Real-World Use of Apixaban for Stroke Prevention in Atrial Fibrillation

A Systematic Review and Meta-Analysis

Marco Proietti, MD*; Imma Romanazzi, MD*; Giulio Francesco Romiti, MD; Alessio Farcomeni, PhD; Gregory Y.H. Lip, MD

Background and Purpose—The use of oral anticoagulant therapy for stroke prevention in atrial fibrillation has been transformed by the availability of the nonvitamin K antagonist oral anticoagulants. Real-world studies on the use of nonvitamin K antagonist oral anticoagulants would help elucidate their effectiveness and safety in daily clinical practice. Apixaban was the third nonvitamin K antagonist oral anticoagulants introduced to clinical practice, and increasing real-world studies have been published. Our aim was to summarize current evidence about real-world studies on apixaban for stroke prevention in atrial fibrillation.

- *Methods*—We performed a systematic review and meta-analysis of all observational real-world studies comparing apixaban with other available oral anticoagulant drugs.
- **Results**—From the original 9680 results retrieved, 16 studies have been included in the final meta-analysis. Compared with warfarin, apixaban regular dose was more effective in reducing any thromboembolic event (odds ratio: 0.77; 95% confidence interval: 0.64–0.93), but no significant difference was found for stroke risk. Apixaban was as effective as dabigatran and rivaroxaban in reducing thromboembolic events and stroke. The risk of major bleeding was significantly lower for apixaban compared with warfarin, dabigatran, and rivaroxaban (relative risk reduction, 38%, 35%, and 46%, respectively). Similarly, the risk for intracranial hemorrhage was significantly lower for apixaban than warfarin and rivaroxaban (46% and 54%, respectively) but not dabigatran. The risk of gastrointestinal bleeding was lower with apixaban when compared with all oral anticoagulant agents (*P*<0.00001 for all comparisons).
- *Conclusions*—Use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found with apixaban compared with warfarin, dabigatran, and rivaroxaban. *(Stroke.* 2017;49:00-00. DOI: 10.1161/STROKEAHA.117.018395.)

Key Words: apixaban ■ atrial fibrillation ■ major bleeding ■ stroke ■ warfarin

The use of oral anticoagulant (OAC) therapy for stroke prevention in atrial fibrillation (AF) has been transformed by the availability of the nonvitamin K antagonist oral anticoagulants (NOACs) which show relative efficacy, safety, and convenient alternatives to the vitamin K antagonists (eg, warfarin).^{1,2} Currently, 4 NOACs are available for clinical use, namely the direct thrombin inhibitor, dabigatran; and the oral factor Xa inhibitors, rivaroxaban, apixaban, and edoxaban. The numbers of postmarketing observational real-world studies (RWS) have largely reflected the sequence these drugs have been introduced to the market.³ Compared with clinical trials, the RWS have less selected cohorts, helping to understand the effect of NOACs in specific clinical scenarios or conditions.³ Prior RWS have analyzed and been pooled together for dabigatran and rivaroxaban, broadly confirming the results from their respective phase III clinical trials.^{4,5}

Our aim was to perform a systematic review and meta-analysis of all observational RWS comparing apixaban with other available OAC drugs (warfarin, dabigatran, rivaroxaban, and edoxaban).

Methods

To perform this systematic review and meta-analysis, the following criteria for studies selection were considered: (1) observational studies focusing on patients with established AF; (2) studies reporting data on patients with AF prescribed with OAC, comparing data about patients treated with apixaban and warfarin, dabigatran, rivaroxaban,

Received June 15, 2017; final revision received October 11, 2017; accepted October 18, 2017.

From the Institute of Cardiovascular Sciences, University of Birmingham, United Kingdom (M.P., I.R., G.F.R., G.Y.H.L.); Department of Neuroscience, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.P.); Department of Public Health and Infectious Disease, Sapienza-University of Rome, Italy (A.F.); and Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Denmark (G.Y.H.L.). *Drs Proietti and Romanazzi contributed equally.

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA. 117.018395/-/DC1.

Correspondence to Gregory Y.H. Lip, MD, City Hospital, University of Birmingham Institute of Cardiovascular Sciences, Birmingham B18 7QH, United Kingdom. E-mail g.y.h.lip@bham.ac.uk

^{© 2017} American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

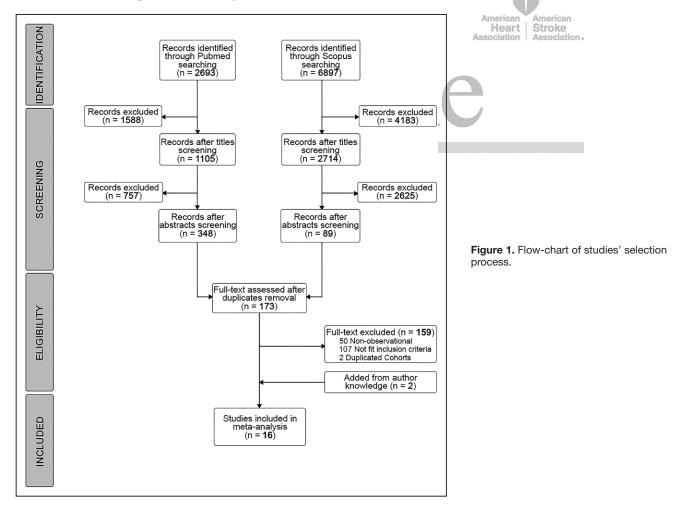
or edoxaban and their impact on major adverse events on follow-up observation; (3) At least 100 patients, with 50 patients taking apixaban or a relevant subgroup of apixaban treated patients; (4) At least 3 months of follow-up. Exclusion criteria were as follows: (1) conference abstracts, letters, comments, case reports, and editorials; (2) studies not published in English. No explicit protocol was drafted to perform the systematic review. The systematic review and meta-analysis were performed according to PRISMA recommendations (http://www.prisma-statement.org/). The data that support the findings of this study are available from the corresponding author on reasonable request.

Search Strategy

A comprehensive literature search was performed using PubMed and Scopus databases up to 6 March, 2017. Search terms included atrial fibrillation, apixaban, dabigatran, rivaroxaban, and edoxaban. The electronic search was performed for peer-reviewed journals, and, if applicable, some further additional references were gathered from searches through bibliographies of identified papers and from authors' personal knowledge.

All details about studies selection, data extraction, outcomes definition, as well as on bias assessment,⁶ and statistical analysis have been reported in the online-only Data Supplement. All statistical analyses were undertaken using Review Manager (RevMan) version 5.3 (The Cochrane Collaboration 2014, Nordic Cochrane Centre, Copenhagen, Denmark).

Results


The original literature search retrieved a total of 9680 results from Pubmed and Scopus databases (Figure 1). After the

selection process (Figure 1), a total of 173 studies underwent full-text assessment. After the exclusion of 158 papers and the after addition of 2 papers, based on authors knowledge, a total of 16 studies⁷⁻²² were included in the systematic review and the final meta-analysis (Table).

Study Characteristics

Overall, a total of 170814 patients treated with apixaban were included in the 16 studies. Of these, 2 studies were published in 2015,^{8,9} 7 studies were published in 2016,¹⁰⁻¹⁶ and 7 studies were published in 2017.^{7,17-22} Three of 16 studies were single-center cohort studies,⁸⁻¹⁰ 6 studies were retrieved from insurance databases, 1 study was a regional database,⁷ and 6 studies were taken from nationwide registries.^{12,15,18-20,22} Eight studies were based in Europe while 6 studies were based in United States, 1 study was based in the Middle-East, and 1 study in Japan.

Mean/median age was consistent among most of the studies, ranging from 70 to 76 years; 1 study enrolled slightly younger patients, mean (SD) age 68.5 (12.4) years¹³ while another study enrolled significantly older patients, mean (SD) age 83.9 (8.2) years.²² Four studies enrolling patients with a high thromboembolic risk (CHA₂DS₂-VASc score ≥4 [congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65–74 years, sex category]).^{14,16,17,22} Eight studies compared apixaban with warfarin, dabigatran, and rivaroxaban^{8,9,12,15,19,20,22}; 4 studies compared

Study	Year	Study Cohort	Location	n*	Reduced Dose	Age (Mean)	CHA ₂ DS ₂ - VASc (Mean)	Comparator(s)	Main Outcomes	FU (Mean)
Lee et al ⁸	2015	Single- center cohort	United Kingdom	53	NA	74	3 (median)	Warfarin, dabigatran, rivaroxaban	CVE, any bleeding, all-cause death, OAC switching	0.92 y
Shiga et al ⁹	2015	Single- center cohort	Japan	102	36 (35.3%)	70	NA	Warfarin, dabigatran, rivaroxaban	Discontinuation, TE, major bleeding	1.83–2 y
Al-Khalili et al ¹⁰	2016	Single- center cohort	Sweden	251	NA	73	3 (median)	Dabigatran, rivaroxaban	Any bleeding, discontinuation, TE, all- cause death	0.95–1.18 y
Coleman et al ¹¹	2016	Insurance database	United States	4332	671 (15.5%)	71	3.47	Warfarin	ICH, ischemic stroke	0.48–0.52 y
Larsen et al ¹²	2016	Nationwide registries	Denmark	6349	0	71.3	2.8	Warfarin, dabigatran, rivaroxaban	Stroke/SE, ischemic stroke, all-cause death	1.9 y
Lip et al ¹³	2016	Insurance database	United States	7438	1002 (13.5%)	68.5	2.8	Warfarin, dabigatran, rivaroxaban (PSM comparison)	Major bleeding	0.40–0.48 y
Noseworthy et al ¹⁴	2016	Insurance database	United States	6565	1201 (18.3%)	73 (median)	4 (median)	Dabigatran, rivaroxaban (PSM comparison)	Stroke/SE, major bleeding	NA
Staerk et al ¹⁵	2016	Nationwide registries	Denmark	6899	2547 (36.9%)	76 (median)	3.11	Warfarin, dabigatran, rivaroxaban	Stroke/SE, ICH	0.56–1.06 y
Yao et al ¹⁶	2016	Insurance database	United States	7698	1393 (18.1%)	73 (median)	4 (median)	He Warfarin ^{socia}	art cistrore major	0.50 y
Abraham et al ¹⁷	2017	Insurance database	United States	6576	NA	72.3	4.0	Dabigatran, rivaroxaban (PSM comparison)	GI bleed	NA
Altay et al18	2017	Nationwide registry	Turkey	625	NA	70.3	NA	Dabigatran, rivaroxaban	TE, any bleeding	0.9 y
Forslund et al ⁷	2017	Regional registry	Sweden	3587	1126 (31.4%)	75	3.69	Warfarin	Any stroke/IS/TIA, major bleeding, all-cause death	1.07–1.61 y
Halvorsen et al ¹⁹	2017	Nationwide registries	Norway	6506	1901 (29.2%)	74.5	2.93	Warfarin, dabigatran, rivaroxaban	Major/CRNM bleeding	0.39–0.58 y
Lamberts et al ²⁰	2017	Nationwide registries	Denmark	7963	3010 (37.8%)	75.4	3 (median)	Warfarin, Dabigatran, rivaroxaban	Major bleeding, persistence	0.73–1.4 y
Li et al ²¹	2017	Insurance database	United States	38 470	6568 (17.1%)	70.9	3.2	Warfarin (PSM comparison)	Stroke/SE, major bleeding	0.55 y
Nielsen et al ²²	2017	Nationwide registries	Denmark	4400	100%	83.9	4.3	Warfarin, dabigatran, rivaroxaban	Stroke/SE, IS, hemorrhagic stroke, major bleeding, Gl bleeding, any bleeding	2.3 y

Table. Selected Studies for Systematic Review and Meta-Analysis

CRNM indicates clinically relevant nonmajor; CVE, cerebrovascular events; FU, follow-up; GI, gastrointestinal; ICH, intracranial hemorrhage; IS, ischemic stroke; NA, not available; OAC, oral anticoagulant; PSM, propensity score matching; SE, systemic embolism; TE, thromboembolic events; and TIA, transient ischemic attach. *Number of patients is referred to number of patients treated with apixaban.

apixaban directly only with warfarin^{7,11,16,21}; and 4 studies compared apixaban with both dabigatran and rivaroxaban.^{10,14,17,18} No studies were retrieved comparing apixaban with edoxaban.

Data about use of reduced dose were available for 10 out of 16 studies.^{7,9,11,13–16,19–21} The lowest proportion of the

reduced dose was $13.5\%^{13}$ whereas the highest proportion reported was $37.8\%^{20}$; of note, 5 of 10 studies reported a proportion of reduced dose of >25%.^{7,9,15,19,20} One study comprised only patients prescribed with NOACs reduced dose.²²

Study Results

In most of the studies comparing apixaban with warfarin, apixaban was associated with a lower risk for stroke and systemic embolic events, as well as for major bleeding, particularly intracranial hemorrhage (ICH).^{11,16,21} Only in the study by Forslund et al,⁷ no difference was found between apixaban and warfarin.

Overall, the studies that compared apixaban with dabigatran and rivaroxaban found that apixaban was broadly comparable with dabigatran in terms of stroke/systemic embolic events with unclear differences compared with rivaroxaban.^{10,14,18} Conversely, apixaban demonstrated a significant lower risk for major bleeding events.^{10,14,17,18} In the study by Abraham et al,¹⁷ the lower risk of gastrointestinal bleeding (GIB) with apixaban was independent of age strata.

Risk of Bias Evaluation

A bias evaluation was performed (Table I in the online-only Data Supplement). Overall, most studies reported a low risk of bias (11 studies) while 3 studies^{10,12,22} had a moderate risk of bias and 2 studies^{8,18} had a high risk of bias. We did not find significant publication bias in the main primary outcomes, for comparisons between apixaban, warfarin, and dabigatran (Figures I and II in the online-only Data Supplement) while a small effect could be detected for rivaroxaban, particularly for the any thromboembolic event outcome (Figure III in the online-only Data Supplement) and similarly for dabigatran, particularly for the major bleeding outcome (Figure IIB in the online-only Data Supplement).

Meta-Analysis of Selected Studies

Apixaban Versus Warfarin

When comparing apixaban and warfarin, there was overall no significant difference in any thromboembolic events (odds ratio [OR], 0.92; 95% confidence interval [CI], 0.71–1.17; Figure 2A). In the regular dose group, there was a significant reduction in risk of any thromboembolic event (OR, 0.77; 95% CI, 0.64–0.93); conversely, the reduced dose subgroup had a significant 27% relative risk increase in any thromboembolic event (P<0.0001 for subgroup differences).

For stroke, no significant difference was found between apixaban and warfarin, both in the regular and reduced dose subgroups (Figure 2B). Conversely, hemorrhagic stroke risk was significantly reduced in apixaban treated patients (36% relative risk reduction [RRR]; P=0.0003), especially for the regular dose group (Figure IV in the online-only Data Supplement).

Compared with warfarin, major bleeding risk was significantly lower for patients treated with apixaban (OR, 0.62; 95% CI, 0.51–0.75), with consistency for regular and low dose subgroups (Figure 2C). Risk reduction with apixaban was even greater when considering ICH (46% RRR; P<0.00001) or GIB (OR, 0.63; 95% CI, 0.57–0.70; P<0.00001) compared with warfarin (Figure V in the online-only Data Supplement). The risk for any bleeding was also lower in apixaban patients (P=0.009; Figure VI in the online-only Data Supplement).

