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ABSTRACT 
 
Modulation of traits beneficial for cultivation and yield is one of the main goals of crop improvement. One of 
the targets for enhancing productivity is changing the architecture of inflorescences since in many species it 
determines fruit and seed yield. Inflorescence shape and organization is genetically established during the early 
stages of reproductive development and depends on the number, arrangement, activities, and duration of 
meristems during the reproductive phase of the plant life cycle. Despite the variety of inflorescence 
architectures observable in nature, many key aspects of inflorescence development are conserved among 
different species. For instance, the genetic network in charge of specifying the identity of the different 
reproductive meristems, which can be indeterminate or determinate, seems to be similar among distantly 
related species. The availability of a large number of published transcriptomic datasets for plants with different 
inflorescence architectures, allowed us to identify transcription factor gene families that are differentially 
expressed in determinate and indeterminate reproductive meristems. The data that we review here for 
Arabidopsis, rice, barley, wheat, and maize, particularly deepens our knowledge of their involvement in 
meristem identity specification. 
 
INTRODUCTION 
 
Crops are characterized by a striking variety of inflorescence types, determined by the coordinated activity of 
niches of undifferentiated stem cells, called meristems (Fig.1).   
A mathematical “transient model” predicts that the final architecture of the inflorescence is determined by the 
fine-tuning of the proliferative activity of the indeterminate meristems (IMe), and their ability to differentiate 
into a determinate meristem (DMe) (1).  
Stem cells homeostasis within the reproductive meristems is crucial to tailor inflorescence architecture and 
ultimately depends on the balance between meristematic cell population versus daughter cell differentiation. 
A feedback signaling loop is responsible for this equilibrium, and despite being mainly studied in Arabidopsis, 
this pathway seems to be broadly conserved across species such as maize, rice, and tomato (reviewed in (2)). 
Master players are WUSCHEL (WUS) and WUSCHEL-RELATED HOMEOBOX (WOX) and KNOTTED-
LIKE HOMEOBOX (KNOX) transcription factors and CLAVATA leucine-rich repeat receptor-like kinases 
and their ligands. These factors modulate the transcription of target genes which include many genes involved 
in biosynthesis or signaling of phytohormones (3). 
 
The dicot model species Arabidopsis thaliana has a raceme inflorescence, in which the indeterminate 
inflorescence meristem (IM) grows indeterminately producing on its flanks several determinate flower 
meristems (FMs), whose destiny unequivocally leads to flower formation and the depletion of meristematic 
cells (Fig. 1A). Cymose inflorescences, such as those of Solanaceae, are characterized by IM that ends with a 



flower meristem and eventually produces a new IM on the side which reiterates the same developmental 
pattern. In grasses, the IM produces different meristem types which ultimately differentiate into a spikelet 
meristem (SM), producing florets that can be directly attached to the main inflorescence axis, as in spikes, or 
developing on flower-bearing branch meristems (BMs), as in panicles (4). Figure 1 describes the development 
and the architectures of reproductive meristems in Arabidopsis, rice, wheat, maize, and barley. 
 

 

Figure 1. Scheme of inflorescence architecture and meristem identity transition with a graphical configuration of 
reproductive meristems development in (A) Arabidopsis, (B) rice, (C) wheat, (D) maize, and (E) barley. Circles: 
Determinate Meristem (DMe), arrows: Indeterminate Meristems (IMe). 
(A) In Arabidopsis thaliana, the IMe lasts for the entire life of the plant and produces DMe which differentiates 
completely in FM.  
(B) In the branched panicle of Oryza sativa, the IMe is called rachis meristem (RM). During inflorescence 
development, some cells of the IMe differentiate into the Primary Branch Meristems (PBMs) and Secondary BMs 
(SBMs) which produce and differentiate determinate SMs. IM elongates after the branches differentiation and 
aborts after producing a variable number of PBMs. 
(C) In Triticum aestivum, the inflorescence is a determinate spike where the IMe differentiates into SMs which 
produce a variable number of FMs.  



