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Anomalies in neuronal cell architecture, in particular
dendritic complexity and synaptic density changes, are
widely observed in the brains of subjects with schizo-
phrenia or mood disorders. The concept that a dis-
turbed microtubule cytoskeleton underlies these
abnormalities and disrupts synaptic connectivity is sup-
ported by evidence from clinical studies and animal
models. Prominent changes in tubulin expression levels
are commonly found in disease specific regions such as
the hippocampus and prefrontal cortex of psychiatric
patients. Genetic linkage studies associate tubulin-
binding proteins such as the dihydropyrimidinase fam-
ily with an increased risk to develop schizophrenia and
bipolar disorder. For many years, altered immunoreac-
tivity of microtubule associated protein-2 has been a
hallmark found in the brains of individuals with schiz-
ophrenia. In this review, we present a growing body of
evidence that connects a dysfunctional microtubule
cytoskeleton with neuropsychiatric illnesses. Findings
from animal models are discussed together with clinical
data with a particular focus on tubulin post-
translational modifications and on microtubule-binding
proteins. VC 2016 Wiley Periodicals, Inc.
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Introduction

It is almost 50 years since tubulin was identified as the
globular protein that makes up microtubules [Mohri,

1968]. Tubulin polymers, or microtubules, along with actin
microfilaments and intermediate filaments, make up the
cytoskeletal framework, which provides structure and
dynamics to cells [Wells, 2005]. Neuronal cells are excep-
tional in their usage of microtubules to generate a highly

polarized morphology consisting of long axons and dendri-
tic arbors that form the receptive field for electrochemical
input. Axonal microtubules are polarized and confer the
rigidity that is necessary for long distance transport, whereas
dendritic microtubules show mixed polarity and influence
processes such as arborization and signaling to dendritic
spines [Kapitein and Hoogenraad, 2011].

In cells, a and b tubulin exist as heterodimers. They are
structurally homologous, comprising two b-strands sur-
rounded by a-helices. Each subunit is divided into three
functional domains: the N-terminal domain that incorpo-
rates a nucleotide-binding region (i.e., GTP), an intermedi-
ate domain comprising the taxol-binding site, and a C-
terminal domain which provides the binding surface for
motor proteins [Nogales et al., 1998]. a/b heterodimers
interact in a head-to-tail conformation giving rise to linear
polymers with inherent polarity known as protofilaments
[Black and Baas, 1989]. Typically, a microtubule consists of
a cylindrical assembly of 13 protofilaments with a diameter
of 25 nm, and highly variable length. Microtubules actively
modify their structure through dynamic cycles of assembly
and disassembly. The plus end where b-tubulin is exposed
elongates more rapidly than the a-tubulin exposed, minus
end [Horio et al., 2014]. The process of rapid growth and
collapse of microtubules is known as dynamic instability
and it is regulated by the local abundance of free tubulin
dimers, microtubule-associated proteins, plus-end tracking
proteins, post-translational modifications (PTMs) of tubu-
lin, and motor proteins [Garnham and Roll-Mecak, 2012;
Kevenaar and Hoogenraad, 2015]. Microtubule polarity
ensures directional transport of molecules in neurons and
helps establish the compartmental specification of the neu-
ron into axon and dendrite, an organization that is essential
for synaptic transmission [Hoogenraad and Bradke, 2009;
Tischfield and Engle, 2010].

Currently, cytoskeleton dysfunction has been inferred in
the pathology of several neuropsychiatric diseases such as
schizophrenia, major depressive disorder (MDD) and bipo-
lar disorder [Wong et al. 2013; Brown et al., 2014]. Specific
features of depressive disorders include a persistent sad
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mood, the absence of ability to feel pleasure in daily situa-
tions (anhedonia), and suicidal tendencies. Bipolar subjects
alternate between depressive-like and manic states charac-
terized by locomotor hyperactivity, euphoria, lack of sleep,
and addictive episodes [Belmaker and Agam, 2008; Wong
et al., 2013]. Schizophrenic patient symptoms are classified
clinically as positive and negative. The former includes
delusions, hallucinations (including auditory and/or visual),
confused and illogical speech and thought processes. Nega-
tive symptoms, on the other hand, encompass lack of moti-
vation or social behaviors [Picchioni and Murray, 2007].

Structural changes in the brain that are associated with
these disorders include synaptic pruning defects as well as
spine and dendrite atrophy. Impaired pruning (during
childhood and adolescence) and spinogenesis defects at the
level of the cortex lead to altered brain plasticity that is asso-
ciated with susceptibility and onset of schizophrenia
[Glausier and Lewis, 2013]. The onset of depression is
thought to require in addition, an earlier “hit” such as
maternal/perinatal stress event or exposure to triggering
environmental factors [Schmitt et al., 2014]. In bipolar dis-
order, several studies suggest that a persistent inflammatory
state underlies synaptic pruning defects, leading to compro-
mised mood and impaired cognitive function [Rosenblat
et al., 2015]. Immune dysfunction can also disturb the
hypothalamic-pituitary axis leading to elevated cortisol,
which in turn exacerbates neuronal dysfunction. Under
conditions of chronic stress exposure, excessive cortisol
leads to dendritic retraction and synaptic density loss,
resulting in regional atrophy in the hippocampus, amyg-
dala, and prefrontal cortex, as detected in MRI scans of
neuropsychiatric patients [McEwen et al., 2015].

As for microtubule alterations in the pathophysiology of
depression, several lines of correlative evidence exist. For
example, patient samples grouped according to general dis-
tress, anhedonic depression and anxious arousal (the tripar-
tite model of depression) [Clark and Watson, 1991], show
an association with genes encoding cytoskeletal regulators.
Thus, MAP4 (a glial enriched MAP), is significantly altered
in patients with general distress, while MAPT and MAP2 are
altered in the anhedonic dimension of MDD [van Veen
et al., 2012]. Also, changes in tubulin PTMs are observed in
MDD and schizophrenia samples and are reported to disrupt
physiological connections within the brain by imposing
abnormal cytoskeletal organization [Wong et al., 2013].

