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Abstract In 1990 Cooper suggested to use Groebner bases’ computations to decode
cyclic codes and his idea gave rise to many research papers. In particular, as proved
by Sala-Orsini, once defined the polynomial ring whose variables are the syndromes,
the locations and the error values and considered the syndrome ideal, only one poly-
nomial of a lexicographical Groebner basis for such ideal is necessary to decode (the
general error locator polynomial, a.k.a. GELP). The decoding procedure only consists
in evaluating this polynomial in the syndromes and computing its roots: the roots are
indeed the error locations. A possible bottleneck in this procedure may be the evalu-
ation part, since a priori the GELP may be dense.
In this paper, focusing on binary cyclic codes with length n = 2m−1, correcting up to
two errors, we give a Groebner-free, sparse analog of the GELP, the half error loca-
tor polynomial (HELP). In particular, we show that it is not necessary to compute the
whole Groebner basis for getting such kind of locator polynomial and we construct
the HELP, studying the quotient algebra of the polynomial ring modulo the syndrome
ideal by a combinatorial point of view. The HELP turns out to be computable with
quadratic complexity and it has linear growth in the length n of the code: O

(
n+1

2

)
.
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1 Introduction

The classical decoding of BCH codes C ⊂ Fn
q, correcting up to t errors, is based on

solving the so-called key equation [4]: σ(x)S (x) ≡ ω(x) (mod x2t), where, denoted
by a ∈ Fq[a] =: Fqm a primitive nth-root of unity, we have S (x) =

∑2t
i=1 sixi−1, where

si :=
∑µ

j=1 e` j a
i` j , is the syndrome polynomial associated to the error

∑µ
j=1 e` j a

` j , µ ≤

t, and σ(x) =
∏µ

j=1(1 − xa` j ) is the classical error locator polynomial.
In 1990 Cooper [19,20] suggested to use Groebner bases’ computations for binary
cyclic codes’ decoding: let C be a binary BCH code, correcting up to t errors, and
s̄ = (s1, . . . , s2t) be the syndrome vector associated to a received word. Cooper’s idea
consisted in interpreting the error locations z1, . . . zt of C as the roots of the syndrome
equation system:

fi :=
t∑

j=1

z2i−1
j − s2i−1 = 0, 1 ≤ i ≤ t.

Therefore, the plain error locator polynomial was seen as the monic generator g(z1)
of the principal ideal t∑

i=1

gi fi, gi ∈ F2(s1, . . . , s2t)[z1, . . . , zt]

⋂
F2(s1, . . . , s2t)[z1],

which was computed via the elimination property of lexicographical Groebner bases.
In a series of papers [16–18] Chen et al. improved and generalized Cooper’s approach
to decoding, according to two different research paths. The first, related to the Groeb-
ner basis computation of the ideal generated by the Newton identities inspired [2,3].
In the second, they considered [17] the syndrome variety (Definition 3)(s1, . . . , sn−k , y1, . . . , yt , z1, . . . , zt) ∈ (Fqm )n−k+2t : si =

t∑
j=1

y jzi
j, 1 ≤ i ≤ n − k


and proposed to deduce via a Gröbner basis pre-computation in

Fq[x1, . . . , xn−k, y1, . . . , yt, z1, . . . , zt]

a series of polynomials gµ(x1, . . . , xn−k,Z), µ ≤ t, such that, for any error with weight
µ and associated syndromes s1, . . . , sn−k ∈ Fqm , gµ(s1, . . . , sn−k,Z) in Fqm [Z] is the
plain error locator polynomial. This approach was improved in a series of paper [5,
27] culminating with [32] which, specializing Gianni-Kalkbrener Theorem [22,24],
stated Theorem 6 below. For a survey of this Cooper Philosophy see [30] and on
Sala-Orsini locator [6].
Recently the same problem has been reconsidered within the frame of Grobner-free
Solving [28,35,34], explicitly expressed and sponsored in the book [33, Vol.3,40.12,41.15];
such approach aims to avoid the computation of a Groebner basis of a (0-dimensional)
ideal J ⊂ P in favour of combinatorial algorithms, describing instead the structure of
the algebraP/J. In particular, given a finite set of distinct points X = {P1, ..., PN} and,
for each point Pi the related primary qi described via suitable functionals {`i1, . . . , `iri },
the aim is to describe the combinatorial structure of both the ideal I = ∩iqi and the
algebra F[N(I)] = P \ I avoiding Buchberger Algorithm and Groebner bases of I and
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even Buchberger reduction modulo I, in favour of combinatorial algorithms, as vari-
ations of Cerlienco-Mureddu Algorithm [8,9,13–15,21] and Lundqvist interpolation
formula [28], dealing with F[N(I)] and {`i j, 1 ≤ i ≤ N, 1 ≤ j ≤ ri}.
In this paper, we focus on the case of a binary cyclic code C with primary defining
set {1, l}, correcting up to two errors. In particular, starting from its syndrome variety,
we first study the structure of the quotient algebra (Section 4) and then, we use this
information in order to define the half error locator polynomial (Section 5, Defini-
tion 12), a sparse and efficient polynomial that, evaluated in the syndromes of the
received word, gives as roots the corresponding error locations. A constructive proof
of existence is given in Section 6.1, while a discussion on future works is given in
Section 7.