 
The determination of meristem identity and the transition from indeterminate to determinate meristem activity 
are governed by a complex gene network of which some master regulators have been well characterized, but 
many others remain still unknown. Identifying new players in this complex process will provide a better 
understanding of the mechanisms through which the architecture of the inflorescence is determined and will 
facilitate crop improvement for traits like grain yield per hectare, which is closely linked to finding solutions 
to feed a fast-growing world population. Therefore, there is an increasing interest in understanding the 
regulatory networks underlying inflorescence development. The growing number of plant genomes that have 
been sequenced and annotated together with the huge number of transcriptome datasets, including meristem-
specific ones, facilitate comparative analysis of meristem related datasets (5–13). Furthermore, inter-species 
comparative transcriptomic is rapidly gaining popularity, as it has been proven to be a useful tool both to 
discover common meristem regulators and to identify factors behind the divergences observed among different 
inflorescence architectures (9,11,12). 
 
In this review, we summarize some of the knowledge acquired in the recent years on the master regulators of 
meristem determinacy and identity in some of the staple cereals species, focusing in particular on families of 
transcription factors, which are considered to be the major players in the evolution and domestication of crops. 
Because of their role in regulating gene expression, transcription factors are generally considered important 
targets of crop improvement, especially when dealing with multigenic traits (14,15). 
To identify those families whose activity controls the specification of the different meristem types, we 
compared the transcriptomes generated from reproductive meristems of Arabidopsis thaliana (5), rice 
(multiple accessions) (9), maize (Zea mays, cv B73) (7), barley (Hordeum vulgare, cv Morex) (13) and bread 
wheat (Triticum aestivum, cv Chinese Spring) (8). In particular, since we wanted to specifically review the 
genetic pathway controlling the transition from indeterminate to determinate fate, we decided to prioritize the 
comparison between indeterminate meristem (IMe) and determinate meristem (DMe) transcriptomes (Fig. 2). 
We, therefore, selected datasets of Differentially Expressed Genes (DEGs), that were generated with a similar 
methodology: hand-dissection meristems with a morphological control to assess their developmental stage 
(Table 1). Because of the extensive knowledge available for Arabidopsis thaliana, the transcriptome generated 
from laser-dissected inflorescence meristems of this specie was also included in the analysis (5). We exploited 
the PLAZA database (16) to assign each DEG to a specific gene family and families coding for transcription 
factors (TF) were selected and grouped according to their functional domains. This strategy allowed us to 
extrapolate which TF families are differentially expressed during the transition from IMe to DMe.  
The sets of families from the different species were then intersected, to extrapolate the number of families in 
common in all the possible comparisons between the selected species (Fig. 3). We were then able to visualize 

(D) In Zea mays two distinct inflorescences are produced, tassel and ear, which differentiate into male and female 
flowers, respectively. Both structures share a similar architecture in which an apical IMe develops a series of 
lateral meristems (LBs). The spikelet-pair meristem (SPM) initiates two spikelet meristems (SM), each of which 
develops two floral meristems (FMs); in ears, one FM undergoes a selective abortion. Contrary to the ear, the 
tassel is a branched inflorescence, in which the IM can differentiate both SPM and Branch Meristems (BM). 
(E) In Hordeum vulgare, the Ie produces triple spikelet meristem (TSM) which differentiates in lateral spikelet 
meristems (LSM) and a central spikelet meristem (CSM). In two-rowed spikes, only the CSM produces a fertile 
flower (*) in six-rowed spikes LSMs, and CSM all differentiate fertile flowers. 
Green arrow: IMe (Indeterminate Meristem) formation, purple arrow: DMe (Determinate Meristem) formation), 
pink arrow: abortion of floral meristems. Abbreviations: LB: lateral branch meristem; FM: floral meristem; IM: 
inflorescence meristem; LSM: lateral spikelet meristem; PBM: primary branch meristem; SBM: secondary branch 
meristem; SM: spikelet meristem: SPM: spikelet pair meristem; TSM: triple spikelet meristem; * FM which 
develops in two-rowed spikes. 



common and species-specific gene families that might control meristem identity and determination during 
inflorescence differentiation.  

