®

Check for
updates

Depth-Bounded Approximations
of Probability

Paolo Baldi®)®, Marcello D’Agostino®, and Hykel Hosni

Department of Philosophy, University of Milan, Milan, Italy
{paolo.baldi,marcello.dagostino,hykel.hosni}@unimi.it

Abstract. We introduce measures of uncertainty that are based on
Depth-Bounded Logics [4] and resemble belief functions. We show that
our measures can be seen as approximation of classical probability mea-
sures over classical logic, and that a variant of the PSAT [10] problem
for them is solvable in polynomial time.

1 Introduction

In this work, we investigate the relation between belief functions (see the original
[13], and, for a more recent survey, [5]) and probability, from a new logical
perspective. Expanding on ideas first introduced in [1], we investigate measures of
uncertainty which resemble Dempster-Shafer Belief Functions, but that, instead
of being based on classical logic, are based on Depth-Bounded Logics (DB logics),
a family of propositional logics approximating classical logic [4].

Our starting point is the observation that Belief Functions and Depth-
Bounded Logics share a similar concern for the way wvirtual and actual infor-
mation possessed by an agent is evaluated and manipulated.

Let us recall that belief functions can be uniquely determined from so-called
mass functions (see e.g. [11]), i.e. probability distributions over the power sets
of classical propositional evaluations. If such mass functions are non-zero only
for singletons of evaluations, one obtains probability functions, as special cases.
We will look at the mass functions behind the probability measures, as arising
from the general mass functions (determining arbitrary belief functions) via a
limiting process: agents originally assign masses to arbitrary sets of evaluations,
reflecting their actual information, and they stepwise distribute such mass, only
when requested to do so, by way of weighting additional virtual information,
until they will have their say on the specific uncertainty associated with each
single evaluation.

A related issue has been investigated in logic, where the family of DB logics
[3,4] relies on the idea of separating two kinds of (classically valid) inferences:
the inferences which only serve the purpose to make explicit the information
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that agents already possess, i.e. those using only their actual information on
the one hand, and those which make use of virtual information on the other.
The latter type of inferences arises from the use of a single branching rule (see
Fig. 1), reflecting the principle of bivalence, which allow agents to reason by cases,
adding information not actually in their possession, and drawing further infer-
ences thereon (see Sect.2). The family of depth-bounded logics is then defined
just by fixing maximal depths at which the application of such branching rule
is allowed. Unbounded use of the rule results in (an alternative presentation of)
classical logic, which can be thus seen as a limit of such family of weaker DB
logics.

As an important consequence of the bounded use of the bivalence principle,
it is shown in [4] that the consequence relation determined by each DB logic is
decidable in polynomial time, hence we can realistically expect that (boundedly)
rational agents would be able to recognize, in practice and not only in princi-
ple, whether a depth-bounded inference is actually correct. This contrasts with
classical logic, which can be seen as the, computationally unfeasible, limit of the
feasible DB logics.

The main contribution of this paper is twofold: first, we show that the mea-
sures of belief that we introduce, based on DB logics, provide approximations of
classical probability measures over classical logic. Second, we prove that under
certain reasonable conditions, the problem of finding whether there is any such
measure satisfying a given set of linear constraints is solvable in polynomial time,
in contrast with the analogous problem for classical logic and probability.

The rest of the paper is structured as follows. In Sect. 2 we recall some pre-
liminaries about DB logics. In Sect. 3 we introduce our depth-bounded measure
of uncertainty, based on DB logics, and in Sect.4 we investigate computational
issues. Section 5 contains conclusions and hints at future work.

2 Preliminaries

Let us fix a language L, over a finite set Vary = {p1,...,pn} of propositional
variables. We let F'm . be the formulas built from the propositional variables by
the usual classical connectives A, V, -, and a constant A denoting contradiction.
For each p; € Var we denote by +p; any of the literals p; and —p;. For each
set of formulas I" we denote by Sf(I") the subformulas of the formulas in I,
and by Var(I") the propositional variables occurring in I'. Finally by Aty =
{£p1 Atpa A---Axp, | pi € Var,} we denote the atoms, i.e. all the conjunctions
of literals, formed from choosing (under the given order) exactly one literal for
each of the (finitely many) variables of the language.

