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Abstract 

Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The 

design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of 

biomedical research attracts great interest in the scientific community. The current review explores 

promising recent approaches that have been developed with the aim of circumventing or overcoming 

MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties 

of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of 

its expression have proven to be the main mechanisms by which MDR can be surmounted. The use 

of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is 

currently being explored as a means to circumvent drug resistance. This strategy is based on the 

design of hybrid compounds that are obtained either by merging the structural features of separate 

drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The 

approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can 

be achieved over the independent administration of the two individual components. However, it 

should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. 

The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, 

creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors 

have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with 

a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced 

by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic 

cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR 

is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and 
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P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make 

use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to 

cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate 

in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are 

described in this review, including the pharmaco-modulation of acridine, which is a well-known 

scaffold in the development of bioactive compounds, the use of natural compounds as means to 

reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell 

components. Finally, the outstanding potential of in silico structure-based methods as a means to 

evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this 

review. Structure-based design methods, which utilize 3D structural data of proteins and their 

complexes with ligands, are the most effective of the in silico methods available, as they provide a 

prediction regarding the interaction between transport proteins and their substrates and inhibitors. The 

recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed 

compounds, providing insight into their binding mode and directing possible rational modifications 

to prevent them from becoming P-gp drug substrates. In summary, although major efforts were 

invested in the search for new tools to combat drug resistant tumors, they all require further 

implementation and methodological development. Further investigation and progress in the 

abovementioned strategies will provide significant advances in the rational combat against cancer 

MDR. 

 

1. Introduction 

Resistance to anticancer drugs is the result of a number of distinct mechanisms including 

impaired drug uptake, drug compartmentalization, drug metabolism, functional bypass and 

alterantive compensatory pathways, alterations of membrane lipids and target proteins, inhibition of 

apoptosis, alterations in the tumor microenvironment (TME) including acidification, dysregulation 
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of gene expression, and increased efflux from cells (Fig. 1) (Gottesman 2002; Pasello et al., 2019; 

Bar-Zeev et al., 2017; Kopecka et al., 2019; Gacche and Assaraf 2018; Li et al., 2016; Zhitomirsky 

and Assaraf 2016; Taylor et al., 2015; Niewerth et al., 2015; Gonen and Assaraf 2012). 

The development of simultaneous resistance to multiple drugs, of distinct chemical structures, 

different mechanisms of action and differing targets, is known as multidrug resistance (MDR) 

(Szakács et al., 2006). MDR is a multifactorial process whereby cancer cells become progressively 

unresponsive to anticancer agents independently of their structures and mechanisms of action. MDR 

is a major cause of failure of cancer chemotherapy. 

One of the most common mechanisms of resistance is associated with the presence of 

membrane transporter proteins (ABC transporters), which are overexpressed in cancer cells and 

extrude multiple cytotoxic drugs out of cancer cells, leading to a marked reduction in their efficacy. 

The extrusion of these MDR drugs proceeds by using the energy furnished by ATP hydrolysis. 

ABCB1, known as P-glycoprotein (P-gp), ABCC1-6, known as Multidrug Resistance related Proteins 

1-6 (MRP1-6), and ABGC2, known as Breast Cancer Resistant Protein (BCRP), are the principal 

efflux transporters mediating MDR (Gottesman 2002; Takaara et al., 2006; Baguley 2010; Li et al. 

2016). 

ABC efflux transporters are not the sole cause of MDR. Experimental evidence has recently shown 

that lysosomes can also contribute to the lysosomal sequestration of weakly basic hydrophobic 

anticancer drugs followed by their efflux via lysosomal exocytosis (Zhitomirsky and Assaraf, 2016). 

Weakly basic hydrophobic anticancer drugs are sequestered by these acidic organelles, via passive 

diffusion, due to their acidic luminal pH (pH ≤5) and expelled from the cell via lysosomal exocytosis. 

Basic anthracycline antibiotics, Vinca alkaloids including vincristine, tyrosine kinase inhibitors 

including sunitinib, gefitinib, nintedanib as well as their analogues are typical examples of such 

lysosomotropic cytotoxic drugs. Some studies have shown that ABC transporters may also be 
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localized in the lysosomal membrane and thus can mediate the active sequestration of anticancer 

drugs in these organelles (Yamagishi et al., 2013; Al-Akra et al., 2018). 

Hypoxia is another established cause of drug resistance; solid tumors have a poor blood supply 

in some deep core regions and consequently low O2 concentrations (Raz et al., 2014; Jing et al., 2019; 

Leon et al., 2019; Xu et al., 2019). This is one of the mechanisms underlying the resistance of these 

tumors to a variety of anticancer agents. The precise mechanisms that underlie hypoxia-induced drug 

resistance are not well understood. It is generally accepted that an absence of O2 radicals, cell cycle 

disruption, DNA overreplication, induction of stress proteins, hypoxia inducible factor-1α (HIF-1α) 

accumulation, p53 promotion and P-gp overexpression, play important roles. Indeed, HIF-1α up-

regulates P-gp (Comerford et al., 2002). On the other hand, the efficacy of chemotherapeutic drugs 

that act by increasing reactive oxygen species (ROS), such as anthracyclines, gemcitabine or 

platinum-derivatives, is limited in hypoxic tumors because of the lessened capacity to generate ROS. 

This phenomenon is strongly drug-dependent, and thus the delivery of oxidants to the tumor, and the 

use of chemotherapeutic agents that are selectively active against hypoxic cells, have been proposed 

to address this problem (Teicher 1994). 

As most investigated mechanisms of resistance are associated with the overexpression of 

membrane transport proteins, one of the first approaches to tackling MDR was based on the 

association of antineoplastic agents with inhibitors of P-gp, which is the most well-known drug efflux 

transporter. Efflux pump inhibitors can be classified into three groups according to their mechanism 

of action: substrates, inhibitors, and modulators. Substrates are able to saturate the binding sites of 

the pump, thus preventing drug efflux; inhibitors block the pump by inhibiting ATP-binding to the 

pump, and modulators reduce drug binding to the pump via a negative allosteric effect (Colabufo et 

al., 2010; Li et al., 2016). 

Preclinical studies have demonstrated that combination therapy, using P-gp inhibitors and 

anticancer drugs, decreased tumor volume and prolonged the lifespan of animals (Saneja et al., 2014; 
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Yang et al., 2015; Wang et al., 2019a). However, the co-administration of P-gp inhibitors and 

anticancer drugs has some limitations; firstly, the unpredictable pharmacokinetics, biodistribution 

and membrane-transport properties of the two unrelated drugs may lead to their uptake and 

accumulation in the target cells having different time scales. Secondly, the lack of selectivity of P-gp 

inhibitors toward cancer tissues can cause the undesirable accumulation of these drugs in healthy 

tissues which have central physiological roles (Guo et al., 2017). 

Alternative approaches have been proposed to overcome P-gp-mediated MDR. These include 

the design of molecules whose uptake is greater than their efflux rate, or molecules that are able to 

evade P-gp, or other drugs that are selectively cytotoxic to MDR cells but are not harmful to drug 

sensitive parental cells (chemosensitzing agents) (Baguley et al.et al., 2010; Pluchino et al.et al., 

2012). 

In recent years, improvements in our understanding of the mechanisms underlying the 

acquisition of drug resistance (Assaraf et al., 2019; Wang et al., 2019b) have led to the development 

of new strategies aimed at circumventing or counteracting well-defined mechanisms of drug-

resistance. These strategies include the use of modifications to currently active antitumor drugs as a 

means to enhance their ability to target tumor cells, which has always been an important objective in 

the combat against cancer MDR (Bertrand et al., 2014; Danhier et al., 2010; Kutova et al., 2019; 

Kydd et al., 2017; Pullan et al., 2019; Rosenblum et al., 2018; Swain et al., 2016). The focus of the 

current review is to summarize the most recent advances in this field. 