Figure 2. Schematic representation of the Indeterminate Meristems (IMe) and Determinate Meristems (DMe) 
sampled in Arabidopsis, rice, wheat, maize, and barley. 
The qualitative phylogenetic tree was produced and adapted from PhyloT (https://phylot.biobyte.de/) based on the 
NCBI taxonomy of the four species. 
The draws represent the IMe-enriched samples (Blue) and DMe-enriched samples (Red) collected in the different 
experiments of RNAseq transcriptome analysis considered in this review.  
In Arabidopsis, the IM (IMe) and FM (DMe) were sampled through laser-dissection, as indicated in the drawing.  
Zea mays tassels were hand dissected and separated, according to their dimensions, in IM/SPM (IMe enriched 
tissue) and SM (DMe enriched tissue). Ears were sectioned into different segments, as indicated by the dotted 
lines, into IM/SPM (IMe enriched tissue) and SM (DMe enriched tissue). Drawings were adapted from (6). 
Oryza sativa meristems were hand dissected and classified according to their morphology, into indeterminate 
meristems (PBM and SBM) and determinate meristems (SM). Oryza sativa reproductive meristems were adapted 
from (9). 
In Hordeum vulgare inflorescence meristems at double-ridge (DR) corresponding to the Waddington stage W2.0 
(IMe) and awn primordium (AP), corresponding to W3.5(DMe), stages were collected. Drawings were adapted 
from (12). 
Triticum aestivum meristems at Double Ridge (IMe) and FM (DMe) stages were collected. Drawings were 
modified from (7). 
 



 
The GO enrichment analysis revealed that all the DEG lists are significantly enriched of terms as TF, 
expression regulation, DNA binding, RNA biosynthesis, and flower development. The list of DEG TF genes 
allowed us to identify four TF families, ALOG, AP2/ERF, MADS, and MYB, in the Arabidopsis, rice, wheat, 
barley, and maize transcriptomes (Fig 4A). The meristem transition from indeterminate to determinate is a 
crucial step in the life cycle of plants, as it strongly influences the final plant architecture. Despite the variety 
of inflorescence morphologies that characterize different species, this process is likely orchestrated by a 
conserved set of master regulators, which includes the TF families mentioned above. 
From the analysis, we further defined a group of five cereal-specific TF families: bHLH, NAC, TCP, WRKY, 
and C2H2 (Fig. 4B); we foresee that these factors could be putative targets for crop improvement. 
Here, we reviewed the current knowledge on these two sets of conserved and cereal-specific TF families, 
deepening, in particular, their role in indeterminate vs determinate meristem development. 
 
 

Figure 3. Intersecting sets of TF families of Arabidopsis, rice, wheat, barley, and maize (tassel and ear). 
All the different comparisons are shown with dots on the x-axis, the number in brackets indicates the number of 
TF families differentially expressed in each species. The histogram shows the number of detected TF families in 
common between the different transcriptomic sets considered in this review, the number of families for each 
comparison is indicated on top of each bar. The two black bars represent the intersections between rice, maize, 
barley, and wheat (the crop-specific regulators: NAC, TCP, WRKY, C2H2, and bHLH) and between all the species 
considered (common regulators: MADS; ALOG, AP2/ERF, and MYB). 
ath: Arabidopsis thaliana; osa: Oryza sativa; zma_t: Zea mays_tassel; tae: Triticum aestivum; hvu: Hordeum 
vulgare; zma_e: Zeam mays_ear. The plot was designed with the UpSetR package.  
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(p value) 

DEGs 
tot 
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Ath 
(5) 