Given the extremely high level of heterogeneity, we did not perform meta-analysis for occurrence of all-cause death. Currently, only a limited number of RWS reported on allcause death risks comparing apixaban and warfarin (Figure

A	C
Any Thromboembolic Event	Major Bleeding
Apixaban Warfarin Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl	Apixaban Warfarin Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
1.1.1 Regular or Any Dose	1.4.1 Regular or Any Dose Forsiund 2017 79 3587 272 12919 10.8% 1.05 (0.81, 1.35)
Larsen 2016 225 6349 1447 35436 16.5% 0.86 [0.75, 1.00]	Halvorsen 2017 49 6506 181 11427 9.7% 0.47 [0.34, 0.65]
Li 2017 394 38470 609 38470 16.7% 0.64 [0.57, 0.73]	Lamberts 2017 252 7963 1128 24230 12.4% 0.67 [0.58, 0.77] Larsen 2016 109 6349 1198 35436 11.6% 0.50 [0.41, 0.61]
Shiga 2015 2 102 2 200 1.4% 1.98 [0.27, 14.26] Staerk 2016 91 4352 419 18094 15.2% 0.90 [0.72, 1.13]	Lee 2015 9 53 18 580 3.6% 6.39 [2.71, 15.05]
Yao 2016 33 7695 51 7695 11.2% 0.65 [0.42, 1.00]	Li 2017 753 38470 1303 38470 12.9% 0.57 [0.52, 0.62]
Subtotal (95% CI) 57021 100475 61.8% 0.77 [0.64, 0.93] Total events 745 2539	Shiga 2015 1 102 4 200 0.7% 0.49 [0.05, 4,40] Yao 2016 58 6302 176 7695 10.0% 0.40 [0.29, 0.53]
Heterogeneity: Tau ² = 0.02; Chi ² = 13.20, df = 5 (P = 0.02); l ² = 62%	Subtotal (95% Cl) 76296 137921 81.8% 0.64 (0.51, 0.80]
Test for overall effect: Z = 2.72 (P = 0.006)	Total events 1378 4417 Heterogeneity: Tau ² = 0.09; Chi ² = 66.16, df = 8 (P < 0.00001); l ² = 88%
1.1.2 Reduced Dose	Test for overall effect: 2 = 3.82 (P = 0.001) Test for overall effect: 2 = 3.82 (P = 0.001)
Nielsen 2017 236 4400 1686 38893 16.6% 1.25 [1.09, 1.44] Staerk 2016 80 2547 419 18094 14.9% 1.37 [1.07, 1.74]	1.4.2 Reduced Dose
Yao 2016 8 1393 51 7695 6.7% 0.87 [0.41, 1.83]	Nielsen 2017 160 4400 2136 38893 12.1% 0.65 [0.55, 0.76]
Subtotal (95% CI) 8340 64682 38.2% 1.27 [1.12, 1.43] Total events 324 2156	Yao 2016 13 1393 176 7695 6.1% 0.40 [0.23, 0.71] Subtotal (95% CI) 5793 46588 18.2% 0.55 [0.36, 0.86]
Heterogeneity: Tau ² = 0.00; Chi ² = 1.41, df = 2 (P = 0.49); i ² = 0%	Total events 173 2312 Heterogeneity: Tau ² = 0.07; Chi ² = 2.54, df = 1 (P = 0.11); i ² = 61%
Test for overall effect: Z = 3.87 (P = 0.0001)	Test for overall effect: $Z = 2.62 (P = 0.009)$
Total (95% Cl) 65361 165157 100.0% 0.92 [0.72, 1.17]	Total (95% CI) 82089 184509 100.0% 0.62 [0.51, 0.75]
Total events 1069 4695 Heterogeneity: Tau ² = 0.09; Chi ² = 62.79, df = 8 (P < 0.00001); l ² = 87%	Total events 1551 6729 Heterogeneity: Tau ² = 0.07; Chi ² = 69.07, df = 10 (P < 0.00001); l ² = 86%
Test for overall effect: Z = 0.67 (P = 0.50)	Test for overall effect: Z = 4.99 (P < 0.00001)
Test for subgroup differences: Chi ² = 19.14, df = 1 (P < 0.0001), l ² = 94.8%	Test for subgroup differences: Chi ² = 0.32, df = 1 (P = 0.57), l ² = 0%
В	D
Stroke	Intracranial Hemorrhage
Apixaban Warfarin Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H. Random, 95% Cl M-H. Random, 95% Cl	Apixaban Warfarin Odds Ratio Odds Ratio Study or Subgroup Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI
1.2.1 Regular or Any Dose	1.5.1 Regular or Any Dose
Coleman 2016 12 4083 10 4083 6.8% 1.20 [0.52, 2.78]	Coleman 2016 8 4083 19 4083 3.8% 0.42 [0.18, 0.96] Forslund 2017 18 3587 85 12919 7.4% 0.76 [0.46, 1.27]
Larsen 2016 219 6349 1337 35436 14.2% 0.91 [0.79, 1.05]	Halvorsen 2017 26 6506 90 11427 13.1% 0.51 [0.33, 0.78]
Lee 2015 0 53 11 580 1.0% 0.46 [0.03, 7.96]	Larsen 2016 18 6349 190 35346 11.6% 0.53 [0.32, 0.85]
Shiga 2015 2 102 2 200 2.0% 1.98 [0.27, 14.26]	
	Shiga 2015 1 102 2 200 0.3% 0.98 [0.09, 10.94]
Staerk 2016 47 4352 219 18094 12.6% 0.89 [0.65, 1.22] Yao 2016 40 7695 40 7695 11.1% 1.00 [0.64, 1.55]	Staerk 2016 10 4352 150 18094 11.7% 0.28 [0.15, 0.52]
Yao 2016 40 7695 40 7695 11.1% 1.00 [0.64, 1.55] Subtotal (95% CI) 64691 117477 73.6% 0.84 [0.69, 1.01] ♦	Staerick 2016 10 4352 150 18094 11.7% 0.28 (0.15, 0.52) Yao 2016 11 7695 41 7695 8.2% 0.27 (0.14, 0.52) Subtotal (95% C1) 71144 128234 92.6% 0.52 (0.44, 0.61] ∳
Yao 2016 40 7695 40 7695 11.1% 1.00 [0.64, 1.55] Subtotal (95% Cf) 64691 11.7477 73.6% 0.84 [0.659, 1.01] ↓ Total events 668 2278 Heterogeneity: Tau ² = 0.03; Ch ² = 1.5.96, df = 7 (P = 0.03); l ² = 56%	Staerk 2016 10 41352 150 18094 11.7% 0.28 [0.15, 0.52] Yao 2016 11 7695 2256 0.27 [0.14, 0.52] Subtotal (95% Cf) 71144 128234 92.6% 0.52 [0.44, 0.61] Total events 203 760
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Staerick 2016 10 4352 150 18094 11.7% 0.28 (0.15, 0.52) Yao 2016 11 7695 41 7695 8.2% 0.27 (0.14, 0.52) Subtotal (95% C1) 71144 128234 92.6% 0.52 (0.44, 0.61] ∳
Yao 2016 40 7695 11.1% 1.00 [0.64, 1.55] Subtotal (95K CD) 66491 11.747 73.6% 0.84 [0.69, 1.01] Total events 685 , , , , Heterogeneity: Tax² = 0.03; (1) = 15.96, df = 7 (P = 0.03); 1² = 56% , , , , Text for overall effect 2 = 1.88 P = 0.06) 1.2.2 Reduced Dose 	Staerk 2016 10 41352 150 18094 11.7% 0.28 [0.15, 0.52] Yao 2016 11 7605 228 0.27 [0.14, 0.52] Subtotal (95% CD) 71144 128234 92.6% 0.52 [0.44, 0.61] Total events 203 760 Heterogeneity: Ch ² = 11.95, df = 7 (P = 0.10); l ² = 41% Test for overall effect: Z = 8.00 (P < 0.00001)
Yao 2016 40 7695 11.15 1.00 [0.64, 1.55] Subtotal (95K CD) 64691 11.7477 73.66 0.84 [0.68, 1.01] Total events 655 2278 Heterogeneity: Tau" = 0.03; Ch" = 15.96, df = 7 (P = 0.03); l ² = 56% 1.2.2 Reduced Dose Noisen 2017 220 4400 1558 38893 14.27 1.32 [1.15, 1.52] Neisen 2017 230 4400 1558 32832 1.22 [2.50, 0.29 [0.21, 0.41]	Staerk 2016 10 41352 150 18094 11.7% 0.28 [0.15, 0.52] Yuo 2016 11 7695 4286 0.27 [0.14, 0.52] Subboolal (95% CD) 7114 128234 92.6% 0.52 [0.44, 0.61] Total events 2.33 7 (0 = 0.10); 1 ⁶ = 41% 128234 92.6% 0.52 [0.44, 0.61] Heteropeneity: (N ² = 1.95, d = 7 (0 = 0.10); 1 ⁶ = 41% 12.8 12.8 12.8 12.8 Test for overall effect: 2 = 0.00 (P < 0.00001)
Yap 2016 40 7695 11.11x 1.00 [0.64; 1.55] Subtotal (95K CC) 656 2278 1.42 [0.64] [0.64] Total events 11.5 (0.64; 1.55] Total events 11.5 (0.64; 1.55] Test for events 11.5 (0.64; 1.55] Subtotal (95K CC) 6547	Staerk 2016 10 4132 150 18094 11.7% 0.28 [0.15, 0.52] Yao 2016 11 7695 242 22.5% 0.27 [0.14, 0.52] Subtotal (95K CD) 7114 128234 92.6% 0.52 [0.44, 0.61] Total events 2.37 760 Heteropeneity: (D1* = 11.95, d= 70 = 0.10; 1* = 41% Test for overall effect: 2 = 8.00 f* 0.00001) 1.52 Reduced Dose Staerk 2016 19 2547 Subtotal (95K) CD) 2547 18094 7.4% Subtotal (95K) CD) 2547 18094 7.4% 0.90 [0.56, 1.45]
Yaa 2016 40 7695 11.1% 1.00 [0.64, 1.55] Subtotal (95K CD) 6645 2217 277 73.66 0.84 [0.65, 1.01] Total events 685 217 77.66 0.84 [0.65, 1.01] Heterogeneity: Tau ² = 0.03; Ch ⁻¹ 15.96, df = 7 (P = 0.03); l ² = 56% Test for overall effect 2 = 1.86 (P = 0.66) L.2.8 Reduced Oose Niclese 2017 220 4400 1558 38893 14.2% 1.32 [1.15, 1.52] Stater 2.016 (S6 CD) 39 24.47 219 4352 1.2.7 (Aduced Oose) Heterogeneity: Tau ² = 1.15; Ch ⁻² = 4.475, df = 1 (P < 0.000); l ² = 98K	Starkt 2016 10 4132 150 18094 11.7% 0.28 [0.15, 0.52] Yao 2016 11 7695 24 7695 262 0.27 [0.16, 0.52] Subtotal (955, C1) 17 7695 262 0.27 [0.16, 0.52]
Yap 2016 40 7695 11.1% 1.00 [0.64, 1.55] Total events 685 2278 Heterogenetry; Tau" = 0.03; Chi = 1596, df = 7 0° = 0.03; l³ = 560K Test for overall effect: Z = 1.88 0° = 0.066 1.2.2 Reduced Dose Nielsen 2017 230 4400 1558 Staerk 2016 39 247 219 4352 Staerk 2016 39 247 219 4352 Total events 1.37 1.37 1.36 Total events 1.15 1.27 Hest consentering: Tau" = 1.15; 0.14" 64.75, d1 = 10° 0.00001; l³ = 98K Test for overall effect: Z = 0.51 0.54 0.65	Stark 2016 10 4352 150 18094 11.7% 0.28 [0.15, 0.52]
Yap 2016 40 7695 10 7695 11.11 1.00 [0.64, 1.55] Total events 605 2278 77.856 0.84 [0.66, 1.55] Total events 605 217 77.86 0.84 [0.66, 1.55] Total events 100 6.67 7.96 0.81 [1.5 1.00 Text for venual effect: 2 = 1.88 0 = 0.03; 1 ² 15.66, df = 7 7.96 0.83 [1.5, 1.52] 1.2.2 Reduced Dose 30 4.400 1558 38893 14.2% 1.32 [1.15, 1.52] Subtobal (95K CD) 69 27.97 249 3232 1.2.2% 0.28 [0.1, 0.31] Total events 209 1.75, df = 1 0 < 0.0001); 1 ² = 98% 15.57, df = 1 0 < 0.0001); 1 ² = 98% Text for overall effect: Z = 0.51 (P = 0.53) 160722 100.0% 0.81 [0.60, 1.10]	Starkt 2016 10 4352 150 18094 11.7% 0.288 0.51 0.528 Subchuta (1955) CD 17 7635 42 7695 428 0.27 0.27 0.27 0.27 Subchuta (1955) CD 203 7144 7282 228 0.27 0.47 0.65 Heteropointy: Ch ² 17.65 47 748 0.52 0.44 0.61 Test for overall effect: Z = 8.00 (P < 0.0000.)
Yap 2016 40 7695 10.7695 11.18 1.00 [0.64; 1.55] Total events 685 2278 747 73.66 0.848 [0.66; 1.01] Total events 0.03; Chi 15.56, df = 7 (P = 0.03); l² = 56% Test for overall effect ≈ 1.86 (P = 0.66) 1.2.2 Reduced Dose Nieter 2017 220 4400 1588 88893 14.25; l.32 [1.15, 1.52] Stater 2018 201 204 4352 1.22, Reduced Dose Nieter 2017 220 4400 1588 88893 1.42, k Vettorgenety; Tau' = 1.15; Chi = 4.675, df = 1 (P < 0.0001); l² = 98K	Starkt 2016 10 4352 150 18094 11.7% 0.288 0.15 0.528 0.27 0.14 128234 92.68 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.14 0.528 0.27 0.528 0.27 0.14 0.528 0.27 0.01 0.528 0.27 0.01 0.55 0.458 0.528 0.27 0.01 0.55 0.458 0.01 0.55 0.528 1.453 0.00 0.55 1.451 0.01 0.55 0.145 0.558 0.145 0.558 0.145 0.558 0.145 0.558 0.145 0.558 0.145 0.558 0.558 0.145 0.558 0.558 0.558 0.558
$ \begin{array}{c} \mbox{Ya} = 2016 & 40 & 7695 & 11.1 \times & 1.00 & [0.64, 1.55] \\ \mbox{Subtoal} (SYS & 0 & 649 & 111747 & 72.66 & 0.084 & 1.55] \\ \mbox{Total events} & 685 & 2278 & 158 & 1596 & 177 & 72.66 & 0.084 & 1666 & 1.01] \\ \mbox{Test for overall effect} & 2 & 1.38 & 0^{\circ} & 0.06] \\ \mbox{Test for overall effect} & 2 & 1.38 & 0^{\circ} & 0.06] \\ \mbox{Test for overall effect} & 2 & 1.38 & 0^{\circ} & 0.06] \\ \mbox{Test for overall effect} & 2 & 1.38 & 0^{\circ} & 0.06] \\ \mbox{Test for overall effect} & 2 & 0.4400 & 1558 & 38893 & 14.2 \times & 1.32 & [1.15, 1.52] \\ \mbox{Subtoal} (SYS C) & 29 & 2440 & 1558 & 212.2 \times & 0.29 & [0.21, 0.41] \\ \mbox{Subtoal} (SYS C) & 26 & 647 & 177 & 43245 & 26.4 \times & 0.65 & [0.14, 2.81] \\ \mbox{Total events} & & 1.55 & (-16 & 0.66) & 1.06 & 0.00001; t^3 & 98K \\ \mbox{Test for overall effect} & 2 & 0.61 & 0^{\circ} & 0.50 \\ \mbox{Total events} & & 594 & 4055 \\ \mbox{Total events} & & 504 & 4055 \\ \mbox{Total events} $	Starkt 2016 10 4132 150 18094 11.7% 0.28 [0.15, 0.52] Yao 2016 11 7603 428 42.68 0.27 [0.4, 0.52] Subtrotal (95% CD) 201 1144 12828.49 92.66 0.52 [0.44, 0.62] Total events 10.33 [0.47, 0.05] 41.8 12828.49 92.64 0.52 [0.44, 0.61] Test for overall effect: 2 8.00 (P < 0.00001)

Figure 2. Efficacy and safety of apixaban vs warfarin. A, Any thromboembolic events; (B) stroke; (C) major bleeding; and (D) intracranial hemorrhage. Cl indicates confidence interval.