Let us now move to consider the family of DB Logics. We start from the
0-depth logic, that is the logic manipulating only actual information. Here we
will limit ourselves to a proof-theoretic presentation, based on the Intelim (intro-
duction and elimination) rules in Table 1. For a semantic characterization, see
the nondeterministic truth tables, e.g. in [3,4].

The intelim rules determine a notion of 0-depth consequence relation kg, in
the usual way.



Depth-Bounded Approximations of Probability 609

Table 1. Introduction and elimination rules
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Definition 1. For any set of formulas I' U {a} C Fmg, we let I' o a iff there
18 a sequence of formulas aq, ...,y such that a,, = o and each formula «; is
either in I' or obtained by an application of the rules in Table 1 on the formulas
aj with j <.

The key feature of the consequence relation g is that only information actu-
ally possessed by an agent is allowed in a “O-depth deduction”.

As already recalled in the introduction, the DB Logics for £ > 0, will be
defined via the amount & of virtual information which agents are allowed to use
in their deductions. This leads to the recursive definition of the consequence
relation Fy, for £ > 0, as follows.

Definition 2. For each k > 0 and set of formulas I' U {a} C Fmg, we let
I'ty « iff there is a B € Sf(I'U{a}) such that I', S br—1 o and I, =3 Fr_1 .

In other words, we suppose that 8 and —( are pieces of “virtual information”
which is not actually possessed by the agent, but which is used to derive «
through case-based reasoning. While, according to Definition 1, the consequence
Fo amounts to the existence of a suitable sequence of formulas, the derivability
relation F; amounts to the existence of a suitable proof-tree, where each node
is labeled by a formula, which is either an assumption or obtained by formulas



610 P. Baldi et al.

N\
-8 B

Fig. 1. The branching rule PB (principle of bivalence)

above it by means of an intelim rule, or of the branching rule (PB) in Fig. 1. The
latter is then only allowed in a limited form: for F; we are allowed at most k
nested applications of (PB). Thus, I" Fy ¢ can be equivalently taken to say that
there is a proof-tree, as described above, so that ¢ is derivable from I" in each
branch, via the intelim rules, plus the additional virtual information introduced
by the branching rules. One may run a proof-search procedure (see e.g. the
algorithm in [4]), to verify whether such a proof-tree, deriving ¢ from I" in each
branch, exists. Even if this is not the case, i.e. if the proof-search procedure only
produces proof-trees which derive ¢ in some (possibly none) and not all of the
branches, we are still interested in the structure of such trees, in particular since
they keep track of the virtual information that has been explored. This is the
main inspiration behind our investigation of depth-bounded belief in the next
section.

Before that, let us finish this section recalling two important properties of
the DB logics, already mentioned in the introduction, and shown e.g. in [3,4].
First, DB logics provide a hierarchy of consequence relations approximating the
classical one, that is, FpChj41 and limy o Fx = F, where I stands for classical
derivability. Finally, each F; can be decided in polynomial time, and is thus
feasible. This will be of particular use in Sect. 4 of the paper.

3 Depth-Bounded Proofs and Uncertain Reasoning

So far, we have recalled the definition of DB logics and given an idea of how
proofs in such logics work, by distinguishing the use of actual and virtual infor-
mation. Let us now assume that agents, whenever they add a piece of virtual
information to their stock of assumptions, can also weight their belief on it, for
extra-logical reasons. We will then take the belief that an agent commits to a
formula ¢ to be the sum of all the weights assigned to the leaves of a depth-
bounded proof-tree, that allow to derive . In particular, we request that, if all
branches derive ¢, which corresponds to ¢ being logically derivable, one would
then obtain a degree of belief 1. We use these ideas as a bridge, from the realm of
depth-bounded logic to that of depth-bounded uncertain reasoning. Let us recall
that classical belief functions can be determined from mass functions, and that,
when such mass functions are non-zero only for singletons, one obtain classical
probabilities. Identifying formulas and sets of evaluations, one can reformulate
this syntactically, by taking the mass functions behind belief functions to act over
Fm/, and assume that those behind probabilities are non-zero only over At [11].
Our starting point towards depth-bounded uncertain reasoning, is to consider
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mass functions which are non-zero only over those formulas which keep track of
the information (virtual and actual), used in each branch of a proof-search tree
in DB logic. Before delving into our formal definition of depth-bounded belief
functions, we will need to fix first various parameters.