 

Figure 1. Key mechanisms of drug resistance in cancer cells. 

 

2. Natural compounds and related structural modifications to surmount cancer MDR. 

More than 70% of all anticancer drugs currently on the market were derived from, or inspired 

by, natural products (Harvey et al., 2015). Furthermore, natural compounds currently play a crucial 
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role in drug discovery (Newman and Cragg, 2012; Newman and Cragg, 2016; Li et al., 2019a). The 

reasons for this are the great structural diversity and mechanisms of action shown by natural products, 

as well as the development of new technologies that facilitate the analysis and screening of more 

complex natural samples (Harvey et al., 2015; Feher and Schmidt, 2003; Thomford et al., 2018). 

There are several classes of natural compounds that have been studied as means to reverse MDR, and 

these include flavonoids, curcumins, alkaloids, steroids and terpenoids (Mishra and Tiwari, 2011). 

2.1. Flavonoids 

Flavonoids are an important class of polyphenols that can be found in different parts of plants 

(Li et al., 2016). They can be divided into chalcones, flavones, flavanones, flavonols, anthocyanins 

and isoflavones according to the substituents present on the aromatic ring and their oxidation status 

(Panche et al., 2016). Flavonoids have antioxidant, anti-inflammatory and anti-mutagenic properties 

(Ferreyra et al., 2012). They have also been found to inhibit the MDR efflux transporters P-gp, MRP-

1, MRP-2 and BCRP (Gupta et al., 2014; Ye et al., 2019). Some flavonoids act on both the expression 

and activation of P-gp. Quercetin is one of the most commonly studied flavonoids with MDR-

modulating properties (Fig. 2), and has been found to interact with the substrate-binding site or the 

ATP-binding site of P-gp, MRP1 and BCRP (Shih et al., 2000; Li et al., 2018b). It has recently been 

found to increase the accumulation of rhodamine 123 and doxorubicin (DOX), and to increase the 

chemosensitivity of MDR human hepatocellular carcinoma cells (Chen et al., 2018a). The flavonoids 

kaempferol and naringenin (Fig. 2) have also been reported to inhibit P-gp; kaempferol has been 

shown to significantly decrease the level of P-gp in KB-V1 cells (Limtrakul et al., 2005), while 

naringenin increased the concentration of the anti-hypertensive calcium channel blocker felodipine 

(Sandeep et al., 2014). Similarly, icaritin and baicalein (Fig. 2) have been found to block P-gp (Miao 

et al., 2016); Icaritin has been shown to decrease the expression of the MRD1 gene (Sun et al., 2013), 

whereas baicalein increased the oral bioavailability of tamoxifen in the small intestine via inhibition 
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of P-gp (Li et al., 2011). Other flavonoids that have been studied as MDR modulators include chrysin, 

rutin, genistein, biochanin A and apigenin (Ye et al., 2019). 

2.2. Curcumins 

Curcumin (Fig. 2) is a major component of the spice turmeric, from the root of Curcuma longa; 

it displays antioxidant, anti-inflammatory and anticancer properties, in addition to MDR modulatory 

activities (Naberuka et al., 2010; Lopes-Rodrigues et al., 2016). Curcumin has been found to increase 

the activity of paclitaxel, as well as DOX in adriamycin-resistant MCF-7 cells and taxol-resistant 

A549 cells (Naberuka et al., 2010). Additionally, curcumin enhanced the sensitivity of tumor cells to 

vincristine, cisplatin, 5-fluorouracil (5-FU), and 10-hydroxy-camptothecin (CPT) (Yang et al., 2011) 

and downregulated the expression of P-gp in the vincristine-resistant colon cancer HCT-8/VCR cell 

line (Zhao et al., 2018; Lu et al., 2013), while also having a promising inhibitory effect on the MDR 

efflux pumps P-gp, MRP1 and BCRP (Zhao et al., 2013). Despite its general safety, the main 

limitations of curcumin are its chemical instability, low aqueous solubility and poor pharmacokinetic 

profile (Zhao et al., 2013). Curcumin analogues with higher chemical stability have thus been 

prepared, for example, by replacing its β-diketone group with a mono-carbonyl spacer (Liang et al., 

2009; Adams et al., 2004; Murakami et al., 2017). The β-diketone moiety is a possible target for liver 

enzymes and can cause curcumin’s instability in vitro (Zhao et al., 2013). Some of the prepared 

curcumin analogues have shown improved in vivo stability, lower toxicity and similar, or superior, 

biological activity, including the potential to reverse MDR (Zhao et al., 2013; Liang et al., 2009; 

Revalde et al., 2015). In addition to chemical modifications, nanodrug systems, liposomes, polymeric 

micelles and polymer nanoparticles have all been developed to circumvent the poor pharmacokinetic 

profile of curcumin (Zhao et al., 2018). 

 

Figure 2. Representative flavonoids, curcumin as well as a representative synthetic analogue of 

curcumin with MDR modulatory activities. 



9 
 

2.3. Alkaloids 

There are many classes of alkaloids with MDR modulatory activity, such as piperazine alkaloids, 

quinoline and isoquinoline alkaloids, as well as indole alkaloids (Joshi et al., 2017). Piperine, a 

common dietary alkaloid found in black pepper (Piper nigrum), is one of the most commonly studied 

piperidine alkaloids (Fig. 3) as it presents a range of therapeutic activities, including antioxidant, anti-

inflammatory, immunomodulatory and anticancer activity (Rather and Bhagat, 2018). Piperine 

activates apoptotic signaling, inhibits cell cycle progression, influences redox homeostasis in cancer 

cells, inhibits the self-renewal of cancer stem cells and modulates endoplasmic reticulum stress and 

autophagy (Rather et al., 2018; Manayi et al., 2018). In addition, piperine is an inhibitor of P-gp, 

BCRP and MRPs (Qiang et al., 2012) and has an important effect on drug metabolism. These 

activities imply that piperine can reverse MDR in cancer cells and enhance the activity of many 

anticancer drugs (Rather and Bhagat, 2018; Manayi et al., 2018). 

Lobeline (Fig. 3), a piperidine alkaloid from Lobelia inflata (known as the Indian tobacco plant), has 

been shown to enhance the activity of DOX in human colon adenocarcinoma cells (Caco-2) by 

inhibiting P-gp (Ma and Wink, 2008). Tertiary alkaloids stemocurtisine, oxystemokerrine and 

stemofoline (Fig. 3) have been shown to inhibit P-gp and to reduce the IC50 values of some cytotoxic 

agents (Chanmahasathien et al., 2011). 

The anti-malarial drug quinine and its isomer quinidine (Fig. 3) with antiarrhythmic activity, 

are members of the first generation of P-gp inhibitors (Rijpma et al., 2014). Quinine has been shown 

to increase the sensitivity of a DOX-resistant human myeloma tumor cell line to DOX (Lehnert et al., 

1991). A quinine dimer 1 (Fig. 3) that inhibited the efflux of rhodamine 123 and the transport of 

radiolabeled paclitaxel in DOX-resistant MCF-7 cells has also been prepared (Pires et al., 2009). 

Additionally, a set of quinine dimers have been prepared with a triazole heterocycle in the linker, 

connecting the two quinine moieties. These dimers have been found to inhibit P-gp in DOX-resistant 

MCF-7 cells (e.g. quinine dimer 2, Fig. 3) (Kuriakose et al., 2012). The tetrahydroisoquinoline 
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alkaloid chelidonine (Fig. 3) has been shown to inhibit P-gp and enhance the cytotoxic activity of 

DOX in Caco-2 cells and the human leukemia cell line CEM/ADR5000 (El-Readi et al., 2013). 

Similarly, a tetrahydroisoquinoline, glaucine (Fig. 3), has been shown to inhibit P-gp and MRP1 

efflux pumps in the drug resistant breast cancer cell line MCF-7/ADR (Lei et al., 2013). Other 

quinoline and isoquinoline derivatives with MDR modulatory activities include sanguinarine, 

roemerine, tetrandrine, isotetrandrine, berbamine and hernandezine (Kumar and Jaitak, 2019; Joshi 

et al., 2017). 