Tubulin Isotypes and Psychiatric Dysfunction

In the brain, tubulin isotypes derive from 19 genes (10 a

and 9 b isotypes in humans). a1A, a1B, a1C, a3C, a3E,
a4A, a 8, and a-like3 and bI, bII, bIII, bIVa, bIVb, bV, and
bVI [Greenberger and Loganzo, 2008]. They display vari-
able structural and interaction properties and show differen-
tial PTM within the C-terminal domain, contributing
further to heterogeneity. Isoform expression is temporally

regulated during brain development [Lee et al., 1990],
while a1B-, a1C-, bI,- and bIVb-tubulin isotypes are ubiqui-
tously expressed, a1A, bII, and bIII are enriched in brain,
peripheral nerves and muscles [Ait-Belkacem et al., 2013],
where they function in cell differentiation [Guo et al.,
2010]. Evidence for global, disease-relevant changes in
tubulin isotypes derives from proteomics studies in rodent
models of depression (Table I). Thus, in the restraint stress
[Bianchi et al., 2003] and isolation rearing rodent models
of depression [Bianchi et al., 2009], a-tubulin expression is
decreased. Likewise, in rats that are genetically sensitive to
depression (the Flinders sensitive line) there is a large (7.6
fold) decrease in expression of b-tubulin isotypes (bIIA and
bV) in the hippocampus compared to resistant rats [Piubelli
et al., 2011]. However, when subjected to the maternal sep-
aration stress model of depression, it is only Flinders resist-
ant mice that show a drastic 100 fold decrease in a and b

tubulin expression [Piubelli et al., 2011]. Overall, these
studies indicate that decreased a/b tubulin expression in
the hippocampus is a hallmark of depression in rodent
models. However, the data from Flinders sensitive line sug-
gests that it a lower baseline expression of tubulin in the
hippocampus that correlates with early life stress suscepti-
bility rather than intrinsic regulation that occurs upon
exposure to maternal separation stress. It may be therefore
that adaptability in microtubule homeostasis is impaired in
the disease state. Interestingly, chronic administration of
fluoxetine, a widely used antidepressant drug of the sero-
tonin reuptake inhibitor (SSRI) class, rescues alterations in
tubulin isoform expression that occur in mouse models of
depression [Bianchi et al., 2009; Yang et al., 2009] suggest-
ing that disturbed microtubule levels may play a causal role
in the disease pathology.

In humans, b-tubulin expression is decreased in the pre-
frontal cortex of postmortem brains from subjects with schiz-
ophrenia or bipolar disorder compared to healthy controls
[Prabakaran et al., 2004; English et al., 2009]. Consistent
with this, gene expression analysis shows that TUBB4 and
TUBB2C isotypes are down-regulated in the dorsolateral pre-
frontal cortex of MDD patients [Kang et al., 2012]. In con-
trast to the above, in schizophrenic (non-medicated)
patients, bI-tubulin expression is increased in the dorsolateral
prefrontal cortex (although it is increased in the anterior cin-
gulate cortex) [Moehle et al., 2012]. What is consistent
among these data is that tubulin isotype expression is signifi-
cantly altered in clinical, and in experimental models of psy-
chiatric disease, indicating that perturbed microtubule
homeostasis is a common hallmark in these conditions.

Tubulin PTMs and Neuropsychiatric Disorders

PTMs of tubulin further increase its functional heterogene-
ity. These modifications give rise to what is known as the
“tubulin code” [Verhey and Gaertig, 2007]. This code is
decoded by MAPs, which physically interact with
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Table I. Microtubule and Microtubule Regulatory Protein and Gene Anomalies Associated with
Psychiatric Disorders

Disorder
Genes/
proteins Effect References

Mood disorders
(depression, bipolar)

a-Tubulin Altered (protein) expression in cortex of patients
with depression and bipolar disorder suggesting
cytoskeletal dysfunction

[Beasley et al., 2006]

b-Tubulin

CRMP1
CRMP2

b-tubulin Decreased (protein) expression along with other
cytoskeletal proteins (NF-L, NF-M, NF-H) in
postmortem brains of bipolar patients

[English et al., 2009]

bIII-tubulin Altered cytoskeletal organization in patients with
bipolar disorder

[Sol�ıs-Chagoy�an et al., 2013]

TPPP Methylation changes in saliva samples from mal-
treated children associated with susceptibility to
depression

[Weder et al., 2014)

Upregulation of protein expression in rodent
maternal stress model of depression

[Glombik et al., 2015]

DISC-1 Susceptibility to major depression conferred by
S704C mutation

[Hashimoto et al., 2006)

Hdac6 Hyper-acetylation of a-tubulin in brains of
Hdac6-/- mice, resulting in a low depressive like
phenotype

[Fukada et al., 2012)

Tyr-tubulin Altered protein expression following restraint stress
and unpredictable chronic mild stress models of
depression in rats. Reversible with fluoxetine
treatment

[Bianchi et al. 2003, 2009;
Yang et al., 2009]Acet-tubulin

TTLL11 Balanced translocation (9:17) (q33.2;q25.3) is
linked to bipolar disorder

[Rajkumar et al., 2014]

Map2 Flattened glucocorticoid rhythm associated with
reduced Map2 levels in rats

[Gartside et al., 2003)

MAPREG (MAP4343) binding to MAP2 stimu-
lates tubulin assembly and recovers depression-
like behaviour in rats

[Bianchi and Baulieu, 2012]

Schizophrenia TUBA1
TUBA2
TUBA6

Altered (protein) expression detected in post-
mortem brains of patients with schizophrenia
suggesting cytoskeletal dysfunction

[Prabakaran et al., 2004]

TUBB5

CRMP2

b-tubulin Decreased protein expression along with other
cytoskeletal proteins (NF-L, NF-M, NF-H) in
post-mortem brains from patients

[English et al., 2009]

bI-tubulin Region specific alterations in protein expression
post mortem brains

[Moehle et al., 2012]

bIII-tubulin Altered cytoskeletal organization in post-mortem
brains from schizophrenic patients

[Sol�ıs-Chagoy�an et al., 2013]

DISC-1 Mutation S704C confers susceptibility to schizo-
phrenia in humans

[Hashimoto et al., 2006]

ULK4 Low levels of acetylated a-tubulin in Ulk4–/–
mice. Recurrent deletions in ULK4 are found in
patients

[Lang et al., 2014]

TTLL11 Balanced translocation (9:17) (q33.2;q25.3) com-
bined with micro-duplication 16p13.1 is associ-
ated with increased disease susceptibility