— First, we will have a set In C Fm, U {x}, the initial information, which we
assume to be finite. In stands for the formulas, for which an agent, for some
extra-logical reasons, can assign a degree of belief, already at a shallow (0-
depth) level. We can think of the values of such formulas as obtained from
the available data, e.g. as information of statistical nature.

In order to simplify the notation, we assume that In is nonempty, and we
represent the case where no information at all is initially available by the
symbol® *, which is not part of the language, and letting In = {*}. We adopt
the convention that * Fj ¢ stands for -y ¢.

In our setting, we can consider a belief conditioned on a formula v, by just
assuming that, for each a € In, we have a k¢ v. When this is the case, we say
that In is y-based and denote it by In.. Similarly we denote the case where
In = {x} by In..

— We have then a set II, standing for the predictions that an agent wants to
obtain, and that thus guide the weighting of her degree of belief. The idea
is that an agent weights the uncertainty of virtual information and explores
various possible scenarios, only in order to settle, eventually, the truth or
falsity of all the formulas in II.

— Finally, we have a set of virtual information V. This can be thought of as the
set of questions that the agent may evaluate, in the process of assessing the
formulas in II. Typical example might be V = Var(Il) or V = Sf(II).

Let us recapitulate our setting: starting from initial knowledge in In, agents
ask themselves a number of questions about the formulas in V, thus specifying
in more details the possible information states, which will be then used to settle
the belief and make predictions about the formulas in II.

We assume that the amount of questions the agents can ask themselves is
bounded: the maximum number of questions an agent can ask corresponds, in a
sense to be made precise later, to the depth of derivations in DB logic.

We are now ready to give our first formal definition of 0-depth mass functions,
representing the initial evidence possessed by an agent. This is nothing else than
a convex distribution over the set In of the initial information.

Definition 3. A 0-depth mass function is a function mg: In — [0,1] such that
Zaeln mo(a) =1 and mo(a) =0 if atg A.

Note that, in case In = {v}, we have my(y) = 1 and mo(a) = 0 for any other
formula .

! We slightly depart from the notation in [4], where the state of no information is
denoted by L, since the latter is often used as a constant for falsum in intuitionistic
and various nonclassical logics.
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Definition 4. Given a 0-depth mass-function mg, a 0-depth belief function is a
function By: Fmg — [0,1] such that

By(p) = Z mo (o) By(p) =0 if for no a € In, o ¢ .
acln
OtEo‘P
If In is of the form In. for some v € Fm, we will then have By(p) =1if y¢ ¢
and By(p) = 0 otherwise.

Remark 1. As in the case of classical belief and mass functions, mg(y) represents
a portion of belief committed exclusively to ¢ and to no other formula, while
By(p) stands for the belief in ¢, which is obtained by putting together all the
basic pieces of belief leading to (i.e. 0-depth deriving) ¢. Note that, while in
principle O-depth equivalent formulas can be assigned different values via a 0-
depth mass, they will still be assigned the same 0-depth belief. Hence, in our
framework, masses cannot be uniquely determined by belief functions. This is
due to fact that we assign masses to formulas, rather than to equivalence classes
of the corresponding Lindenbaum-Tarski algebra (see e.g. [11]).

The notions of 0-depth mass and 0-depth belief function encode the shallow
information, which is provided to an agent. We will now introduce mass func-
tions based on higher DB logics, corresponding to the setting where agents have
both higher inferential and “imaginative” power, i.e. when they can weight the
uncertainty of pieces of information going beyond what is originally given.

