Synthesis of magnetic recoverable electron-rich TCTA@PVP based conjugated polymer for photocatalytic water remediation and disinfection

Ridha Djellabi, Jafar Ali, Bo Yang, Muhammad Rizwan Haider, Peidong Su, Claudia L. Bianchi, Xu Zhao

ABSTRACT
In this study, we report the synthesis of magnetic electron-rich CP@Fe3O4 (Conjugated Polymer (CP) = TCTA-PVP-bipyridine) by hydrothermal method. For this aim, the Fe3O4 nanoparticles were incorporated into photoactive TCTA-PVP-bipyridine based Conjugated Polymer. The photo-redox abilities of CP@Fe3O4 and bare CP were tested for oxidation of methylene blue and reduction of Cr(VI) under UV–visible light and visible light (λ > 420 nm). The CP@Fe3O4 showed a good ability for performing the Fenton-like reaction by adding H2O2 as oxidizing agent. Additionally, reveals high photocatalytic reduction ability of Cr(VI) for CP@Fe3O4 in compare with bare CP. Furthermore the photocatalytic antibacterial ability of CP@Fe3O4 towards E. coli and Pseudomonas Aerogenosa in water was studied. The obtained CFU reduction efficiencies were found about 85% and 90% for E. coli and P. Aeruginosa, respectively. Interestingly the collecting and recyclability of CP@Fe3O4 after photocatalytic reactions were done easily due to its magnetic property.

1. Introduction
The quality of surface and groundwaters influences directly all aspects of humankind. Industries are most likely the main source of discharged contaminated wastewaters with varying types of toxic compounds including organics, heavy metals and microorganisms. Therefore, water pollution and its treatment has become the most serious concern and a challenging task for the public authorities and industrial world [1]. Due to the huge urbanization and industrialization growth, which is associated with large wastewaters discharged into the environment that overloading the ecosystem, the European Water Framework Directive (WFD) has classified chemical substances into two main categories, namely ‘Black List’ that includes all highly toxic and non-biodegradable chemicals; and ‘Grey List’ which involves chemicals that can cause a serious risk to the ecosystem. For clean environment, contaminated industrial wastewaters must be properly treated at the source before discharging them into the environment. The adequate treatment of industrial wastewaters requires usually the combination of different processes because of the complicated nature of such contaminated waters. The choice of the specific treatment processes mainly depends on several parameters such as the nature and concentration of pollutants in wastewaters, less secondary-waste formation, the simplicity of set-up and cost, the treatment efficiency and so on.
Over more than three decades, heterogeneous photocatalysis for water remediation has traveled an extended path of technological development [2,3]. Photocatalysis system has the competence of continuous oxidizing or reducing a wide range of pollutants in water without producing any toxic secondary waste. Since the efficiency of a photocatalytic treatment system for a targeted contaminated water is directly related to the characteristics of the used photocatalyst, many efforts have been made at a blistering rate aiming to develop novel photoactive materials with better physical and optical characteristics for real-world applications [4,5].
For the sake of enhancing the visible light response (VLR) of photocatalytic materials (i.e., TiO2), band gap engineering was the cornerstone of photocatalytic materials science, therefore, an extensive research has been reported regarding the synthesis of VLR materials through many approaches such as metal and non-metal doping [6–8], dye sensitizing [9,10], semiconductor heterojunction photocatalysts...
section

2. Experimental section

2.1. Synthesis and characterization of materials

TCTA@PVP based conducting polymer (CP) was synthesized by heat polymerization of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA), PVP and 4, 4'-bipyridine at 70 °C until the color of the mixture changed to orange. The obtained mixture was dried at 90 °C for 48 h and was calcined at 250 °C for 1 h for transformation of the prepared gel to solid blocks.

Fe3O4 nanoparticles were synthesized by hydrothermal method [17]. A desired amount of Fe3Cl·6H2O was dissolved in 50 mL of deionized water, and sonicated for 30 min at room temperature. The mixture was transferred into a sealed, Teflon-lined autoclave and was heated at 180 °C for 6 h. After cooling the mixture to room temperature, the powder was washed several times with distilled water and dried at 60 °C for 12 h.

