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Abstract: The inaccuracy of resting energy expenditure (REE) prediction formulae to calculate energy
metabolism in children may lead to either under- or overestimated real caloric needs with clinical
consequences. The aim of this paper was to apply artificial neural networks algorithms (ANNs) to REE
prediction. We enrolled 561 healthy children (2–17 years). Nutritional status was classified according
to World Health Organization (WHO) criteria, and 113 were obese. REE was measured using indirect
calorimetry and estimated with WHO, Harris–Benedict, Schofield, and Oxford formulae. The ANNs
considered specific anthropometric data to model REE. The mean absolute error (mean ± SD) of the
prediction was 95.8 ± 80.8 and was strongly correlated with REE values (R2 = 0.88). The performance
of ANNs was higher in the subgroup of obese children (101 ± 91.8) with a lower grade of imprecision
(5.4%). ANNs as a novel approach may give valuable information regarding energy requirements
and weight management in children.
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1. Introduction

The mainstay of malnutrition management is lifestyle modification beginning in childhood [1].
The accurate estimate of energy requirements is the first step to achieve this aim, and in children,
it is mainly based on the assessment of resting energy expenditure (REE). For this purpose, indirect
calorimetry (IC) is currently considered the gold standard for REE measurement, although its clinical
use is limited across the world. Paucity of available calorimeters due to their costs and the related
manpower, the lack of expertise in results interpretation, and of patient compliance to the exam
performance are limiting factors for the application of IC in clinical practice [2]. To overcome these
difficulties, several predictive equations were proposed for the estimation of REE. These formulae were
investigated and applied in several contexts, showing a good reliability on a population level. However,
many reports found that the disagreements between formulas and IC method on an individual level
were of such a degree that their accuracy appeared unpredictable in day-to-day practice [3].

Recent data pointed out that artificial neural networks (ANN) might represent a precise and
accurate method to estimate REE in obese adults [4]. ANNs are computerized algorithms resembling
interactive processes of the human brain that allow one to study very complex non-linear phenomena
such as biological systems [5]. The fundamental advantage of these methods is their ability to make
inference at an individual level rather than at a group level [6]. The base elements of the ANN are the
nodes (processing elements) and the connections. Each node has its own input, from which it receives
communications from other nodes and/or from the environment, and its own output, from which it
communicates with other nodes or with the environment. Moreover, each node has a function through
which it transforms its own global input into an output. The connections between the nodes can modify
themselves over time in a dynamic learning process, leading to the identification of new complex
patterns between inputs and outputs and to the prediction of estimates about unknown data [5]. Due
to these abilities, ANN has been successfully applied in medical decision support systems in many
fields, such as the identification of the predictive value of risk factors to the prediction of optimal
drug dosages for disease management [7,8]. However, to the best of our knowledge, no study has
investigated the applicability of ANNs for REE prediction in childhood. In this study, we aimed to
gauge the accuracy of ANNs for the estimation of REE in a healthy pediatric general population and to
compare the accuracy of such a method with the other available estimation formulae.

2. Methods

2.1. Study Patients

We enrolled healthy children attending a primary school and the ICANS Center (Centro
Internazionale per lo Studio della Composizione Corporea) based in Milan between July 2008 and
March 2017. A multidisciplinary team including pediatricians, dieticians, and nutritionists completed
the nutritional assessment by anthropometric measurements and performed the measurement of REE.

2.2. Nutritional Assessment

Body weight was measured using a gram scale, accurate to 0.1 kg, and body length with 417
SECA stadiometer (® SECA Medical Measuring Systems and scales, Birmingham, UK) or a flexible
but non-stretchable tape measure. Body mass index (BMI) was calculated as weight (kg)/length or
height (m2). Z-scores for weight for age, BMI, and weight for length were calculated using the WHO
Anthro and Anthro Plus® software and the WHO reference charts [9]. To assess body composition,
upper arm muscle area estimate (UME), upper arm fat area estimate (UFE), total upper arm area
(TUA), and arm fat percentage were calculated based on anthropometric measurements [10]. Upper
arm circumference (UAC) was measured using an inelastic tape measure; the midpoint between the
acromial process of the scapula and the olecranon (elbow) was marked with felt-tip pen. Thus, the arm
perimeter was measured with the pending member at the marked point. Biceps, triceps, subscapular,
and suprailiac skinfolds were measured using a Tanner-Whitehouse caliper (Holtain Ltd., Crosswell,
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Crymych, Pembs, UK). Each skinfold was measured three times, and the mean value was considered
for analysis.