VII in the online-only Data Supplement). These studies reported varying results with 1 study suggesting a significant protection for apixaban, 1 study suggesting no difference, and 1 study indicating a higher risk for apixaban even though it compared warfarin with apixaban reduced dose.

Number of events for Forslund et al⁷ were retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Apixaban Versus Dabigatran

Overall, there were nonsignificant differences between apixaban and dabigatran in risk of any thromboembolic event (P=0.30) although a lower risk was found in apixaban patients prescribed with the reduced dose (OR, 0.86; 95% CI, 0.75–0.99; Figure 3A). No difference was seen for stroke risk (Figure 3B).

Major bleeding risk was significantly lower in apixaban patients compared with dabigatran ones (35% RRR; P<0.00001) even though only 1 study was included in the reduced dose subgroup (Figure 3C). Although no difference was found for ICH (Figure 3D), patients prescribed apixaban had a significantly lower risk for GIB (57% RRR; P<0.00001) and any bleeding (31% RRR; P<0.00001; Figures VIII and IX in the online-only Data Supplement). No difference was found in all-cause death between apixaban and dabigatran (Figure X in the online-only Data Supplement).

Number of events for Noseworthy et al¹⁴ were retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Apixaban Versus Rivaroxaban

Compared with apixaban, there was a significant superiority for rivaroxaban for any thromboembolic event (OR, 1.27; 95% CI, 1.13–1.43) and stroke (OR, 1.31; 95% CI, 1.15–1.50), mainly driven by the treatment effect found in the reduced dose subgroup (Figure 4A and 4B). No difference was found for hemorrhagic stroke occurrence although few studies were available for evaluation (Figure XI in the online-only Data Supplement).

The risk of major bleeding was significantly lower in patients treated with apixaban compared with rivaroxaban (46% RRR; P<0.00001), consistent with doses subgroups (Figure 4C). There was a significant risk reduction in ICH (OR, 0.46; 95% CI, 0.25–0.85; Figure 4D) and GIB for apixaban compared with rivaroxaban (64% RRR; P<0.00001; Figure XII in the online-only Data Supplement), as well as for any bleeding (OR, 0.56; 95% CI, 0.50–0.61; Figure XIII in the online-only Data Supplement) There was a significant reduction for all-cause death with apixaban compared with rivaroxaban with the regular dose subgroup (50% RRR; P<0.00001; Figure XIV in the online-only Data Supplement).

Number of events for Noseworthy et al¹⁴ were retrieved from hazard ratios (see Methods in the online-only Data Supplement). A sensitivity analysis excluding that study showed superimposable results (data not shown).

Bias-Stratified Sensitivity Analysis

A sensitivity analysis was performed, grouping studies according to risk of bias verifying all the outcomes for which a significant treatment effect was found, either for apixaban or any of the comparators. No significant differences were found for

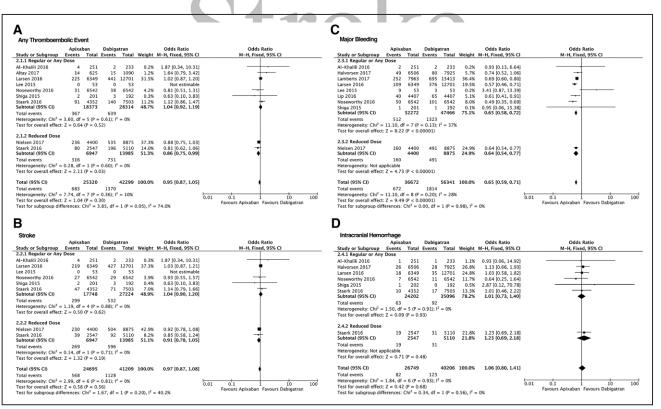


Figure 3. Efficacy and safety of apixaban vs dabigatran. A, Any thromboembolic events; (B) stroke; (C) major bleeding; and (D) intracranial hemorrhage. Cl indicates confidence interval.