Reserpine and yohimbine (Fig. 3), isolated from Rauwolfia serpentina (Indian snakeroot), have 

been shown to increase the intracellular concentration of DOX, daunorubicin and vincristine in the 

MDR cell line CEM/VLB100 by inhibiting P-gp efflux (Pearce et al., 1989). In addition, reserpine 

also inhibited BCRP efflux (Henrich et al., 2006). An ergot alkaloid, bromocriptine (Fig. 3), inhibited 

P-gp and showed potent MDR reversal activity for DOX, vinblastine, vincristine, vinorelbine and 

etoposide in several cancer cell lines (Shiraki et al., 2002). Other indole alkaloids with MDR 

modulatory activities include indole-3-carbinol, indole-3-carboxyldehyde, kopsiflorine, coronaridine 

and tabernines A-C (Joshi et al., 2017). 

 

Figure 3. Representative piperidine, quinoline, isoquinoline and indole alkaloids with MDR 

modulatory activities. 

2.4. Steroids and terpenoids 

Steroids are an important class of natural compounds that primarily act as components of 

biological membranes or as signaling molecules, although some have also been studied as MDR 

modulators. β-Sitosterol-O-glucoside (Fig. 4) has been shown to induce a higher accumulation of 

calcein-AM and rhodamine 123 in CEM/ADR5000 and Caco-2 cancer cell lines, which was thought 

to be due to its inhibition of P-gp (Eid et al., 2013). Similarly, guggulsterone (Fig. 4) was also shown 

to increase the intracellular concentrations of daunorubicin and rhodamine 123 in the KB-C2 cancer 
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cell line, possibly by inhibiting P-gp (Nabekura et al., 2010) and to sensitizeddrug-resistant human 

hepatocarcinoma cells to DOX (Xu et al., 2017). Some cardiotonic steroids (e.g. cardiotonic steroid 

3, Fig. 4) have recently been shown to inhibit P-gp, according to an ATPase assay, and to reverse 

DOX resistance in the MDR human leukemia cell line CEM/ADR5000 (Zeino et al., 2015). Gracillin, 

polyphyllin D and 20(S)-protopanaxadiol are other steroids with MDR-modulatory activity (Silva et 

al., 2016). 

Some terpenoids have been reported to possess anticancer (e.g. paclitaxel), anti-malarial (e.g. 

artemisinin) and MDR reversal activities (Silva et al., 2016). Menthol and aromadendrene (Fig. 4) 

have been demonstrated to increase the concentration of calcein-AM and rhodamine 123 in the MDR 

CEM/ADR5000 and Caco-2 cancer cell lines, possibly via the competitive inhibition of P-gp (Eid et 

al., 2013; Wink et al., 2012), while citronellal and citronellol (Fig. 4) inhibited P-gp and consequently 

increased the intracellular accumulation of the P-gp cardiac glycoside substrate [3H]digoxin (Yoshida 

et al., 2005). It has been shown that a series of sesquiterpenes with a dihydro-β-agarofuran structure 

(Fig. 4) inhibited P-gp-mediated efflux and reversed resistance to daunomycin and vinblastine in 

MDR cells (Perestelo et al., 2011). Moreover, carnosic acid, carnosol and ursolic acid (Fig. 4) from 

rosemary leaves, have been found to inhibit P-gp function in KB-C2 tumor cells, thus increasing the 

intracellular concentrations of daunorubicin and rhodamine 123 (Nabekura et al., 2010). 

Additionally, carnosic acid sensitized KB-C2 cells to vinblastine, thus reversing MDR (Nabekura 

2010). Limonin (Fig. 4), a triterpenoid present in citrus plants, inhibited P-gp and reversed DOX 

resistance in CEM/ADR5000 and Caco-2 cells (El-Readi et al., 2010). Latilagascenes C and D, 

cryptotanshinone, balsaminol B, balsaminagenin C and glycyrrhetinic acid are some other terpenoids 

with reported MDR reversal activities (Kumar et al., 2019). 

 

Figure 4. Representative steroids and terpenoids with MDR modulatory activities 

3. Multi-target agents to evade/overcome MDR 
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The simultaneous interaction of a single molecule with two or more relevant cancer cell targets 

is a promising approach to circumventing drug resistance. This strategy relies on the design of hybrid 

compounds obtained either by merging structural features of different drugs in a new molecule, or by 

conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The interest toward 

multitarget-ligand design is rapidly increasing due to the potential benefits of such bifunctional 

molecules, including pharmacokinetic and pharmacodynamic advantages over the separate 

administration of the two individual drug components. 

In the following section, we will discuss the potential of dual/multi-target agents in the context 

of MDR and the challenges that they face. In providing an overview of their anticancer activities, we 

will underline the key features of two main classes of multi-target compounds: hybrid molecules that 

contain currently used antitumor drugs and multi-target compounds that inhibit P-gp 

activity/expression in MDR cancer cells. 

3.1. Hybrid compounds containing currently used antitumor drugs 

The development of successful multivalent drugs is a very challenging task. The compounds 

must be chemically and biologically stable, at least during in vivo circulation, and should be capable 

of reaching an intracellular concentration that is sufficient to promote the therapeutic effect of both 

moieties. In addition, the conjugates should possess enough chemical flexibility to interact with their 

site of action. Finally, the molecular size and physicochemical properties of the dual-action 

compounds should be taken into consideration when developing “druggable” molecules. 

Liu and coworkers (Liu et al., 2019) have successfully attached paclitaxel (PTX) to vorinostat 

(SAHA), thereby forming multi-target drugs with synergistic anticancer effects. The compounds 

showed in vitro cytotoxicity, in the nanomolar range, in the human colorectal cell line HCT-116 and 

breast cancer MCF-7 cells. Moreover, the IC50 of selected compound 4 (Fig. 5) was lower than that 

of PTX alone against MCF-7/ADR, demonstrating the effect against MDR cells. PTX-SAHA co-

prodrug nanomicelles were also prepared with mPEG2000-PLA1750, which was used as the carrier, 
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using the thin film method (Liu et al., 2019). The co-prodrug nanomicelles demonstrated significant 

advantages, including prolonged blood circulation and increased accumulation at the tumor site. 

Moreover, the in vitro drug-release tests showed that nanomicelles had a sustained release effect that 

could contribute to the reversal efficacy of PTX-resistance in vitro. The in vitro cytotoxicity was 

evaluated in HCT-116 cells, MCF-7 cells and MDR MCF-7/ADR cells. The results showed that 4 

nanomicelles had better cytotoxicity than PTX, especially against MCF-7/ADR cells (Liu et al., 

2019). A study by Xu et al., has examined a series of nitrogen mustard conjugates with the natural 

cytotoxic compound oridonin (Xu et al., 2014). The hybrids were screened in vitro against K562, 

MCF-7, Bel-7402, and MGC-803 human cancer cell lines. All the conjugates showed anti-

proliferative activities that were higher than those of the control alkylating drugs chlorambucil and 

melphalan. The most potent hybrid 5 (Fig. 5) showed IC50 values in the low micromolar range. 

Significantly, the compound also exhibited potent anti-proliferative activity against MDR carcinoma 

cell lines (SW620/AD300 and NCI-H460/MX20). 