2.3. Indirect Calorimetry

REE was measured in thermoneutral conditions using an open-circuit indirect calorimeter (Vmax
29®, Sensor Medics, Yorba Linda, CA, USA). An 8 h fasting period was recommended. Oxygen
consumption (VO2) and carbon dioxide production (VCO2) were measured in spontaneous breathing.
Briefly, a canopy was positioned around the child’s head, and the expired air was drawn from the hood
at a fixed rate. Respiratory quotient (RQ) was calculated as VCO2/VO2 and REE using the modified
Weir formula, not accounting for urinary nitrogen excretion [11]. Steady state conditions were defined
as at least 5 min with less than 5% variation in RQ, less than 10% variation in VO2, and less than 10%
variation in minute ventilation. Data from children who did not meet steady state or had an RQ < 0.67
or > 1.3 were excluded.

2.4. Prediction Formulae

Energy expenditure was estimated using the five most commonly employed formulae: the
WHO formula [12], the Harris–Benedict formula [13], the Schofield formula based on weight [14], the
Schofield formula based on weight and height [14], and the Oxford formula [15]. Nutritional status
was defined according to WHO classification; wasting was defined as BMI of less than 2 standard
deviation scores (SDS) for children ≥ 5 years of age and weight for length less than 2 SDS for children <

5 years. Obesity was defined as BMI or weight for length z-score ≥ 2 SDS for children ≥ 5 and < 5 years,
respectively [16]. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of Fondazione IRCCs Ca’ Granda Ospedale Maggiore
Policlinico, Milan, Italy (Project identification code 135/2013), and the parents of the children gave their
written informed consent.

2.5. Statistical Analysis

2.5.1. Modelling of REE with Artificial Neural Networks (ANNs)

A physician expert in ANN analysis conducted the statistical analysis. The dataset used for
ANN modeling consisted of thirteen variables: age, female gender, male gender, body weight, body
height, BMI, arm circumference, biceps skinfold, triceps skinfold, TUA, UME, UFE, and arm fat
percentage. Multivariate analysis was carried out with supervised ANN according to the method
already adopted [17]. A subgroup analysis was also performed considering obese and underweight
subjects separately.

2.5.2. Auto Contractive Map System

The multi-dimensional association of strength of each variable with all other variables in a dataset
was computed with the Auto Contractive Map (Auto-CM) system. This method is able to compute
and graph a semantic connectivity map that (i) preserves nonlinear associations among variables, (ii)
captures elusive connection schemes among clusters, and (iii) highlights complex similarities among
variables. The three-layered architecture and the mathematical models of AutoCM are described
elsewhere [18]. By applying the minimum spanning tree to the matrix of distances, a semantic
connectivity map is generated [19,20]. The Auto-CM “spatializes” the correlation among the variables
(‘closeness”), and the graph identifies only the relevant associations organizing them into a coherent
picture. The “central node” is the inner node that remains after bottom-up recursively pruning away
the “leaves” nodes.
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2.5.3. TWIST (Training with Input Selection and Testing) System