2 Notation

Throughout this paper we mainly follow the notation of [33].
We denote by P := k[x1, ..., xn] the ring of polynomials in n variables with coeffi-
cients in the field k. The semigroup of terms, generated by the set {x1, ..., xn} is:

T := {xγ := xγ1
1 · · · x

γn
n | γ := (γ1, ..., γn) ∈ Nn}.

If t = xγ1
1 · · · x

γn
n , then deg(t) =

∑n
i=1 γi is the degree of t and, for each h ∈ {1, ..., n}

degh(t) := γh is the h-degree of t.
A semigroup ordering < on T is a total ordering such that

t1 < t2 ⇒ st1 < st2, ∀s, t1, t2 ∈ T .

Once we have fixed a semigroup ordering < on T , a polynomial f ∈ P can be repre-
sented as a linear combination of terms arranged w.r.t. <, where the coefficients are
in the base field k:

f =
∑
t∈T

c( f , t)t =

s∑
i=1

c( f , ti)ti : c( f , ti) ∈ k \ {0}, ti ∈ T , t1 > ... > ts.

The term T( f ) := t1 is the leading term of f , while Lc( f ) := c( f , t1) is the leading
coefficient of f and tail( f ) := f − c( f ,T( f ))T( f ) is the tail of f .
A term ordering is a semigroup ordering such that 1 is lower than every variable or,
equivalently, it is a well ordering.
The lexicographical ordering induced by x1 < ... < xn, i.e:

xγ1
1 · · · x

γn
n <Lex xδ1

1 · · · x
δn
n ⇔ ∃ j | γ j < δ j, γi = δi, ∀i > j,

which is a term ordering, is the one we use in all the paper. We drop the subscript and
denote it by < instead of <Lex, since no other ordering is employed and there is no
possibility of confusion.
A subset J ⊆ T is a semigroup ideal if t ∈ J ⇒ st ∈ J, ∀s ∈ T ; a subset N ⊆ T is an
order ideal if t ∈ N⇒ s ∈ N∀s|t. We have that N ⊆ T is an order ideal if and only if
T \ N = J is a semigroup ideal.
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Given a semigroup ideal J ⊂ T we define N(J) := T \ J. The minimal set
of generators G(J) of J is called the monomial basis of J. For all subsets G ⊂ P,
T{G} := {T(g), g ∈ G} and T(G) is the semigroup ideal of leading terms defined as
T(G) := {tT(g), t ∈ T , g ∈ G}.
Fixed a term order <, for any ideal I / P the monomial basis of the semigroup ideal
T(I) = T{I} is called monomial basis of I and denoted again by G(I) and the order
ideal N(I) := T \ T(I) is called Groebner escalier of I.

Let X = {P1, ..., PN} ⊂ kn be a finite set of distinct points

Pi := (a1,i, ..., an,i), i = 1, ...,N.

The ideal of points of X is

I(X) := { f ∈ P : f (Pi) = 0, ∀i}.

Given a finite set of polynomials F, we call I(F) the ideal generated by F.
For any (0-dimensional, radical) ideal J ⊂ P let V(J) be the set of finite rational

points of J over the algebraic closure of k. We have the obvious duality between I
and V = V(I).

2.1 Cerlienco-Mureddu correspondence

In this section, we give a brief description of Cerlienco-Mureddu algorithm, intro-
duced in [13–15]. This is the very first combinatorial algorithm that, given a finite set
of distinct points X = {P1, ..., PN} finds the lexicographical Groebner escalier N(I(X))
for the ideal of points of X.
In particular, in [13], the authors consider an ordered finite set of distinct points in
kn, namely X = [P1, ..., PN], and prove that there is a one-to-one correspondence
between X and the terms of the lexicographical Groebner escalier N(I(X)) of I(X):

Φ : X→ N(I(X))

Pi 7→ x
α(i)

1
1 · · · x

α(i)
n

n .

Their way to find Φ consists in using only combinatorics on the coordinates of the
elements in X. In particular, the only operations needed are comparisons among the
coordinates of the points. The algorithm iterates on the points of X and it is recursive
on the variables: it pays - due to recursion - the price of having a bad complex-
ity: a straightforward implementation of the algorithm has complexity proportional
to n2N2. The iterative algorithm developed in [9], gives the same result eliminating
recursion and keeping iterativity on the points, via the introduction of a data struc-
ture (the Bar Code) that stores the information on the computed terms needed to
perform the algorithm on the subsequent points, so the complexity turns out to be
O(N2 log(N)n).
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2.2 Cyclic codes

In this section, we give a brief recap on cyclic codes, recalling all the standard nota-
tion which is needed to understand this paper.
Let C be an [n, k, d]q code that is, a q-ary cyclic code, where n represents its length,
k the dimension and d the distance. The polynomial g(x) ∈ Fq[x] is its generator
polynomial; we point out that deg(g) = n − k and g | xn − 1. Let Fqm be the splitting
field of xn − 1 over Fq.
If a denotes a primitive n-th root of unity, we call complete defining set of C the set

S C = { j|g(a j) = 0, 0 ≤ j ≤ n − 1}.