 Numerous groups have recently prepared Pt(IV)-based hybrid compounds that can be 

effectively reduced to Pt(II) equivalents inside (Johnstone et al., 2016). Pt(IV) prodrugs that contain 

phenstatin, an inhibitor of tubulin polymerization, have been synthesized by Huang and co-workers 

(Huang et al., 2017a). The Pt(IV) complexes showed better antitumor activities than their Pt(II) 

counterparts on HepG-2, Bel-7404, NCI-H460 and MGC-803 human cancer cell lines. Interestingly, 

the hybrid compounds showed significant anticancer activity against cisplatin-resistant cell lines. The 

most potent conjugate 6 (Fig. 5) exhibited activity against SK-OV-3 and A549 cancer cell lines with 

a lower resistance index than cisplatin. In vivo studies showed that conjugate 6 potently inhibited 

tumor growth in a NCI-H460 xenograft mouse model (Huang et al., 2017a). Based on the same 

hypothesis, Novohradsky et al., designed Pt(IV) prodrugs by conjugating oxaliplatin with the histone 

deacetylase (HDAC) inhibitor valproic acid (Novohradsky et al., 2014). The conjugates displayed 

activity in both cisplatin-sensitive and -resistant tumor cells, targeting both HDAC and DNA. The 

same group recently reported the activity of cis,cis,trans-[Pt(IV)(NH3)2Cl2(OA)2] 



14 
 

[Pt(IV)dioctanoate], a Pt(IV) derivative of cisplatin that contains two octanoate units appended to the 

axial positions of a six-coordinate Pt(IV) center (7, Fig. 5) (Novohradsky et al., 2017). This derivative 

exhibited high cytotoxic activity, with IC50 values that were approximately two orders of magnitude 

lower than those of the cisplatin and Pt(IV) derivatives with biologically inactive axial ligands. 

Importantly, the conjugate overcame cisplatin resistance and exhibited promising antitumor activity 

in vivo. 

 Hu et al., reported the covalent conjugation of a platinum(IV) moiety to tamoxifen, an 

estrogen receptor (ER) modulator, as an approach to selectively enhance platinum concentration in 

estrogen receptor-positive breast cancers, and to reverse their tamoxifen resistance (8, Fig. 5) (Hu et 

al., 2018). The conjugate not only exhibited potent cytotoxicity against breast cancer cells, but also 

reversed tamoxifen resistance of TamR-MCF-7 cancer cells. The authors also demonstrated that the 

ER ligand portion of these conjugates played a targeting role in ERpositive tumors and enhanced the 

uptake of platinum via an ER-mediated pathway. 

 Platinum-based drugs have also been conjugated to tyrosine kinase inhibitors (TKIs) with the 

aim of circumventing TKI resistance, which is predominately mediated by the emergence of 

secondary mutations in oncogenic kinases (9, Fig. 5) (Wei et al., 2016). The hybrids maintained the 

same specificity towards the kinases as the parent TKI. Notably, these hybrids were remarkably less 

affected by TKI resistance, and this was presumably due to the unique structure and the observed 

dual mechanisms of anticancer activity (kinase inhibition and DNA damage). The hybrids were found 

to escape drug efflux and accumulated in the brain of BALB/c mice more than the original TKI.  

 Cincinelli et al., have developed hybrid agents by combining a diaminedichloro-platinum (II) 

complex and camptothecin (CPT) derivatives (Cincinelli et al., 2013). These dual compounds showed 

growth inhibitory activity against a panel of human cancer cell lines, with potency that was 

comparable to that of topotecan and, in general, superior to that of cisplatin. Resistance indices were 

observed to be reduced for hybrid compounds, compared to cisplatin and topotecan, in several human 
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cancer cell lines. Interestingly, the most active derivative 10 (Fig. 5) was able to overcome cisplatin 

resistance in the osteosarcoma U2OS/Pt cell line. This hybrid compound exhibited in vivo activity, 

against a human H460 tumor xenograft, that is superior to that of cisplatin. The same group also 

designed dual-acting molecules that contained a CPT scaffold linked to the active fragment of the 

HDAC and aminopeptidase A inhibitor psammaplin A (Cincinelli et al., 2018; Shim et al., 2004). 

Compound 11 (Fig. 5) displayed anti-proliferative activity, in the nanomolar range, on a series of 

human solid and hematologic cell lines. Notably, the hybrid appeared not to be affected by the 

presence of P-gp, as the IC50 against the A2780 cell line was comparable to the IC50 against the 

resistant A2780-Dox cell line. 

 Podophyllotoxin-NSAID (non-steroidal anti-inflammatory drug) conjugates have been 

synthesized by Zhang and coworkers (Zhang et al., 2017a). The most potent conjugate 12 displayed 

selective cytotoxicity against 5-Fluorouracil-resistant Bel-7402/5-FU cells with an IC50 value in the 

nanomolar range. In addition, all conjugates induced apoptosis, disrupted the microtubule network 

and showed anti-migratory activity in Bel-7402/5-FU cells. Finally, the compounds modulated MDR-

related proteins, and ERK1/2, STAT3 and AKT signaling in Bel- 7402/5-FU cells.  

A series of methotrexate (MTX)-diosgenin conjugates has been designed and synthesized to 

enhance the passive internalization of the antifolate MTX into transport-resistant cells (Cai et al., 

2016). The inhibitory effects of these conjugates on dihydrofolate reductase (DHFR) and their anti-

proliferation behavior against a transport-resistant breast cancer cell line, MDA-MB-231, were 

investigated. All of the synthesized conjugates retained the ability to inhibit DHFR after diosgenin 

substitution. The MTX conjugates were much more potent against MTX-resistant MDA-MB-231 

cells than MTX. Conjugate 13, which contained a disulfide bond, exhibited the most potent anti-

proliferative activity and DHFR inhibitory effect (IC50 = 4.1 M and 17.2 nM, respectively). 

Figure 5. Representative structures of hybrid compounds.  
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Zhang et al., have prepared compound 14 (Fig. 6), a microtubule and heat-shock protein 90 

(Hsp90) dual inhibitor (Zhang et al., 2013). The authors demonstrated that 14 was not a P-gp 

substrate. This is noteworthy as many microtubule targeting agents (MTAs) and Hsp90 inhibitors are 

substrates of P-gp. Interestingly, compound 14 showed similar growth inhibitory activity in P-gp-

overexpressing cancer cells and their parental cells. The compound also inhibited tumor growth in a 

human drug resistant non-small cell lung cancer (NSCLC) xenograft model with the same efficacy 

as in the parental model, without displaying untoward toxicity in normal tissues (Zhang et al., 2014).  

 Mistry et al., have described compound 15 as an inhibitor of both topoisomerases I and II 

(Mistry et al., 2002). This revealed that the compound was more potent in inhibiting the growth of 

human chronic myeloid leukemia cell line K562 than the references, etoposide and CPT. Moreover, 

compound 15 exhibited activities against human colon and small cell lung cancer (SCLC) xenografts, 

MDR cancer cells that overexpress P-gp as well as in tumor cells with lower topoisomerase II 

expression (Di Nicolantonio et al., 2002). 

 Topoisomerase inhibitors are frequently used in combination with MTAs. However, the use 

of MTAs (Skok et al., 2019) or topoisomerase inhibitors frequently leads to the development of drug 

resistance. Compound 16 (Fig. 6) was developed by Yi et al., to target both microtubules and 

topoisomerase II (Yi et al., 2015). The compound inhibited microtubule polymerization by binding 

to the colchicine binding site, thus disrupting spindle assembly and subsequently leading to mitotic 

arrest. It also inhibited topoisomerase II and caused DNA double-strand breaks. Interestingly, 

compound 16 showed the same efficiency in drug resistant cancer cells as in their sensitive 

counterparts. 

 Another dual microtubule and topoisomerase II inhibitor has been reported by Podolski-Renic 

and coworkers (17, Fig. 6) (Podolski-Renic et al., 2017). The dual compound maintained activity in 

resistant cancer cells that displayed P-gp overexpression, and induced microtubule depolymerization 
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and apoptosis. Importantly, compound 17 was able to suppress P-gp activity in MDR cancer cell lines 

by decreasing the activity of P-gp in a dose-dependent manner, without inducing P-gp expression. 