Let us fix a triplet G = (In,II,V) where In C Fmg U {x}, I C Fm,
V C Fmg, with the intended meaning discussed above. We will represent the
information evaluated by an agent, in the form of forests, with labels provided
via the triplet G. Let us recall that by a forest we just mean a disjoint union of
trees, in graph-theoretic terms.

Definition 5. Let F' be a binary forest. A G-label for F is a labeling of nodes
of F into formulas in Fm such that:

— When restricted to the roots of the trees in F, the labeling is a bijection with
the formulas in In.

— For each node labeled by «, the children nodes are labeled by a A3 and a A—(3
for some B e V.

Before proceeding, we also need the following technical definition.
Definition 6. Let F' be any G-labeled forest

— We say that a formula v k-decides § if v g & or vy by 6.

— We let Lf(F) be the set of formulas that label the leaves of F.

— We say that a leaf labeled by « is II-closed if o kg A or a k-decides 0, for
each § € II. A leaf which is not Il-closed is said to be open.

We will build now a set of G- labeled forests of a given maximal depth. Each
open node is expanded by two new children nodes, representing the addition of
a certain piece of virtual information and its negation.
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Definition 7. Let G = (In,I1,V). We define recursively the set of G-labeled
forests Fy of depth k, for any k € N, as follows :

— For k=0 we let Fyy be a set of nodes with no edges, each labeled by a distinct
formula in In. Clearly Lf(Fy) = In.
— The set Fy, for k > 1 is the set of all G-labeled forests obtained as follows:
e Pick a 8 € V and, for each G-labeled forest F' € Fj_1, expand each
IT-open leaf labeled by o in F' with two nodes labeled by a A B and ao A —[3.
o (MAX) Among the resulting forests, add to F}, only those forests F' such
that the number of formulas in Lf(F'), which 0-depth derive ¢, for each
@ € I1, is mazimal?.

In the following, for each F € F} we call the forest F' € Fy,_1 from which it was
obtained, via the construction above, the predecessor of F.

Definition 8. Let Fy be the set of G-labeled forests of depth k. For each forest
F € Fy, we let mf : Lf(F) — [0,1] be any function such that:

(i) mE(yAa)+mE(yA-a) =mk () where F' € Fy_y is the predecessor of
F, v € Lf(F') and ~y labels the parent node in F of y A« and v A\~ .
(i) mE(y) = mi" () if F' € Fy_1 is the predecessor of F and v € Lf(F')N
Lf(F).
(iii) mE () = m§(8) for each F,G € Fy, v € Lf(F),5 € Lf(G) such that~ o &
and § kg 7.

Recalling Definition 3 and condition (i) in Definition 8, it is easy to see that,

for each F' € Fj,
>, mila)=1
a€Lf(F)

Each m! is thus a mass functions, in the sense of Shafer’s belief function [13],
which is non-zero only over the leaves of the trees in F.

Definition 9. Let G = (In,I1, V) and F} be a G-labeled set of forests. For each
F € Fy, we define the F-based k-depth belief function B,f and the k-depth
plausibility function PIE as follows:

Bi(p)= Y mi(a) Pip)= Y mi(e)

a€Lf(F) a€Lf(F)
akop at/o—p

2 This condition might not seem intuitive, but actually plays an important conceptual
role, given the motivations of our model. While we want to depart from unrealis-
tic assumptions behind both classical inferences and probability, we still want our
models to be prescriptive, rather than purely descriptive. In other words, we want
to model how agents should weight their uncertainty, given their limited inferential
ability. Therefore, even if it could be the case that agents use the wrong piece of
virtual information (i.e. failing the condition (MAX)) we limit ourselves to the case
where they only use the virtual information actually leading them to settle as many
of their questions as possible, within their inferential abilities.
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Finally, we define the G-based k-depth belief as a function By from the formulas
in F'mz to the interval subsets of [0, 1], associating to any formula ¢ the following
interval:
Bi() = [min By (¢), max By ()

Remark 2. Tt is immediate to see that Pl () = 1 — B (=), hence, for each
forest I we can think that an exact measure of uncertainty of the formula
¢ lies within the interval [Bf (), PIF(¢)]. Any such interval is related with
a single forest F. This should not be confused with the interval given by
[minper, Bf (¢), maxper, Bf (¢)] which arises from considering various k-depth
belief functions over different forests, that is, various proof-search strategies,
involving different pieces of virtual information.