This set is completely partitioned in cyclotomic classes, so we can take one element
for each such class and obtain a set S ⊂ S C , which identifies uniquely the code C.
This set S is a primary defining set of C. If we decide to consider some elements
from each cyclotomic class, without caring to take them all, we talk more generally
about a defining set of C.
If H is a parity-check matrix of C, c is a codeword (i.e. c ∈ C), e ∈ (Fq)n an error
vector and v = c + e a received vector, the vector s ∈ (Fqm )n−k such that its transpose
sT is sT = HvT is called syndrome vector. We call correctable syndrome a syndrome
vector corresponding to an error of weight µ ≤ t, where t is the error correction ca-
pability of the code, namely the maximal number of errors that the code can correct.
If the errors occur in positions k1, ..., kµ, the error locations are defined to be ak1 , ..., akµ .
We call error locator polynomial a polynomial whose roots are the error locations.
Some special cyclic codes are the so called BCH codes; we define them since they
will be treated in what follows as first simple examples, due to their particular struc-
ture (see [29] for more details).

Theorem 1 (BCH bound) Consider an [n, k, d]q cyclic code C, with GCD(n, q) = 1
and defining set S C = {i1, ..., in−k}. Suppose there are δ−1 consecutive number in S C ,
say {m0 + i, 0 ≤ i ≤ δ − 2} ⊂ S C . Then d ≥ δ.

Definition 2 If C is the [n, k, d]q cyclic code, with defining set S = {m0 + i, 0 ≤ i ≤
δ − 2, m0 ≥ 0, m0 + δ − 2 ≤ n − 1}, then C is a BCH code of designed distance δ.
A BCH code is narrow sense if m0 = 1 and primitive if n = qm − 1.

There are different methods to decode a BCH code. As an example, we can use the
extended Euclid algorithm, the algorithm due to Berlekamp-Massey [4] or the so
called Cooper’s philosophy, which will be explained in next section.

3 Motivation: the decoding problem

In his papers [19,20], Cooper suggested to employ Groebner basis theory in order to
decode cyclic codes. More precisely, he considers a primitive binary BCH code of
length n = 2m − 1. Let a ∈ F2m a primitive n-th root of unity and C our primitive BCH
code over F2, with defining set S C′ = {2i + 1, i = 0, ..., t − 1}. The related complete
defining set is the union S C =

⋃t−1
i=0 C2i+1 of cyclotomic classes generated by 2i + 1,
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i = 0, ..., t − 1. Once received v ∈ (F2)n, the decoder computes the syndrome vector
s = (s0, ..., s2t−1) ∈ (F2m )2t, in order to find the error locations a j. We define new
variables z1, ..., zt, standing for the t error locations, that are either ali , li ∈ {1, ..., n} or
zero (when the µ < t). Then, the error locations are a solution (ξ1, ..., ξt) ∈ (F2m )t of a
system of t polynomials over F2m [z1, ..., zt], i.e.

FC = { fi :
t∑

j=1

z2i−1
j − s2i−1, i = 1, ..., t}.

The problem for this nonlinear system is that sometimes is ineffective to compute
its solutions, so Cooper proposes to use Groebner bases in this framework. In [17],
Chen et al. generalize Cooper’s idea to use Groebner bases techniques to binary cyclic
codes.
In [16] Chen et al. generalize Cooper’s philosophy to q-adic codes proposing a solu-
tion for decoding an error whose weight is assumed known.
Moreover, they give an alternative approach via Newton’s identities in the binary
case, but, since it goes beyond our interest, we do not treat it. For details, one can see
[29]. For the improvements by Augot-Bardet-Faugère, one can see [2,3].
In the context defined so far, for any word to be decoded, we need to compute a
Groebner basis and the syndromes are considered as parameters, computed expres-
sively from the received word and substituted into the system. Moreover, different
Groebner basis computations must be performed for different potential error weights,
until the true weight of the actual error is obtained.
In [18], Chen et al. proposed a new method which consists of considering the syn-
dromes as variables xi and computing the Groebner basis as a preprocessing. The
growth of the number of variables is a problem of this method. On the other hand, the
Groebner basis is computed only once.
Following [29], we denote by x, y, z the multivariables representing, respectively, the
syndromes, the locations and the error values, i.e. the variables for the polynomial
ring
Fq[x1, ..., xn−k, zt, ..., z1, y1, ..., yt] = Fq[x, y, z].
Then, we consider

FChen2 :=


t∑

j=1

y jzi
j − xi, i ∈ S

∪{zn+1
j −z j, 1 ≤ j ≤ t}∪{y2m−1

j −1, 1 ≤ j ≤ t} ⊂ Fq[x, y, z],

I = I(FChen2) / Fqm [x, y, z], V(I) ⊂ (Fqm )2µ and G the lexicographical reduced Groeb-
ner basis with x1 < ... < xn−k < zt < ... < z1 < y1 < ... < yt.

Definition 3 The zerodimensional ideal I is the syndrome ideal and its variety V(I)
the syndrome variety.