•						U.,								
Any Thromboem	polic Event						or Bleeding							
		Rivaroxa al Events		Odds Ratio M-H, Fixed, 95% C	Odds Ra M-H, Fixed, S	95% CI Study			Rivaroxaba Events T			Odds Ratio Random, 95% CI		Odds Ratio Random, 95% Cl
1.1 Regular or Any							Regular or Any Dose							
Khalili 2016	4 25		282 0.8%				alili 2016 2 rsen 2017 49				1.0%	0.22 [0.05, 1.01]		
rsen 2016	225 634		7192 37.4%		=		rsen 2017 49 htts 2017 252				1.5%	0.47 [0.33, 0.66] 0.61 [0.51, 0.72]		-
2015	0 5		127 0.3% 6565 6.1%				2016 109				7.1%	0.61 [0.48, 0.77]		÷.
seworthy 2016 ga 2015	32 656		107 0.4%			Lee 2					.9%	0.98 [0.42, 2.29]		<u> </u>
ga 2015 erk 2016	91 435		4028 18.0%		+	Lip 2	16 72	7399	157 7	399 14	.7%	0.45 [0.34, 0.60]	-	•-
btotal (95% CI)	1767		18301 62.9%		Te I		orthy 2016 48					0.39 [0.28, 0.54]	-	-
tal events	354	325			ľ	Shiga).4%	0.34 [0.04, 3.35]		
terogeneity: Chi ² =	2.66, df = 5 (F		= 0%				tal (95% CI)	35188		204 81	.7%	0.52 [0.44, 0.62]		◆
st for overall effect:	Z = 1.96 (P =	0.05)					events 542		967					
						Heter	ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.5	$ni^{\circ} = 12.3^{\circ}$	9, dt = 7 (P)	r = 0.09);	1° = 44%			
.2 Reduced Dose						lest	or overall effect: 2 = 7.5	r (r < 0.00	0001)					
elsen 2017	236 440		3476 26.9%		-	- 3.4.2	Reduced Dose							
erk 2016	80 254		1665 10.1%		+ <u>-</u>	Niels	n 2017 160		187 3	476 18	3.3%	0.66 [0.53, 0.82]		+
ototal (95% CI)	694		5141 37.1%	1.46 [1.20, 1.76	•	Subt	tal (95% CI)	4400	3	476 18	.3%	0.66 [0.53, 0.82]		•
tal events	316	166					events 160		187					
terogeneity: Chi ² = st for overall effect:			= 0%				ogeneity: Not applicable							
st for overall effect:	Z = 3.84 (P =	0.0001)				Test	or overall effect: Z = 3.7	72 (P = 0.00	002)					
al (95% CI)	2461	9	23442 100.0%	1.27 [1.13, 1.43			(95% CI)	39588	38	680 100	0%	0.54 [0.47, 0.63]		
	670	491			ľ				1154			,		•
	670 6.62. df = 7 (F	491 = 0.47); I ²	= 0%		• • • • • •	Total	events 702		1154 0. df = 8 (P	P = 0.06);			·	•
eterogeneity: Chi ² =	6.62, df = 7 (F	= 0.47); I ²	= 0%		0.01 0.1 1	Total 10 100 Heter	events 702 ogeneity: Tau ² = 0.02; C	chi ² = 15.1	0, df = 8 (P	P = 0.06);		,	0.01 0.1	1 10 10
otal events eterogeneity: Chi ² = est for overall effect: est for subgroup diff	6.62, df = 7 (F Z = 3.97 (P <	= 0.47); I ² 0.0001)		= 68.7%	0.01 0.1 1 Favours Apixaban Fa	Total 10 100 Heter avours Rivarovaban Test	events 702	Chi ² = 15.1 76 (P < 0.00	0, df = 8 (P 0001)		l ² = 47%			i 10 10 aban Favours Rivaroxaban
eterogeneity: Chi ² = est for overall effect: est for subgroup diff	6.62, df = 7 (F Z = 3.97 (P <	= 0.47); I ² 0.0001)		= 68.7%		Total 10 100 Heter avours Rivaroxaban Test Test	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7	Chi ² = 15.1 76 (P < 0.00	0, df = 8 (P 0001)		l ² = 47%			
terogeneity: Chi ² = st for overall effect:	6.62, df = 7 (F Z = 3.97 (P <	= 0.47); I ² 0.0001)		= 68.7%		Total 10 100 Heter avours Rivarovaban Test	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7	Chi ² = 15.1 76 (P < 0.00	0, df = 8 (P 0001)		l ² = 47%			
terogeneity: Chi ² = st for overall effect: st for subgroup diff	6.62, df = 7 (F Z = 3.97 (P <	= 0.47); I ² 0.0001)		= 68.7%		10 100 avours Rivaroxaban Test Test D	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7	Chi ² = 15.1 76 (P < 0.00 :: Chi ² = 3.0	0, df = 8 (P 0001)		l ² = 47%			
terogeneity: Chi ² = st for overall effect: st for subgroup diff troke	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban	= 0.47); I ² 0.0001) = 3.19, df = Rivaroxa	1 (P = 0.07), I ²	Odds Ratio	Favours Apixaban Fa Odds Ra	Total Heter avours Rivaroxaban atio	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7 or subgroup differences	Chi ² = 15.1 76 (P < 0.00 :: Chi ² = 3.0 e	0, df = 8 (P 0001)	(P = 0.08)	l ² = 47% , l ² = 67.0		Favours Apix	
terogeneity: Chi ² = st for overall effect: st for subgroup diff troke	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² = Apixaban Events Tot	= 0.47); I ² 0.0001) = 3.19, df = Rivaroxa	1 (P = 0.07), I ²		Favours Apixaban Fa	Totala Heter Avours Rivaroxaban atio	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7 or subgroup differences	$Chi^2 = 15.1c$ 76 (P < 0.00 $Chi^2 = 3.0$ e aban	0, df = 8 (F 0001) 03, df = 1 (Rivaroxaba	(P = 0.08) an	l ² = 47% , l ² = 67.0	% Odds Ratio	Favours Apix	aban Favours Rivaroxaban
terogeneity: Chi ² = st for overall effect: st for subgroup diff troke tdy or Subgroup .1 Regular or Any	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban Events Tot Dose	e 0.47); l ² 0.0001) 3.19, df = Rivaroxa al Events	1 (P = 0.07), I ² aban Total Weight	Odds Ratio M-H, Fixed, 95% C	Favours Apixaban Fa Odds Ra	avours Rivaroxaban tio astio 95% CI Total 100 100 100 100 100 100 100 10	events 702 ogeneity: Tau ² = 0.02; C or overall effect: Z = 7.7 or subgroup differences acranial Hemorrhage Apix	$Chi^2 = 15.1c$ 76 (P < 0.00 $Chi^2 = 3.0$ e aban	0, df = 8 (F 0001) 03, df = 1 (Rivaroxaba	(P = 0.08) an	l ² = 47% , l ² = 67.0	% Odds Ratio	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Chi ² = st for overall effect: st for subgroup diff troke idy or Subgroup .1 Regular or Any Khalili 2016	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban Events Tot Dose 4 25	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events	1 (P = 0.07), I ² aban <u>Total Weight</u> 282 0.7%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80	Favours Apixaban Fa Odds Ra	atio 95% CI	vents 702 geneity: Tau ² = 0.02; (2 or overall effect Z = 7.7 or subgroup differences acranial Hemorrhagy Apix or Subgroup Events Regular or Anp Das alli 2016 1	Chi ² = 15.1: 76 (P < 0.00 :: Chi ² = 3.0 e aban : Total E	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3	(P = 0.08) an <u>fotal Wei</u> 282 5	l ² = 47% , l ² = 67.09 ight M-H,	% Odds Ratio Random, 95% CI 0.37 [0.04, 3.60]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Chi ² = tt for overall effect: tt for subgroup diff troke dy or Subgroup .1 Regular or Any Khalili 2016	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² + Apixaban <u>Events Tot</u> Dose 4 22 219 634	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events = 1 3 9 196	1 (P = 0.07), I ² aban <u>Total Weight</u> 282 0.7% 7192 43.8%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55	Favours Apixaban Fa Odds Ra	Total avours Rivaroxaban atio 95% CI 500 500 500 500 500 500 500 50	events 702 openeity: Tau ² = 0.02; C 0.02; C or overall effect: Z = 7.7 7.7 or subgroup differences Apix or Subgroup Events Regular or Any Dose alili 2016 alili 2016 1 267 267	Chi ² = 15.11 76 (P < 0.00 :: Chi ² = 3.0 e aban 1 : Total E 1 251 5 6506	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2	(P = 0.08) an otal Wei 282 5 2817 21	l ² = 47% , l ² = 67.09 ight M-H, 5.4% 1.1%	% Odds Ratio Random, 95% CI 0.37 [0.04, 3.60] 0.18 [0.11, 0.28]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Chi ² = t for overall effect: t for subgroup diff troke dy or Subgroup 1 Regular or Any Khalili 2016 sen 2016 2015	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban <u>Events</u> Tot Dose 4 25 219 634 0 5	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events 1 3 9 196 3 2	1 (P = 0.07), I ² aban <u>Total</u> Weight 282 0.7% 7192 43.8% 127 0.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94	Favours Apixaban Fa Odds Ra	10 100 Hetereve avours Rivaroxaban 55% Cl 55% Cl 5% Cl	7002 ggeneity: Tau ² = 0.02; C or overall effect: Z = 7.7 or subgroup differences acranial Hemorrhagg Apix or Subgroup Events Regular or Any Dose alili 2016 1 rsen 2017 26 12016 18	Chi ² = 15.1i 76 (P < 0.00 :: Chi ² = 3.0 e aban 1 : Total E 1 251 5 6506 8 6349	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7	(P = 0.08) an otal Wei 282 5 2817 21 7192 19	l ² = 47% , l ² = 67.0 ight M-H, 5.4% 1%	% Random, 95% CI 0.37 [0.04, 3.60] 0.18 [0.11, 0.28] 0.89 [0.48, 1.64]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Chi ² = t for overall effect: t for subgroup diff troke dy or Subgroup 1.1 Regular or Any Khalili 2016 sen 2016 2015 eworthy 2016	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban <u>Events Tot</u> Dose 4 25 219 634 0 55 28 6634	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events 1 3 9 196 3 2 5 22	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23	Favours Apixaban Fa Odds Ra	Total 10 100 Hetere wours Rivaroxaban Test : 55% Cl Study 55% Cl Study 55% Cl Al-K 100 Hetere 55% Cl Al-K 100 Hetere 100 Hetere	vents 702 ggeneity: Tau ² = 0.02; 0 or overall effect: Z = 7.7 or subgroup differences acranial Hemorrhagg Apix or Subgroup Events Regular or Any Dose alli 2016 1 rsen 2017 26 12016 6	Chi ² = 15.11 76 (P < 0.00 : Chi ² = 3.0 e aban 1 : Total 8 1 251 5 6506 3 6349 5 6565	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6	(P = 0.08) an otal Wei 282 5 2817 21 7192 19 555 14	l ² = 47% , l ² = 67.0 ight M-H, 5.4% 1.1% 0.2%	% Codds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
rogeneity: Chi ² = for overall effect: for subgroup diff roke dy or Subgroup 1 Regular or Any (halili 2016 en 2016 2015 eworthy 2016 a 2015	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² = Apixaban Events Tot Dose 4 22 219 634 0 5 28 656 2 10	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events = 1 3 9 196 = 3 2 5 22 2 2	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4% 107 0.5%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban D Intr 35% Cl 5% Cl	rouns 700 ogenetity: Tau" = 0.02; C or overall effect: Z = 7.7 or subgroup differences accranial Hemorrhagy Apix or Subgroup Events Regular or Any Dose Regular or Any Dose Regular or Any Dose alili 2016 1 sen 2017 26 1 2016 1 sen 2017 26 2015 1	Chi ² = 15.14 76 (P < 0.00 : Chi ² = 3.0 e aban 1 : Total E 1 251 5 6506 3 6349 5 6355 1 102	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0	(P = 0.08) an otal Wei 282 5 817 21 7192 19 555 14 107 3	l ² = 47% , l ² = 67.0 (ight M-H, 1.1% 2.2% 5.5% 5.5%	% Colds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.38 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 3.18 (0.13, 78.90)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Chi ² = t for overall effect: t for subgroup diff roke dy or Subgroup 1 Regular or Any Khalili 2016 ten 2016 2015 eworthy 2016 pa 2015 rk 2016	6.62, df = 7 (F Z = 3.97 (P < erences: Chi ² = Apixaban <u>Events Tot</u> Dose 4 25 219 634 0 55 28 6634	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events = 1 3 9 196 = 3 2 5 22 12 2 46	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60 0.95 [0.63, 1.42	Favours Apixaban Fa Odds Ra	Total avours Rivatrovaban 2000 Stvatrovaban 2000 Stvatrovaban 2000 Studi 2000 Studi	yours 700 genetity: Tau" = 0.02; C or overall effect: Z = 7.7 or subgroup differences acranial Hemorrhage or Subgroup Event Regular or Any Dose alili 2016 1 2016 1 2016 1 2016 1 2016 1 2016 1 2016 1 2016 1	$\begin{array}{c} \text{Ch}^2 = 15.10\\ 76 (P < 0.04)\\ \text{: } \text{Ch}^2 = 3.4\\ \text{aban} \qquad 1\\ \text{: } \textbf{Total is}\\ \textbf{I} \qquad 251\\ 5 \qquad 6506\\ 8 \qquad 6349\\ 5 \qquad 6565\\ 1 \qquad 102\\ 0 \qquad 4352 \end{array}$	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 63 2 23 7 11 6 0 17 4	(P = 0.08) an Total Wei 282 5 2817 21 7192 19 5565 14 107 3 0028 17	l ² = 47% , l ² = 67.0: (((((((((((((% Ddds Ratio Random, 95% CI 0.37 [0.04, 3.60] 0.38 [0.11, 0.28] 0.89 [0.48, 1.64] 0.89 [0.48, 1.64] 0.55 [0.20, 1.47] 3.18 [0.13, 78.90] 0.54 [0.25, 1.19]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Chi ² = t for overall effect: t for subgroup diff troke dy or Subgroup 1 Regular or Any Khalili 2016 sen 2016 2015 seworthy 2016 ga 2015 erk 2016 total (95% Cf)	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + <u>Events Tot</u> Dose 4 22 219 634 0 5 28 656 2 10 47 435	e = 0.47); l ² 0.0001) = 3.19, df = Rivaroxa al Events = 1 3 9 196 = 3 2 5 22 12 2 46	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4% 107 0.5% 107 0.5%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60 0.95 [0.63, 1.42	Favours Apixaban Fa Odds Ra	10 100 10 100 Heterever 10 100 Heterever 10 100 100 100 100 100 100 100	revents 702 genelity: Tai = 0.02; C 0.02; C or overall effect: Z = 7.7 0.02 acranial Hemorrhage Apix acranial Hemorrhage Apix or Subgroup Events Regular or Any Dose 1 rsen 2017 26 12016 18 worthy 2016 6 2015 1 12016 10 12016 10 12016 10 12016 10 12016 10 12016 10 12016 10	Chi ² = 15.10 76 (P < 0.00 Chi ² = 3.0 e taban 1 5 Total 8 1 251 5 6506 8 6349 5 6565 1 102 9 4352 24125	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events Tr 3 63 2 23 7 11 6 0 17 4 20	(P = 0.08) an otal Wei 282 5 817 21 7192 19 555 14 107 3	l ² = 47% , l ² = 67.0: (((((((((((((% Colds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.38 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 3.18 (0.13, 78.90)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Chi ² = t for overall effect: f or subgroup diff roke dy or <u>Subgroup</u> 1 Regular or Any (hallit 2016 ien 2016 2015 eworthy 2016 ja 2015 trk 2016 ja 2015 di evorts	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban <u>Events</u> Tot Dose 4 25 219 634 0 5 219 7 210 7 7 7	e 0.47); l ² 0.0001) 3.19, df = Rivaroxa al Events 1 3 9 196 3 2 5 22 2 2 2 4 4 2	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 4.3% 127 0.4% 6565 5.4% 4028 11.7% 18301 62.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60 0.95 [0.63, 1.42	Favours Apixaban Fa Odds Ra	100 100 Heteres D nours Rivarovaban Text Dintr Text 95% CI Study	events 702 generity Tau * 00 or overall effect 2 = 7.7 or subgroup differences acranial Hemorrhagg Applied to the second second second second and the second	Chi ² = 15.10 F6 (P < 0.00 C Chi ² = 3.0 e aban 5 Total E 1 251 5 6506 8 6349 5 6565 1 102 9 4352 24125	0, df = 8 (P 0001) 03, df = 1 (Rivaroxabi Events T 3 63 2 23 7 11 6 0 17 4 20 117	(P = 0.08) an total Wei 282 5 817 21 192 19 565 14 107 3 1028 17 991 80	$l^2 = 47\%$ $l, l^2 = 67.0$ ight M-H, i.1% i.5% i.5% i.5% i.5% i.5% i.5% i.1% i.1% i.5% i	% Cdds Ratio <u>Random, 95% CI</u> 0.37 [0.04, 3.60] 0.18 [0.11, 0.28] 0.89 [0.48, 1.64] 0.55 [0.20, 1.47] 3.18 [0.13, 78.90] 0.54 [0.25, 1.19] 0.49 [0.22, 1.06]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
rogeneity: Chi ² = for overall effect: for subgroup diff roke dy or Subgroup 1 Regular or Any Chalil 2016 en 2016 2015 eworthy 2016 ia 2015 rk 2016 Cotal (95% CI) al events rogeneity: Chi ² =	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 4 22 219 63 0 5 2 8 65(2 10 47 43 1767 300 2.18, df = 5 (f	e 0.47); l ² 0.0001) 3.19, df = Rivaroxa al Events 1 3 2 2 5 22 2 46 2 2 271 1 - 0.82); l ²	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 4.3% 127 0.4% 6565 5.4% 4028 11.7% 18301 62.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60 0.95 [0.63, 1.42	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban 10 Hoterev 10 10 Hoterev 10 10 10 10 10 10 10 10	vevnts 70.02 gorneity: Tai * 0.02; 0.02; or overall effect: Z = 7.7; 0.02; or or subgroup differences Apain scranial Hemorrhagg Apini ar Subgroup Events Regular or Any Dose sequal rot Any Cose Sequal rot Any Cose arearchail 2016 6 12016 12 2016 12 2016 12 2016 12 2016 14 2016 12 2016 14 2016 12 2016 14 2016 14 2016 14 2016 14 2016 14 2016 14 2018 40 2019 16 2019 10 2016 12 2017 20 2018 14 2019 10 2019 10 2019 10<	Chi ² = 15.10 76 (P < 0.00 Chi ² = 3.0 e aban t 251 5 6506 5 6506 5 6349 5 6536 1 102 2 4352 2 4352 2 4352 Chi ² = 21.0	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0 17 4 20 17 7, df = 5 (P	(P = 0.08) an total Wei 282 5 817 21 192 19 565 14 107 3 1028 17 991 80	$l^2 = 47\%$ $l, l^2 = 67.0$ ight M-H, i.1% i.5% i.5% i.5% i.5% i.5% i.5% i.1% i.5% i	% Cdds Ratio <u>Random, 95% CI</u> 0.37 [0.04, 3.60] 0.18 [0.11, 0.28] 0.89 [0.48, 1.64] 0.55 [0.20, 1.47] 3.18 [0.13, 78.90] 0.54 [0.25, 1.19] 0.49 [0.22, 1.06]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
erogeneity: Ch ² = t for overall effect: t for subgroup diff troke dy or Subgroup 1.1 Regular or Any 2015 sen 2016 2015 sen 2016 2015 rek 2016 stotal (95% CI) al events erogeneity: Ch ² = t for overall effect:	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 4 22 219 63 0 5 2 8 65(2 10 47 43 1767 300 2.18, df = 5 (f	e 0.47); l ² 0.0001) 3.19, df = Rivaroxa al Events 1 3 2 2 5 22 2 46 2 2 271 1 - 0.82); l ²	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 4.3% 127 0.4% 6565 5.4% 4028 11.7% 18301 62.4%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 6.80 1.28 [1.05, 1.55 0.47 [0.02, 9.94 1.27 [0.73, 2.23 1.05 [0.15, 7.60 0.95 [0.63, 1.42	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban 10 Hoterev 10 10 Hoterev 10 10 10 10 10 10 10 10	events 702 generity Tau * 00 or overall effect 2 = 7.7 or subgroup differences acranial Hemorrhagg Applied to the second second second second and the second	Chi ² = 15.10 76 (P < 0.00 Chi ² = 3.0 e aban t 251 5 6506 5 6506 5 6349 5 6536 1 102 2 4352 2 4352 2 4352 Chi ² = 21.0	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0 17 4 20 17 7, df = 5 (P	(P = 0.08) an total Wei 282 5 817 21 192 19 565 14 107 3 1028 17 991 80	$l^2 = 47\%$ $l, l^2 = 67.0$ ight M-H, i.1% i.5% i.5% i.5% i.5% i.5% i.5% i.1% i.5% i	% Cdds Ratio <u>Random, 95% CI</u> 0.37 [0.04, 3.60] 0.18 [0.11, 0.28] 0.89 [0.48, 1.64] 0.55 [0.20, 1.47] 3.18 [0.13, 78.90] 0.54 [0.25, 1.19] 0.49 [0.22, 1.06]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