Inflorescence  
Meristem  

Floral  
Meristem 

3 laser 
dissection 

Illumina  
50-bp reads 

0.05 46 26.09 

Zma_t 
(7) 

Inflorescence 
 Meristem/ 

Spikelet Pair 
Meristem 

Spikelet  
Meristem 

2 hand 
dissection 

Illumina  
50-bp  
reads 

0.05 144 13.89 

Osa 
(9) 

Primary Branch  
Meristem/ 
Axillary  
Meristem 

Spikelet 
Meristem/  

Floret  
Differentiation 

3 hand 
dissection 

Illumina  
125-bp 
reads 

0.05 130 27.69 

Tae 
(8) 

Double Ridge/ 
Spikelet 

Meristem 

Floret 
Meristem 

2 hand 
dissection 

Illumina  
50-bp reads 

0.05 753 9.56 

Hvu 
(13) 

Double Ridge Awn 
Primordium  

3 hand 
dissection 

Illumina  
200-bp 
reads 

0.05 702 16.38 

Zma_e 
(7) 

Inflorescence 
 Meristem/ 

Spikelet Pair 
Meristem 

Spikelet  
Meristem 

2 hand 
dissection 

Illumina  
50-bp  
reads 

0.05 8327 7.626 

 
Conserved regulators among different species 
 
A core of four transcription factor families, MADS, ALOG, AP2/ERF, and MYB, resulted differentially 
expressed in all the datasets that were reviewed in this work (Fig. 3 and Fig. 4A).       
 
MADS-box transcription factors are implicated in several developmental processes in fungi, plants, and 
animals. The name of this family is an acronym of MCM1 from Saccharomyces cerevisiae, AG from 
Arabidopsis, DEFICIENS from Antirrhinum majus, and SRF from Homo sapiens, the first MADS-box domain 
proteins to be discovered (17).  
In the plant kingdom, these transcription factors are best known for their key role in the control of meristem 
identity specification and organ differentiation. Genome-wide analyses led to the characterization of this 
family in different plant model species, including crops (18–21). MADS-box genes are already well known as 
key regulators of inflorescence development and, for this reason, it was not surprising to find members of this 
family differentially expressed in all the meristems and species considered.  
Since MADS-box gene functions and relevance in the context of inflorescence development and crop 
improvement have been recently reviewed (22–25), we will not further discuss this gene family. 

Table 1. Sequencing information for the different datasets employed in this review.  
For each species, the tissues sampled in the Indeterminate Meristem (IMe) and Determinate Meristem (DMe) 
stages are briefly described. Sequencing information, DEGs number, and the percentage of TF in each DEG list 
are also indicated. 
 



 
The ALOG genes encode plant-specific transcription factors named after the first two identified members of 
this family, LHS1 in Arabidopsis and G1 in rice. In Arabidopsis, LSH1 was found to be involved in the light-
dependent regulation of seedling growth (26). LSH3 and LSH4, which are differentially expressed between the 
indeterminate and determinate meristems of Arabidopsis, are specifically expressed in the meristematic 
boundary cells. In these regions, they suppress organ differentiation and their expression is regulated by a 
boundary gene belonging to the NAC family, CUC1 (CUP-SHAPED COTYLEDON1) (27,28).  
Recently, in monocotyledons, genome-wide analyses led to the identification of several genes belonging to 
this family (29,30). Among these genes, the rice TAWAWA1 (TAW1) is one of the few ALOG genes with a 
characterized role in inflorescence architecture determination. This transcription factor is expressed in the 
reproductive meristem and was proven to be necessary and sufficient to promote meristem indeterminacy, 
delaying its shift to SM. TAW1 is a transcriptional activator, able to induce the expression of several MADS-
box genes that are known to regulate BM maintenance. In the dominant tawawa1-D mutant, the BM can 
produce more branches before spikelet formation, leading to an increase in the total spikelet number and grain 
yield (31).  
It is interesting to mention that, in the datasets considered for this review, the majority of the ALOG 
differentially expressed between IMe and DMe showed the same trend of expression, being downregulated as 
the meristem acquires a determinate identity (Fig. 4A). Although functional information is still missing for the 
maize, barley, and wheat ALOG gene family, it becomes tempting to speculate that these transcription factors 
share a similar role in the specification of the indeterminate reproductive meristems in distantly related species, 
thus being promising targets for crop improvement. 
 