We now show some properties of our construction, which highlight its connection
with belief functions on the one hand, and with DB logics on the other.

Proposition 1. (a) Assume G = (In., {¢}, Sf(InU{¢})), for some~y € FmU
{x}, ¢ € Fmg, and let Fy, be the set of G-labeled k-depth forests. If v by, o,
then for all the F € Fy, we have BE (p) = 1.

(b) Assume G = (In,{¢}, Sf(In U {p}) for some v € Fms U {x},¢o € Fmg,
and let Fy, be the set of G-labeled k-depth forests. If v Fp —p, then for all
F € Fy, we have B} (¢) = 0.

(c) Assume G = (In,{p, ¥}, Sf(InU{p,v¥})) for some ¢, € Fm,, and let Fy,
be the set of G-labeled k-depth forests. If ¢ i 1 , we have:
— There is an F € Fy, such that B (o) < Bf ()
~ There is an | > k such that, for any forest F € Fj, we get Bf (p) <

BF(0).

(d) Assume G = (In,I1, V), and let Fy be the set of G-labeled k-depth forests.

For each F € Fy,p1,...,9n € Fmg, we have:

n

B\ ¢z S (—)SBI(A ¢

i=1 P£SC1,....n ies

Proof.(a). Consider the forest G, obtained by attaching to any « € In, the tree
containing the virtual information in a k-depth proof of ¢ from . Now, since
aFo v, and each 8 € Lf(G) contains all the virtual information in a k-depth
proof of ¢ from ~, we will have that 8 g ¢, for all 8 € Lf(G). By condition
(MAX) since there is a forest, G, such that all its leaves derive ¢, then all
the forests F' € Fj need to have the same property. Hence, we obtain that for
each F € Fy,, Bf (p) = >, mi(a)=1.

a€Lf(F)
alop

(b). By (a), for any forest F', we have Bf () = 1. This means that, for any
a € Lf(F) such that mf (a) > 0, a kg —p. If a F ¢ we would get a - A,
which by definition of mf implies m’ (o) = 0 in contradiction with our
assumption. Hence, for any o € Lf(F), a g ¢, and Bf () = 0.
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(c). The first claim holds, by just taking the forest F' to be constituted of the
virtual information used in a k-depth proof of ¥ from ¢. Then, any formula
labeling a leaf 0-depth deriving ¢, will derive v as well. For the second
claim, take any forest F' € Fj, and consider all the leaves which are 0-
depth deriving ¢, but not deriving . Expand such leaves with the virtual
information contained in any k-depth proof of ¥ from . This results in a
forest of depth [ for some [ > k, where each leaf 0-depth deriving ¢ derives
¥ as well. By the maximality condition (MAX) in Definition 7, all forests
at depths [ will have this property, since otherwise they cannot decide all
the formulas in IT = {p, ¢} .

(d). We straightforwardly adapt Theorem 4.1 in [11]. Pick a forest F €
Fy. First, for each a € Lf(F) let Ind(a) = {i | o Fr ¢;}. Note
that one can show by induction on |[Ind(«)|, that if Ind(a) # 0, then
2045, SCInd(a) (—1)I51=1 = 1. We thus get:

B (\/ ¢i) = > mj, (a)
i=1 a€L f(F)
alo(p1V--Ver)

F
E my, (@)
a€Lf(F)
alop1 or ... or akop,

Yo omilw= Y mi@ Y (-pk

Y

Ind(a)#0 Ind(a)#0 P#SCInd(x)
= > GpEEt T mi@)
0#SCInd(a) a€Lf(F)

abo Ajes i
= Y CDEEB(A @)
0#£SC{1,...,n} €S

Let us now discuss some examples.