Loustaunau and York, in [27], improved the approach introduced by Chen. They sug-
gested to use the FGLM algorithm to make the Groebner computation.
Caboara and Mora, in [5], gave a corrected and optimized version of Chen’s algo-
rithm, basing on the studies on the structure of Groebner bases for zerodimensional
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ideals by Gianni [22] and Kalkbrenner [24], who stated Gianni- Kalkbrenner theo-
rem.

We sketch now the improvements due to M.Sala and E.Orsini.
Consider the syndrome variety V(I) defined by Caboara-Mora in [5] and a correctable
syndrome s ∈ (Fqm )n−k; there are some points in the variety that uniquely determine
the potential error locations and error values, but, unfortunately, there are also points,
called spurious solutions from now on, not corresponding directly to some error vec-
tor.

Definition 4 [16,32] A point (s1, . . . , sn−k, y1, . . . , yt, z1, . . . , zt) ∈ V(I) is said spuri-
ous if there are at least two values zi, z j, 1 ≤ i , j ≤ µ, such that zi = z j , 0.

M.Sala and E.Orsini propose a new syndrome variety eliminating these points. They
consider an [n, k, d]q cyclic code with GCD(q, n) = 1 and give the following

Definition 5 Let n ∈ N be an integer. We denote pll′ ∈ Fq[z1, ..., zt] as

pll′ :=
zn

l − zn
l′

zl − zl′
, 1 ≤ l < l′ ≤ t.

The syndrome ideal is I = (FOS ) with

FOS = { fi, h − j, χi, λ j, zl′zl pll′ , 1 ≤ l < l′ ≤ t, 1 ≤ i ≤ n − j, j ∈ S } ⊂ Fq[x, y, z]

with

– fi :=
∑t

l=1 ylz
j
l − xi

– h j := zn+1
j − z j;

– λ j := yq−1
j − 1;

– χi := xqm

i − xi;

If Q := Fq[x1, ..., xn−k], G is the usual reduced Groebner basis and for each ι =

1, ..., t, for each l, Gι := G ∩ Q[zt, ..., zι], Gιl = {g ∈ Gι \ Gι+1, degι(g) = l} and the
polynomials are ordered such that their leading terms are ordered w.r.t. lex, then

Theorem 6 It holds

1. G ∩ Q[z1, ..., zt] =
⋃t

i=1 Gi;
2. Gi =

⋃i
δ=1 Giδ, Giδ , ∅, 1 ≤ i ≤ t, 1 ≤ δ ≤ i;

3. Gii = {gii1}, 1 ≤ i ≤ t;
4. T(gii1) = zi

i, Lp(gii1) = 1;
5. if 1 ≤ i ≤ t, 1 ≤ δ ≤ i − 1, then ∀g ∈ Giδ zi | g.

Let gtt1 the unique polynomial in Gt with degzt (gtt1) = t:

gtt1 = zt
t +

t∑
l=1

bt−lzt−l
t .

T.F.A.E., for each syndrome vector s = (s1, . . . , sn−k) ∈ (Fqm )n−k corresponding to an
error with weight bounded by t:
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1. there are exactly µ errors ζ1, . . . ζµ;
2. bt−l(s) = 0 for l > µ and bt−µ(s) , 0;
3. gtt1(s1, . . . , sn−k, zt) = zt−µ ∏µ

j=1(z − ζi).

This means σ(z) = zµgtt1(s, z−1), i.e. gtt1 ∈ Q[z] is a monic polynomial such that

given a syndrome vector s ∈ (Fqm )n−k, corresponding to an error of weight
µ ≤ t, its t roots are the µ location plus zero, counted with multiplicity t − µ.

It is called general error locator polynomial of C.

Theorem 7 ([36]) Every cyclic code possesses a general error locator polynomial.

Once we get a general error locator polynomial for C, the decoding algorithm only
consists in evaluating it at the syndromes, so its efficiency depends on the sparsity of
the involved general error locator polynomial.

There is no known theoretical general proof of the sparsity of general error locator
polynomials, there are some experimental evidence, at least in the binary case. Some
improvements to the algorithm have been given in [31]. In [37] is stated that

Actually1 the number of monomials of L apparently grows linearly, since
|L| ≤ n. We give some theoretical explanations for the sparsity of our polyno-
mials, in all cases except two.
A complete proof for all cases (any and any) seems far beyond our means, at
present, but we plan to investigate more and more particular cases, hoping
sooner or later to get the profound reason behind the sparsity, whose experi-
mental evidence is apparent (at least in the binary case).

Our paper makes some analysis on the topic, showing that furher improvements can
be made, aiming to an efficient decoding procedure.