CP@Fe3O4 was synthesized via the introduction of Fe3O4 particles into the CP orange mixture, and the drying and calcination procedures as well [25,26].

2.2. Photocatalytic experiments

The photocatalytic activities of synthesized materials for degradation of methylene blue dye solution, reduction of hexavalent chromium and inactivation of Escherichia coli (E. coli) and Pseudomonas Aeruginosa (PA) in water were studied. PLS-SXE300 Xenon lamp light (PerfectLight) equipped with a quartz UV cut-off filter (λ > 420 nm) was used for the irradiation. The photocatalytic experiments for MB or Cr(VI) removal were carried by mixing 0.25 g/L of the photocatalyst with MB or Cr(VI) solutions under visible light. Aliquots of solution at certain time interval were taken and filtered, and the analysis of Cr(VI) and MB concentrations determined by UV/Vis spectrophotometry at 540 and 662, respectively.

The photocatalytic antibacterial activity of CP@Fe3O4 composite was evaluated against the Escherichia coli and Pseudomonas aeruginosa. Purified gram-negative bacterial strains were obtained from the Key Laboratory of Environmental Nanotechnology and Health Effects, CAS, Beijing. The LB broth was used to refresh the culture for further applications in antibacterial tests. The photocatalytic antibacterial activity of Fe3O4@CP against both gram negative bacteria was validated through viability of bacterial cells by spread plate method. The spread plate method shows the number of colony forming units (CFU) on plate counter agar. The photocatalytic inactivation of bacteria was evaluated by mixing, in 20 mL test tubes, 20 mg of CP@Fe3O4 with 15 mL of LB broth and 1 mL of each type of bacteria having 1 × 10^5 CFU mL^−1. LB broth contains 10 g L^−1 of peptone, 5 g L^−1 of yeast extract and 10 g L^−1 of NaCl. Then, test tubes were shaken using Tube Swing Rotary Shaker under PLS-SXE300 Xenon lamp light irradiation (300–1100 nm) at room temperature. Similar test tubes under light without photocatalyst were used as controls. After 2 and 4 h, 200 µL aliquots were aseptically taken out to spread on agar plates. Finally, all the spread agar plates were incubated at 37 °C for 14 h and then the number of bacterial colonies was counted to obtain the CFU reduction efficiency in broth solutions.

3. Results and discussion

3.1. Characterization of materials

In this study, Fe3O4 nanoparticles were incorporated into CP platform for synthesis of CP@Fe3O4 with an enhanced photocatalytic activity and easily separation and recyclability. Fig. 1 shows SEM, EDAX mapping images and EDX spectra of CP@Fe3O4 composite. According to Fig. 1a, SEM image reveals Fe3O4 nanoparticles incorporated. In addition, the agglomeration of Fe3O4 nanoparticles on the platform of CP is visible in EDAX mapping images. The EDX spectra of Fe3O4@CP composite (Fig. 1g) confirms presence of C, N, O and Fe in its structure and confirms its successful synthesis.

XPS analysis of CP, Fe3O4 and CP@Fe3O4 are shown in Fig. 2. The high-resolution Cls spectrum of bare CP shows three bands at 284.81, 286.52 and 288.42 eV corresponding to C−C=C, C=O=C=N−C=O, C−C=N, C−N=N, C−O and C−N/N=O−C−O−, respectively. C1s spectrum of CP@Fe3O4 exhibits the same bands as CP spectrum. However, the observed band at 288.42 eV was shifted to 287.31 eV in CP@Fe3O4 along with an enlargement in the band, which could be due to the contribution of O−Fe bonding. The high-resolution O1s spectrum of bare Fe3O4 shows a single peak centered at 530.4 eV that is associated to Fe−O. While, high-resolution O1s spectrum of CP@Fe3O4 shows a peak at S31.2 eV resulting from the combination of Fe−O and O−Fe. The Fe−O−C bonds can be formed as a bridge between CP and Fe3O4. High-resolution N1s spectrum of CP and CP@Fe3O4 show one peak at around 400 eV due to C−N and in CP platform bonds N−C≡O, N−C≡N and N−(C=O). High-resolution Fe2p spectrum of Fe3O4 exhibits two distinct peaks for Fe2p3/2 and Fe2p1/2 corresponded to Fe3O4 species. However, the incorporation of Fe3O4 nanoparticles into FCP was confirmed with EDAX mapping images, the intensities of Fe2p peaks were very weak in...
CP@Fe₃O₄ which is due to the coverage of most of Fe₃O₄ particles by CP layer.