eregeneity: Ch ² = tor overall effect: it for ovulgroup diff troke dy or Subgroup 1. Regular or Any Khalili 2016 sen 2016 2:2015 exeworthy 2016 ga 2015 etf 2015 stotal (95% CI) al events eregeneity: Ch ² = t for overall effect: 1.2 Reduced Dose	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 2 19 63 2 19 63 2 10 63 2 11 65 2 1 10 63 2 11 65 2 1 10 63 2 2 1 10 63 2 1 10 63 2 2 1 10 63 2 1 10 63 2 2 2 2 2 10 63 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= 0.47); I ² 0.0001) • 3.19, df = Rivarox: al Events 1 3 9 196 3 2 5 22 2 4 6 2 271 = 0.82); I ² 0.02)	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4% 107 0.5% 4028 11.7% 18301 62.4% = 0%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.2, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 7.60 0.95 (0.63, 7.60 0.95 (0.63, 1.45)	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban 100 Hitt 100 100 Hitt 100 100 Hitt 100 100 100 100 100 100 100 1	vevnts 70.02 gorneity: Tai * 0.02; 0.02; or overall effect: Z = 7.7; 0.02; or or subgroup differences Apain scranial Hemorrhagg Apini ar Subgroup Events Regular or Any Dose sequal rot Any Cose Sequal rot Any Cose arearchail 2016 6 12016 12 2016 12 2016 12 2016 12 2016 14 2016 12 2016 14 2016 12 2016 14 2016 14 2016 14 2016 14 2016 14 2016 14 2018 40 2019 16 2019 10 2016 12 2017 20 2018 14 2019 10 2019 10 2019 10<	Chi ² = 15.10 76 (P < 0.00 Chi ² = 3.0 e aban t 251 5 6506 5 6506 5 6349 5 6536 1 102 2 4352 2 4352 2 4352 Chi ² = 21.0	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0 17 4 20 17 7, df = 5 (P	(P = 0.08) an total Wei 282 5 817 21 192 19 565 14 107 3 1028 17 991 80	$l^2 = 47\%$ $l, l^2 = 67.0$ ight M-H, i.1% i.5% i.5% i.5% i.5% i.5% i.5% i.1% i.5% i	% Cdds Ratio <u>Random, 95% CI</u> 0.37 [0.04, 3.60] 0.18 [0.11, 0.28] 0.89 [0.48, 1.64] 0.55 [0.20, 1.47] 3.18 [0.13, 78.90] 0.54 [0.25, 1.19] 0.49 [0.22, 1.06]	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Ch ² = tfor overall effects at for subgroup diff troke dy or Subgroup An Regular or Any Khalili 2016 sen 2016 sen 2016 sen 2016 sen 2016 set 2015 erk 2016 botal (95% CI) tal events terogeneity: Ch ² = st for overall effect: -2. Reduced Dose isen 2017	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 4 25 219 632 4 25 219 632 4 25 219 632 1 25 28 655 2 10 5 28 655 2 10 5 28 655 2 10 7 218, df = 5 (f Z = 2.24 (P = 230 444	 a.0.47); I² a.10, df = a.119, df = al Events a.1 a.1 a.1 b.1 a.2 c.2 c.2	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43% 127 0.4% 107 0.5% 4028 11.7% 18301 62.4% = 0%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.02, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 72) 1.05 (0.15, 1.42 1.21 (1.02, 1.43 1.56 (1.24, 1.95	Favours Apixaban Fa Odds Ra	10 Total avours Rivaroxaban 100 Hetere 95% Cl 35% Cl 35\% Cl 35% Cl 35\% C	vents 7000 or overall effect. Z = 7.7. 0.02; or overall effect. Z = 7.7. 0.02; or subgroup differences Apix or Subgroup Events Apix Appix Api	Chi ² = 15.1: Chi ² = 15.1: Chi ² = 15.1: Chi ² = 3.0: e aban 1 : Total 6 : Total 6 : 251 : 6506 : 6505 : 102 : 4352 24125 : Chi ² = 21.0: B1 (P = 0.0): : 2547	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events Tr 3 63 2 23 7 11 6 0 17 7, df = 5 (P 7) 29 1	(P = 0.08) an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 P = 0.0004 2665 19	$l^2 = 47\%$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_3 l^$	% Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 0.54 (0.22, 1.19) 0.54 (0.22, 1.06) % 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
eregeneity: Ch ² = tor overall effect: it for ovulation of the subgroup dy or subgroup diff troke dy or subgroup 1. Regular or Any Khalili 2016 sen 2016 2:2015 exeworthy 2016 ga 2015 etf 2015 di events eregeneity: Ch ² = the for overall effect: 1. 2. Reduced Dose Isen 2017 etf 2016	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 2 19 63 2 19 63 2 10 63 2 11 65 2 1 10 63 2 11 65 2 1 10 63 2 2 1 10 63 2 1 10 63 2 2 1 10 63 2 1 10 63 2 2 2 2 2 10 63 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 a. 0.47); I² a. 0.47); I² a. 19, df = Rivarox: al Events al Events al 9 196 196 22 22 22 246 271 a. 82(1); I² a. 0.82(1); I² a. 0.82(1); I² a. 0.19 a. 199 	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43.8% 127 0.4% 6565 5.4% 6565 5.4% 107 0.5% 4028 11.5% 18301 62.4% = 0%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.2, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 7.66 0.95 (0.03, 1.42 1.21 [1.02, 1.43 1.56 (1.24, 1.95 1.56 (0.69, 1.97	Favours Apixaban Fa Odds Ra	10 Total avours Rivaroxaban 100 Hetere 95% Cl 35% Cl 35\% Cl 35% Cl 35\% C	vents 7000 spenitry Tau ² o 2000 cr overall effect. Z = 7.7 scranial Hemorrhagy Apix or subgroup Events Regular or Any Dose alili 2016 1 cr 2016 1 2016 1 2	Chi ² = 15.1: 76 (P < 0.00 Chi ² = 3.0 e aban b i Total i i Total i i 251 i 6506 i 6349 i 6349 i 4352 24125 i Chi ² = 21.0 i 102 i 4352 24125 i Chi ² = 21.0 i 2547 2547	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events Tr 3 63 2 23 7 11 6 0 17 7, df = 5 (P 7) 29 1	(P = 0.08) an otal Wei 282 5 2817 21 192 19 5565 14 107 3 0028 17 991 80 P = 0.0004	$l^2 = 47\%$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_3 l^$	% Codds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.88 (0.11, 0.28) 0.89 (0.04, 1.64) 0.55 (0.20, 1.47) 3.18 (0.13, 78.90) 0.54 (0.22, 1.19) 0.49 (0.22, 1.06) \$	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Ch ² = st for overall effect: st for subgroup diff stroke udy or Subgroup L1 Regular or Any -Khalli 2016 se 2015 e 2015 e 2015 botal (95% Ct) tal events terogeneity: Ch ² = st for overall effect: -L2 Reduced Dose elsen 2017 botal (95% Ct)	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² + Apixaban Events Tot Dose 4 22 219 634 0 5 28 655 2 10 47 433 300 2.18, df = 5 (f Z = 2.24 (P = 230 440 39 254 694	<pre>- 0.47; I² 0.0001) - 3.19, df = Rivaroxa al Events</pre>	1 (P = 0.07), I ² aban Total Weight 282 0.7% 7192 43% 127 0.4% 107 0.5% 4028 11.7% 18301 62.4% = 0%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.2, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 7.66 0.95 (0.03, 1.42 1.21 [1.02, 1.43 1.56 (1.24, 1.95 1.56 (0.69, 1.97	Favours Apixaban Fa Odds Ra	10 Total avours Rivaroxaban 100 Hetere 95% Cl 35% Cl 35\% C	vents 7000 openity: Tau" of 0.00; 0.00; or overall effect: Z = 7.7, 0.00; or subgroup differences Apix or Subgroup Events Apix Appix or Subgroup Events Apix and the sequal or on you be sequents Apix and the sequal or on you be sequents Apix Apix and the sequent or on you be sequents Apix Apix and the sequent or the sequent or the sequence of	$\begin{array}{c} \text{ch}^2 = 15.1;\\ \text{ff}^6 (P < 0.0];\\ c < \text{ch}^2 = 3.4;\\ \text{e}\\ \hline \\ \text{aban} & \\ i \\ \hline \\ \text{constant} & \\ \text{constant} & \\ c \\ c \\ \text{constant} & \\ c \\ c \\ c \\ \text{constant} & \\ c \\$	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events Tr 3 63 2 23 7 11 6 0 17 7, df = 5 (P 7) 29 1	(P = 0.08) an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 P = 0.0004 2665 19	$l^2 = 47\%$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_3 l^$	% Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 0.54 (0.22, 1.19) 0.54 (0.22, 1.06) % 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Ch ² = st for overall effect: st for subgroup diff stroke Udy or Subgroup 2.1 Regular or Any -Khalili 2016 resen 2016 e 2015 e 2015 e 2015 botal (95% Cl) botal (95% Cl) botal (95% Cl) al events for overall effect: 2.2 Reduced Dose elsen 2017 terk 2016	6.62, df = 7 (f Z = 3.97 (P < erences: Chi ² = Apixaban Events Tot Dose 4 22 219 634 0 5 2 10 634 0 5 2 10 634 1767 300 2.18, df = 5 (f Z = 2.24 (P Z = 2.24 (P Z = 2.24 (P Z = 2.24 (P) 2 3.0 44(39 252 (P) 2 69		1 (P = 0.07), l ² bban Total Weight 282 0.7% 7192 43.8% 107 0.5% 4028 11.7% 18301 62.4% = 0% 3476 31.1% 1655 5.5%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.2, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 7.66 0.95 (0.03, 1.42 1.21 [1.02, 1.43 1.56 (1.24, 1.95 1.56 (0.69, 1.97	Favours Apixaban Fa Odds Ra	10 100 Heterer avours Rivaroxaban 95% Cl 95% Cl 354 Cl 3	vevents 70.20 openetry: Tau" of subgroup Apix of subgroup Acranial Hemorrhagy Apix of subgroup Events Apix of subgroup Events Apix of subgroup Sequence Apix of subgroup Events Apix of subgroup Events Apix of subgroup Sequence Apix of subgroup Events Apix of subgroup Events Apix of subgroup Apix of apix of subgroup Events Apix of	Chi ² = 15.1: 76 (P < 0.00 C Chi ² = 3.0 e abban 1 5 Total E 5 251 5 6506 5 6545 1 102 2 4352 2 4352 2 4352 2 4352 2 4352 2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0 17 4 20 117 7, df = 5 (P 7) 29 1 10 29	(P = 0.08) an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 P = 0.0004 2665 19	$l^2 = 47\%$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_3 l^$	% Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 0.54 (0.22, 1.19) 0.54 (0.22, 1.06) % 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogeneity: Ch ² = ts for overall effect: st for subgroup diff troke the subgroup diff troke the subgroup diff sen 2016 sen 2016 sen 2016 sen 2016 sen 2016 sen 2016 sen 2016 set 201	6.62, df = 7 (f = 3.97 (P < 2) erences: Chi ² + Apixaban Events Tot Dose 4 25 219 634 0 2.18 655 2 2 10 2.18 655 2 2 2 10 2.18 655 2 2 2 2 10 2.18 655 2 2 2 2 2 10 2 3 444 3 9 255 2 30 444 3 9 255 0 0, 0, 0, ef = 1 (f 1, 0, 0, 0, 0, ef = 1 (f 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ef = 1 (f 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ef = 1 (f 1, 0,		1 (P = 0.07), l ² bban Total Weight 282 0.7% 7192 43.8% 107 0.5% 4028 11.7% 18301 62.4% = 0% 3476 31.1% 1655 5.5%	Odds Ratio M-H, Fixed, 95% C 1.51 (0.33, 6.80 1.28 (1.05, 1.55 0.47 (10.2, 9.94 1.27 (0.73, 2.23 1.05 (0.15, 7.66 0.95 (0.03, 1.42 1.21 [1.02, 1.43 1.56 (1.24, 1.95 1.56 (0.69, 1.97	Favours Apixaban Fa Odds Ra	10 100 Heterer avours Rivaroxaban 95% Cl 95% Cl 354 Cl 3	vents 7000 openity: Tau" of 0.00; 0.00; or overall effect: Z = 7.7, 0.00; or subgroup differences Apix or Subgroup Events Apix Appix or Subgroup Events Apix and the sequal or on you be sequal or any bose Apix alili 2016 10 10 aconthe sequal or on you be sequences 10 alili 2016 10 10 alili 2016 10 10 alidi (95% c) 10 10	Chi ² = 15.1: 76 (P < 0.00 C Chi ² = 3.0 e abban 1 5 Total E 5 251 5 6506 5 6545 1 102 2 4352 2 4352 2 4352 2 4352 2 4352 2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0, df = 8 (P 0001) 03, df = 1 (Rivaroxaba Events T 3 63 2 23 7 11 6 0 17 4 20 117 7, df = 5 (P 7) 29 1 10 29	(P = 0.08) an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 P = 0.0004 2665 19	$l^2 = 47\%$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_2 l^2 = 67.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_1 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_2 l^2 = 7.01$ $l_3 l^$	% Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 0.54 (0.22, 1.19) 0.54 (0.22, 1.06) % 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
rerogenesity: Chi ² = if for overall effects t for subgroup diff troke dy or <u>Subgroup</u> 1. Regular or Any Khalli 2016 2015 2015 2015 2015 2015 2015 2016 2016 2017 et 2018 2019 200	6.62, df = 7 (f 2 (f		1 (P = 0.07), l ² aban Total Weight 282 0.7% 7192 43.8% 4028 11.7% 18301 62.4% = 0% 3476 31.1% 1665 6.5% 5141 37.6% = 0%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 648 1.28 [1.05, 1.55 0.47 [10.02, 948 1.27 [0.73, 2.23 1.05 [0.15, 7.64 0.95 [0.63, 7.64 0.95 [0.63, 7.64 1.21 [1.02, 1.43 1.56 [1.24, 1.98] 1.56 [1.24, 1.98] 1.6 [0.69, 1.97 1.49 [1.21, 1.63]	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban atio 95% Cl 35,2 95% Cl 35% Cl 35\% C	vevents 7002 posenie/tr.tal* objectup differences 2002 acranial Hemorrhagy Apix or subgroup Livents Apix or Subgroup Events Apix or overall effect: Z = 1.4 Apix	Total I c: Chi ² = 3.0 e aban i: Total i: Total i: 5 i: 102	0, df = 8 (P 0001) 03, df = 1 (Rivaroxabb Events T 3 63 2 23 7 11 6 0 7 11 7 4 20 117 7, df = 5 (P 7) 29 1 1 1 29 04)	an otal Wei 282 5 2817 21 192 19 565 14 107 3 028 17 991 80 2 = 0.0004 2665 19 665 19	$l^2 = 47\%$ $l_1 l^2 = 67.03$ $l_2 l_2 l^2 = 67.03$ $l_3 l_4 l_4 l_4 l_5$ $l_4 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5$	% Cdds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.48 (0.14, 0.48) 0.48 (0.48, 1.64) 0.55 (0.20, 1.47) 0.48 (0.22, 1.06) % 0.42 (0.22, 0.76) 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogenesity: Chi ² = if or overall effects if of or subgroup diff troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke troke	6.62, df = 7 (f 2 (f 4 - 7 (f 2) 2 - 3.97 (P 4) erences: Chi ² + Apixaban <u>Events Tot</u> Dose 4 - 25 219 - 633 219 - 633 22 - 12 - 6 23 - 655 2 - 12 - 6 300 2.18, df = 5 (f Z = 2.24 (P = 230 - 444 39 - 255 - 694 269 1.00, df = 1 (f Z = 3.75 (f = 1 (f 2) 26 - 5) 26 - 5) 26 - 5) 26 - 5) 26 - 5) 27 - 5) 26 - 5) 26 - 5) 27 - 5) 28 - 5) 29 - 5) 29 - 5) 20 - 5) 21 - 5) 21 - 5) 21 - 5) 21 - 5) 21 - 5) 22 - 5) 23 - 5) 22 - 5	= 0.47; [² = 0.40; [² 0.0001) • 3.19, df = Rivaroxa al Events 1 3 9 196 3 2 2 2 2 4 0.32; [² 0.020; 9 2 1 9 196 3 2 2 7 1 1 9 196 3 2 2 7 1 1 9 196 3 2 2 7 1 1 9 196 3 2 2 7 1 9 0.82); [² 0.02) 9 196 1 9 2 1 9 196 1 9 0.82); [² 0.020] 9 196 1 9 196 1 1 9 196 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (P = 0.07), l ² bban Total Weight 282 0.7% 7192 43.8% 107 0.5% 4028 11.7% 18301 62.4% = 0% 3476 31.1% 1655 5.5%	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 648 1.28 [1.05, 1.55 0.47 [10.02, 948 1.27 [0.73, 2.23 1.05 [0.15, 7.64 0.95 [0.63, 7.64 0.95 [0.63, 7.64 1.21 [1.02, 1.43 1.56 [1.24, 1.98] 1.56 [1.24, 1.98] 1.6 [0.69, 1.97 1.49 [1.21, 1.63]	Favours Apixaban Fa Odds Ra	10 100 Hoter Test Test Test Test Test Test Test Test Test Test Test Sub Size Sub Star Star	vevents 70.02 or overall effect. Z = 7.7 70.02 or overall effect. Z = 7.7 70.02 scranial Hemorrhagg Apix or Subgroup Events Aguilar or Any Dose Apix extransity Apix seguilar or Any Dose Apix seguilar or Any Dose Apix sentor 12016 12016 12 2017 13	Thi² = 15.1; 76 (P < 0.04)	0, df = 8 (P 0001) 03, df = 1 (Rivaroxabi Events T 3 63 2 23 7 11 6 0 17 4 20 17 4 20 17 2 10 29 1 1 29 04) 22	(P = 0.08) an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 P = 0.0004 2665 19	$l^2 = 47\%$ $l_1 l^2 = 67.03$ $l_2 l_2 l^2 = 67.03$ $l_3 l_4 l_4 l_4 l_5$ $l_4 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5 l_5$	% Random, 95% CI 0.37 (0.04, 3.60) 0.18 (0.11, 0.28) 0.89 (0.48, 1.64) 0.55 (0.20, 1.47) 0.54 (0.22, 1.19) 0.54 (0.22, 1.06) % 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terogenesis; Cult = a tor overall effects to for verall effects to a subgroup diff troke to subgroup and the subgroup a substance of the subgroup and a substance of the subgroup and the substance of the subgroup and the substance of the subgroup and the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of the substance of t	6.62, df = 7 (f 2, 1 2 = 3.97 (P < 2 erences: Chi ² + Apixaban Events Tot Dose 4 22 219 632 219 632 22 10 632 2 10 64 2 2 10 47 432 2 8 655 2 2 10 47 432 2 8 655 2 2 2.24 (P = 2 3.0 444 2 69 2 69 2 6 9 2 6 9 2 6 9 2 6 9 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	= 0.47; l ² = 0.407; l ² (0.0001) ⇒ 3.19, df = Rivarox: al Events 1 3 9 196 3 2 2 2 2 2 2 2 4 1 3 9 2 196 2 2 2 2 2 4 1 = 0.82); l ² 0.022 0 119 7 22 7 141 = 0.32); l ² 0.002 9 2 412	1 (P = 0.07), 1 ² hban Total Weight 282 0.7% 127 0.4% 127 0.4% 127 0.4% 127 0.4% 126 0.5% 128 0.7% 128 0.7% 129 0.4% 129 0.5% 140 0.5% 140 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 648 1.28 [1.05, 1.55 0.47 [10.02, 948 1.27 [0.73, 2.23 1.05 [0.15, 7.64 0.95 [0.63, 7.64 0.95 [0.63, 7.64 1.21 [1.02, 1.43 1.56 [1.24, 1.98] 1.56 [1.24, 1.98] 1.6 [0.69, 1.97 1.49 [1.21, 1.63]	Favours Apixaban Fa Odds Ra	10 100 Heterev avours Rivaroxaban atio 95% CI 95% CI 35.0 Subd 95% CI 35.0 Subd 35.2 Subd 35.2 Subd 17555 1755 1755 1755 1755 1755 1755 1755 1755 1755 1755	vents: 7000 posenity: Tai" or subgroup differences acranial Hemorrhagy acranial Atemorrhagy Apix or Subgroup Events Apix arsing and themorrhagy Apix argenting argenting and themorrhagy Apix argenting argenting and themorrhagy Apix argenting argen	Thi ² = 15.1; Thi ² = 15.1; Fo (P < 0.00;	0, df = 8 (P 0001) 003, df = 1 (Rivaroxabi Events T 3 63 2 23 7 11 6 0 17 4 20 17 7, df = 5 (P 7) 29 1 12 29 04) 221 146	an total Wei 282 5 2817 21 192 19 565 14 107 3 1028 17 991 80 2 = 0.0004 6655 19 6656 100	$l^2 = 47\%$ $l, l^2 = 67.0$ light M-H, 5.4% 1.1% 2.5% 1.5% 1.5% 1.5% 1.5% 1.1% 1.5% 1.1% 1.5% 1.1% 1.5% 1.1% 1.5%	% Cdds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.48 (0.14, 0.48) 0.48 (0.48, 1.64) 0.55 (0.20, 1.47) 0.48 (0.22, 1.06) % 0.42 (0.22, 0.76) 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio
terospensery: CuP = tor overall effects tor overall effects tor overall effects tor overall effects tor subgroup diff torower torower torower terospensery: CuP = terospensery: CuP = teros	6.62, df = 7 (f 2 G = 3.97 (P 4) erences: Chi ² + Apixaban Events Tot Dose 2 139 (2 4) 2 19 63 2 119 63 2 109 63 2 109 64 2 109 63 2 109 63	= 0.47; [² = 0.40; [² 0.0001) = 3.19, df = Rivaroxa al Events 1 3 9 196 3 2 2 2 2 4 0.82; [² 0.022) 0 119 7 22 0.002) 0 119 7 22 1 41 = 0.82; [² 0.0002) 9 122 9 122 	1 (P = 0.07), 1 ² hban Total Weight 282 0.7% 127 0.4% 127 0.4% 127 0.4% 127 0.4% 126 0.5% 128 0.7% 128 0.7% 129 0.4% 129 0.5% 140 0.5% 140 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.5% 141 0.	Odds Ratio M-H, Fixed, 95% C 1.51 [0.33, 648 1.28 [1.05, 1.55 0.47 [10.02, 948 1.27 [0.73, 2.23 1.05 [0.15, 7.64 0.95 [0.63, 7.64 0.95 [0.63, 7.64 1.21 [1.02, 1.43 1.56 [1.24, 1.98] 1.56 [1.24, 1.98] 1.6 [0.69, 1.97 1.49 [1.21, 1.63]	Favours Apixaban Fa Odds Ra	10 100 Hoter Test Test Test Test Test Test Test Test Sub Size Sub Star Sub Test Sub Test Sub Test Sub Star Sub Test	vevents 70.02 or overall effect. Z = 7.7 70.02 or overall effect. Z = 7.7 70.02 scranial Hemorrhagg Apix or Subgroup Events Aguilar or Any Dose Apix extransity Apix seguilar or Any Dose Apix seguilar or Any Dose Apix sentor 12016 12016 12 2017 13	Thi² = 15.1; Thi² = 15.1; To fc (P < 0.00;	0. df = 8 (P 0001) 003, df = 1 (Rivaroxab <i>i</i> Events T 3 63 2 23 7 11 6 0 17 4 20 17 4 20 17 29 1 10 29 14 29 146 4, df = 6 (P	an total Wei 282 5 2817 21 192 19 565 14 107 3 0028 17 991 80 2 = 0.0004 6655 19 6656 100	$l^2 = 47\%$ $l, l^2 = 67.0$ light M-H, 5.4% 1.1% 2.5% 1.5% 1.5% 1.5% 1.5% 1.1% 1.5%	% Cdds Ratio Random, 95% CI 0.37 (0.04, 3.60) 0.48 (0.14, 0.48) 0.48 (0.48, 1.64) 0.55 (0.20, 1.47) 0.48 (0.22, 1.06) % 0.42 (0.22, 0.76) 0.42 (0.24, 0.76)	Favours Apix	aban Favours Rivaroxaban Odds Ratio