[Fullston et al., 2011]
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microtubules to regulate their stability. PTMs are carried
out in the cytoplasm by enzymes that induce chemical
modifications to specific amino acid residues [Yu et al.,
2015]. Both mono- (addition of a single group or modifica-
tion of a single residue), and poly-modifications (addition
of chains of variable length) of microtubules are common
[Garnham and Roll-Mecak, 2012]. Most modifications
take place at the C-terminal tail of tubulin subunits. Signifi-
cantly, these are the interaction sites for molecular motors
and MAPs [Magiera and Janke, 2014]. Mono-modifications
include:

� Acetylation/deacetylation of a-tubulin K40 occurs
within the microtubule lumen; catalyzed by acetyl
transferases aTAT and Atat-2, whereas b-tubulin can be
acetylated on K252 by the Sun acetyltransferase leading
to a block of free tubulin assembly [Magiera and Janke,
2014]. Deacetylation, on the other hand, is executed by
the histone deacetylase 6 (HDAC6) and nicotine ade-
nine dinucleotide-dependent deacetylase sirtuin-2
(SIRT2) [Hubbert et al., 2002]. The anti-depressant
action of HDAC inhibitors in a variety of rodent tests
for depression has been recently reviewed [Fuchikami
et al., 2015]. Although most HDACs act on histones in
the nuclear compartment, HDAC6 is cytosolic and acts
on tubulin. Interestingly, it is highly expressed in brain
where studies in mice have associated its deacetylase
activity with the regulation of emotional behavior.
HDAC6 deficient mice display hyperactivity, low anxi-
ety, and a low depressive like phenotype indicating that
reversible acetylation maintains neuronal activity associ-
ated with emotional responses [Fukada et al., 2012].
Moreover, expression of the SIRT2 deacetylase is
decreased in rodent models of depression and this is
proposed to play a causative role in depressive behavior
[Liu et al., 2015]. The specific regulation of tubulin
deacetylases in these animal models points towards

tubulin acetylation as a possible contributing factor in
the pathophysiology of depression.

Neuronal plasticity is essential for adaptive responses to
adverse situations, such as chronic stress exposure in both
humans and rodents. Decreased levels of acetylated tubulin
are found in the hippocampus of rats following social isola-
tion [Bianchi et al., 2009]. In contrast to this, tubulin acet-
ylation is increased in the hippocampus of rats exposed to
unpredictable chronic mild stress [Yang et al., 2009] and
following restraint stress [Bianchi et al., 2003]. Interest-
ingly, acetylated a-tubulin levels are diminished (suggesting
destabilized microtubules) upon knockdown of Ulk4 (Unc-
51 like kinase-4), a gene that is disrupted in schizophrenia
and bipolar disorder [Lang et al., 2014]. ULK4 is a Ser/Thr
kinase, expressed in neurons. Knockdown of Ulk4 leads to
reduced dendrite length, decreased branching, and agenesis
of the corpus callosum. Interestingly also, JNK activity is
decreased in ULK4 depleted mice. As JNK is a major regu-
lator of microtubule homeostasis and dendrite complexity
(as discussed later in this chapter) [Coffey, 2014], it repre-
sents one possible pathway whereby ULK4 could modify
microtubule integrity. Taken together, these findings indi-
cate that tubulin acetylation is altered in rodent models of
depression and schizophrenia. This causes anomalies in
axonal tract formation in developing brain and may alter
synaptic plasticity. Moreover, kinase genes that are associ-
ated with schizophrenia converge on a pathway that regu-
lates microtubule stability, suggesting that loss of
cytoskeletal homeostasis may contribute to the pathological
outcome.

� Phosphorylation—the addition of phosphate to a ser-
ine, threonine, or tyrosine residue results in a gain of
three negative charges that affect the chemical and con-
formational properties of proteins. Neuron-enriched
bIII tubulin is phosphorylated on serine [Alexander

TABLE I. Continued

Disorder
Genes/
proteins Effect References

MAP1B Decreased immunoreactivity in schizophrenic
brain hippocampal subiculum suggesting altered
cyto-architecture and neurotransmission deficits

[Arnold et al., 1991)

MAP2 Decreased immunoreactivity is a hallmark in post
mortem brains of individuals with schizophrenia

[Broadbelt et al., 2002; Some-
narain and Jones, 2002;
Rioux et al., 2003; Shelton
et al., 2015]

MAP6 Up-regulation of mRNA isoform2 [Shimizu et al., 2006; Fournet
et al., 2012; Daoust et al.,
2014]

Neuronal transport defects

Deletion of gene triggers altered mood and cogni-
tive performance in mice

Genes and proteins that are found to be disrupted in clinical cohorts or in rodent models of mood disorders and schizophrenia are shown.
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et al., 1991] and is constitutively phosphorylated in
brain. a-tubulin on the other hand is phosphorylated
on tyrosine [Matten et al., 1990]. Surprisingly perhaps,
the mechanism of tubulin phosphorylation is not clear,
but it increases during neuronal differentiation and may
facilitate tubulin assembly into microtubules [Green-
berger and Loganzo, 2008]. The phosphorylation state
of tubulin isoforms change upon exposure to the mood
stabilizing drugs lithium, valproate, and paliperidone
indicating that this modification may be disease relevant
[Corena-McLeod et al., 2013]. These drugs also alter
mitochondrial transport to synapses a process that may
be directly linked to microtubule track modifications.
� Tyrosination/detyrosination of a-tubulin occurs in

cycles. Detyrosination confers stability whereas tyrosina-
tion increases microtubule dynamics. Catalyzed by tubu-
lin tyrosine ligase (TTL), tyrosination is important in
neurons during axonal growth and transport [Magiera
and Janke, 2014]. Detyrosination refers to the removal
of Tyr from the C-terminal of a-tubulin to expose a Glu
residue. Glutamylation takes place when the side chains
of glutamates are added to the carboxy terminal tails of
a– and b-tubulin by enzymes belonging to the tubulin
tyrosine ligase-like (TTLL) family. This occurs at high
levels in the nervous system. Deglutamylation is catalyzed
by cytosolic carboxypeptidase enzymes, which are capable
of removing glutamate side chains. Polyglutamylation
changes the surface charge of tubulin, and influences the
binding of MAPs and motor proteins [Janke, 2014].
Indeed impaired protein transport and disrupted binding
of MAPs is proposed to contribute to the underlying
pathology in schizophrenia [Ikegami et al., 2007]. The
TTLL11 polyglutamylase is linked to schizophrenia
where a combined disruption in TTLL11 (a balanced
t(9;17) (q33.2;q25.3) translocation, and a micro-
duplication at 16p13.1) is associated with an additive
predisposing effect [Fullston et al., 2011]. Interestingly,
this same chromosomal aberration is also linked to bipo-
lar disorder [Rajkumar et al., 2014].
� Polyglycylation of a- and b-tubulin is analogous to

polyglutamylation except that of glycines are added
instead of glutamates. This modification is limited to
cilia and flagella. The responsible enzymes are again
members of the TTLL family [Fukushima et al., 2009].
Tubulin glycylases and glutamylases are important for
stabilization and motility of ependymal cilia, which line
the ventricles of the brain [Grau et al., 2013], while
interestingly, neuropsychiatric risk genes have been
shown to converge on regions encoding proteins found
in cilia [Marley and von Zastrow, 2012].