The XRD patterns of Fe₃O₄ and CP@Fe₃O₄ (Fig. 3a) showcase diffraction peaks corresponded to pure magnetite Fe₃O₄. Thermo-gravimetry (TG) and Differential Scanning Calorimetry (DSC) spectra of CP and CP@Fe₃O₄ are shown in Fig. 3b and c, respectively. TG and DSC analysis (heated from 30 to 600 °C) were performed on non-calcined CP and CP@Fe₃O₄ samples to check the effect of calcination on the thermal stability of samples. TG curves show two main stages of mass loss. The first one between 80 and 200 °C is attributed to the removal of organic solvent and physically/chemically bounded H₂O accompanied by a small mass loss of about 12% and 4% for CP and CP@Fe₃O₄, respectively. The second stage was occurred in the temperature range of 370 to 440 °C associated with a DSC endothermic peak at around 410 °C which is due to the decomposition of PVP, causing a total mass loss of 91.90 and 57.4% for CP and CP@Fe₃O₄, respectively.

Fig. 3d and e displays cyclic voltammetry (CV) and linear sweep voltammetry (LSV) of CP and CP@Fe₃O₄, respectively. It can be seen from the results of CV that the addition of Fe₃O₄ to CP platform has no effect on the onsets of oxidation and reduction potentials. However, LSV curve of CP@Fe₃O₄ shows two-step pathway which could be due to the enhanced electrocatalytic activity and better oxygen reduction reaction (ORR) [28]. UV-DRS spectra of photocatalyst samples are shown in Fig. 3f. Clearly, the introduction of Fe₃O₄ into CP platform results in better visible light response.

The photocatalytic ability of CP@Fe₃O₄ was tested for the reduction of Cr(VI), oxidation of MB and inactivation of E. coli and PA in water. For comparison, the photocatalytic efficiency of bare Fe₃O₄ was evaluated for Cr(VI) reduction under UV–visible and visible light (> 420 nm) irradiations (Fig. 4a). The adsorption efficiency of bare Fe₃O₄ towards Cr(VI) solution was found as 8% within 60 min. In terms of Fe₃O₄/UV-visible and Fe₃O₄/visible systems, the reduction efficiency towards Cr(VI) solution with initial concentration of 20 mgL⁻¹ and pH = 4 was observed as 21% and 12%, respectively. However, the addition of tartaric acid as ROSs and hole scavenger to these two latter systems enhanced the photocatalytic reduction of Cr(VI) species to 80% and 37%, respectively. The results suggest that the Fe₃O₄ nanoparticles can be photoexcited and produce e⁻ and h⁺. The reduction potential of the conduction band of Fe₃O₄ is not able to reduce O₂ to O₂⁻ species, hence two-step reduction occurs for reduction of O₂ to H₂O₂ followed by formation of ’OH on the conduction band [29]. Direct reduction of Cr(VI) species can happen by photogenerated electrons on the conduction band, meanwhile, the presence of tartaric acid as a scavenger for positive hole and reactive oxygen species (ROSs) results in better electrons generation with longer life. Fig. 4b shows the photocatalytic reduction of Cr(VI) by CP@Fe₃O₄. According to the results inserted in Fig. 4b, the reduction efficiency of CP@Fe₃O₄ is much higher than bare Fe₃O₄ under UV– visible and visible light which is attributed to the high photoactivity of CP@Fe₃O₄. Under UV–visible light, 52% of Cr(VI) solution was reduced using CP@Fe₃O₄ within 60 min, while a total reduction was found at 30 min using CP@Fe₃O₄/TA. Under visible light, 30% and 65% of Cr(VI) solution within 60 min were reduced by CP@Fe₃O₄ and CP@Fe₃O₄/TA systems, respectively.