Compound 18 (Fig. 6) was rationally designed to simultaneously inhibit HDAC and 

phosphatidylinositol 3-kinase (PI3K). It is currently in clinical development in patients with 

lymphoma or multiple myeloma and advanced solid tumors. To and Fu (To and Fu, 2018) investigated 

the potentiation effect of compound 18 on Pt drugs in drug resistant cancer cells. ABCC2 (MRP2) 

stably-transfected HEK293 cells, and two pairs of parental and Pt-resistant cancer cell lines were used 

to evaluate the reversal of drug resistance. The authors reported a synergistic combination of 

compound 18 with cisplatin, in cisplatin-resistant cancer cells. In Pt-resistant cancer cells, compound 

18 apparently circumvented drug resistance via inhibition of ABCC2 ATPase activity and inhibition 

of DNA repair. In the presence of 18, the cellular accumulation of Pt drugs and formation of DNA-

Pt adducts were found to be increased, whereas the expression levels of ABCC2 and ERCC1 were 

inhibited in Pt-resistant cells. 

 Zhang et al., have synthesized a series of curcumin-BTP (benzo[b]thiophene 1, 1-dioxide) 

hybrids as STAT3 inhibitors with the potential to induce ROS production (Zhang et al., 2017b). The 

authors hypothesized that a combination of STAT3 inhibition and “oxidation therapy” may overcome 

MDR. The most potent, compound 19 (Fig. 6), showed potent and selective anticancer activity against 

MCF-7 and MCF-7/DOX cells and displayed a weak cytotoxic effect on normal MCF-10A breast 

epithelial cells. Notably, the compound also inhibited STAT3-mediated P-gp expression in MCF-

7/DOX cells. In vivo experiments showed a significant reduction in the volume of human implanted 

breast cancer xenografts in mice at a dose of 10 mg/kg, with low toxicity. 

 

Figure 6. Structures of dual inhibitors obtained based on the structural features of inhibitors 

of known biological targets. 

3.2. Multitarget compounds modulating MDR efflux pumps. 
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The group of multitarget compounds that can potentially modulate MDR efflux pumps is 

mainly comprised of TKIs. Unfortunately, the development of acquired resistance significantly limits 

the use of TKI in anticancer treatment (Leonetti et al., 2019; Yaghmaie and Yeung 2019; Gotink et 

al., 2011; Miller 1990). Resistance to TKIs is also caused by the overexpression of ABC transporters, 

particularly P-gp. Since TKIs interfere with ATP-binding, it can be expected that TKIs may also 

inhibit the activity of ABC transporters. Indeed, it has been demonstrated that some TKIs act as ABC 

transporter inhibitors by either suppressing their activity or their expression. A large number of TKIs 

are currently in different phases of preclinical or clinical trials thanks to their ability to modulate P-

gp activity. The list of these TKIs is constantly growing, which serves to highlight their role in 

overcoming resistance in tumor cells. Here, we will describe some examples of the inhibitory 

interaction of clinically relevant TKIs with P-gp. 

 Imatinib (20, Fig. 7) is a first-generation inhibitor of the Bcr-Abl tyrosine kinase which also acts 

as a P-gp efflux inhibitor. This TKI completely or partially reversed MDR to various P-gp substrates 

(Chen et al., 2010; Dohse et al., 2010; Mukai et al., 2003), downregulated ABCB1 gene and P-gp 

protein expression and directly interacted with P-gp, producing similar effects to the P-gp inhibitor 

verapamil (Sims et al., 2013; Chen et al., 2010). Nilotinib, a second-generation inhibitor of Bcr-Abl, 

is a more potent inhibitor of P-gp activity than imatinib (Dohse et al., 2010; Mlejnek et al., 2017; 

Villar et al., 2012). A third-generation inhibitor, ponatinib, was able to enhance the cellular 

accumulation of P-gp substrates in P-gp-overexpressing leukemic cells and thus decrease P-gp 

expression (Sen et al., 2012). 

Gefitinib (21, Fig. 7), the first approved epidermal growth factor receptor (EGFR) TKI for 

cancer treatment, reversed MDR when combined with various P-gp substrates (Leggas et al., 2006; 

Wang et al., 2017). It directly interacts with P-gp, inhibiting its efflux function, and potentiates the 

cytotoxicity of various P-gp substrates (Shi et al., 2007; Layney et al., 2012). The second-generation 



19 
 

inhibitor lapatinib is the most effective P-gp inhibitor of all the EGFR inhibitors (Dai et al., 2008; 

Dunne et al., 2011). 

Sorafenib (22, Fig. 7), a vascular endothelial growth factor receptor (VEGFR) inhibitor, 

decreased ABCB1 gene expression as well as P-gp protein expression (Huang et al., 2015a; 

Hoffmann et al., 2010) and inhibited P-gp efflux activity (Eum et al., 2013).  

One of the dual inhibitors with the potential to modulate the MDR efflux pump is a series of 

conjugates that bear a 1,2,3,4-tetrahydroisoquinoline motif (recurrent in several selective P-gp 

inhibitors) that is linked to substituted 7-hydroxy-2H-chromen- 2-ones (coumarins). The compounds 

have been assayed in MDCK cells that stably overexpress P-gp and MRP1 (Rullo et al., 2019). A 

number of potent and selective P-gp inhibitors were identified, and the most potent compound (23, 

Fig. 7) exhibited nanomolar inhibitory potency (IC50 = 70 nM). Molecular docking calculations that 

were carried out on a human Pgp structural homology model contributed to the gaining of insights 

into the ligands' binding modes. Some compounds in the series, reversed resistance and thereby 

restored DOX cytotoxicity when co-administered in MDCK-MDR1 cells with the drug. 

Kim and coworkers have designed quercetin conjugates, with a glutamic acid moiety attached 

at the 7-O position via a non-hydrolysable linker, to reverse cancer MDR via inhibition of P-gp-

mediated drug efflux (24, Fig. 7). Interestingly, although the compounds displayed considerably 

higher MDR reversal activity than quercetin, they were not, however, as effective as Pgp-inhibitors 

as verapamil (Kim et al., 2017a). 

 

Figure 7. Structures of dual-targeting anticancer agents modulating MDR efflux pump. 

 

Nanocarrier-mediated transport and the controlled release of both anticancer drugs and P-gp 

modulators is a promising and novel strategy that can be used to circumvent MDR, and is currently 



20 
 

being explored (Bar-Zeev et al., 2017; Bar-Zeev et al., 2016; Livney and Assaraf 2013; Shapira et 

al., 2011). 

This approach offers a number of potential benefits. Firstly, the pharmacokinetics will be 

governed by the nanoparticle or polymer carrier. Another consequence of the co-administration is the 

fact that NPs allow the drug to exploit the EPR effect, which can increase selective delivery to cancer 

cells. Finally, there are advantages at the cellular level: NPs are usually internalized by cells via 

endocytosis and thus present in endosomes and lysosomes. This compartmentalization prevents rapid 

efflux and also allows the drug to be released in closer proximity to the target and further away from 

the membrane-bound P-gp efflux transporter. This is particularly attractive for cancer therapeutics as 

a number of chemotherapeutics act on targets located in the nucleus. Various reports have described 

the use of polymer- or nanoparticle-based delivery strategies in MDR reversal. 

Patil and coworkers (Patil et al., 2009) have investigated the simultaneous and targeted delivery 

of PTX and a P-gp modulator, tariquidar, using poly(D,L-lactide-co-glycolide) NPs to overcome 

tumor drug resistance. The NPs were surface functionalized with biotin for active tumor targeting. 

NPs that encapsulated both PTX and tariquidar showed significantly higher in vitro cytotoxicity than 

NPs with PTX alone. In vivo studies performed in a mouse model harboring a drug resistant tumor 

confirmed the in vitro results. Treatment with biotin-functionalized NPs that encapsulated both 

paclitaxel and tariquidar showed considerably higher tumor-growth inhibition at a PTX dose that was 

ineffective in the absence of tariquidar. A similar approach to the co-delivery of tariquidar and PTX 

into tumor cells, using long-circulating liposomes, has also been reported (Patel et al., 2011). The 

simultaneous delivery of this P-gp inhibitor along with PTX by functionalized liposomes, resulted in 

greater cytotoxicity in SKOV-3TR cells at a PTX dose that was ineffective in the absence of 

tariquidar. 