In order to cut down the number of non-relevant variables in the database (i.e., the variables that
do not carry any meaningful information for the prediction task), which cause a loss in the power of
our inferences, we employed a special “artificial organism” called TWIST (training with input selection
and testing), which is suitably designed for sorting out the most relevant variables for the sake of
prediction/classification [21,22]. The TWIST system consists of a combination of two already known
systems: training/testing (T&T) and input selection (IS). The T&T system is a robust data re-sampling
technique that is able to arrange the source sample into sub-samples, all of which possess a similar
probability density function. In this way, the database is split into two or more sub-samples in order to
train, test, and validate the ANN models as effectively as possible on the basis of the available data.
The IS system is an evolutionary “wrapper” system that selects variables in order to minimize their
number while preserving the actual amount of task-relevant information contained in the dataset. The
combined action of these two systems allows us to increase substantially the inferential power of our
ANN system while simultaneously circumventing a few major technical issues. Both systems are based
on a genetic algorithm, the genetic doping algorithm (GenD) developed at Semeion Research Centre
(Rome, Italy) [18].

The TWIST pre-processing singled out the variables that proved to be most significant for the
prediction/classification task while at the same time producing the training set and the testing set, which
were extracted from a probability distribution very close to the one that provided the best performance
in the task. On the variables selected by the TWIST system, the functional approximation/prediction
task was carried out by means of a supervised multi-layer perceptron with four hidden units. TWIST
preprocessing produced an optimal subdivision of the records in two subsamples A and B. The
subsample A included 282 records (197 males), and the subsample B included 279 records (182 males).

The protocol used for the training-test procedure was the following:

1. In the first run, subset A is used as the training set and subset B as the testing set.
2. Application of ANN on the training set. In this phase, the ANN learns to associate the input

variables with those indicated as targets.
3. At the end of the training phase, the weights matrix produced by the algorithm is saved and

frozen together with all of the other parameters used for the training.
4. The testing set is then shown to a virgin twin (same architecture and base parameters) ANN with

the same weights’ matrix of the trained ANN, acting as the final classifier. This operation takes
place for all records in testing each, and results (right or wrong classification) are not communicated
to the classifier. This allows one to assess the generalization ability of the trained ANN.

5. In a second run, another virgin ANN is applied to subset B, which is used as a training subset,
and then to subset A, which is used as a testing subset.

6. Therefore, the results in in below figures and tables are relevant to two sequences of training
testing protocol: A–B and B–A.

The accuracy results were expressed as the average of results obtained in the two independent
testing sets. The REE value predicted by ANN was compared with the REE measured with IC by
univariate linear regression.

The mean absolute error (MAE), i.e., the mean of the absolute difference between the predicted
and the actual values, the root mean square error (RMSE), the real error, the normalized mean square
error, the Kendall’s Tau Index, the Pearson coefficient of determination (r2), the paired Student T-test,
the squared correlation index, and the linear correlation index were used to measure the predictive
accuracy of ANN when appropriate. Data are given as mean and standard deviation, absolute or
percentile values. Significance was assumed when p < 0.001, taking into account the existence of
multiple tests. Analyses were performed using SPSS 20.0 (Statistical Package for Social Science. Inc.,
Chicago, IL, USA). The same fitting was carried out with the five equations in the study.



J. Clin. Med. 2020, 9, 1026 5 of 12

3. Results

3.1. Characteristics of the Study Population

A total of 561 consecutive subjects (379 boys, 67.5%) aged 2 to 17 years were studied.
The anthropometric and the metabolic measurements of the patients are given in Table 1. Figure 1 is
visual mapping of the complex web of connection schemes among variables and the principal hubs
of the system, simplifying the detection of the variables that play a key role in the graph. It shows,
among the full spectrum of possible ways to connect the variables in a tree, the shortest combination.
The distances among variables reflect their bonding strength (weights) [18,23].

Table 1. Anthropometric and metabolic measurements of the study population.