Figure 4. Expression trend of the DEGs of the families described. 
The panels display the DEGs belonging to the different families here described, grouped in families with 
differentially expressed members in all the species considered (A) and only in monocots (B). The solid bars of 
each histogram shows the number of genes whose expression increases during the switch from indeterminate 
(IMe) to the determinate meristem (DMe), and the striped bars indicate the number of genes whose expression is 
higher in the indeterminate meristem (IMe). On the x-axis, the names of the species and the total number of genes 
belonging to the family are indicated. ath: Arabidopsis thaliana; osa: Oryza sativa; zma_t: Zea mays_tassel; tae: 
Triticum aestivum; hvu: Hordeum vulgare; zma_e: Zeam mays_ear 
 



The APETALA2/Ethylene Response Factors belong to one of the largest superfamily of TFs in the plant 
kingdom. Based on the number of AP2/ERF domains and their sequence similarity, the members of this 
superfamily can be further divided into three groups: AP2, characterized by the presence of two AP2 domains, 
the ERF, with a single AP2 domain, and the RAV, which contains also a B3 DNA-binding domain. Members 
of this superfamily have been functionally studied in several species, including Arabidopsis, rice, and wheat 
(32–34).  
In several plant species, a sub-group of AP2/ERF TFs has also been linked to the regulation of reproductive 
development (35). In Arabidopsis, for instance, DORNRÖSCHEN, DORNRÖSCHEN-LIKE, and PUCHI 
control floral meristem identity and organ number (36–38).   
Recent transcriptomic data from wild and domesticated rice species revealed that the expression of several 
AP2/ERF genes strongly correlates with the domestication status and branching potential of the analyzed 
varieties, which indicates that the evolution of the ERF family was driven by artificial selection (9). Among 
the rice AP2/ERF transcription factors, the PUCHI homologous FRIZZY PANICLE (FZP)/BRANCHED 
FLORETLESS1 (BFL1) is considered one of the key regulators of SM determinacy (39–41). FZP expression 
is regulated by two AP2 genes, SUPERNUMERARY BRACT (SNB) and OsINDETERMINATE SPIKELET1 
(OsIDS1), which redundantly control the transition from SM to FM (42,43). Finally, MULTI-FLORET 
SPIKELET1 (MFS1) was also found to be a regulator of spikelet meristem and flower development (44). 
A similar role in the determinacy of SM branching and identity was also established for the maize AP2/ERF 
genes BRANCHED SILKLESS1(BD1), INDETERMINATE SPIKELET1 (IDS1) and SISTER OF IDS1 (SID1) 
(45,46). IDS1 and OsIDS1 activity is regulated with a similar mechanism, that involves the interaction with 
miR172 (47,48). Interestingly, an important role for AP2/miR172 in shaping the inflorescence structure has 
been described in different monocots and it is known that mutants in this pathway have been selected during 
crop domestication (49–52). 
Even though the functional characterization of most of the AP2/ERF genes described suggests a role for these 
genes during later stages of spikelet meristem development, our comparative transcriptomic analysis 
highlighted the presence of a subset of AP2/ERF factors already active during the transition from indeterminate 
to determinate meristem. It would not be surprising to find that, overall, this gene family plays crucial roles 
throughout reproductive development, coordinating different steps that allow the progression of inflorescence 
differentiation.  
 