Clinically relevant evidence for altered a-tubulin modifi-
cations in postmortem brain from patients with Alzheimer’s
[Zhang et al., 2015] Huntington’s and Parkinson’s disease
[Perdiz et al., 2011] have also been reported, however the

involvement of the microtubule cytoskeleton in the molecu-
lar mechanisms of neurodegenerative diseases has been
extensively reviewed elsewhere [McMurray, 2000; Lingor
et al., 2012; Baird and Bennett, 2013].

Microtubule Associated Proteins and
Psychiatric Disorders

Microtubule associated proteins (MAPs) represent a group
of proteins that bind to microtubules and regulate stability.
Interaction of MAPs with microtubules is primarily con-
trolled by PTMs, which are fine-tuned in developing and
mature brain. MAP2 is exceptionally abundant in the brain
[Matus, 1988] and its function has been long studied in the
context of neuronal plasticity [Friedrich and Aszodi, 1991],
while MAP1B and MAP1A are associated with axonal elon-
gation and somatodendritic structure [Schoenfeld et al.
1989; Villarroel-Campos and Gonzalez-Billault 2014].
Since these proteins are core regulators of the microtubule
network in neurons, it is not surprising that a range of
developmental, neurodegenerative and psychiatric disorders
have been associated with them.

� MAP2—Multiple MAP2 isoforms are generated by
alternative splicing from 19 exons [Kalcheva et al.,
1995]. MAP2 isoforms can be divided into high molec-
ular weight MAP2 (HMW-MAP2) isoforms, MAP2A
and MAP2B and low molecular weight MAP2 (LMW-
MAP2) isoforms, MAP2C and MAP2D. LMW-MAP2
lacks the 1362 amino acid central domain of HMW-
MAP2 but is otherwise homologous. HMW-MAP2 is
exclusively expressed in neurons, whereas LMW-MAP2
can be found also in glial cells [Matsunaga et al.,
1999]. MAP2 binds longitudinally along the outer rim
of microtubule protofilaments and crosslinks neighbour-
ing microtubules via its projection domain, leading to
formation of long, stable bundles with characteristic
spacing [Chen et al., 1992; Ludin et al., 1996; Teng
et al., 2001; Al-Bassam et al., 2002]. Lowering of
MAP2 expression using antisense oligonucleotides leads
to impaired neurite initiation [Caceres et al., 1992],
while cytoplasmic protrusions are formed when MAP2
is over-expressed in non-neuronal cells, such as COS-7
[Kalcheva et al., 1998; Bjorkblom et al., 2005]. MAP2
binding induces characteristic changes in microtubule
organisation. For example, it increases the probability
of MTOC-independent microtubule polymerisation
[Weisshaar et al., 1992], suggesting that MAP2 can
behave as a nucleation factor for tubulin polymerisation
[Hugdahl et al., 1993]. Additionally, MAP2 is reported
to cross-link actin filaments [Pedrotti and Islam 1997;
Dehmelt and Halpain, 2004]. A study of mice lacking
map2 has shown that it is dispensable for brain devel-
opment [Teng et al., 2001], though dendrite elongation
is reduced in its absence [Harada et al., 2002]. MAP1b
compensates for many MAP2 functions, as genetic
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deletion of both map2 and map1b leads to perinatal
lethality, indicating that they serve crucial, overlapping
functions [Teng et al., 2001]. These MAPs also cooper-
ate to control the microtubule spacing and the organisa-
tion of microtubules in growth cones.

Shaping the Neuronal Cytoskeleton through
PTMs of MAP2

MAP2 is one of the most highly phosphorylated proteins in
the nervous system. The stoichiometry of HMW-MAP2
phosphorylation can reach as high as 46 moles of phos-
phate/mole protein in brain, while that of the LMW-
MAP2 is �10–16 moles/mole [Tsuyama et al., 1987].
Although antibodies recognising phosphorylated motifs on
MAP2 have been generated and have facilitated site specific
study of MAP2 phosphorylation [Berling et al., 1994; San-
chez et al., 1996], much remains unknown regarding the
function of specific phosphorylation sites.

Several kinases phosphorylate MAPs. These include extrac-
ellular signal regulated kinase (ERK), protein kinase A (PKA;
on Thr220) [Alexa et al., 2002], protein kinase C (PKC; on
Ser1703/Ser1711/Ser1728) [Ainsztein and Purich 1994] and
c-Jun N-terminal kinase-1 (JNK1; on Thr1619/The1622/
Thr1623) in the proline rich domain (PRD) [Komulainen
et al., 2014] (Table II). MAP2 is dephosphorylated by protein
phosphatase-1 (Sim 1991), –2A [Wera and Hemmings,
1995], –2B [Guerini, 1997] and –2C [Goldberg, 1999].
Importantly in the context of psychiatric disorders, which
result from impaired synaptic function [Penzes et al., 2011;
Gao et al., 2015], MAP2 phosphorylation is regulated by syn-

aptic activity. Specifically, glutamate acting through N-methyl-
D-aspartate (NMDA) receptors induces rapid dephosphoryl-
ation of MAP2 on Ser-136 [Halpain and Greengard, 1990;
Quinlan and Halpain, 1996; Kapitein and Hoogenraad,
2011]. It is proposed that this dephosphorylation leads to
sequestration of EB3 dendritic shaft microtubules, preventing
it from entering the spinehead where it promotes microtubule
plus end growth and spine head maintenance [Kapitein et al.,
2011]. Additionally Arc, a synaptic activity regulated gene,
binds to MAP2 and may contribute to activity-dependent
dendrite remodelling [Fujimoto et al., 2004].