Figure 4. Efficacy and safety of apixaban vs rivaroxaban. A, Any thromboembolic events; (B) stroke; (C) major bleeding; and (D) intracranial hemorrhage. Cl indicates confidence interval. merican American Heart | Stroke

most of the outcomes analyzed (data not shown). For the comparison of apixaban versus warfarin for any thromboembolic event, bias-stratified analysis found a 25% RRR (P<0.00001) when considering only low risk of bias studies (Figure XV in the online-only Data Supplement). The risk reduction for any thromboembolic event occurrence with rivaroxaban was driven by the moderate/high risk of bias studies (OR, 1.38; 95% CI, 1.19-1.59) while no significant difference was found for the low risk of bias subgroup (OR, 1.10; 95% CI, 0.89–1.35; Figure XVI in the online-only Data Supplement). Similar findings were seen for stroke occurrence (Figure XVII in the online-only Data Supplement).

Absolute Risk Reductions and Number-**Needed to Treat Compared With Warfarin**

To assess the effectiveness of apixaban compared with warfarin in RWS, we estimated absolute risk reduction (ARR) and number-needed to treat (NNT). Compared with warfarin, apixaban resulted in a similar effect reducing any thromboembolic event (ARR: 0.23%), with a slightly better effectiveness in reducing risk of stroke (ARR: 0.48%). Comparing RWS data with the ARISTOTLE trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation),²³ apixaban allowed a consistently higher NNT for any thromboembolic event while a similar clinical effectiveness was found for stroke events (Figure 5).

For major bleeding events, an ARR of 1.41% resulting in an NNT of 71, similar to ARISTOTLE. For ICH, a 2.7-fold increase in NNT was seen compared with ARISTOTLE (345 versus 128) because of an ARR of 0.29% (Figure 5). Similarly,

with an ARR of 0.57% for GIB, a 1.8-fold increase in NNT was observed in RWS compared with ARISTOTLE. Despite an ARR of 1.67% in all-cause death, the NNT was lower in RWS than in the ARISTOTLE trial.

American

Discussion

Our systematic review and meta-analysis show that use of apixaban in real-life is associated with an overall nonsignificant difference in stroke and any thromboembolic events when compared with warfarin. A better safety profile was demonstrated when comparing apixaban use to warfarin, dabigatran, or rivaroxaban.

Compared with the phase III ARISTOTLE trial,²³ RWS data showed that apixaban seems to have a similar effectiveness than warfarin in reducing any thromboembolic event occurrence, as seen in the randomized clinical trial context, with a slightly better effect for stroke event occurrence. Moreover, apixaban was as effective as dabigatran and rivaroxaban in reducing the risk of thromboembolic events. Importantly, apixaban was found to be safer than warfarin in reducing major bleeding, particularly ICH and GIB. Also, apixaban was safer than both dabigatran and rivaroxaban in reducing bleeding events. Data on mortality reduction were inconclusive in our analysis.

Since their introduction in daily practice, NOACs have been increasingly used, contributing to the increase in OAC uptake seen in several studies,24-26 even though treatment gaps still remain.²⁷ NOACs are currently recommended over vitamin K antagonists in most of the international guidelines.²⁸⁻³⁰ Nevertheless, many patients eligible for use of NOACs are treated with a reduced dose, outwith the label

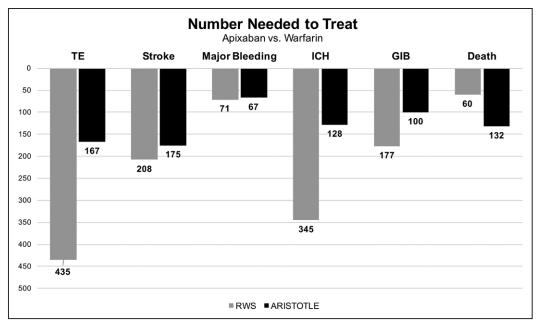


Figure 5. Number needed-to-treat comparison between real-world studies and ARISTOTLE trial. GIB indicates gastrointestinal bleeding; ICH, intracranial hemorrhage; RWS, real-world studies; and TE, thromboembolic events.

recommendations for this reduced dose treatment.³¹ In an analysis from the ORBIT-AF II (Outcomes Registry for Better Informed Treatment of Atrial Fibrillation phase II), 9.4% of patients were undertreated with reduced dose NOACs, with up to 11.8% of apixaban users prescribed with reduced dose, with reduced dose associated with increased rate of major adverse outcomes.³¹ Our data showed that even greater proportion of patients are treated with the reduced dose, and our results suggest that treating patients with apixaban reduced dose is associated with worse outcomes. The finding that reduced dose apixaban was found more effective than dabigatran was unexpected. There is relatively limited evidence on direct or indirect comparisons of various reduced dose NOACs, so these data have to be cautiously interpreted. Indeed, we should consider the real-world observational nature of reported studies, where residual confounding may still be evident. Also, patients prescribed low or reduced dose in RWS may be older and more fragile because of multiple comorbidities (or at least, perceived to be so).

Thus far, many RWS papers have been released about the use and comparisons of either NOACs versus warfarin or 1 NOAC versus other NOAC.^{4,5} Carmo et al⁴ performed a metaanalysis of dabigatran versus warfarin in RWS and found that dabigatran was associated with a lower risk of stroke and major bleeding. Although a lower ICH risk was seen, an increased risk for GIB was reported for dabigatran 150 mg.⁴ In another meta-analysis of RWS focused on rivaroxaban, Bai et al⁵ reported that rivaroxaban compared with warfarin was associated with a significant reduction in thromboembolic events but with a similar risk for major bleeding and GIB. Rivaroxaban was found to be as effective as dabigatran for prevention of thromboembolic events but was associated with an increased risk of major bleeding.⁵

Our article extends prior meta-analyses in understanding the impact of apixaban in real-life clinical practice. Compared with warfarin, regular dose apixaban was associated with a marginally improved effectiveness in reducing thromboembolic events even though overall the difference was nonsignificant and NNT indicated a higher number of subjects to be treated to avoid 1 thromboembolic event and a similar NNT for stroke prevention; however, a better safety profile, consistent with other RWS with other NOACs, was evident. In addition, apixaban had a similar effectiveness but a substantially better safety profile than dabigatran and rivaroxaban. Reassuring data about NOACs as a valid alternative to vitamin K antagonists from RWS have also been reported recently for secondary stroke prevention.³²

Thus far, all NOACs have been considered broadly similar in effectiveness, with some possible differences in safety. Our data, even though based on indirect comparisons, and therefore to be interpreted cautiously, suggest that in the context of currently available RWS evidence apixaban could possibly represent the best alternative for OAC therapy, balancing effectiveness and safety for many patients with AF.

Limitations

Our study has various limitations. First, we could not account for quality of anticoagulation control, for the studies comparing apixaban with warfarin, nor adherence or persistence to NOACs. Indeed, these aspects are highly relevant in determining clinical outcomes.^{33–35} Another limitation is the relatively shorter follow-up of apixaban-treated patients compared with other NOACs and differences in length of exposure need to be considered for such comparisons.³⁶ In addition, several meta-analyses are based on studies with high heterogeneity as testified by large I² values. Also, the reduced number of studies included in some of the secondary comparisons has to be taken in consideration when interpreting the overall results. Finally, being based on RWS, the presence of unaccountable confounders has to be taken under consideration when interpreting our results.

Summary

In this systematic review and meta-analysis, the use of apixaban in real-life is associated with an overall similar effectiveness in reducing stroke and any thromboembolic events when compared with warfarin. A better safety profile was found for apixaban when compared with warfarin, dabigatran, and rivaroxaban.

Disclosures

Dr Proietti is a consultant for Boehringer Ingelheim. Dr Lip is a consultant for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife, and Daiichi-Sankyo and speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche, and Daiichi-Sankyo. The other authors report no conflicts.

References

- Freedman B, Potpara TS, Lip GY. Stroke prevention in atrial fibrillation. Lancet. 2016;388:806–817. doi: 10.1016/S0140-6736(16)31257-0.
- Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a metaanalysis of randomised trials. *Lancet*. 2014;383:955–962. doi: 10.1016/ S0140-6736(13)62343-0.
- Potpara TS, Lip GY. Postapproval observational studies of nonvitamin K antagonist oral anticoagulants in atrial fibrillation. JAMA. 2017;317:1115–1116. doi: 10.1001/jama.2017.1152.
- Carmo J, Moscoso Costa F, Ferreira J, Mendes M. Dabigatran in realworld atrial fibrillation. Meta-analysis of observational comparison studies with vitamin K antagonists. *Thromb Haemost.* 2016;116:754–763. doi: 10.1160/TH16-03-0203.
- Bai Y, Deng H, Shantsila A, Lip GY. Rivaroxaban versus dabigatran or warfarin in real-world studies of stroke prevention in atrial fibrillation: systematic review and meta-analysis. *Stroke*. 2017;48:970–976. doi: 10.1161/STROKEAHA.116.016275.
- 6. Viswanathan M, Ansari M, Berkman N, Chang S, Hartling L, McPheeters L, et al. Methods guide for comparative effectiveness reviews assessing the risk of bias of individual studies in systematic reviews of health care interventions. www.effectivehealthcare.ahrq. gov/. Accessed April 2017.
- Forslund T, Wettermark B, Andersen M, Hjemdahl P. Stroke and bleeding with non-vitamin K antagonist oral anticoagulant or warfarin treatment in patients with non-valvular atrial fibrillation: a population-based cohort study. *Europace*. 2017. doi: 10.1093/europace/euw416.
- Lee SI, Sayers M, Lip GY, Lane DA. Use of non-vitamin K antagonist oral anticoagulants in atrial fibrillation patients: insights from a specialist atrial fibrillation clinic. *Int J Clin Pract.* 2015;69:1341–1348. doi: 10.1111/ijcp.12712.
- Shiga T, Naganuma M, Nagao T, Maruyama K, Suzuki A, Murasaki K, et al. Persistence of non-vitamin K antagonist oral anticoagulant use in Japanese patients with atrial fibrillation: a single-center observational study. J Arrhythm. 2015;31:339–344. doi: 10.1016/j.joa.2015.04.004.
- Al-Khalili F, Lindström C, Benson L. The safety and persistence of nonvitamin-K-antagonist oral anticoagulants in atrial fibrillation patients treated in a well structured atrial fibrillation clinic. *Curr Med Res Opin*. 2016;32:779–785. doi: 10.1185/03007995.2016.1142432.
- Coleman CI, Antz M, Bowrin K, Evers T, Simard EP, Bonnemeier H, et al. Real-world evidence of stroke prevention in patients with nonvalvular atrial fibrillation in the United States: the REVISIT-US study. *Curr Med Res Opin.* 2016;32:2047–2053. doi: 10.1080/03007995.2016.1237937.
- Larsen TB, Skjøth F, Nielsen PB, Kjældgaard JN, Lip GY. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. *BMJ*. 2016;353:i3189.
- Lip GY, Keshishian A, Kamble S, Pan X, Mardekian J, Horblyuk R, et al. Real-world comparison of major bleeding risk among non-valvular atrial fibrillation patients initiated on apixaban, dabigatran, rivaroxaban, or warfarin. A propensity score matched analysis. *Thromb Haemost*. 2016;116:975–986. doi: 10.1160/TH16-05-0403.
- Noseworthy PA, Yao X, Abraham NS, Sangaralingham LR, McBane RD, Shah ND. Direct comparison of dabigatran, rivaroxaban, and apixaban

for effectiveness and safety in nonvalvular atrial fibrillation. *Chest.* 2016;150:1302–1312. doi: 10.1016/j.chest.2016.07.013.