Total Population

Mean SD

Age, years 13.0 3.5

Weight, kg 62.8 23.0

Height, cm 156.5 18.6

BMI 24.6 5.9

Body mass index z-score 1.1 1.1

Arm circumference, cm 28.7 5.7

Biceps skinfold, mm 13.3 6.6

Triceps skinfold, mm 22.5 9.0

Subscapular skinfold, mm 21.9 11.5

Suprailiac skinfold, mm 29.0 13.7

z-score weight for height 0.8 1.4

z-score weight for age 0.4 1.2

z-score height for age 0.4 1.2

Fat mass, kg 18.8 9.1

Free fat mass, kg 43.7 16.0

Total upper arm area, cm2 68.1 25.8

Upper arm muscle area estimate, cm2 33.8 12.1

Upper arm fat area estimate, cm2 34.4 18.4

Fat upper arm, % 47.8 13.5

VO2, L/min 0.20 0.05

VCO2, L/min 0.17 0.04

RQ 0.83 0.07

Resting energy expenditure, kcal/die 1417.6 368.5

Harris–Benedict energy expenditure, kcal/die 1554.2 337.2

WHO energy expenditure, kcal/die 1673.6 354.1

Schofield for weight and length energy expenditure, kcal/die 1649.4 348.1

Schofield for weight energy expenditure, kcal/die 1689.5 371.1

Oxford energy expenditure, kcal/die 1649.9 351.0
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Contractive Map (Auto-CM) system. The values on the arcs of the graph indicate the strength of the 
connection, measured on a scale ranging from zero to 1. TUA: total upper arm area; UME: upper 
arm muscle area estimate; UFE: upper arm fat area estimate; TUA: total upper arm area; 
perc_fat_upperarm: arm fat percentage; arm_circ: arm circumference; tric: triceps skinfold; bic: 
biceps skinfold; REE: resting energy expenditure. 
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The TWIST system selected seven variables carrying the maximal amount of information to 
build up a predictive model and precisely: age, female gender, weight, BMI, TUA, UME, and arm 
fat percentage. The final model, based on these seven variables, expressed a functional 
approximation of the actual REE value within a protocol based on a bipartite division of the dataset: 
training set sub-sample (n = 282) and testing sub-sample (n = 279). The five equations appeared to 
systematically overestimate the true REE value, but in the last part, true REE reached higher values 
in which the opposite happened with underestimation. It should be noted how the neural network 
tendency line appeared to be almost superimposed to the true REE values curve (Figure 2). 

Figure 1. Semantic connectivity map of the 13 variables used for artificial neural network (ANN)
modeling. Semantic connectivity map of the variables under study in the study group with the Auto
Contractive Map (Auto-CM) system. The values on the arcs of the graph indicate the strength of the
connection, measured on a scale ranging from zero to 1. TUA: total upper arm area; UME: upper arm
muscle area estimate; UFE: upper arm fat area estimate; TUA: total upper arm area; perc_fat_upperarm:
arm fat percentage; arm_circ: arm circumference; tric: triceps skinfold; bic: biceps skinfold; REE: resting
energy expenditure.

3.2. Fitting of REE with Artificial Neural Networks

The TWIST system selected seven variables carrying the maximal amount of information to
build up a predictive model and precisely: age, female gender, weight, BMI, TUA, UME, and arm fat
percentage. The final model, based on these seven variables, expressed a functional approximation
of the actual REE value within a protocol based on a bipartite division of the dataset: training set
sub-sample (n = 282) and testing sub-sample (n = 279). The five equations appeared to systematically
overestimate the true REE value, but in the last part, true REE reached higher values in which the
opposite happened with underestimation. It should be noted how the neural network tendency line
appeared to be almost superimposed to the true REE values curve (Figure 2).

3.3. Comparative Statistics between Tests in the Study

The modeling obtained by an ANN with the same architecture trained on the same dataset
including only age, weight, height, and sex reached the following predictive performance: average
absolute error = 101.75 (SD 90.89) calories. The modeling obtained by the average of two independent
ANNs reached an average absolute error of 95.88 calories with a R2 = 0.88 (Table 2). The p-value of
the paired T-test = 0.13, suggesting that the main improvement in accuracy was related to non-linear
modeling rather than the addition of other constants. The comparative values obtained with the
five equations were markedly worse. The best equation in term of absolute error resulted from the
Harris–Benedict, with an average absolute error of 224.16 calories, while the best equation in terms of
linear correlation resulted from the Schofield for weight with a R2 value of 0.624.
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neural networks (a) and the comparative results obtained with Harris–Benedict (b), Oxford (c), 