4 Degroebnerization: the Groebner escalier of the syndrome variety

The works on the general error locator polynomial (GELP) by Sala-Orsini, employ
Groebner bases computation to get one polynomial they need for the decoding prob-
lem, namely the GELP. In other words, all the other polynomials in the Groebner
basis computed by Orsini-Sala are useless for decoding.
A more recent research framework is the Grobner-free Solving, stated first in [35,28]
and explicitly expressed and sponsored in the book [33, Vol.3,40.12,41.15]. This ap-
proach aims to avoid the computation of a Groebner basis of a (0-dimensional) ideal
J ⊂ P in favour of combinatorial algorithms describing instead the structure of the
quotient algebra P/J.
Our analysis places itself in this framework. Once deduced the structure of the quo-
tient algebra via Cerlienco-Mureddu correspondence on the syndrome variety, it is
possible to compute via interpolation the only polynomial needed for decoding, with-
out passing through the whole Groebner basis computation. The consequence, for the
case t = 2, is a preprocessing which is quadratic (and a decoding which is linear) on

1 In the paper [37], L is the general error locator polynomials
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the length of the code.
In this section, we study the structure of the lexicographical Groebner escalier for
the syndrome ideal in the case of a code of length n = 2m − 1 and primary defining
set S = {1, l} over F2m . We consider the polynomial ring F2m [x1, x2, z1, z2], equipped
with the lexicographical ordering induced by x1 < x2 < z1 < z2. In particular, we
remark that the variable ordering is reversed with respect to that by Sala-Orsini [31,
32] and that the variables corresponding to the error values will not be used in this
paper, because talking about error values in a binary code is redundant.
Before proving the particular shape of the structure of the lexicographical Groebner
escalier for the syndrome ideal in our case, we state the following general

Lemma 8 Let X = {P1, ..., PN} be a finite set of simple points in kn and let d be the
number of distinct elements in k that appear as first coordinate of some point in X. Let
I(X) / k[x1, ..., xn] be the ideal of points of X and N(X) its lexicographical Groebner
escalier, supposing x1 < x2 < ... < xn. Then it holds 1, x1, x2

1, ..., x
d−1
1 ∈ N(X).

Proof The statement, which is a trivial consequence of Cerlienco-Mureddu corre-
spondence [13], can be proved by induction on the number of points as well.

If τ ∈ T is a term and H ⊂ T , we define

τH := {τσ, σ ∈ H}.

Theorem 9 With the above notation, set H = {1, x1, ..., x
q−2
1 }, where q = n + 1 = 2m.

The lexicographical Groebner escalier (x1 < x2 < z1 < z2) of the ideal I = I(X)
described as the ideal associated to X = {(c + d, cl + dl, c, d), c, d ∈ F2m , c,, d} has
the form

N(I) = N′ ∪ z1N′,

where
N′ = H ∪ x2H ∪ ... ∪ x

q
2−1
2 H.

Proof Consider the set X. If we fix c, d ∈ F2m and we consider the associated points

P1 := (c + d, cl + dl, c, d), P2 := (c + d, cl + dl, d, c),

clearly P1, P2 share the same first two coordinates so, by Cerlienco-Mureddu Cor-
respondence we can partition X as X = X1 t X2, such that if, for some c, d ∈ F2m

(c + d, cl + dl, c, d) ∈ X1, necessarily (c + d, cl + dl, d, c) ∈ X2 and if N1 = N(I(X1))
then N = N(I(X1)) ∪ z1N(I(X1)). We restrict then to X1.
The assertion is proved by Cerlienco-Mureddu Correspondence if we can show that,
among the points having the same first coordinate c + d, it is impossible that two
points share also the second coordinate cl + dl, but since the first two coordinates are
correctable syndromes, this is true since there is only one error vector corresponding
to each correctable syndrome [23,29].

Now, by hypothesis, c , d ∈ F2m hence, clearly, c + d , 0; on the other hand,
∀ f ∈ F∗q, ∀c ∈ F∗q, c , f , let d = f − c. We have d , c, d , 0 and f = c + d. Clearly
it also holds f = f + 0. The above relations imply that the points in X1 have (q − 1)
different first coordinates f = c + d, so, by Cerlienco-Mureddu correspondence (see
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Lemma 8), it must be 1, x1, ..., x
q−2
1 ∈ N.

Moreover, the pairs (c, d) such that c + d = f ∈ F∗2m are exactly 2m−2
2 if we impose

c, d , 0. Since also f + 0 = f , we add the pair ( f , 0), obtaining that there are 2m−1

distinct points for each first coordinate.

If we identify each term xα1
1 · · · x

αn
n ∈ T with its exponents’ list (α1, ..., αn) ∈ Nn

and we regards (α1, ..., αn) as a point in the n-dimensional affine space, we can say
that the escalier of ideal I, as proved in Theorem 9 has the shape of two superimposed
rectangles.

Remark 10 If we want to study the case in which exactly two errors occur, we should
remove from the variety the points of the form

(c, cl, c, 0), (c, cl, 0, c),

so the escalier becomes
N(I) = N′ ∪ z1N′,

where N′ = H ∪ x2H ∪ ... ∪ x
q
2−2
2 H.

For an extensive study of the escalier associated to the syndrome varieties, both for
n = 2m − 1 and for the case n | 2m − 1, see [11]. The paper, indeed, examines all the
possible cases and computes all the related escaliers.

Example 1 Let us consider the case of m = 3, so the binary BCH code with n = 7
and S = {1, 3}. In this case the syndrome variety is X = {(c + d, c3 + d3, c, d), c, d ∈
F8, c,, d} and it has exactly

(
8
2

)
= 56 elements. The Groebner escalier N(I(X)) is

given by N(I) = N′ ∪ z1N′, where N′ = H ∪ x2H ∪ ... ∪ x3
2H and H = {1, x1, ..., x6

1}, as
shown in Figure 1.