Ezample 1. Let G = ({x},{aV 8}, {«a, 5}).
At depth 0, we only have the tree with a single node labeled by *. We obtain

By(aV 3) = 0 since * ) aV 8. At depth 1, our possible forests are actually just
trees. Two trees satisfy the constraints in Definition 7, namely :
* *
T~ P
a o 6 -0
Let us call the left tree above S and the right one 7', and let m7 (a) = 0.5 and

mf (=) = 0.5 while m¥(3) = 0.4 and m¥ (=8) = 0.6. Applying Definition 9, we
thus obtain B (a VvV 8) = m{(a) = 0.5 and BT(a v 3) = mT(B) = 0.4. Hence
Bi(aV p) € [Bf (aV B),BY(aV B)] = m¥(8),m7(a)] = [0.4,0.5]. Note that,
on the other hand, Bi(a) € [Bf(«), Bf (« )] = m¥(a),m{(a)] = [0,0.5] and
B1(B) € [BY(B), BT (B)] = [m5(B),m& (8)] = [0,0.4]. Let us move now to depth
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2.In S we only need to expand the node —¢, since v is {aV §}-closed (it is sufficient
to O-depth derive o V 3). The same holds for =4 in the tree T. We get:

* *
PN PR
[0 ule ﬂ ﬁﬁ
P P
8 -0 a o

where for simplicity, we display only the piece of virtual information added
by each node, rather than their actual labels (which can be read off by the
conjunction of the formula displayed in the node with all its ancestors). Let
us call the two trees above again S and T for simplicity. By condition (ii) in
Definition 8, we have m3(a) = m7(a) = 0.5, and mZ(3) = m¥(8) = 0.4. For
the remaining nodes of S, we let m3 (—a A 3) = 0.2 and m3 (-a A =3) = 0.3,
and for T, we let mZ' (=8 A a) = 0.3 and mI (=8 A ~a) = 0.3. We obtain finally
Bi (aV B) = m3 (8) +m3 (=B Aa) and B5(aV f) = (m5(a) +ms(-a A B)],
hence
Bsy(aV 3) € [Bf (av ), B5(aV B)] =[0.7,0.7]

Remark 3. The example above can be generalized considering, for any n > 2,
the triplet G = ({*},{¢1 V- -V on}, {¥1,...,9n}). The corresponding G- based
belief function determines, for each F' € F;, a corresponding permutation o such
that:

BE(p1 V-V n) = Bf (9o1)) + Bs (m¢501) A Po(2)) + - -
+ B (=¢o(1y A+ AP (n—1) A Po(n))

Ezample 2. Let us now consider the famous example of the Ellsberg urn [6]. We
assume to have a language with propositional variables {Y,R,B} which stand
for the proposition the next extracted ball is Yellow— Red— Blue, respectively.
The initial knowledge is that 2/3 of the balls are either yellow or red and 1/3
are blue. The background theory is given by the conjunction ~y of the formulas
in the set

{Y - (=BA=-R),R— (w=BA-Y),B— (-RA-Y)}

which encode the information that any extracted ball has exactly one of the col-
ors Y, B, R. We now consider the G- based k-depth belief, with G = (In,,II, V),
where

Iny ={(YVR)Av,BAvy} II={Y,R,B} V ={Y,R}

We formalize the factual information about the proportion of the balls, together
with the background theory, by letting: mo((Y'VR)A~y) = 2/3, mo(BA~y) =1/3.

This implies Bo(Y V R) = 2/3, Bo(B) = 1/3, Bo(v) =1, Bo(Y) = Bo(R) = 0.
At depth 1, we are required to make use of virtual information. One can easily
check that, via the node labeled B Ay, we can already prove B A~ g =Y, that
B A~vto =R and that B A~ g B. The node is thus II-closed, and it should not
be expanded. On the other hand, we will need to expand the node (Y V R) A~y
with either the virtual information on Y or on R. We obtain thus a forest F' € F
of the form:
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(YVR)AY BAy
S
Y =Y
and a forest G € F} of the form:

(YVR)A~ BAy

N

R-R
which have exactly the same structure. So at depth 1, the agent will assign
mI (Y VR)AY)AY) and mf (((Y V R) Ay) A=Y) such that their sum equals
m& (Y VR)AY)). Note that we easily obtain ((YVR)AY)A=Y ko ((YVR)AY)AR
and (YVR)AY)AY ko (Y VR) Av) A—=R. The converse direction of the
consequence holds as well, hence by condition (iii) in Definition 8, we have:
m$ (Y VR)AY)AR) =mf ((YVR)Ay)A=Y) and mf (Y VR) Ay) A=R) =
m{ (Y VR) Ay) AY).

At depth 1, considering that the information about the colors is completely
symmetric, a natural assumption is now to adopt a uniform distribution, i.e.
mi(YVR)AY)) = mi((Y V R) A-Y)) = 1/3. This means that B1(Y) =
Bi(R) = B1(B) =1/3.

To conclude this section, we now show that we can see usual classical probability
functions as arising from sequences of depth-bounded belief functions. By clas-
sical probability in our setting, we just mean finitely additive measures, defined
as functions P: Fmg — [0, 1].

Theorem 1. Let P: Fmp — [0,1] be a classical probability function. Then there
1s a sequence of G-labeled depth bounded belief functions such that, for each
formula ¢, we have P(p) = limy_,oc Bi(¢).

Proof. Let G = ({*}, Fmc, Varg). Recalling that Vary = {p1,...,pn}, we
obtain that, for each forest F' € F,,, the set Lf(F) coincides with A¢., up to
permutations of the literals in each atom. Let us consider the mass function m,,
over the set Lf(F') such that m,,(«) = P(«a) for each a € Lf(F'). Now, we obtain
that for any F € F),

Plp)= Y Pla)= Y Pl@)= Y mu(a)=Br(p)
a€At, a€At, aELf(F)
akp akop abop

All forests in Fj, will have the same leaves, modulo a permutations of the literals
appearing in the conjunction. Hence, by condition (iii) in Definition 8, for any
F,G € F,, a € Lf(F) and o(a) € G, where o is a permutation of the literals
in «, we need to have m&(o(a)) = mf (a) = P(a). Hence, by Definition 9, we
have B (¢) = BS(p) = P(p) for each ¢ € Fm,. This implies that the interval
for By, (p) in Definition 9 reduces to the single value P(p). On the other hand,
all the leaves in the forests in F;, are Fm-closed, since atoms decide all the
formulas in Fm ., hence Fy, = F, for any k > n, and By (¢) = Bn(p) = P(p) for
any k > n . From this the main claim immediately follows.
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4 Complexity of Depth-Bounded Belief

In this section we investigate the conditions under which our approach provides a
feasible model of reasoning under uncertainty. For concepts in complexity theory,
we refer the reader e.g. to [14]. Following previous works based on classical prob-
ability, e.g. [7,8,10,11], we assume that an agent is provided n linear constraints

over her belief on the formulas ¢1, ..., @, of the form:
m
ZaijB(goj)zwi i:l,...,n aij,wie(@. (1)
j=1

Our setup suggests then the following decision problem, which stands to our
k-depth logic and k-depth belief functions as the GENPSAT problem (see e.g.
[2]) stands to classical logic and classical probability functions:

GEN-By-SAT Problem
INPUT: The set of m formulas and n linear constraints in (1).

PROBLEM: Is there a 0-depth belief function By over In = {¢1,...,0m}
satisfying the n constraints in (1)?

Recalling Definition 9, the problem boils down to finding a solution for the
following system of linear inequalities in the unknowns mqg (1), ..., mo(om).

m
Zaij Z mo (k) = w; foreachi=1,...,n

j=1 k=1,....m

Prop;
mo(p;) = 0 foreach j =1,...,m
> molp;) =1
j=1

Let us denote by size(In) the number of symbols occurring in the formulas in
In, and by inc(In) the number of inconsistent formulas among those in In. We
recall from [4] that both, finding out whether ¢; o ¢;, and whether ¢; ¢ A
requires time polynomial in size(In). On the other hand, the system above has
size ((n +m + 1 + inc(In)) x m), and finding a solution is polynomial as well.
Hence the problem above turns out to be in PTIME(size(In) 4 n).