- Staerk L, Fosbøl EL, Lip GYH, Lamberts M, Bonde AN, Torp-Pedersen C, et al. Ischaemic and haemorrhagic stroke associated with non-vitamin K antagonist oral anticoagulants and warfarin use in patients with atrial fibrillation: a nationwide cohort study. *Eur Heart J*. 2017;38:907–915. doi: 10.1093/eurheartj/ehw496.
- Yao X, Abraham NS, Sangaralingham LR, Bellolio MF, McBane RD, Shah ND, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J. Am. Heart Assoc. 2016;5:e003725.
- Abraham NS, Noseworthy PA, Yao X, Sangaralingham LR, Shah ND. Gastrointestinal safety of direct oral anticoagulants: a large populationbased study. *Gastroenterology*. 2017;152:1014–1022.e1. doi: 10.1053/j. gastro.2016.12.018.
- Altay S, Yıldırımtürk Ö, Çakmak HA, Aşkın L, Sinan ÜY, Beşli F, et al; NOAC-TURK Study Collaborators. New oral anticoagulants-TURKey (NOAC-TURK): multicenter cross-sectional study. *Anatol J Cardiol.* 2017;17:353–361. doi: 10.14744/AnatolJCardiol.2016.7472.
- Halvorsen S, Ghanima W, Fride Tvete I, Hoxmark C, Falck P, Solli O, et al. A nationwide registry study to compare bleeding rates in patients with atrial fibrillation being prescribed oral anticoagulants. *Eur Heart J Cardiovasc Pharmacother*. 2017;3:28–36. doi: 10.1093/ehjcvp/pvw031.
- Lamberts M, Staerk L, Olesen JB, Fosbøl EL, Hansen ML, Harboe L, et al. Major bleeding complications and persistence with oral anticoagulation in non-valvular atrial fibrillation: contemporary findings in real-life Danish patients. J Am Heart Assoc. 2017;6:e004517.
- Li XS, Deitelzweig S, Keshishian A, Hamilton M, Horblyuk R, Gupta K, et al. Effectiveness and safety of apixaban versus warfarin in non-valvular atrial fibrillation patients in "real-world" clinical practice. A propensity-matched analysis of 76,940 patients. *Thromb Haemost*. 2017;117:1072–1082. doi: 10.1160/TH17-01-0068.
- Nielsen PB, Skjøth F, Søgaard M, Kjældgaard JN, Lip GY, Larsen TB. Effectiveness and safety of reduced dose non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. *BMA*, 2017;356:j510.
- Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. *N Engl J Med.* 2011;365:981– 992. doi: 10.1056/NEJMoa1107039.
- 24. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand JP, Berge E, et al; GARFIELD-AF Investigators. Evolving antithrombotic treatment patterns for patients with newly diagnosed atrial fibrillation. *Heart*. 2017;103:307–314. doi: 10.1136/heartjnl-2016-309832.
- Huisman MV, Rothman KJ, Paquette M, Teutsch C, Diener HC, Dubner SJ, et al; GLORIA-AF Investigators. The changing landscape for stroke prevention in AF: findings from the GLORIA-AF registry phase 2. J Am Coll Cardiol. 2017;69:777–785. doi: 10.1016/j.jacc.2016.11.061.
- Gadsbøll K, Staerk L, Fosbøl EL, Sindet-Pedersen C, Gundlund A, Lip GYH, et al. Increased use of oral anticoagulants in patients with atrial fibrillation: temporal trends from 2005 to 2015 in Denmark. *Eur Heart J*. 2017;38:899–906. doi: 10.1093/eurheartj/ehw658.
- Marzec LN, Wang J, Shah ND, Chan PS, Ting HH, Gosch KL, et al. Influence of direct oral anticoagulants on rates of oral anticoagulation for atrial fibrillation. *J Am Coll Cardiol*. 2017;69:2475–2484. doi: 10.1016/j. jacc.2017.03.540.
- Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *Eur Heart J.* 2016;37:2893–2962. doi: 10.1093/eurheartj/ehw210.
- You JJ, Singer DE, Howard PA, Lane DA, Eckman MH, Fang MC, et al. Antithrombotic therapy for atrial fibrillation: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*. 2012;141:e531S-e575S.
- Verma A, Cairns JA, Mitchell LB, Macle L, Stiell IG, Gladstone D, et al; CCS Atrial Fibrillation Guidelines Committee. 2014 focused update of the Canadian Cardiovascular Society Guidelines for the management of atrial fibrillation. *Can J Cardiol*. 2014;30:1114–1130. doi: 10.1016/j. cjca.2014.08.001.
- Steinberg BA, Shrader P, Thomas L, Ansell J, Fonarow GC, Gersh BJ, et al; ORBIT-AF Investigators and Patients. Off-label dosing of nonvitamin K antagonist oral anticoagulants and adverse outcomes: the ORBIT-AF II registry. J Am Coll Cardiol. 2016;68:2597–2604. doi: 10.1016/j.jacc.2016.09.966.

- 32. Coleman CI, Peacock WF, Bunz TJ, Alberts MJ. Effectiveness and safety of apixaban, dabigatran, and rivaroxaban versus warfarin in patients with nonvalvular atrial fibrillation and previous stroke or transient ischemic attack. *Stroke*. 2017;48:2142–2149. doi: 10.1161/ STROKEAHA.117.017474.
- Wan Y, Heneghan C, Perera R, Roberts N, Hollowell J, Glasziou P, et al. Anticoagulation control and prediction of adverse events in patients with atrial fibrillation: a systematic review. *Circ Cardiovasc Qual Outcomes*. 2008;1:84–91. doi: 10.1161/CIRCOUTCOMES.108.796185.
- Raparelli V, Proietti M, Cangemi R, Lip GY, Lane DA, Basili S. Adherence to oral anticoagulant therapy in patients with atrial fibrillation. Focus

on non-vitamin K antagonist oral anticoagulants. *Thromb Haemost*. 2017;117:209–218. doi: 10.1160/TH16-10-0757.

- Potpara TS, Boriani G, Lip GYH. Evaluating adherence to non-vitamin-K antagonist oral anticoagulants in post-approval observational studies of patients with atrial fibrillation. *Curr Med Res Opin*. 2017;33:1175– 1177. doi: 10.1080/03007995.2017.1313210.
- Coleman C, Yuan Z, Schein J, Crivera C, Ashton V, Laliberté F, et al. Importance of balancing follow-up time and impact of oral-anticoagulant users' selection when evaluating medication adherence in atrial fibrillation patients treated with rivaroxaban and apixaban. *Curr Med Res Opin.* 2017;33:1033–1043. doi: 10.1080/03007995.2017.1297932.

Real-World Use of Apixaban for Stroke Prevention in Atrial Fibrillation: A Systematic Review and Meta-Analysis

Marco Proietti, Imma Romanazzi, Giulio Francesco Romiti, Alessio Farcomeni and Gregory Y.H. Lip

Stroke. published online November 22, 2017; *Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://stroke.ahajournals.org/content/early/2017/11/21/STROKEAHA.117.018395

Data Supplement (unedited) at:

http://stroke.ahajournals.org/content/suppl/2017/11/22/STROKEAHA.117.018395.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at: http://stroke.ahajournals.org//subscriptions/

SUPPLEMENTAL MATERIAL

"Real-World" Use of Apixaban for Stroke Prevention in Atrial Fibrillation: A Systematic Review and Meta-Analysis

Marco Proietti, Imma Romanazzi, Giulio Francesco Romiti, Alessio Farcomeni, Gregory Y.H. Lip

Supplementary Methods	Page 2
Supplementary Tables	Page 4
Supplementary Figures	Page 5
Supplementary References	Page 15

SUPPLEMENTARY METHODS

Bias Assessment

All studies have been evaluated to assess the risk of bias, independently by two of the co-authors (MP and IR) according to recommendations of Agency for Healthcare Research and Quality (AHRQ)¹. Evaluation was performed for the following bias categories: selection, performance, attrition, detection and reporting bias. Finally, an overall evaluation was performed. All studies have been categorised as low, moderate or high risk of bias. Publication bias was analysed for the main primary outcomes.

Studies Selection and Data Extraction

After search, all results have been screened by two co-authors independently (IR and GFR), with disagreement resolved by collegial discussion with a third co-author (MP). All articles retrieved from the search were evaluated according to titles, abstract and full-text evaluation, sequentially. Studies for which it was possible to clearly ascertain a relevant overlap of cohorts were evaluated according to time of data collection and/or year of publication. Accordingly, studies collected and/or published more recently were included in the analysis.

Data were extracted independently by two of the co-authors (MP and IR) using a shared electronic data sheet. All data on sample size of apixaban and any comparator subgroups, number of major adverse events, incidence rates or measures of effect were collected. Study characteristics, age and thromboembolic risk were also collected when available. Where available, data on use of reduced dose for every NOAC were extracted. Stratified analyses were performed according to the dose used when the study provided outcomes accordingly. Doses were defined as "regular or any dose" when regular dose was explicitly reported or when was not possible to establish which dose was used; "reduced dose" was used when the study provided outcomes accordingly. The study when explicitly reported for apixaban 2.5 mg bid, dabigatran 110 mg bid and rivaroxaban 15 mg od.

Outcomes Definition

Primary outcomes considered were stroke and/or any thromboembolic event, major bleeding and intracranial hemorrhage (ICH). Secondary outcomes considered where available were hemorrhagic stroke, gastrointestinal bleeding (GIB), any bleeding and all-cause death.

Outcomes were defined according to the definition and categorisation used in the original studies. Specifically, stroke outcome was used for all ischemic or undefined stroke, based on the original data. All central and/or peripheral embolic events were considered as 'any thromboembolic event'. Major bleeding, ICH, hemorrhagic stroke and GIB were defined only when they were unequivocally and undoubtedly defined as per the original study. ICH and hemorrhagic stroke were not considered as interchangeable and assigned according to the original study report and endpoint distinction. Otherwise, bleeding events were defined as "any bleeding".

Statistical Analysis

All statistical analyses were undertaken using Review Manager (RevMan) version 5.3 (The Cochrane Collaboration 2014, Nordic Cochrane Centre Copenhagen, Denmark). Outcomes from each study were pooled and compared using a fixed-

effect or random-effect model according to the heterogeneity between all included studies. Treatment effect was reported as odds ratio (OR) and 95% confidence interval (CI). We decided to report OR instead of RR for comparability with other references and for consistency: we have repeatedly stratified our results and used different outcomes, and OR tend to vary less over strata than risk ratios. The I^2 -statistic was quantified to measure heterogeneity. When an I^2 of >70% was observed, the DerSimonian and Laird random-effects model was used; while Mantel-Haenszel summaries were used otherwise. When there were no events in one group a pseudo-count of 0.5 was added to each cell. A sensitivity analysis, according to evaluated risk of bias, was performed for all the outcomes that reported a significant treatment effect. When necessary, the expected number of events was calculated using event rates, sample size and follow-up duration or by using subgroups sample size, hazard ratios (HR) and 95% CI. The latter was necessary for two studies which reported only HR, and given hazard rates were generally low we assumed RR and HR corresponded for that studies. Additionally, a sensitivity analysis removing those two studies led to the same conclusions reported. Absolute risk reduction (ARR) and the number-needed to treat (NNT) were calculated after pooling effect sizes for comparison between apixaban and warfarin. A p-value <0.05 was considered statistically significant.

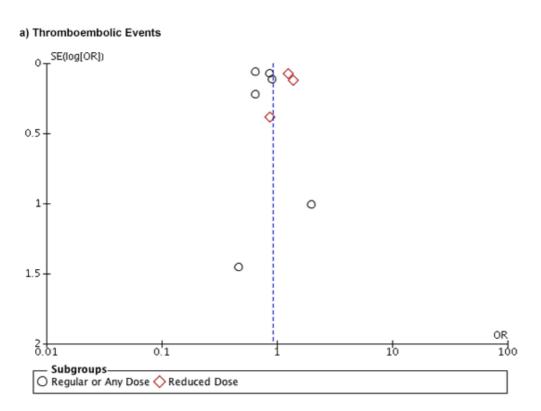
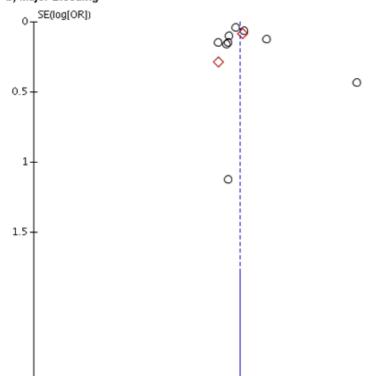
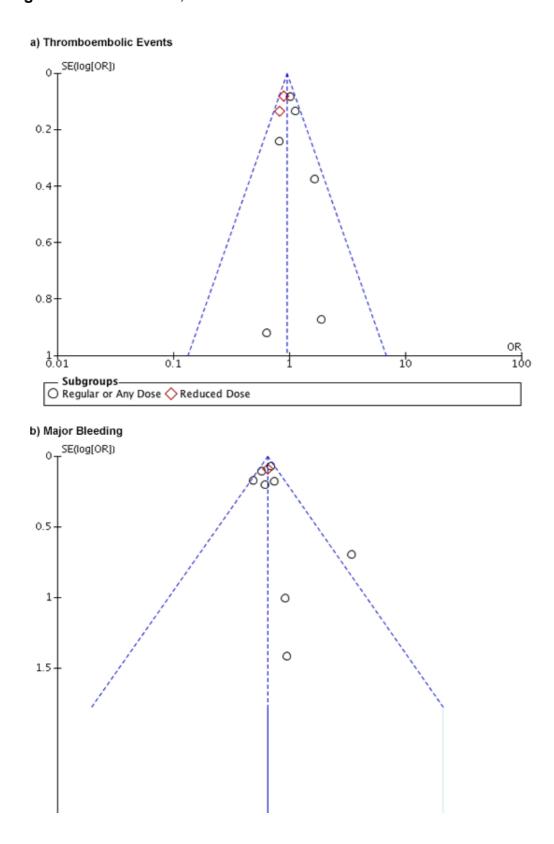
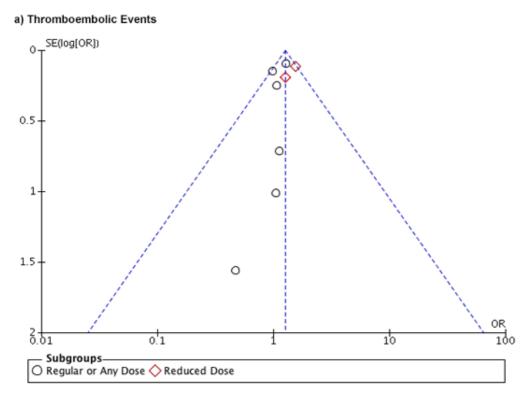

SUPPLEMENTARY TABLES

Table I: Risk of Bias Evaluation for Included Studies


STUDY	SELECTION BIAS	PERFORMANCE	ATTRITION BIAS	DETECTION BIAS	REPORTING BIAS	OVERALL BIAS
		BIAS				
Lee	Moderate	High	Low	Low	High	High
Shiga	Low	Low	Low	Low	Low	Low
Al-Khalili	High	Low	Low	Low	Low	Moderate
Coleman	Low	Low	Low	Low	Low	Low
Larsen	High	Low	Low	Low	Low	Moderate
Lip	Low	Low	Low	Low	Low	Low
Noseworthy	Low	Low	Low	Low	Low	Low
Staerk	Low	Low	Low	Low	Low	Low
Yao	Moderate	Low	Low	Low	Low	Low
Abraham	Low	Low	Low	Low	Low	Low
Altay	High	High	High	Low	Moderate	High
Forslund	Low	Low	Low	Low	Low	Low
Halvorsen	Low	Low	Low	Low	Low	Low
Lamberts	Low	Low	Low	Low	Low	Low
Li	Low	Low	Low	Low	Low	Low
Nielsen	High	Moderate	Low	Low	Low	Moderate

SUPPLEMENTARY FIGURES


Figure I: Publication Bias in Main Primary Outcomes for Comparison between Apixaban and Warfarin **Legend:** OR= odds ratio; SE= size effect.



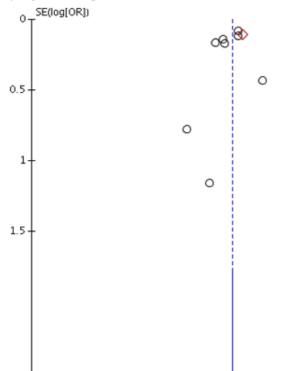

Figure II: Publication Bias in Main Primary Outcomes for Comparison between Apixaban and Dabigatran **Legend:** OR= odds ratio; SE= size effect.

Figure III: Publication Bias in Main Primary Outcomes for Comparison between Apixaban and Rivaroxaban **Legend:** OR= odds ratio; SE= size effect.