5 HELP: Half Error Locator Polynomial

The particular shape of the escalier, shown in the previous Section 4, deeply influ-
ences the decoding procedure. To show it, we first recall Marinari-Mora’s Theorem,
that will constitute a tool for the construction of our locator polynomial.

Theorem 11 ([1,7], [33] II, Theorem 33.6.4) Consider a zerodimensional radical ideal
I/P := k[x1, ..., xn], fixing onP the lexicographical order <, induced by x1 < ... < xn.
Denote by N(I) the associated (lexicographical) Groebner escalier and by G(I) =

{τ1, ..., τr} ⊂ T , τi := xdi,1

1 · · · x
di,n
n the monomial basis for the (lexicographical) semi-

group ideal of leading terms T(I). Then, there exist polynomials

γmδi = xm − gmδi(x1, ..., xm−1),

for each i ∈ {1, ..., r}, m ∈ {1, ..., n} and δ ∈ {1, ..., di,m} such that the products

fi =
∏

m

∏
δ

γmδi, i = 1, ..., r

form a minimal Groebner basis of I, with respect to <.
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Theorem 11 also provides a partition on the points in X for each polynomial fi in the
minimal Groebner basis, in perfect accordance with Cerlienco-Mureddu correspon-
dence. Indeed, for each fi =

∏
m
∏

δ γmδi, i = 1, ..., r, as many disjoint subsets of X
as the factors γmδi are provided:

X =
⊔
m,δ

Xmδi, i = 1, ..., r.

Each set Xmδi contains the elements in X such that the corresponding factor γmδi

vanishes on them. The factors γmδi, actually, are computed via interpolation on the
points of Xmδi, deduced for each factor using Cerlienco-Mureddu correspondence.

Since each point of the syndrome variety has the form (c + d, cl + dl, c, d), the
polynomial z1 + z2 + x1 must appear in the lexicographical Groebner basis of I(X).
Therefore, we can say that z2 = z1 + x1. This implies that, since x1 = c+d is known (it
is the first syndrome), once one can recover the first error location z1 = c, the second
one - z2 = d - is easily and rapidly found. Therefore, we can concentrate in finding
only z1 = c.
The ideal I(X) is by construction a zerodimensional radical ideal. Indeed it is the van-
ishing ideal of a finite set of points without any multiplicity. Therefore, its Groebner
basis must contain one polynomial whose leading term is a pure power of a variable,

Fig. 1 Groebner escalier for the case in Example 1.
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for each variable in the polynomial ring. Since the Groebner basis that we are consid-
ering is minimal, there must have only one polynomial of this shape for each variable.
More precisely, the basis must contain a polynomial with leading term xm1

1 , xm2
2 , zm3

1 ,
zm4

2 , m1,m2,m3,m4 ∈ N.
Due to the escalier’s shape, proved in Theorem 9, the polynomial with leading term
given by zm3

1 , m3 ∈ N, must have m3 = 2. Indeed, if m3 > 2 then the term z2
1 would be

in the escalier, contradicting Theorem 9. Similarly (see also [11]), m1 = n, m2 = n+1
2

and m4 = 1.
By Theorem 11, then, the polynomial f in the minimal Groebner basis, with T( f ) = z2

1
can be decomposed in

f = FcFd = (z1 + fc(x1, x2))(z1 + fd(x1, x2)),

getting also the partition X = Zc t Zd, |Zc| = |Zd | =
1
2 |X| such that

– Fc vanishes on Zc; Fd vanishes on Zd;
– (x1, x2, z1, z2) ∈ Zc ⇔ (x1, x2, z2, z1) ∈ Zd (this last condition is a trivial conse-

quence of Cerlienco-Mureddu correspondence).

This implies that, if we are able to recover the polynomial Fc (or, symmetrically,
Fd) and we substitute the syndromes of the points in Zc (or, symmetrically, Zd) that
are actually all the possible syndromes (remember that the elements in Zc, Zd differ
only on the third and the fourth coordinates, namely on the error locations), then
we recover c (or, symmetrically, d) and the remaining location to find is trivially
recovered using the equation z1 + z2 + x1.
These ideas lead to the definition of Half Error Locator Polynomial (HELP):

Definition 12 With the above notation we call Half Error Locator Polynomial a poly-
nomial

η(x1, x2, z1) := z1 + h(x1, x2)

obtained as a factor of the linear factorization stated in Theorem 11 for the polyno-
mial f in the minimal Groebner basis of I(X) such that T( f ) = z2

1.

Once the HELP is computed, the decoding problem can be translated in an easy sub-
stitution of the syndromes in this polynomial. Clearly, decoding becomes inefficient
and expensive if the HELP is a dense polynomial. In the next section, we will show
how to compute a sparse HELP for the case n = 2m − 1, S = {1, l}.