Let us now consider the problem of finding out whether there is a k-depth
belief function, for a given k > 0, satisfying the constraints in (1). Recalling
the Definition 9, this problem amounts to solving a linear system as the one
above, where the set In is replaced by the set Lf(F), for all the various F € F.
Recall that the latter are determined by the parameters II and V', discussed
in the previous section. Let us still set In = {p1,..., ¥}, which is given as
input to the problem, as the information initially provided to an agent. For
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the remaining two parameters, we take V' = Var(In) and II = f(In), for some
computable function f. We fix a k£ > 0 and consider then the following:

GEN-Bx-SAT Problem
INPUT: A triplet G = ({¢1,.- s om ) f{p1 ... om}), Var(In)) and the n con-
straints in (1).

PROBLEM: Is there a G-based k-depth belief function B,f, with F' in the
G-labeled set of forests Fy, which satisfies the n constraints in (1)?

Answering to this problem corresponds to finding an F' in Fj, for which the
following system, in the unknowns m} (), has a solution:

Zaij Z my, (a) = w; foreachi=1,...,n
Jj=1 aELf(F)
akop;
mp (o) >0 for each o € Lf(F)
Z mkF(a) =1
a€Lf(F)
mf (a) =0 if b A

This problem also turns out to be polynomial, if the size of II is polynomially
bounded. We give a sketch of proof in the following.

Theorem 2. GEN-B-SAT can be decided in PTIME(size(In) + n + size(II) ).

Proof. By our construction, for any forest F' € Fy, the number of leaves in Lf(F')
is bounded above by |In| - 2%, which is linear in |In| ( once k is fixed, 2¥ is con-
stant). The number of possible forests, on the other hand, is bounded by the
number of subsets of | Var(In)| of cardinality k, which is polynomial in | Var(In)|
and, consequently, polynomial in size(In). Indeed, we can safely disregard any
permutation or repetitions of the same virtual information, due to condition (iii)
of Definition 8 and condition (MAX) of Definition 7, respectively. We then need
to do some “pruning” among all possible forests, by discarding the branches
which are not II-open and the forest that do not satisfy the maximality condi-
tion (MAX) in Definition 7. The latter is obtained then, by running, whenever
necessary, for each formula in IT and its negation, the polynomial time algo-
rithm, e.g. in [4]. Once we have determined the set Fj, we have then, for each
F € Fy a set of formulas in Lf(F). We have then to look for a solution to the
system above. Each such system has size (n+|Lf(F)|+14inc(Lf(F))x |Lf(F)],
hence it is still polynomially bounded. Finally, since solving each system requires
polynomial time, we obtain the claim.

Finally, let us notice that, if we take Size(Il) = f(Size(In)), where f
is a polynomially bounded function, then the GEN-By-SAT Problem is in
PTIME(Size(In) + n). As an example, this would hold if we take, as a rea-
sonable choice II = Sf(In).
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5 Conclusions and Future Work

In this work we have introduced feasible approximations of probability measures,
based on Depth-Bounded logics. The resulting measures shed light on the con-
nection between two approximation problems: the approximation of probability,
as a limiting case of belief functions and that of classical logic as a limiting
case of depth-bounded boolean logic. In future research, we plan to compare our
approach with the Transferable Belief Model of [15], and similar works, which
handle the relation between belief functions and probability. While the former
are considered in [15] to be adequate to model the credal, i.e. purely mental,
aspect of belief, the latter are taken as good models for its pignistic aspect, i.e.
its role as a guide towards decisions. Decision-theoretic models are also a nat-
ural setting to evaluate and deepen our results. In particular, in the context of
subjective expected utility, various weakenings of Savage axioms [12] have been
considered in the literature (see e.g. [9] for an overview). We plan to investigate
how these works relate to our approach, which weakens instead the logic.
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