These reduction reactions are carrying out with the following proposed mechanism. CP can absorb visible light and produces both electrons and ROSs. Unlike Fe₃O₄, most of ROS (O₂⁻, H₂O₂ and ’OH), which affect the reduction of Cr(VI), can be obtained via single or multi-step reduction of dissolved O₂. Furthermore, O₂ can compete with...
Cr(VI) species to consume photogenerated electrons on the conduction band of CP.

To investigate this point, an experiment was carried out for reduction of Cr(VI) solution under visible light using CP@Fe3O4 in saturated N2 atmosphere without tartaric acid. As showed in Fig. 4b, a total reduction of Cr(VI) was found within 60 min. This suggests the participation of O2 to consume photogenerated electrons and produce ROSs which inhibit the reduction of Cr(VI). Additionally, 'OH can be produced also from h+ of Fe3O4 particles in CP@Fe3O4 composite. The Charges transfer between CP and Fe3O4 is likely to happen, wherein, the transfer of photogenerated electrons from the conduction band of CP platform, which contains electron-rich TCTA with high reduction potential (LUMO level of TCTA is 2.48 V at pH 7), to the conduction band of Fe3O4 is possible, likewise the positive holes can be transferred.

![Fig. 2. High-resolution Cls, O1s, N1s and Fe2p spectra of materials.](image)

![Fig. 3. (a) XRD patterns for Fe3O4 and CP@Fe3O4, (b) TG spectra for CP and CP@Fe3O4, (c) DSC for CP and CP@Fe3O4, (d) CV analysis for CP and CP@Fe3O4, (e) LSV analysis for CP and CP@Fe3O4, and (f) UV-DRS spectra for CP and CP@Fe3O4.](image)
Fig. 4. (a) and (b) Photocatalytic reduction of Cr(VI) with initial concentration of 20 mg L\(^{-1}\) using Fe\(_3\)O\(_4\) and CP@Fe\(_3\)O\(_4\) under visible light, respectively, (c) recycling tests of CP@Fe\(_3\)O\(_4\) for Cr(VI) reduction, (d) Photocatalytic oxidation of MB solution with initial concentration of 10 mg L\(^{-1}\) using CP and CP@Fe\(_3\)O\(_4\) under visible light irradiation.

Fig. 5. (a) CFU reduction efficiency of CP@Fe\(_3\)O\(_4\) towards E. coli and PA under UV–visible light. (b) and (c) Images of agar plates after incubation at 37 °C for 14 h for E. coli and PA, respectively.

Fig. 6. Mechanism of photocatalytic degradation of organic pollutants, Cr(VI) reduction and bacteria inactivation by CP@Fe\(_3\)O\(_4\). In the presence of H\(_2\)O\(_2\), CP@Fe\(_3\)O\(_4\) can catalyze Fenton reaction.
from the valence band of Fe$_3$O$_4$ to CP platform. The electrons of CP transfer to Fe$_3$O$_4$ and reduce Fe(III) to Fe(II) species, as a result, the Fe (II) can reduce Cr(VI) directly.

Recycling tests for photocatalytic reduction of Cr(VI) with CP@Fe$_3$O$_4$ were performed to check the stability of composite material (Fig. 4c). To avoid the loss of photocatalyst mass during multi-sampling, the concentration of Cr(VI) solution was measured only once after 60 min. The results revealed that after five cycles of reduction process, the reduction efficiency of CP@Fe$_3$O$_4$ composite decreases partially.