HMW-MAP2 encodes 43 Ser/Thr-Pro motifs, which are
putative targets of MAP-kinases and other proline-directed
protein kinases [Davis, 1993]. The X-Pro peptide bond can
induce a kink in the polypeptide, altering its 3D structure,
protein:protein interactions and further PTMs [Reimer et al.,
1998]. The PRD, which is located in the C-terminal region,
is conserved among MAP2 isoforms. JNK1 phosphorylates
this domain in vivo in brain and in the cortex and hippocam-
pus of Jnk1–/– mice, phosphorylation on Thr1619/Thr1622/
Thr1623 is reduced, indicating that JNK1 serves a nonredun-
dant role in the phosphorylation of these sites at least in early
postnatal brain [Komulainen et al., 2014] (Fig. 1).

Implications for MAP Function in Psychiatric
Disorders

MAPs contribute to normal cytoskeletal organization and
dendritic arborisation, both of which are essential for healthy
neuronal function and network formation [Li and Gun-
dersen, 2008; Witte and Bradke, 2008; Hoogenraad and
Bradke, 2009]. Decreased dendritic spine density and reduced

Table II. What Is Known About MAP2 Phosphorylation and Microtubule Stability?

Kinase

Effect of MAP2
phosphorylation

on MT stability/binding Domain of MAP2 and phosphorylated domain

JNK1 " PRD, T*PGT*PGT*PSYPR (MS/MS and site directed mutagenesis validation)
[Komulainen et al., 2014]

GSK3 # PRD, T*PGT*PGT*PSYPR (antibody 305) [Sanchez et al., 2000] and TBD,
KXGS* motifs by homology to Tau [Song and Yang, 1995]

CAMKII # TBD, [Yamauchi and Fujisawa, 1982; Yamamoto, 1985; Hernandez, 1987]

PKA # TBD, S350 KXGS* (MS/MS and site directed mutagenesis validation) [Ozer
and Halpain, 2000]

MAPK # TBD [Hoshi et al., 1992; Sanchez et al., 1995]

PKC # TBD [Ainsztein and Purich, 1994]

MARK # TBD on KXGS* motif [Drewes et al., 1997]

MAP2 phosphorylation has been studied extensively. This table summarizes findings from the literature where MAP2 phosphorylation and micro-
tubule (MT) polymerisation are linked. Domains in MAP2 are abbreviated as PRD and tubulin-binding domain (TBD). Mass spectrometry- or
site directed mutagenesis-based site validation, when utilized, is stated. Site assignment was otherwise done using antibodies generated against
phosphorylated peptides, or by homology. The kinase list presented is not exhaustive. For example, MAP2 phosphorylation on T1650 is signifi-
cantly reduced in cdk5–/– mice [Contreras-Vallejos et al., 2014], however the effect on microtubule stability in this case is not defined. There is a
strong consensus from these studies that phosphorylation of the TBD of MAP2 leads to its dissociation from MTs. The role of PRD phosphoryl-
ation is less clear. Studies of PRD phosphorylation by JNK1 (which does not phosphorylate the TBD), indicate that PRD phosphorylation
enhances MAP2 binding to MTs.
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dendritic arborisation are extensively associated with neuro-
logical diseases [Blanpied and Ehlers, 2004; Penzes et al.,
2011], including intellectual disability [Kaufmann et al.,
2000], depression [Duman and Canli, 2015; Varidaki et al.,
2016] and schizophrenia [Penzes et al., 2011; Glausier and
Lewis, 2013]. Typically, atrophy occurs in response to chronic
stress in regions such as the hippocampus and prefrontal cor-
tex that play important roles in mood homeostasis. Synapse
loss as a consequence of reduced dendritic field size and as an
independent event is believed to underlie impaired informa-
tion processing that is characteristic of schizophrenia. In the
case of depression, loss of synapses leads to disturbed feedback
loops and reduced adaptive responses to stress [Gold, 2015].
Dendritic spine loss in schizophrenia is associated with over-
pruning or reduced stability. Notably, spine loss is associated
with reduced MAP2 [Shelton et al., 2015], suggesting a role
for microtubule homeostasis in regulating spine head stability.
Importantly in the context of synaptic disorders, MAP2 influ-
ences CREB activity by acting as an anchor for PKA in den-
drites [Harada et al., 2002]. CREB regulates expression of
BDNF (among other targets), which plays a central role in
maintaining synapse health.

Loss of MAP2 Immunoreactivity in Post Mortem
Tissues; a Hallmark of Schizophrenia

Several studies over two decades have noted using immuno-
histochemical analysis that MAP2 immunoreactivity is

reduced in brains from schizophrenia patients. For example
MAP2 immunostaining is substantially reduced throughout
the hippocampus and prefrontal cortex in post mortem tis-
sues [Arnold et al., 1991; Somenarain and Jones, 2010;
Shelton et al., 2015], where it is accompanied by decreased
numbers of primary and secondary basal dendrites (as little
as 11% of controls in the pyramidal neurons of the prefron-
tal cortex) [Broadbelt et al., 2002]. MAP2 immunoreactiv-
ity is also decreased in the auditory cortex of schizophrenia
patients and this correlates with decreased synapse number.
Notably however, this loss of immunoreactivity does not
signify reduced MAP2 protein levels, as proteomic analysis
of brains from schizophrenic, bipolar or depressed patients
show no significant difference in MAP2 expression [Praba-
karan et al., 2004; English et al., 2009]. Similarly, dot-blot
analysis of the anterior cingulate cortex from schizophrenic
or MDD patients shows no change in MAP2 expression
levels, while a 28% reduction is observed in samples from
bipolar patients [Bouras et al., 2001]. Consistent with these
findings, MAP2 mRNA is not altered in the hippocampus
of individuals with schizophrenia [Law et al., 2004]. It
therefore seems most likely that this hallmark, disease-
associated reduction in MAP2 immunoreactivity, is due to
a PTM of MAP2 (e.g., phosphorylation) that alters epitope
recognition. Such a modification may also be functionally
relevant and contribute to dendrite atrophy resulting in
reduced synaptic area. Ultimately, altered MAP2 function