Figure 2. True REE approximation in total population and in obese subgroup. Approximation with
neural networks (a) and the comparative results obtained with Harris–Benedict (b), Oxford (c), Schofield
for weight and length (d), WHO (e), and Schofield for weight equations (f). Prediction of REE in obese
children with the best ANN (g). The blue line expresses the true REE values, the orange line is the
corresponding fitting of the method under evaluation, and the dotted line is the tendency line described
by a five-degree polynomial equation.
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Table 2. Fitting performances of true REE by methods under study and statistical comparison of fitting
methods with paired Student T test.

Overall Group (N = 561), Mean REE = 1147

Fitting Method

Absolute Energy
Expenditure Absolute Error Imprecision

%
Pearson

R2
T

Statistics
P-Value

(Two Tails)

Mean Mean SD

Neural networks 1423.14 95.88 80.86 6.80 0.88 −1.04 0.295

Equations

Harris–Benedict 1554.20 224.16 137.13 15.80 0.03 −7.13 <0.0001

WHO 1673.55 300.81 180.80 21.2 0.59 25.23 <0.0001

Schofield weight and length 1649.44 300.69 178.61 21.2 0.53 20.96 <0.0001

Schofield weight 1689.51 306.93 191.30 21.7 0.62 26.99 <0.0001

Oxford 1649.93 305.56 176.29 21.6 0.52 20.81 <0.0001

Underweight (N = 16), Mean REE = 1006.4

Neural networks 109.8 63.6 10.9

Equations

Harris–Benedict 231.2 131.4 23.1

WHO 262.1 131.1 26.0

Schofield weight and length 263.5 153.7 26.2

Schofield weight 262.9 136.7 26.1

Oxford 252.0 117.0 25.0

Obese (N = 113), Mean REE = 1708.6

Neural networks 101.0 91.8 5.4

Equations

Harris–Benedict 220.7 150.0 8.8

WHO 296.6 217.6 12.7

Schofield weight and length 287.6 205.3 12.0

Schofield weight 288.0 233.0 13.6

Oxford 311.1 215.9 12.6

The output with ANN was not statistically different from true REE (p = 0.295), while all equation
output sets were different from a statistical point of view with an extremely high p-value (p < 0.0001)
(Table 2). Multiple linear correlation matrix of the tests under study is shown in Table 3. The table shows
how the five equation values were strongly correlated between them and poorly correlated with neural
networks values and true REE values. The latter two values set at variance were strongly correlated.

Table 3. Matrix of linear correlation among equations’ outputs each other.

Harris–Benedict
Energy

Expenditure

WHO
Energy

Expenditure

Schofield for
Weight and Length

Energy
Expenditure

Schofield
for Weight

Energy
Expenditure

Oxford
Energy

Expenditure

Best
Neural

Network

Resting
Energy

Expenditure

Harris–Benedict energy expenditure 1

WHO energy expenditure 0.815 1

Schofield for weight and length
energy expenditure 0.864 0.953 1

Schofield for weight
energy expenditure 0.786 0.980 0.949 1

Oxford energy expenditure 0.835 0.968 0.975 0.954 1

Best neural network 0.034 −0.052 0.009 −0.046 0.016 1

Resting energy expenditure −0.076 −0.176 −0.099 −0.173 −0.094 0.940 1

3.4. Obese Subjects

A total of 113 subjects (48 males, 42.5%) were obese with an average BMI z-score of 2.28
(range = 2.0–3.59). In this subsample, the performance of different models was generally better in
comparison with the general population. The absolute values for measured REE were, on average,
1708.6 (SD 369.2). Neural networks gave excellent results with a mean absolute error significantly
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lower than other models such as in the general population (Table 2). Figure 2 (panel g) shows
the prediction of REE obtained with the best ANNs in this subgroup. The goodness of fit was
homogeneous along the entire arch of values, with the exception of extreme high values. All the models
showed lower imprecision in obese subjects and higher imprecision in underweight subjects. Neural
networks modeling allowed a strong reduction in imprecision compared with standard equations in
all three subgroups.