An analogous approach has recently been followed by Zhang and colleagues (Zhang et al., 

2017). In this study, an iRGD-mediated lipid-polymer hybrid nanosystem (LPN) was designed to co-
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deliver PTX and the P-gp inhibitor tetrandrine (TET), in a temporal drug release manner, to overcome 

MDR in ovarian cancer. PTX was first conjugated to a poly (lactic-co-glycolic acid) polymer via 

disulfide linkages to serve as the core of the LPN. Subsequently, TET was loaded into the LPN via 

nanoprecipitation and a self-assembly process. Primarily, the incorporation of the iRGD peptide onto 

the LPN resulted in greater cancer cell targeting and penetration effects. After integrin receptor-

mediated endocytosis, the loaded TET was spontaneously and rapidly released to inhibit P-gp. PTX, 

which was conjugated to the polymeric core, was then redox-sensitively released into the cytoplasm 

via the reduction of the disulfide bonds (glutathione) and accumulated in the cells. Due to the 

enhanced cellular uptake and P-gp suppression mediated by TET, a significantly more PTX 

accumulated in A2780/PTX cells treated with PTX+TET/iRGD LPNs than with either the free drugs 

or non-iRGD modified LPNs. PTX+TET/iRGD LPNs presented the highest cytotoxicity against 

A2780/PTX cells and effectively promoted ROS production, enhanced apoptosis and cell-cycle 

arrest. 

Subr et al., investigated the effect of a series of N-(2-hydroxypropyl)methacrylamide 

copolymers (PHPMA) that bear a P-gp inhibitor, DOX or both, on the viability and the proliferation 

of the murine monocytic leukemia cell line P388 and its DOX-resistant subline P388/MDR (Subr et 

al., 2014). Several oxoacid analogues of the ABC-transporter inhibitors, reversin 121, reversin 205 

and ritonavir oxoacid esters, were synthesized and conjugated to P(HPMA). Whereas the DOX-

PHPMA conjugate failed to show any cytotoxicity against MDR cells, the copolymers that 

incorporated both the P-gp inhibitor and DOX were found to be effective toward MDR cells. In 

particular, the cytostatic activity of the conjugate P-Ahx-NH-N=MeOHe-R121(Dox), which contains 

DOX and the P-gp inhibitor MeOHe-R121, both bound via hydrazone bonds to the carrier, was almost 

30-fold higher than that of the P-Ahx-NH-N=Dox conjugate toward the P388/MDR cells in vitro. A 

similar result was observed for P-Ahx-NH-N=MeOHe-RIT(Dox), which exhibited an activity that 

was almost 10-fold higher than that of P-Ahx-NH-N=Dox. 
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In a more recent study, Battistella and Klok capitalized on the findings of Subr et al., and have 

reported dual PHPMA conjugates that carry DOX and the 3rd generation P-gp inhibitor, zosuquidar 

(Zos) (Battistella and Klock 2017). A maximal P-gp inhibition and enhancement of DOX cytotoxicity 

in cancer cells was achieved using two orthogonally cleavable linkers. DOX was connected to the 

polymer backbone via a lysosomally degradable GFLG peptide linker, whereas the P-gp inhibitor 

was attached via a hydrazone linker designed to be cleaved in endosomes, thereby increasing the 

cytosolic concentration of the inhibitor in proximity to the P-gp transporter. It was demonstrated that 

the incorporation of both DOX and Zos in a single polymer carrier enhanced P-gp inhibition 

compared to a control PHPMA conjugate containing only DOX. At a DOX concentration of 10 μM, 

treatment of MDR A2780 ADR cells with PHPMA-DOX or PHPMA-DOX-Zos resulted in 8- and 

10-fold higher accumulation of DOX, respectively, compared to the free DOX. These results 

confirmed that attaching the two drugs onto the polymer backbone via orthogonally cleavable linkers 

enhanced P-gp inhibition, compared to the PHPMA-Dox conjugate, and led to DOX cytotoxicity that 

is comparable to that observed against drug sensitive A2780 cells. In vivo applications have yet to be 

reported. 

 

4. Combination of anticancer agents with nitric oxide (NO)-donors to circumvent drug 

resistance  

4.1. NO and resistance reversal 

Nitric oxide (NO) is a gaseous endogenous messenger that is practically ubiquitous in 

mammalian tissues and cells. It is a product of the conversion of L-arginine into L-citrulline catalyzed 

by the enzyme NO-synthase (NOS). Three isoforms of NOS are currently known: eNOS, nNOS and 

iNOS. The first two are constitutive isoenzymes which, under physiological conditions, produce NO 

for short periods of time (seconds to minutes), giving rise to low NO concentrations (pM-nM) that 

regulate protective and physiological functions in the cardiovascular and central/peripheral nervous 
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systems (Kerwin et al., 1994; Kerwin et al., 1995). The third isoform is an inducible isoform that 

produces NO for long periods (hours to days) and gives rise to high levels of NO (M). The NO 

produced by iNOS is one of the final effectors of the immune response (Kerwin et al., 1994; Kerwin 

et al., 1995). In this system, it is produced not only by stimulated macrophages, but also by other 

genuine immune-system cells and cells involved in immune reactions (Bogdan 2001). 

The role of NO is not limited to maintaining physiological homeostasis, as it has important 

functions in an extensive number of different diseases, including cancer (Gross and Wolin,1995). It 

has been shown that low NO concentrations induce cancer cell proliferation, survival, resistance, 

metastasis, and enhancement of angiogenesis, while high concentrations (M) reduce cancer 

progression via several mechanisms, including the induction of apoptosis, resistance reversal, 

inhibition of metastasis formation, and repression of angiogenesis. Other factors, besides 

concentration, can influence the effects of NO on tumor growth including the duration of NO 

exposure and cellular sensitivity (Ridnour et al., 2006; Fukumura et al., 2006). 

The toxic effects of NO can be direct or indirect. Direct effects are related to the capacity of 

NO to react with the metals present in some biomolecules that are essential for cellular life (e.g. iron-

sulfur centers of proteins and enzymes containing iron) blocking their functions. Indirect effects are 

quite complex and are related to the capacity of NO to react with O2 or O2
-., producing reactive 

nitrogen species (RNS) that can oxidize, nitrate and nitrosate a variety of biological targets, altering 

their functions (Wink and Mitchell, 1998). Peroxynitrite (ONOO-) is a highly toxic RNS. It is formed 

from a reaction between NO and O2
-., and is a potent oxidant and nitrating agent. In the physiological 

environment, it can generate OH. and NO2
. radicals, which are two strongly oxidant and hydroxylating 

/nitrating agents (Ferrer-Sueta et al., 2018). 

The properties of NO have been exploited in anticancer therapy, in particular, as there is 

evidence that it plays a role in overcoming resistance. As mentioned above, several resistance 

mechanisms have been described, and increased drug efflux mediated by ABC transporters, is one of 
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the most commonly studied. In 2005, Riganti et al., first reported that NO reverses drug resistance in 

colon cancer cells via the nitration of ABC efflux transporters, which results in the inhibition of their 

activity and an increased accumulation of the anticancer drug in MDR cells (Riganti et al., 2005). 

The inhibition of ATPase activity by NO has been confirmed in other tumor cell lines, such as, 

recently, in ovarian cancer cells (Sinha et al., 2018). 

Another mechanism of resistance is drug inactivation. For example, cisplatin can be conjugated 

to glutathione (GSH) and the drug-GSH conjugate is then extruded from cells by dedicated efflux 

transporters (Amable 2016). It has been reported that NO can deplete GSH, thus reducing cisplatin 

inactivation (Bratasz et al., 2006). 