The fourth family of common regulators is characterized by the presence of the MYB DNA-binding domain. 
MYB-containing proteins can be divided into four subfamilies, according to the type and number of repeats 
they contain. The R2R3-MYB subfamily is the most represented group in plants, with more than 100 identified 
in different species (53,54). This superfamily has been linked with the control of plant metabolism and to the 
response to biotic and abiotic stress in several species (55–59). A few members of this family were also found 
to be involved in the regulation of developmental processes such as flowering time (60,61), floral organ 
development (62) and shoot branching and axillary meristems formation (63). 
 
Cereal-specific regulators 
 
Interestingly, transcriptomic analysis of determinate and indeterminate meristems highlighted the presence of 
monocot-specific TF families differentially expressed between IMe and DMe. (Fig. 3 and 4B).  
 
Despite the knowledge that the activity of the maize RAMOSA genes is required to modulate branching (7,64), 
no C2H2 protein has yet been linked to this process in other species. 
The C2H2 Zinc Finger proteins represent one of the largest family of transcriptional regulators in eukaryotic 
organisms and, in the plant kingdom, the majority of the characterized members of this family have been linked 
to abiotic stress response pathways (65–67). 



An exception can be found in rice, where STAMENLESS1 (SL1) is known to be involved in flower development 
(68). Furthermore, two other members of this family, EMBRYONIC FLOWER 2 (OsEMF2) and ZINC FINGER 
PROTEIN 15 (OsZFP15) were shown to be specifically expressed during reproductive development, however, 
their function in these tissues is still unclear(69,70).  
The observation that several members of this family are differentially expressed between indeterminate and 
determinate meristem in different cereal crops, in conjunction with the key role played by the RAMOSA3 
factor in maize, suggests the possibility that a deeper analysis of the function of the C2H2 zinc finger 
transcription factors would uncover new mechanisms at the base of meristem identity determination and 
branching in these species.  
 
From our transcriptome data analysis, a second family of zinc finger transcription factors, the WRKY family, 
was found to be differentially expressed in the comparison between indeterminate and determinate meristems 
in rice, maize, barley, and wheat even if the role of these genes in the regulation of plant reproductive 
development is still elusive.  
The WRKY genes contain at least one repeat of the WRKY DNA-binding domain, which code for 60 highly 
conserved amino acidic residues, and a C2H2 or C2H2C zinc finger domain. Based on the number of WRKY 
domains and the structure of the zinc finger domain these proteins are divided into three different subgroups.   
WRKY transcription factors have been extensively studied in the model species Arabidopsis, as well as in 
several agronomic relevant crops, since they are considered to be key regulators of plant immunity and biotic 
and abiotic stress responses, but also in developmental processes such as seed development and senescence 
(71–77). Until now, a restricted number of WRKY genes have been linked to the control of agronomical 
relevant traits, like yield, in rice and maize (78–81).  
 
The NAC genes have been extensively analyzed in barley, wheat, maize, and rice (82–86) and are considered 
an important target for crop improvement, as they were found to control biotic stress responses and senescence. 
This large family of plant-specific transcription factors has been named after the first three members 
characterized: NO APICAL MERISTEM (NAM), ACTIVATION FACTOR 1 (AF1), and CUP-SHAPED 
COTYLEDON 2 (CUC2). Besides their role in stress-related pathways, the NAC genes are best known for their 
function in specifying organ boundaries. In Arabidopsis, CUC1, CUC2, and CUC3 are expressed in the 
boundary regions between the SAM and leave primordia and between the IM and FM. Furthermore, they are 
also found in the regions between different floral organs and in the gynoecium. Multiple cuc mutants display 
organ fusion phenotypes, with different degrees of severity (87–89). 
Moving to cereals, only for the maize NAM1, NAM2, and NAM3 genes the expression profile was analyzed 
and resulted to be similar to the profiles of the homologous genes in Arabidopsis (90). Notably, in rice different 
members of the NAC family were shown to be involved in shoot branching and seed size control (91–93). 
 