4. Discussion

The results of this study provide new insights derived from the ANN approach to the REE
estimation in children. The prediction of REE by ANNs gave the lower mean absolute error (that is,
the lowest degree of imprecision) in comparison with the five equations here considered, and it was
strongly correlated with REE values as directly measured. When considering the subgroup of obese
children, the performance of ANN was even better, and the grade of imprecision was lower (5.4%).
Available prediction formulae were derived from populations with different nutrition habits, lifestyle
(less sedentary), and body composition (higher percentage of fat free mass), in accordance with secular
trends, especially the Harris–Benedict that was formulated in the early 1920s [24]. Consequently,
methods and conclusions of these formulae today appear valid but might be not error free. Accordingly,
there is still a lack of consensus in defining the most appropriate equation for calculating REE in children.
Many studies have been conducted in hospital settings [25]. During chronic and acute illness, REE may
be influenced by factors related to the clinical condition. Any state of disease may directly or indirectly
alter components of energy expenditure with marked effects on nutritional status [3]. In a previous
work, we evaluated the accuracy of the same five predictive formulae in 236 ill children. We found that
formulas were not yet accurate at the population level but were enough at the individual level, with
the consequential risk of indicating underfeeding or overfeeding [3]. Comparably, a cross-sectional
study with the aim to assess the performance of 23 REE equations in patients with cancer, categorized
by BMI class, cancer types, and cancer stage, found that all equations have wide limits of agreement,
i.e., poor individual agreement, and bias frequently correlated to age and fat mass (FM) [26]. Another
study testing the validity of equations in obese children and adolescents showed that all differ from
measured REE, have a large number of errors, and over- or underestimate the real REE [27]. Similarly,
Maffeis et al. and Molnar et al. indicated that REE prediction equations overestimated REE by up
to 20% in their cohorts of 130 obese and nonobese prepubertal children aged 6 to 10 years and 371
children aged 10 to 16 years, respectively [28,29].

The results of the present study are relevant, since childhood obesity represents a major public
health issue around the world with huge impact on actual and future health of young people. In
addition, these findings, if confirmed, also support the hypothesis that current dietary recommendations
mostly based on prediction formulae might constitute indications towards overfeeding, as suggested by
the use of the double-labeled water method in young children [30]. On the other hand, the prediction
of metabolic needs in pediatric settings is important to support child growth as well as avoiding
nutritional imbalances. Indirect calorimetry is highly technical and expensive, two factors that may
limit its use. Recently, some handheld devices were developed as alternative tools. Even if some
studies have found that these instruments are reliable and valid for the measurement of REE in
adults and children, their validity has already been questioned [31–34]. Machine learning algorithms
are based on mathematical-computational methods to learn information directly from data without
mathematical models and predetermined equations. We here highlight the novelty related to ANN
methods, since these algorithms consider for the calculation of REE more specific anthropometric
data such as TUA, UME, and arm fat percentage rather than only weight and height as common
formulae. An in-depth evaluation focusing on the associations between body composition and REE
might yield valuable information regarding energy requirements and weight management in children.
The possible application of an easy-to-use equation in the day-by-day practice of weight management
interventions for children and adolescents is quite attractive indeed.
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This paper is the first one to challenge the REE prediction in healthy children with the ANN
approach. REE was measured in a large set of children of different ages (2–17 years). Some concerns
may be raised considering the IC advices may rely on the same prediction equations to yield the
final calculations of REE. Moreover, since the measurement of skinfold thickness to assess the body
composition depends on the experience and the skill of the examiners, further resolution may be
provided by more sophisticated measures of body composition.

5. Conclusions

ANNs may provide accurate estimates of REE in healthy children, this representing new and
valid alternatives to simple IC in the day-by-day clinical practice. Future studies should investigate
the potential of this approach to develop personalized dietary interventions for preventive and/or
therapeutic purposes [35].
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