6 Computing the HELP

As we have seen in Section 5, the set X can be partitioned as X = Zc t Zd, |Zc| =

|Zd | =
1
2 |X| such that

a. Fc vanishes on Zc; Fd vanishes on Zd;
b. (x1, x2, z1, z2) ∈ Zc ⇔ (x1, x2, z2, z1) ∈ Zd.

Looking at condition b., we see that we have to pick a point for each pair

{(c + d, cl + dl, c, d), (c + d, cl + dl, d, c)}.

The way we pick the point can influence the characteristics of the HELP we will find.
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Example 2 Considering the binary BCH code with n = 7, S = {1, 3}, we can get with
two different choices on the points the polynomials:

– z1 + a3x6
1x2

2 + ax5
1x2

2 + a6x4
1x2

2 + a4x3
1x2

2 + x2
1x2

2 + x1x2
2 + a5x2

2 + a6x6
1x2 + a2x4

1x2 +

x3
1x2 + a5x2

1x2 + a3x1x2 + ax2 + a6x6
1 + a4x5

1 + a2x4
1 + x3

1 + a5x2
1 + a, corresponding

to the partitioning set Z := {(a, a, a4, a2), (a, a2, a5, a6), (a, a6, 1, a3), (a2, a2, a, a4),
(a2, a4, a5, a3), (a2, a5, a6, 1), (a3, a5, a2, a5), (a3, 1, a6, a4), (a3, a, 1, a), (a4, a4, a, a2),
(a4, a, a3, a6), (a4, a3, 1, a5), (a5, a6, a, a6), (a5, 1, a3, a2), (a5, a4, a4, 1), (a6, a2, a2, 1),
(a6, a3, a3, a4), (a6, 1, a5, a)(1, a5, a3, a), (1, a6, a4, a5), , (1, a3, a6, a2), (a, a, a4, a2),
(a, a2, a5, a6), (a, a6, 1, a3)}

– z1+a6x2
1x2

2+a4x5
1x2+a3x1, corresponding to the partitioning set Z := {(a, a, a4, a2),

(a, a2, a5, a6), (a, a6, 1, a3), (a2, a2, a, a4), (a2, a4, a5, a3), (a2, a5, a6, 1), (a3, a5, a2, a5),
(a3, 1, a6, a4), (a3, a, 1, a), (a4, a4, a, a2), (a4, a, a3, a6), (a4, a3, 1, a5), (a5, a6, a, a6),
(a5, 1, a2, a3), (a5, a4, a4, 1), (a6, a2, a2, 1), (a6, a3, a3, a4), (a6, 1, a5, a), (1, a5, a3, a),
(1, a6, a4, a5), (1, a3, a6, a2), (a, a, a4, a2), (a, a2, a5, a6), (a, a6, 1, a3)}

Note that in the two sets only the choice of the boldface point has been changed and
the resulting HELP is completely different. Moreover, these two polynomials correct
up to two errors but for the case of one error c, they return the value 0, so to compute
c we need the second equation z2 = z1 + x1, namely we have x1 = c, z1 = 0 and
we have to compute c as second location: z2 = 0 + c. We will see soon that we can
compute sparse HELPs giving directly the error c in this case.

If we examine the sparsest polynomial in Example 2, we can notice that it obeys a
very evident pattern. Imagine the terms to be placed in a chessboard indicized by the
pure powers of x1 and x2 and consider the terms in these two variables appearing in
the HELP z1 + a6x2

1x2
2 + a4x5

1x2 + a3x1:

x6
1 | 0 0 0 0

x5
1 | 0 a4 0 0

x4
1 | 0 0 0 0

x3
1 | 0 0 0 0

x2
1 | 0 0 a6 0

x1 | a3 0 0 0
1 | 0 0 0 0

1 x2 x2
2 x3

2

We can see that the terms are disposed in the chessboard as with a series of knight
moves starting from x1: each term is computed from the previous multiplying by
the move x−3

1 x2 (and keeping in mind that the exponents of x1 are integers mod 7,
whereas x2’s exponents are integers mod 4).
This drove us to thing that the general form for the HELP in the case n = 2m − 1
S = {1, l} could be conjectured to be

η(x1, x2, z1) = z1 +

n+1
2∑

i=1

aix
(n+1−li) mod n
1 x(i−1) mod n+1

2
2 ,
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where the coefficients ai ∈ F2m are still to be determined.
We conjecture, moreover, that the HELP can be found performing Lagrange inter-
polation in the points with first coordinate c + d = 1 with d

c = a2i+1 plus the point
(1, 1, 1, 0) in the terms ti, 0 ≤ i ≤ 2m−1, where t = x−l mod n

1 x2 that is t is the knight
gambit. It has the form η(x1, x2, z1) = z1 + x1g(t), where g(t) is the Lagrange interpo-
lator.
Some HELPs have been found in this way. As an example, for the code with n = 7
and S = {1, 3} over F8, the HELP is z1 + x1(x5

1x3
2 +a2x1x2

2 +a4x4
1x2 +a) and it has been

found interpolating the points in the set {(1, a5, a3, a), (1, a6, a4, a5), (1, a3, a6, a2),
(1, 1, 1, 0)} over the terms 1, x4

1x2, x1x2
2, x

5
1x3

2. We display here the knight gambit:

x6
1 0 0 0 1

x5
1 0 a4 0 0

x4
1 0 0 0 0

x3
1 0 0 0 0

x2
1 0 0 a2 0

x1 a 0 0 0
1 0 0 0 0

1 x2 x2
2 x3

2

It is easy to verify that the HELP corrects up to two errors and that if only one error
occurs it is directly returned as output by the HELP.