Fig. 1. Microtubule stability is regulated in diseases Examples of physiological and disease states of microtubules. (a) JNK1
phosphorylates the PRD of HMW-MAP2 leading to increased microtubule (MT) binding and stability [Bjorkblom et al., 2005; Komu-
lainen et al., 2014]. JNK1 activity maintains MT polymer length under physiological conditions [Chang et al., 2003]. Antiparallel
dimerization of HMW-MAP2 is understood to promote microtubule bundling and generates a defined 65 nm spacing characteristic of
dendritic microtubules [Wille et al., 1992; Teng et al., 2001]. (b) MT acetylation is high in post-mitotic cells such as neurons and is
associated with stable MTs. Mice lacking the tubulin deacetylase hdac6 show a reduced anxiety phenotype [Fukada et al., 2012] whereas
reduced tubulin acetylation is found in rats following isolation rearing [Bianchi et al., 2009]. (c) The tubulin polymerization promoting
protein (TPPP) facilitates MT bundling under physiological conditions. Epigenetic modification of TPPP has been identified as a pre-
dictor of depression [Weder et al., 2014].
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could contribute to impaired information processing that
occurs in psychiatric disorders, although considerable more
work is needed to gain a precise mechanistic understanding.
One possible phosphorylation mechanism is described
below. Notably, reduced MAP2-immunoreactivity and den-
dritic spine loss is not restricted to schizophrenia. In the
CA3 hippocampal subfield of patients suffering from anxi-
ety, MAP2 staining and spine number is also decreased
[Soetanto et al., 2010], consistent with reduced excitatory
input from the dentate gyrus, while in animal models of
depression induced by chronic stress, dendrite, and spine
number is diminished [Varidaki et al., 2016].

Kinase Regulation of MAP2 and Psychiatric
Dysfunction

Given that MAP2 is a highly abundant brain protein that is
phosphorylated by kinases that are in one way or another
implicated in psychiatric disorders, it seems likely that aber-
rant phosphorylation of MAP2 may contribute towards the
disease pathology. Notably MAP2 kinases calcium calmod-
ulin kinase II (CAMKII; Robison) and glycogen synthase
kinase-3 (GSK-3) [O’Leary and Nolan, 2015] (Table II) are
both implicated in psychiatric dysfunction. These kinases,
among others (MARK, PKC, ERK, and PKA) phosphoryl-
ate the tubulin binding domain of microtubules leading to
decreased association with microtubules and decreased
microtubule stability (Table II). Interestingly, JNK, which
phosphorylates MAP2 on specific sites in the PRD [Bjork-
blom et al., 2005; Komulainen et al., 2014], is implicated
in schizophrenia and autism spectrum disorders as well as
mental retardation [Coffey, 2014] (Fig. 2). In contrast to

TBD phosphorylation, PRD phosphorylation by JNK1
leads to increased microtubule binding [Komulainen et al.,
2014] (Table II). Among those kinases mentioned here,
JNK1 has emerged as a dominant regulator of microtubule
homeostasis in neurons. In perinatal mice lacking Jnk1,
microtubule stability is already decreased in the neocortex,
as inferred from increased levels of tyrosinated tubulin
[Westerlund et al., 2011]. This suggests that JNK1 is
required to maintain microtubule homeostasis in develop-
ing brain. Moreover, in the neocortex of one month old
mice lacking Jnk1, microtubule length is significantly
decreased [Chang et al., 2003], indicating that JNK1 con-
tinues to maintain microtubule stability during postnatal
life. These findings have identified JNK1 as a dominant
regulator of microtubule homeostasis in neurons. The
effects of JNK1 on microtubule stability are thought to be
mediated by phosphorylation of MAP2 [Chang et al.,
2003; Bjorkblom et al., 2005; Komulainen et al., 2014],
whereas MAP1b is another target of JNK1 that is likely to
contribute [Chang et al., 2003; Wang et al., 2007], but is
less well studied than MAP2 in this context.

It is interesting therefore that dysregulation of the JNK
pathway is implicated in a range of psychiatric disorders.
Specifically, genetic anomalies in upstream regulators of
JNK namely; IL1RAPL1, ULK4, TAOK2, MKK7, JIP2/3,
and in JNK itself (Fig. 2), are associated with schizophrenia,
autism spectrum disorders and intellectual disability [Shoi-
chet et al., 2006; Baptista et al., 2008; McCarthy et al.,
2009; Pavlowsky et al., 2010; de Anda et al., 2012; Win-
chester et al., 2012; Coffey, 2014; Lang et al., 2014].
TAOK2 and ULK4 regulate dendrite growth [Mochizuki

Fig. 2. JNK1 is a dominant regulator of microtubule stability. Genetic anomalies in upstream regulators of JNK1 are associ-
ated with a variety of psychiatric disorders. (a) Positioning on the JNK pathway, of JNK1 regulators that are associated with psy-
chiatric disease, are shown. Abbreviations are as follows: mitogen activated protein kinase (MAPK); mitogen activated protein kinase
kinase (MAP2K); mitogen activated protein kinase kinase-7 (MKK7); JNK interacting protein-(JIP)–2/3. (b) The disease association
of JNK1 upstream activators is listed.
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et al., 2011; de Anda et al., 2012] while physiologically
active JNK1 has been shown to be a dominant regulator of
dendritic architecture in vivo [Chang et al., 2003; Bjork-
blom et al., 2005; Komulainen et al., 2014]. Thus in
Jnk1–/– mice, dendritic field size is increased in cortical
layer V and decreased in layers II/III and this phenotype is
rescued by expression of MAP2T1619D/T1622D/T1623D

[Komulainen et al., 2014] (Fig. 1). Similarly in neurons iso-
lated from Jnk1–/– mice, or in JNK inhibitor-treated neu-
rons, dendrite complexity is increased. This regulation of
dendrite complexity has been shown to be a consequence of
JNK activity in the cytoplasm [Bjorkblom et al., 2005].
Additional microtubule regulator targets of JNK1 such as
stathmin 2 (SCG10) also contribute to dendrite architec-
ture in neurons [Tararuk et al., 2006]. Based on these stud-
ies, one can anticipate that the genetic disruption of
TAOK2, ULK4, and MKK7 that occurs in patients, will
directly disturb the phosphorylation of JNK1 effectors of
microtubule homeostasis such as MAP2, MAP1b, and
stathmin-2. Depending on the brain region, inhibition of
JNK1 activity can increase or decrease dendritic length, that
is, alter the synaptic integration space [Komulainen et al.,
2014]. This will have a direct impact on synaptic
transmission.