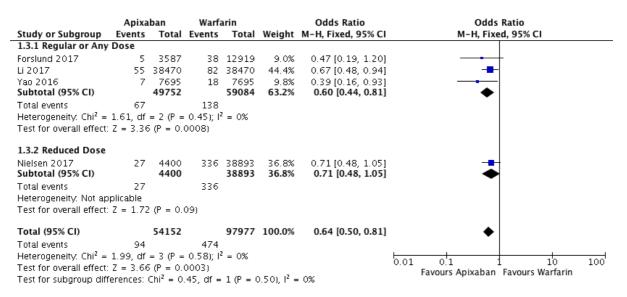


Figure IV: Comparison of Apixaban versus Warfarin in Hemorrhagic Stroke Occurrence

Legend: CI= confidence interval.

Figure V: Comparison of Apixaban versus Warfarin in Gastrointestinal Bleeding Occurrence

Legend: CI= confidence interval.

	Apixa	ban	Warfa	arin		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
1.6.1 Regular or Any	Dose							_
Forslund 2017	39	3587	124	12919	5.7%	1.13 [0.79, 1.63]	- - -	
Halvorsen 2017	70	6506	199	11427	15.2%	0.61 [0.47, 0.81]		
Li 2017	379	38470	630	38470	66.5%	0.60 [0.53, 0.68]		
Shiga 2015	0	102	2	200	0.2%	0.39 [0.02, 8.14]		
Yao 2016	69	7695	117	7695	12.4%	0.59 [0.43, 0.79]		
Subtotal (95% CI)		56360		70711	100.0%	0.63 [0.57, 0.70]	♦	
Total events	557		1072					
Heterogeneity: Chi ² =	11.16, di	f = 4 (P	= 0.02);	$ ^2 = 64\%$	6			
Test for overall effect:	Z = 8.75	(P < 0.)	00001)					
Total (95% CI)		56360		70711	100.0%	0.63 [0.57, 0.70]	•	
Total events	FF7	30300	1077	/0/11	100.0%	0.03 [0.37, 0.70]	•	
	557	< 4 m	1072	12 5 494	,			
Heterogeneity. Chi ² =	,		.,	17 = 64%	`		0.01 0.1 1 10 100	
Test for overall effect:							Favours Apixaban Favours Warfarin	
Test for subgroup diff	erences: I	Not appl	icable					

Figure VI: Comparison of Apixaban versus Warfarin in Any Bleeding Occurrence

	Apixa	ban	Warf	arin		Odds Ratio			Odds Rati	io	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-1	H, Random,	95% CI	
1.7.1 Regular or Any	/ Dose										
Halvorsen 2017	270	6506	679	11427	34.1%	0.69 [0.59, 0.79]			-		
Larsen 2016 Subtotal (95% CI)	143	6349 12855	1579	35346 46773					•		
Total events	413		2258								
Heterogeneity: Tau ² =	= 0.05; Ch	i ² = 8.2	9, df = 1	(P = 0.)	004); I ² =	88%					
Test for overall effect	: Z = 3.25	(P = 0.	001)								
1.7.2 Reduced Dose											
Nielsen 2017 Subtotal (95% CI)	224	4400 4400	2910	38893 38893	34.5% 34.5%				•		
Total events	224		2910								
Heterogeneity: Not ap	plicable										
Test for overall effect	:Z = 5.76	(P < 0.	00001)								
Total (95% CI)		17255		85666	100.0%	0.61 [0.50, 0.74]			•		
Total events	637		5168								
Heterogeneity: Tau ² =	= 0.02; Ch	$i^2 = 9.5$	3, df = 2	P = 0.0	009); l ² =	79%	0.01	0,1		10	10
Test for overall effect	: Z = 5.05	(P < 0.	00001)				0.01		ivahan Faw	ours Warfarin	, 10
Test for subgroup dif	ferences: ($Chi^2 = 0$.51, df =	1 (P = 0)	0.48), I ² =	= 0%		ravours Ap	ixabali rav	Juis Wariarin	1
· · · ·					-						

Legend: CI= confidence interval.

Figure VII: Comparison of Apixaban versus Warfarin in All-Cause Death Occurrence **Legend:** CI= confidence interval.

	Apixal	ban	Warfa	arin	Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	M–H, Random, 95% Cl	M-H, Random, 95% CI
1.8.1 Regular or Any	Dose					
Forslund 2017	120	3587	413	12919	1.05 [0.85, 1.29]	+
Larsen 2016 Subtotal (95% CI)	274	6349 9936	4469	35436 48355	0.31 [0.28, 0.35]	-
Total events	394		4882			
Heterogeneity: Tau ² =	0.74; Chi	i ² = 98.	49, df =	1 (P < 0.	00001); $I^2 = 99\%$	
1.8.2 Reduced Dose						
Nielsen 2017 Subtotal (95% CI)	1040	4400	5366	38893	1.93 [1.79, 2.09]	-
Total events						
Heterogeneity: Not ap	plicable					
Total (95% CI)		14336		87248		
Total events Heterogeneity: Tau ² =	1434 1.31; Chi	i² = 645	10248 3.42, df s	= 2 (P < 0	0.00001); I ² = 100%	01 0.1 1 10 100 Favours Apixaban Favours Warfarin

Figure VIII: Comparison of Apixaban versus Dabigatran in Gastrointestinal Bleeding Occurrence

Legend: CI= confidence interval.

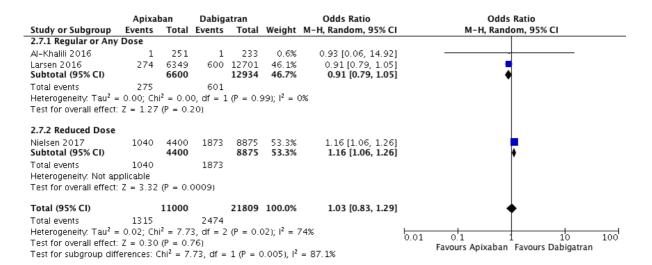

	Apixa	ban	Dabig	atran		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
2.5.1 Regular or Any	Dose						
Abraham 2017	33	6542	121	6542	45.5%	0.27 [0.18, 0.40]	
Al-Khalili 2016	5	251	9	233	3.5%	0.51 [0.17, 1.53]	
Halvorsen 2017	70	6506	150	7925	50.5%	0.56 [0.42, 0.75]	-
Shiga 2015 Subtotal (95% CI)	0	201 13500	1	192 14892	0.6% 100.0%	0.32 [0.01, 7.82] 0.43 [0.34, 0.53]	•
Total events Heterogeneity: Chi ² = Test for overall effect:				² = 68%			
Total (95% CI)		13500		14892	100.0%	0.43 [0.34, 0.53]	•
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	Z = 7.52	(P < 0.)	00001)	² = 68%			0.01 0.1 1 10 100 Favours Apixaban Favours Dabigatran

Figure IX: Comparison of Apixaban versus Dabigatran in Any Bleeding Occurrence **Legend:** CI= confidence interval.

	Apixa	ban	Dabig	atran		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
2.6.1 Regular or Any	Dose						
Al-Khalili 2016	19	251	16	233	1.3%	1.11 [0.56, 2.22]	
Altay 2017	26	625	89	1090	5.4%	0.49 [0.31, 0.76]	- -
Halvorsen 2017	272	6506	407	7925	30.7%	0.81 [0.69, 0.94]	+
Larsen 2016 Subtotal (95% CI)	143	6349 13731	461	12701 21949	26.3% 63.8%		-
Total events	460		973				
Heterogeneity. $Chi^2 =$	9.17, df	= 3 (P =	0.03); 1	² = 67%			
Test for overall effect:	Z = 5.98	(P < 0.)	00001)				
2.6.2 Reduced Dose							
Nielsen 2017 Subtotal (95% CI)	224	4400 4400	659	8875 8875	36.2% 36.2%		₹
Total events	224		659				
Heterogeneity. Not ap	plicable						
Test for overall effect:	Z = 5.05	(P < 0.	00001)				
Total (95% CI)		18131		30824	100.0%	0.69 [0.63, 0.76]	•
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	Z = 7.82	(P < 0.	00001)		1591 I ² -	= 0%	0.01 0.1 1 10 100 Favours Apixaban Favours Dabigatran

Figure X: Comparison of Apixaban versus Dabigatran in All-Cause Death Occurrence

Legend: CI= confidence interval.

Figure XI: Comparison of Apixaban versus Rivaroxaban in Hemorrhagic Stroke Occurrence

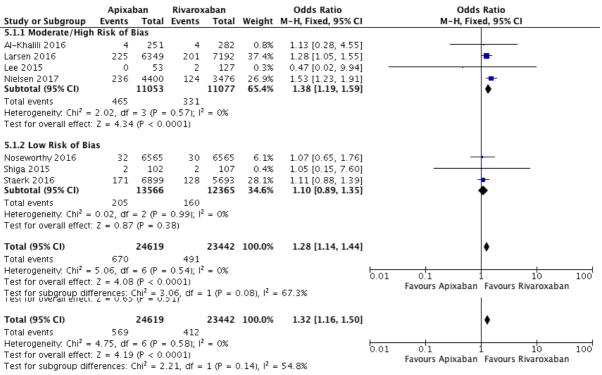
	Apixal	ban	Rivarox	aban		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% Cl	
3.3.1 Regular or Any	Dose								_
Lee 2015	0	53	0	127		Not estimable			
Noseworthy 2016	3	6565	5	6565	14.8%	0.60 [0.14, 2.51]			
Shiga 2015 Subtotal (95% CI)	0	102 6720	0	107 6799	14.8%	Not estimable 0.60 [0.14, 2.51]			
Total events Heterogeneity: Not ap Test for overall effect:			5 48)	0799	14.0%	0.00 [0.14, 2.31]			
3.3.2 Reduced Dose									
Nielsen 2017 Subtotal (95% CI)	27	4400 4400		3476 3476	85.2% 85.2%	0.82 [0.48, 1.41] 0.82 [0.48, 1.41]			
Total events Heterogeneity: Not ap Test for overall effect:		(P = 0.1	26 47)						
		•							
Total (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup diff	30 0.16, df = Z = 0.93	(P = 0.	31 0.69); I ² 35)	= 0%	100.0%).69), ² =	0.79 [0.48, 1.30] • 0%	0.01	0.1 1 10 100 Favours Apixaban Favours Rivaroxaban	1

Figure XII: Comparison of Apixaban versus Rivaroxaban in Gastrointestinal Bleeding Occurrence

Legend: CI= confidence interval.

	Apixa	ban	Rivaro	aban		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.6.1 Regular or Any	/ Dose						
Abraham 2017	32	6565	116	6565	39.0%	0.27 [0.18, 0.40]	
Al-Khalili 2016	5	251	9	282	2.8%	0.62 [0.20, 1.86]	
Halvorsen 2017	70	6506	175	6817	57.1%		
	Apixa		Rivaro			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
3.7.1 Regular or Any	/ Dose						
Al-Khalili 2016	19	251	48	282	3.7%	0.40 [0.23, 0.70]	(
Altay 2017	26	625	101	1132	6.1%	0.44 [0.28, 0.69]	_ —
Halvorsen 2017	272	6506	578	6817	47.6%	0.47 [0.41, 0.55]	•
Larsen 2016	143	6349	252	7192	20.3%		
Subtotal (95% CI)		13731		15423	77.6%	0.51 [0.45, 0.57]	•
Total events	460		979				
Heterogeneity: Chi ² =							
Test for overall effect	: Z = 11.6	55 (P < 0).00001)				
3.7.2 Reduced Dose							
Nielsen 2017	224	4400	240	3476	22.4%	0.72 [0.60, 0.87]	+
Subtotal (95% CI)		4400		3476	22.4%	0.72 [0.60, 0.87]	◆
Total events	224		240				
Heterogeneity: Not ap	oplicable						
Test for overall effect	: Z = 3.38	B(P = 0)	0007)				
Total (95% CI)		18131		18899	100.0%	0.56 [0.50, 0.61]	•
Total events	684		1219				
Heterogeneity: Chi ² =	16.24, d	f = 4 (P	= 0.003)	$ _{1}^{2} = 75$	%		
Test for overall effect							0.01 0.1 1 10 10 Favours Apixaban Favours Rivaroxaban
Test for subgroup dif	ferences:	Chi ² = 9	.92, df =	1 (P = 0)).002), I ²	= 89.9%	ravours Apixaban Favours Rivaroxaban
							wahan in Any Pleading

Figure XIII: Comparison of Apixaban versus Rivaroxaban in Any Bleeding Occurrence


Figure XIV: Comparison of Apixaban versus Rivaroxaban in All-Cause Death Occurrence

Legend: CI= confidence interval.

Churches and Curchesterner	Apixab		ivaroxa		M/-:		Odds Ratio	Odds Ratio
Study or Subgroup 3.8.1 Regular or Any		Total E	vents	lotal	weign	IT M-H	, Random, 95% CI	M-H, Random, 95% Cl
Al-Khalili 2016		251	3	202	7 5	~	0 37 10 04 3 601	_
AI-Khailii 2016 Larsen 2016	1 274	251 6349	-	282 7192	7.5) 46.0)		0.37 [0.04, 3.60] 0.50 [0.43, 0.58]	
Subtotal (95% CI)	2/4	6600	592	7474	53.5		0.50 [0.43, 0.58]	
Total events	275		595					•
	Api	xaban	Wa	arfarin			Odds Ratio	Odds Ratio
Study or Subgroup	Event	s Tota	Event	s T	otal	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
6.1.1 Moderate/Hig	gh Risk o	f Bias						
Larsen 2016	22	5 6349	9 144	7 35	436	25.8%	0.86 [0.75, 1.00]	-
Lee 2015	1	0 53	: 1	1	580	0.1%	0.46 [0.03, 7.96]	
Nielsen 2017	23			6 38	3893	19.7%		+
Subtotal (95% CI)		10802	2	74	909	45.7%	1.03 [0.93, 1.14]	•
Total events	46	1	314	4				
Test for overall effe		57 (P = 0	.57)					
Li 2017	39	4 38470	60	9 38	3470	36.7%	0.64 [0.57, 0.73]	•
Shiga 2015		2 102		2	200	0.1%	1.98 [0.27, 14.26]	
Staerk 2016	17	1 6899	9 41	9 18	3094	13.7%	1.07 [0.90, 1.28]	+
Yao 2016 Subtotal (95% CI)	5	1 7695 53166			7695 1 459	3.9% 54.3%		
Total events	61		, 109			34.370	0.70 [0.05, 0.05]	•
Heterogeneity. Chi ²		-			_ 069	,		
Test for overall effe					= 00%	,		
Total (95% CI)		63968	;	139	368	100.0%	0.89 [0.82, 0.95]	•
Total events	107:	9	423	8				
Heterogeneity: Chi ²				0001);	l ² = 89	%		0.01 0.1 1 10 10
Test for overall effe								Favours Apixaban Favours Warfarin
Test for subgroup d	lifferences	:: Chi ² = 0	16.96, c	df = 1 ((P < 0.)	0001),	² = 94.1%	

Figure XV: Comparison of Apixaban versus Warfarin in Any Thromboembolic Event Occurrence Stratified According Risk of Bias

Figure XVI: Comparison of Apixaban versus Rivaroxaban in Any Thromboembolic Event Occurrence Stratified According Risk of Bias **Legend:** CI= confidence interval.

Figure XVII: Comparison of Apixaban versus Rivaroxaban in Stroke Occurrence Stratified According Risk of Bias

SUPPLEMENTARY REFERENCES

 Viswanathan M, Ansari M, Berkman N, Chang S, Hartling L, McPheeters L, et al. Methods Guide for Comparative Effectiveness Reviews Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Health Care Interventions. 2012;12–EHC047–EF. Available from: www.effectivehealthcare.ahrq.gov/