In the following subsection, we summarize the data we know on the problem and
we conclude giving a constructive proof of existence for the HELP. In particular we
prove our conjectures on its shape.

6.1 HELP exists and it can be found.

Our aim is to decode a binary cyclic code C over F2m , length n = 2m − 1 and primary
defining set S C = {1, l}.
We have the n(n − 1) non spurious points (namely points composed by non spurious
syndromes and the corresponding errors)

(c + d, cl + dl, c, d), c, d ∈ F∗2m , c , d,

or, equivalently,
(

n
2

)
pairs{(

c + d, cl + dl, c, d
)
,
(
c + d, cl + dl, d, c

)}
, c, d ∈ F∗2m , c , d. (1)

Moreover, we have to consider the n pairs of the form{(
c, cl, c, 0

)
,
(
c, cl, 0, c

)}
, c ∈ F∗2m , (2)

which correspond to the occurrence of one single error. In total, we have
(

n+1
2

)
pairs,

corresponding to the occurrence of one or two errors.
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Denoting by a any primitive element of F2m and setting a−∞ = 0, we can represent
these pairs as2{(

c(1 + a2i+1), cl(1 + a2li+l), c, a2i+1c
)
,
(
c(1 + a2i+1), cl(1 + a2li+l), a2i+1c, c

)
, c ∈ F∗2m

}
,

(3)

i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}.

setting d/c := a2i+1 (in the case d = 0, c , 0, a2i+1 = a−∞).
HELP, by construction, is the polynomial η(x1, x2, z1) = z1 + h(x1, x2) such that if h
is evaluated at each of the

(
n+1

2

)
points(

c(1 + a2i+1), cl(1 + a2li+l)
)
, c ∈ F∗2m , i ∈ {0, ..., 2m−1 − 1} ∪ {−∞} (4)

returns the value c.

Theorem 13 The Lagrange interpolator g(t), deg(g) = 2m−1 + 1, which returns (1 +

a2i+1)−1 when evaluated at each values

t = (1 + a2i+1)−l(1 + a2li+l), i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}, (5)

gives a HELP, in the sense that, defined h(x1, x2) = x1g(x−l
1 x2), it holds

η(x1, x2, z1) = z1 + h(x1, x2) = z1 + x1g(x−l
1 x2).

Proof To prove that η is a HELP, we have to prove that, given a point

P =
(
c(1 + a2i+1), cl(1 + a2li+l)

)
, c ∈ F∗2m , i ∈ {0, ..., 2m−1 − 1} ∪ {−∞}

it holds h(P) = c.
Note that x1 = c(1 + a2i+1) implies c = x1(1 + a2i+1)−1 and

x2 = cl(1 + a2li+l) = xl
1(1 + a2i+1)−l(1 + a2li+l). (6)

Now, consider a point of the form P =
(
c(1+a2i+1), cl(1+a2li+l), c, a2i+1c

)
, c ∈ F∗2m , i ∈

{0, ..., 2m−1 − 1} ∪ {−∞} and evaluate h(P):

h(P) = h(x1, x2) = x1g(x−l
1 x2) = x1g(x−l

1 xl
1(1 + a2i+1)−l(1 + a2li+l))

= c(1 + a2i+1)(1 + a2i+1)−1 = c.

This proves that η is a HELP.

Remark 14 We point out that our HELP is consistent also with the case in which no
errors occur, even if we do not consider the point (0, 0, 0, 0) in our variety. Indeed,
the HELP has shape η(x1, x2, z1) = z1 + x1g(x1, x2). When no error occurs, we have
x1 = 0, leading to η = z1, giving the only root z1 = 0. Since then z2 = z1 + x1, it holds
z2 = 0 + 0 = 0 and so we retrieve the two zero locations.

2 Indeed the last point has exponent 2i + 1 = 2(2m−1 − 1) + 1 = 2m − 1 = n. Note also that |{0, ..., 2m−1 −

1} ∪ {−∞}| = 2m−1 + 1.
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7 Perspectives and works in progress

The examined case, with n = 2m − 1 and S = {1, l}, is a particular case of the more
general n | 2m − 1 and S = {1, l}. In this more general case, the syndrome variety
becomes

X = {(c + d, cl + dl, c, d), c, d ∈ Rn, c,, d},

where Rn is the set of n-th roots of unity over F2m .
The escalier in the general case becomes a bit more complicated. Considering again
the graphical representation described in Section 4, we can say that it is placed again
on two totally symmetric superimposed planes, but the internal structure of every
single plane is different. Indeed, each plane is formed by “stripes” of length n and
height 1, corresponding to the cosets of the group Rn.
These stripes are posed in r columns depending on the Zech logarithm’s structure
[12]. We are studying this more general case in the works in progress [10,11].
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