Other Microtubule Regulatory
Proteins Implicated in Psychiatric
Disorders

MAP6/Stable Tubule Only Polypeptide (STOP)
and Schizophrenia

MAP6, also known as STOP, is a protein involved in micro-
tubule binding in many cell types, but it is especially
enriched in neurons. MAP6 is encoded by a single gene but
exists in many splice forms in mammalian cells [Bosc et al.,
1996]. It binds to and stabilizes microtubules and induces
nocodazole resistance and tubulin detyrosination [Bosc
et al., 2003]. Like MAP2, MAP6 stabilizes microtubules by
bridging the binding between adjacent microtubules and
this is regulated by calmodulin binding [Lefèvre et al.,
2013]. Genetic deletion of MAP6 leads to a severe pheno-
type where mice display a range of features associated with
schizophrenia. These include anxiety, impaired cognition,
hyperactivity, and social withdrawal [Fournet et al., 2012],
altered serotonergic function [Fournet et al., 2010] and
hypoglutamatergic activity [Brenner et al., 2007]. Specifi-
cally, MAP6 deletion impairs cognitive function by disrupt-
ing synaptic connectivity [Fournet et al., 2012; Gozes,
2011]. Single nucleotide polymorphisms (SNPs) in MAP6
have been identified alongside increased MAP6 mRNA in
the prefrontal cortex of patients with schizophrenia. These
findings together with the data from animal models suggest
that further study of the processes whereby MAP6 could

contribute to the schizophrenia is warranted [Shimizu
et al., 2006].

TPPP

Increased risk for developing depression in children with
early traumatizing experiences of maltreatment has been
correlated to epigenetic changes in TPPP genes, which
encode the tubulin polymerization promoting protein that
is specifically expressed in brain. TPPP modifies microtu-
bule dynamics and stability. It is a brain specific microtu-
bule bundling protein that is enriched in Lewy bodies
[Tiri�an et al., 2003; Vincze et al., 2006]. A genome-wide
methylation study carried out in saliva-derived DNA sam-
ples from maltreated and healthy children revealed methyla-
tion changes in TPPP establishing it as a predictor of
depression [Weder et al., 2014]. In rodents subjected to the
prenatal stress model of depression, TPPP protein is upreg-
ulated [Głombik et al., 2015]. TPPP is also associated with
neurodegenerative disease. It interacts with alpha-synuclein
leading to formation of inclusion bodies [Szunyogh et al.,
2015]. These studies highlight TPPP as microtubule regula-
tory protein that is epigenetically regulated in depression.

CRMP-1 (collapsin response mediator protein-1) also
known as DRP-1 (dihydropyriminidase-related protein-1)
and CRMP2 (DRP-2 or DPYSL2) are tubulin binding
proteins that are enriched in the hippocampus and dentate
gyrus of adult brain. They regulate neuronal differentiation
and modulate L- and V-type calcium channel activity
[Quach et al., 2015]. Binding of CRMP2 to tubulin
increases microtubule formation and this binding is
decreased upon phosphorylation by Rho kinase [Fukata
et al., 2002]. Phosphorylated CRMP1 and CRMP2 are
found in dendrites and are important for dendrite pattern-
ing. Significantly, CRMP1 and CRMP2 are susceptibility
genes for psychiatric disorders [Quach et al., 2015]. Thus
the CRMP1 gene locus on chromosome 4p16 is associated
through suggestive evidence with bipolar disorder [Baron,
2002], while the CRMP2 (DPSYL2) gene locus on chromo-
some 8p21 is within a schizophrenia susceptibility region
[Hensley et al., 2010], and is linked broadly through
genetic and translational studies with psychiatric disease
including mood disorders [Quach et al., 2015]. Consistent
with this genetic linkage data, proteome-wide analysis has
revealed increased expression of CRMP2 in postmortem
brains from individuals with schizophrenia and MDD,
while CRMP1 is increased in bipolar patients [Prabakaran
et al., 2004; Beasley et al., 2006]. Further study will be
needed to understand better how these tubulin binding pro-
teins confer susceptibility.

Disrupted in Schizophrenia-1 (DISC1)

DISC-1 is a candidate schizophrenia gene that affects cytos-
keletal conformation. It plays several crucial roles during
development of the central nervous system where it
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regulates axonal transport and microtubule organization
through interaction with nuclear distribution element-like
protein and pericentriolar material-1 protein [Gurling
et al., 2006; Taya et al., 2007]. Genetic association studies
have identified a S704C SNP in DISC-1, which increases
the risk to develop schizophrenia as well as MDD. Healthy
subjects carrying this allele display reduced gray matter vol-
ume in the cingulate cortex while diffusion tensor imaging
has revealed disrupted white-matter integrity in the prefron-
tal cortex of S704C-DISC-1 carriers [Hashimoto et al.,
2006]. This is consistent with abnormal grey matter vol-
umes and white matter ultra-structures in patients with
mood disorders and schizophrenia. Interestingly, the
S704C-DISC-1 variant fails to interact with NDEL1, indi-
cating that the microtubule cytoskeleton disruption con-
tributes to the pathologies in these individuals [Hashimoto
et al., 2006].

Therapeutic Intervention in
Psychiatric Disorders; the
Microtubule Cytoskeleton as a
Target

Antioxidant Treatment and the Microtubule
Cytoskeleton

Oxidative stress is a major factor that causes aberrant cytos-
keletal organization. Free radicals can depolymerize micro-
tubules leading to loss of polarization and induction of
apoptotic signaling [Sponne et al., 2003]. Thus, an early
response to oxidative stress involves modification of b-
tubulin and MAP2 microtubule binding leading ultimately
to neuronal death [Ben�ıtez-King, 2006]. It has been shown
in many cases that melatonin acts as a neuronal antioxidant
and improves outcome in cases where the cytoskeleton is
disrupted, such as in experimental models of Alzheimer’s
disease [Cardinali et al., 2010], Parkinson’s disease associ-
ated sleeping disorders [Mayo et al., 2005] and Hunting-
ton’s disease [Kalliolia et al., 2014]. Moreover, elevated
levels of MAP2 are found in melatonin-exposed cells, pro-
viding a possible mechanism for the increased microtubule
polymerization and dendrite stabilizing action of this hor-
mone [Melendez et al., 1996; Prieto-Gomez et al., 2008].
However, the use of melatonin as a pharmacological agent
in the treatment of depression or anxiety remains largely
experimental.