The photocatalytic oxidation of MB solution under visible light by pure CP and CP@Fe$_3$O$_4$ was carried out and the results are shown in Fig. 4d. Obviously, pure CP showed better degradation of MB compared to CP@Fe$_3$O$_4$ composite. It seems that pure CP is more active under visible light than CP@Fe$_3$O$_4$ to produce ROSs under these conditions. Even with such slight decrease in the efficiency of MB degradation, CP@Fe$_3$O$_4$ is more recommended for real-world wastewater remediation because of the easier recovery and recycling. On the contrary, in the presence of 10^{-5} M of H$_2$O$_2$, CP@Fe$_3$O$_4$ showed better MB oxidation than pure CP. Herein, photo-Fenton reaction catalyzed by Fe$_3$O$_4$ may take place for producing more ROSs as shown in Fig. 6. As above-mentioned, the transferred electrons from photoexcited CP to Fe$_3$O$_4$ resulted in the reduction of Fe(III) to Fe(II) species, which in turn Fe(II) reacts with the added H$_2$O$_2$ to generate ‘OH radicals. It is important to point out that Fe$_3$O$_4$ itself could contain a little amount of Fe(II) ions on its surface, which can react directly with H$_2$O$_2$.

The photocatalytic antibacterial activity of CP@Fe$_3$O$_4$ was checked for the inactivation of two types of bacteria i.e., E. coli and Pseudomonas Aeruginosa (PA). Liquid solutions containing E. coli or PA were subjected to photocatalytic treatment under UV–visible light. Control experiments under UV–visible light without photocatalyst were carried out as well. Afterward, samples after 2 and 4 h were collected and spread on agar plates, and then these agar plates were incubated at 37°C for 14 h. The results of CFU reduction efficiency are shown in Fig. 5a. CFU reduction efficiency using CP@Fe$_3$O$_4$ under UV–visible light was around 85% and 90% for E. coli and PA, respectively. The results of plate test (Fig. 5b, c) showed a significant inhibition of bacteria in broth solution using CP@Fe$_3$O$_4$ under UV–visible, while, intense growth in control plates (without photocatalyst) which further evidences the inhibition of growth was due to generated of ROSs species by CP@Fe$_3$O$_4$ under light.

The inactivation of bacteria is occurred by photogenerated ROSs such as O$_2$$^-$, •OH, and H$_2O_2$. It was reported that ROSs with longer lifetime are more efficient for the inactivation of bacteria, unlike the oxidation of organics [30]. ROSs with longer lifetime are able to damage the bacteria by bursting and collapsing of bacterial membrane and cells. Therefore, H$_2$O$_2$ and O$_2$$^-$, might be more efficient than ‘OH. H$_2$O$_2$ can be produced via the reduction of O$_2$$^-$ by photogenerated electrons in CP@Fe$_3$O$_4$ system. Besides the toxic effect of E. coli or PA, these species are considered as major faecal contaminants in water purification stations and main contributor for biofouling in membrane systems [26,31].

4. Conclusions

Soft-magnetically recoverable photocative CP@Fe$_3$O$_4$ showed excellent photocatalytic activity for Cr(VI) reduction, MB oxidation and bacteria inactivation. Also, the incorporation of Fe$_3$O$_4$ in CP platform facilitates the recovery of the photocatalyst after the water treatment via the application of an external magnetic field. In terms of photocactivity, CP@Fe$_3$O$_4$ showed an excellent photocatalytic reduction of Cr(VI) compared to bare CP and Fe$_3$O$_4$ under UV–visible and visible light. The incorporation of Fe$_3$O$_4$ into CP resulted in lower oxidation of MB compared to bare CP. However the CP@Fe$_3$O$_4$ was more efficient in presence of H$_2$O$_2$ than bare CP, due to the Fenton reaction achieved by the Fe(II) produced via the reduction of Fe(III) of Fe$_3$O$_4$ by photogenerated electrons coming from CP platform. Interestingly the CP@Fe$_3$O$_4$ composite showed very good photocatalytic antibacterial activity against E. coli and Pseudomonas Aeruginosa in water. Based on the obtained results, CP@Fe$_3$O$_4$ composite, can be used as an efficient photocatalyst for water remediation and disinfection in wastewater treatment.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21777106, 21777176), the National Major Science & Technology Program for Water Pollution Control & Treatment (2017ZX07202).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.seppur.2020.116954.

References