In Arabidopsis, CUC expression is under control of miR164, which is in turn regulated by members of the 
TCP transcription factor family (94,95). It was thus not a surprise to find that also the TCPs are among the 
genes differentially expressed in cereal meristems. 
These transcription factors are plant-specific and share a conserved non-canonical basic helix-loop-helix DNA 
binding domain. TPC factors are divided into two classes, according to their sequence homology, and are 
suggested to work antagonistically to regulate cell proliferation throughout the life cycle of plants. 
The maize BRANCHING ANGLE DEFECTIVE 1 (BAD1) is one of the few TCP transcription factors with a 
known function in regulating inflorescence architecture. It is expressed in the inflorescence axillary meristems, 
where it inhibits cell division and proliferation. bad1 mutants are characterized by an up-right tassel, with acute 
branching angles (96). 
The TEOSINTE BRANCHED1 (TB1) allele has been associated with inflorescence development in several 
crops. TB1 was selected during maize domestication from teosinte as a major factor involved in axillary branch 
regulation (97,98). The rice orthologous OsTB1 or FINECULM showed to have a similar function since this 



gene is negatively regulating secondary branching (99,100). The orthologous of TB1 in barley, 
INTERMEDIUM-C (INT-C/HvTB1), and wheat taTB1 were found to be involved in regulating tillering and in 
determining the fertility of lateral spikelets (101,102). 
 
The last group of cereal-specific TFs is characterized by the presence of the bHLH domain, which is composed 
of 60 aa with DNA-binding and a protein-protein dimerization function. The bHLH superfamily is widespread 
in the animal and plant kingdom, and its members have been genome-wide identified in several crops (53,103–
105), but their role in plant reproductive development is still poorly characterized. In maize, MALE 
STERILITY32 (MS32) was found to be involved in the control of male fertility (106). In the same species, 
BARREN STALK1 (BA1) controls the differentiation of the aerial lateral meristems, in connection with auxin 
signaling (107,108). Also in rice, a member of this family, LAX PANICLE (LAX1), controls axillary meristem 
formation (109). 
 
PERSPECTIVE  
 

● Highlight the importance of the field 
Future food security will require improved crops that provide increased grain yield under less favorable 
environmental conditions. Thanks to the development of high-tech genomics approaches and new breeding 
technologies, trait development for increased environmental resilience and productivity can count on the 
discovery of until now unexplored information about genetic variability and gene networks controlling key 
aspects of plant growth. Plant performance is greatly linked to plant development, which ultimately is decided 
at the meristematic level. It is then fundamental to comprehend the molecular mechanisms controlling plant 
meristem identity and the regulation of the meristem transition from indeterminacy to determinacy to further 
improve yield components as flower, fruit, and seed number.  
 

● A summary of the current thinking 
One of the possible targets that could help to overcome the plateau in crop yield is the possibility to extend the 
lifespan of indeterminate meristems, thus allowing the development of more flowers and seeds. Recently 
extensive molecular and genetic analyses have demonstrated that transcriptional regulators, which are the focus 
of this review, act as master players regulating discrete developmental programs, enforcing the concept that 
novel morphological differences may be modulated by changes in the action of these key regulators. Genome 
sequences, comparative genomics, and functional data are today the tools supporting the identification of 
molecular hubs at the base of inflorescence differentiation in distantly related species.  
 

● A comment on future directions  
We are convinced that using genome-wide data analysis for the identification of conserved and cereal-specific 
potential regulators governing inflorescence architecture, will allow making a careful selection of the best 
candidates. Further analyses using mutant alleles and/or screening for natural variants, will be required to 
confirm the role of candidate genes in controlling yield. An extremely powerful method to create novel allelic 
variation is through the use of genome editing approaches (110,111). CRISP/RCas9 has been used until now 
mainly to introduce mutations in coding sequences for the generation of null alleles for functional studies (112) 
but new CRISPR technologies becoming available, like Prime editing (113), which allow also the creation of 
amino acid substitutions to modulate transcription factor activity or inducing cis-regulatory mutations to inflect 
gene function by changing the expression profile of a gene. 
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