Tubulin as a Candidate Biomarker or Therapy

A possible use of tubulin as a biomarker for diagnosis of
depression in human peripheral cells (i.e., platelets) has
been proposed [Cocchi et al., 2010].These authors advocate
an underlying role for cytoskeletal rearrangements in psy-
chiatric dysfunction according to the quantum theory of
consciousness [Hameroff, 2007]. While this remains con-
troversial, the idea of employing bionic microtubules to res-

cue impaired function has been proposed [Woolf, 2009].
These would be synthetically produced and introduced to
neurons in an attempt to rescue functional deficits that
result from disease associated perturbation of the microtu-
bule structure. In support of this proposal, neuronal precur-
sors derived from olfactory biopsies from individuals with
schizophrenia and bipolar disorder display perturbations in
microtubule organization. Bipolar patient cells exhibit
shortened microtubules while those from individuals with
schizophrenia are disorganized, indicating that a character-
istic cytoskeletal phenotype is associated with each of these
disorders [Solis-Chagoyan et al., 2013].

Neurosteroids

A therapeutic approach aiming to ameliorate the defects in
dendritic field size that occur in depression uses a MAP2
binding drug, microtubule-associated protein/neurosteroi-
dal pregnenolone (MAPREG), which is a synthetic neuro-
steroid. In the forced swim test of behavioral despair (a
frequently used model of depression), treatment with
MAPREG protects rodents from developing a depressed
state. It elicits a quicker and stronger anti-depressant action
than the SSRI fluoxetine suggesting a different mechanistic
action [Bianchi and Baulieu, 2012]. Similarly, MAPREG
was shown to abolish stress-triggered avoidance behavior in
the tree shrew evoked by psychosocial stress [Par�esys et al.,
2015]. This study also shows that a 4-week treatment with
MAPREG prevents the loss of a-tubulin acetylation and
sleep disturbances that occur following psychosocial stress.

Neurosteroids are synthetized de novo from cholesterol
in the nervous system [Plassart-Schiess and Baulieu, 2001].
They were first identified as microtubule and MAP2-
binding partners upon co-purification with pregnenolone
(PREG) [Fellous et al., 1977]. To date, MAP2 proteins are
considered to be the only brain-specific receptors for neuro-
steroid 3-b-hydroxy-delta 5-compounds, such as PREG,
pregnenolone-sulfate (PREG-S), dehydroepiandrosterone
(DHEA) and dehydroepiandrosterone-sulfate (DHEA-S)
[Tsutsui et al., 2000; Plassart-Schiess and Baulieu, 2001;
Fontaine-Lenoir et al., 2006]. In the brain, these molecules
are synthetized in multiple cell types, including glia and
Purkinje cells [Tsutsui et al., 2000; Fontaine-Lenoir et al.,
2006]. They can also derive from steroidal precursors origi-
nating in the periphery [Baulieu and Schumacher, 1997].
Binding of PREG and it derivatives enhances the stimula-
tory effect of MAP2 on microtubule polymerization [Mura-
kami et al., 2000] and promotes neurite growth [Fontaine-
Lenoir et al., 2006], while other neurosteroids do not have
this effect. Neurosteroids have been shown to have benefi-
cial effects on neurons. They can enhance neuronal survival
and improve long-term memory [Roberts et al. 1987; Flood
et al., 1992], while they also exert a neuroprotective func-
tion [Cardounel et al., 1999; Marx et al., 2000], and
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stimulate the birth of new neurons in adult hippocampus
[Karishma and Herbert, 2002].

Glutamatergic Receptor Drugs

Antagonists of glutamatergic receptors (especially ketamine
and MK-801 acting on NMDA receptors) are known to
have rapid and long-lasting antidepressant actions in both
treatment-resistant patients and in animal models of
depression [reviewed in Browne and Lucki, 2013]. Interest-
ingly, MAP2 interacts with the NMDA-type glutamate
receptor subunit NR2B [Kapitein and Hoogenraad, 2011;
Kapitein et al., 2011], and the antidepressant action of the
NMDA receptor antagonist MK-801 depends on this asso-
ciation. It also depends on the anchoring of PKA by MAP2
at this complex [Corcoran et al., 2015]. This data indicates
that MAP2 plays an integral role in the regulation of mood
homeostasis via glutamatergic signaling.

Lithium and Microtubule Cytoskeleton
Regulation in Depression

Lithium is the gold standard mood stabilizing drug used to
treat bipolar disorder. A gene enrichment study involving
data from 7000 patients and controls, identified that
microtubule-associated pathways may be genetically dis-
rupted in patients with bipolar disorder [Drago et al.,
2016]. They further concluded that this dysregulation
relates to lithium action. Lithium has a range of known
molecular targets, among which GSK-3, which is directly
inhibited by lithium, is implicated in depression [Beurel
et al., 2011]. Inhibition of GSK-3 by lithium decreases
phosphorylation of tau and MAP1B leading to microtubule
remodeling [Lucas et al., 1998; Goold et al., 1999; Grimes
and Jope, 2001; B�elanger et al., 2002]. This regulation of
the cytoskeleton may help restore impaired neuroplasticity
in the hippocampus and amygdala, brain areas with major
involvement in mood disorders. While more data is needed
to ascertain whether microtubule remodeling contributes to
the therapeutic effect of lithium, a large number of targets
are phosphorylated by GSK-3 itself [Cole, 2013] and thus,
the actions of lithium in the brain are likely to be complex
[Doble and Woodgett, 2003].

Together, these studies indicate that PTM of MAPs and
microtubule regulators is disturbed in animal models of psy-
chiatric disorders and in postmortem tissues and cell biopsies
from patients. Some of these modifications have been shown
to be rescued by antidepressant drug treatments, while
microtubule stabilizing drugs have also shown beneficial
behavioral consequences. In clinical studies, genetic associa-
tions are found between regulators of the microtubule cyto-
skeleton and impaired mental health, while diminished
MAP2 has become a signature hallmark of psychiatric dis-
ease. This is perhaps not surprising given that microtubules
play an essential role in forming the polarized neuronal
architecture that is required for appropriate synaptic connec-

tivity. The coming years should clarify more molecular
details so that repair strategies can be developed.
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