Cancer resistance to DNA-targeting drugs can emerge as a result of DNA-repair proteins; NO 

can induce chemosensitization because it induces the nitrosation and denaturation of several proteins 

that are involved in DNA repair, thus increasing drug cytotoxicity (Kim et al., 2017b). Furthermore, 

NO also regulates the chemosensitivity of cancer cells by nitrosylating, and therefore inhibiting, the 

NF-kB pathway (Huerta-Yepez et al., 2013). 

4.2 NO-donors 

The difficulties of handling NO, due to its gaseous nature and reactivity, have led to the 

development of a number of pro-drugs, namely products that are able to release NO under 

physiological conditions. These products are collectively called NO-donors (NODs). This subject has 

gained extensive attention with a number of publications (Wang et al., 2002; Grank and Grigor’ev, 

2002; Huerta et al., 2008; Wang et al., 2005). Classical NODs are generally classified according to 

their structure. NO-formation from these products can be enzymatic or non-enzymatic. In the latter 

case, NO release can be spontaneous or mediated by co-factors, for example thiols, heat or light. The 

use of NODs as NO substitutes in biological applications presents some limitations, the principle of 

which being the difficult spatial/temporal control of NO release. The perturbation of the physiological 

values of parameters, such as pH and ionic strength, the formation of toxic side products following 
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the NO-release reaction, half-life and possible enzymatic mechanisms are all examples of aspects that 

must be taken into account when selecting the appropriate NOD. Organic nitrates, nitrosothiols, metal 

nitrosyl complexes, N-diazeniumdiolates and furoxan derivatives are the most commonly used NO-

donors in MDR studies (Fig. 8). 

Organic nitrates (RONO2) are esters of alcohols, the most important of which is glyceryl 

trinitrate (GTN), commonly known as nitroglycerin (Fig. 8). These products can release NO under 

the action of sulfhydryl groups or enzymatic activation, giving rise to the related alcohols. 

Glutathione-S-transferase, cytochrome P-450, the membrane-bound enzymes of vascular smooth 

muscle cells, xanthine oxidoreductase and mitochondrial aldehyde dehydrogenase (mtALDH) are 

enzymes that are involved in this release. In particular, mtALDH seems to be the key enzyme. 

Nitrosothiols (RSNO) are generally unstable products that release NO spontaneously and form 

the corresponding thiyl radicals, which dimerize to give the related disulfide. Heat, UV light and 

some catalysts that include metal ions, copper in particular, accelerate this decomposition. Two 

relatively stable products, S-nitroso- N-acetylpenicillamine (SNAP) and S-nitrosoglutathione 

(GSNO), are the most frequently used in biochemical studies (Fig. 8). 

Metal nitrosyl complexes (M-NO) derive from the interaction of NO with metal centers, in 

particular iron, which is the principal target for NO bioregulatory functions. These products are 

thermodynamically stable and kinetically labile species. Sodium nitroprusside (SNP) (Fig. 9), an iron-

based nitrosyl compound, is the most important member of this class, is used in clinical practice in 

cases of acute hypertension and largely employed as an NO donor in biological studies. SNP releases 

NO under the action of heat, light, thiols and also enzymatically in vivo. The reduction and subsequent 

decomposition of SNP give rise to cyanide ion formation (a maximum of 5 equivalents of CN- per 

mole) and this is the reason for the high cellular toxicity of the product. 

N-Diazeniumdiolates (NONOates) (Fig. 8) are the most popular sources of NO to be used in 

biochemical studies. They are obtained in a reaction of one mole of secondary amines or polyamines 



26 
 

with two moles of NO in basic media. Their salts are stable solids and, in neutral or acid buffers, 

regenerate the parent products. NONOates display half-lives that range from seconds to hours, 

depending on their structures, and therefore, their use enables good temporal control of NO release. 

Examples of important members of this class are reported in Fig. 8. NONOates react with 

nucleophiles giving stable covalent O2-derivatives, which behave as pro-drugs as they can be 

enzymatically or metabolically transformed to the parent compounds. JS-K (Fig. 9), the prototype of 

this class, reacts with GSH and other nucleophiles to produce the related NONOate. 

Furoxans (Fig. 8) are a class of heterocyclic compounds that can either release NO 

spontaneously or under the action of thiol cofactors, depending on their structure. Along with the 

production of NO, nitrite, nitrate and S-nitrosothiols have been also observed. Generally speaking, 

the presence of electron-withdrawing groups on the ring, in particular at the 3-position, increases the 

rate and amount of NO production. The exact mechanism of NO release is unknown and only 

speculative hypotheses have been proposed. In the reaction with thiols in the pH range of 5-9, the 

extent of NO formation increased with pH and the rates correlate with the pKa of the thiol used. This 

suggests a mechanism in which the nucleophilic attack of the thiolate anion at the furoxan ring is 

followed by ring opening and NO release. 

3,3-Dinitroazetidine, which bears a 1-bromoacetyl group on the azetidine nitrogen (RRx-001) 

(Fig. 8), is a recently discovered, potent anti-tumor agent that is able to release NO. It is capable of 

reacting via bromoacetyl and induce the depletion of GSH and oxidative stress in other thiols, and 

this could be one of the reasons for its anti-tumor properties. It rapidly penetrates red blood cells 

where it selectively binds to the β-Cys93 residue of hemoglobin. This binding increases the ability of 

hemoglobin to produce, under hypoxic conditions, NO from nitrite, which is one of RRx-001’s 

metabolites (Cabrales et al., 2016; Scicinsky et al., 2015). 

Interest in photo NO-donors (NOPDs), products that are able to release NO under the action of 

light, is currently growing. Light can be considered a powerful and minimally invasive microsyringe 
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for the injection of NO into biological systems. It provides excellent spatial/temporal control as it 

induces NO-release only in the illuminated region, while the timing and dosage of NO release can be 

precisely controlled simply by tuning the duration and intensity of the irradiation. NOPDs must satisfy 

some requirements, including excitation with visible light and the formation of non-toxic side 

photoproducts, if they are to be sustainable for bio-applications. The principal restriction is the limited 

tissue penetration of light with wavelengths <600 nm. This limitation can be overcome by the use of 

the “two-photon excitation” technique (Balzani et al., 2014). In addition, simple derivatives of 

nitrobenzene that bear appropriate substituents at the o-, m -, and p-positions are also an important 

class of NOPDs (Suzuki et al., 2005; Conoci et al., 2006) (Fig. 8). 

 

Figure 8. Structures of NO-donors and the mechanism of NO release from RRx-001 

4.3. NODs in combination with anticancer agents to overcome drug resistance 

A huge number of studies carried out on a variety of cancer cell lines that are resistant to 

common anticancer drugs show that high NO levels can overcome MDR. NO levels obtained from 

500-1000 mM DETA/NO have been found to reverse cisplatinum resistance in tumor cells as well as 

epithelial-to-mesenchymal transition following the downregulation of NF-B/Snail/YY1/ RKIP 

circuitry via numerous mechanisms (Bonavida et al., 2008; Bonavida and Baritaki, 2011). 

