
useful marker when coupled with clinical
data. In a recent study analyzing samples
from patients with different lung diseases
(52), cells from blood and urine were
isolated and analyzed for TSC2LOH.
TSC2LOH was found in a patient with
sarcoidosis in the CD92CD44v62 cell
population from urine and in a case of
pulmonary Langerhans cell histiocytosis
in unsorted blood cells. Interestingly,
one patient with pulmonary Langerhans
cell histiocytosis showed TSC2LOH in
cells expressing CD1a, a marker of
Langerhans cells. Cells with TSCLOH have
been found in patients with cancers,
including lung cancer, supporting the
hypothesis that TSCLOH could be
a common event in different cancerous
processes.

Conclusions

The phenotype of a LAM cell differs
according to its source. The biomarkers
that are constant across different
types of human LAM cells have not
been determined rigorously (Table 1).
LAM cells may retain the potential
to differentiate (e.g., the different
kinds of LAM cells in an AML) or
may retain stem cell characteristics.
Mutations in TSC2 also define a LAM
cell, although other genetic/biochemical
changes cannot be ruled out. The
presence of TSC2LOH may be
diagnostic only with the presence of
other clinical factors or cell surface
markers. The origin of the LAM cell
remains elusive. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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Figure 2. LAM may be sporadic or occur in
association with TSC. In sporadic LAM,
germline TSC1/TSC2 are intact, but mutation
of one allele of TSC1 or TSC2, followed by
deletion of a region of the other allele near
TSC1 or TSC2 (causing loss of heterozygosity)
in somatic cells results in TSC2-null LAM cells.
In TSC/LAM, germline TSC1 or TSC2 is mutated,
resulting in somatic cells with mutations and
eventual deletion of a region of the chromosome in
the vicinity of TSC1 or TSC2. The asterisk indicates
a mutation, and the dash indicates a deletion.
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