The endogenous NO produced at micromolar concentrations by iNOS may also reverse the 

MDR phenotype. Indeed, small Rho GTPases (RhoA, Rac, and Cdc42) play key roles in the 

regulation of tumor growth, migration and response to therapy. It was found that RhoA silencing 

increased the activation of the NF-B pathway, inducing transcription and iNOS activity, leading to 

tyrosine nitration in the MRP3 efflux pump and a decrease in the ATPase activity of P-gp. This 

mechanism induced the accumulation of DOX in both HT29 and HT29-dx colon cancer cells and 

resulted in the overcoming of drug resistance (Doublier et al., 2008; De Boo et al., 2009). 
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Glutathione transferases (GSTs) are enzymes that promote the conjugation of GSH to 

electrophilic xenobiotics. The overexpression of GSTs in tumor cells can induce MDR via two 

mechanisms: the formation of GSH-anticancer drug conjugates and their active efflux via ABC 

transporters, and the inhibition of the mitogen-activated protein kinases pathway (MAPKs) 

(Townsend and Tew, 2003). O2-(2,4-dinitrophenyl)NONOates are stable products that produce the 

related NONOates via reaction with GSH (Shami et al., 2006). JS-K (Fig. 8) is a potent anticancer 

agent that displays high affinity for the GST-π isoform, which is specifically overexpressed in cancer 

cells. This product and its diethyl carbamoyl analogue (CB-3-100, Fig. 8) have been found to reverse 

arsenic and cisplatin resistance in a rat liver cell line (CasE) that shows acquired tolerance to arsenic 

and cisplatin and an overexpression of GSTs (Liu et al., 2004). Other analogues of JS-K have shown 

a capacity to reverse MDR in DOX-resistant MCF-7/ADR cells (Li et al., 2018a) and in 

temozolomide-resistant human U87 glioma cells (Kogias et al., 2012). The anticancer effects of JS-

K have also been confirmed in a human multiple myeloma xenograft mouse model (Kiziltepe et al., 

2007), and in a melanoma mouse model (Huang et al. 2018); in both cases, JS-K was found to slow 

tumor growth and prolong animal survival. 

DOX-resistant MCF-7/Dx human breast cancer cell lines have been treated with 

nitrosoglutathione, leading to a greater increase in protein glutathionylation, which included proteins 

of the histone family, compared to MCF-7 cells, while a reversal in drug resistance was also observed 

(De Luca et al., 2011). By contrast, the same NO-donors have been observed to increase the 

chemoresistance of C6 glioma cells against BCNU. This confirms that the role of NO in 

chemoresistance is dual, depending on the cell line type and NO-source (Yang et al., 2004). 

Tumor multicellular aggregates are more capable of developing resistance to 

chemotherapeutics than simple monolayer cultures. GTN and DETA/NO have also been observed to 

reverse resistance to DOX in a spheroid culture of MDA-MB-231 breast carcinoma cells, and did so 

via a cGMP-dependent mechanism (Muir et al., 2006). 
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DOX resistance in human colon cancer cell line HT29-dx, which overexpresses ABC 

transporters, was reversed in a cGMP-independent manner after incubation with NOS inducers, such 

as a mixture of cytokines, atorvastatin and classical NO-donors, including GSNO, SNAP and SNP. 

This behavior was ascribed to the nitration of the tyrosine residue in the MRP3 efflux transporter and 

the resultant inhibition of this pump protein (Riganti et al., 2005). A series of NO-donor furoxan 

derivatives have been studied for their capacity to inhibit the activity of P-gp and MRP1 in MDCK 

cells that overexpress these efflux transporters. When the compounds were co-administrated with 

DOX, they restored a high degree of antibiotic activity (Fruttero et al., 2010). Two scaffolds that 

contained 3-phenylsulfonylfuroxan (25, Fig. 9) and dinitrooxy NO-donor (26, Fig. 9) moieties have 

been found to increase the cellular accumulation of DOX when co-incubated with this anthracycline 

in MDR HT29-dx colon cancer cells (Chegaev et al., 2011). Furthermore, the dinitrooxy NO-donor 

has also been shown to reverse DOX resistance in vivo in a breast cancer mouse model (Gazzano et 

al., 2018). 

NO that is derived from propylamineNONOate (PAPA/NO) and diethylene triamine nanoate 

(DETA/NO) inhibited the ATPase activity of P-gp in human NCI/Adr cells, hence reversing DOX 

resistance and modifying their resistance to taxol (Sinha et al., 2018). 

A hollow microsphere system that contains the anticancer agent irinotecan (CPT-11) and 

DETA/NO generated NO bubbles that trigger localized drug release and reversed P-gp-mediated 

MDR when injected into an acidic tumor tissue (Chung et al., 2015). 

4.4. Combination of NODs with selected scaffold to overcome MDR 

As part of studies investigating the role of NO in cancer resistance, NO-donors have been 

combined with specific scaffolds of interest as anti-tumor agents. A few examples are listed below.  

A number of compounds have been obtained by combining, via appropriate spacers, the 3-

phenylsulfonylfuroxan moiety with coumarin derivatives, and these have been tested for their anti-
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proliferative activity in sensitive cancer cell lines and three human drug resistant tumor cell lines 

(A2780/CDDP, MDA-MB-231/Gem, and SKOV3/CDDP). Compound 27 emerged as the best 

product. Its IC50 values in drug resistant lines lie in the 62-140 nM range (Liu et al., 2014). The 3-(p-

F-benzyl) analogue 28 induced high cytotoxicity (0.5 to 143 nM) in four human drug resistant cancer 

cell lines (A2780/CDDP, MDA-MB-231/Gem, MCF-7/ ADR, KV-V). Similar behavior, but lower 

potency, has been displayed by compounds bearing a different substitution pattern at the benzyl 

moiety and the related seco-B-ring derivatives (Guo, Y. et al., 2018). Interestingly, compound 28 

displayed markedly improved anti-proliferative activity in the P-gp overexpressing cancer cell lines 

MCF-7/ADR and KB-V, compared to their drug sensitive counterparts. 

A group of substituted tetrahydroisoquinolines (THIQs, 29, Fig. 9), linked to 3-

phenylsulfonylfuroxan by appropriate chains, were synthesized and studied for their cytotoxicity and 

effects in reversing MDR in human erythroleukemia K562/A02 cells. While the products triggered 

moderate cytotoxic effects, some of them elicited more potent reversal activity in this DOX-resistant 

cell line than that of verapamil (Zou et al., 2011). 

Acridonecarboxamide analogues (30, Fig. 9), which are potent Pg-p/ABCG2 pump inhibitors, 

displayed an improved capacity to induce accumulation of DOX in MCF-7/dx cell lines that 

overexpress P-gp when they were substituted with suitable NO-donor nitrooxyalkyl substituents at 

the N10-position (Rajendra Prasad et al., 2016). 

The NO-donor 3-phenylsulfonylfuroxan moiety gave rise to products that reversed DOX 

resistance in MCF-7/Adr and K562/A02 cell lines when conjugated to bifendate (DDB) through 

appropriate spacers. In particular, compound 31 (Fig. 9) was able to increase the concentration of 

DOX in these cells by inhibiting Pg-p overexpression and blocking its efflux activity (Tang et al., 

2012; Ren et al. 2016). Subsequently, it has been found that similar products (compound 32, Fig. 9) 

inhibited the proliferation of the leukemic K562/A02 cells by targeting several pathways that underlie 

drug resistance and cell proliferation (Gu et al., 2017). 
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Hybrid products that are combinations of anti-tumor derivatives of oleanoic acid (OA), a natural 

triterpenoid, and 3-phenylsulfonylfuroxan elicit potent antitumor cytotoxicity and reversed drug 

resistance in HCT-8/5-FU colon cancer cells. Compound 33 (Fig. 9), one of the most active in the 

series, induced the nitration of P-gp, MRP1 and BCRP, as well as inhibiting HIF-1α, Stat3, AKT and 

ERK signaling (Ai et al., 2015). Nitrooxyalkyl esters of podophyllotoxin have shown a marked 

potentiation of its anti-proliferative activity against MDR leukemic cells K562/VCR and K562/ADR, 

compared to the parent compound. An in-depth study of compound 34 (Fig. 9) indicated that, in these 

cells, the product blocked the G2 phase, inhibited CDK1 and CDK2 expression and mTOR/STAT3 

signaling, induced apoptosis and suppressed P-gp expression (Zhang et al., 2018). Cucurbitacin-

inspired estrone analogues (35 and 36, Fig. 9) that bear a NO-releasing 4-phenyl-3-

methylenoxyfuroxan moiety at the 3-position, exhibited highly potent activity against the erlotinib-

resistant HepG2 cells(HepG2-R) (Abou-Salim et al., 2019; Li et al., 2019b). 

In view of the great potential of NO in cancer therapy, some important NODs have been 

covalently attached to currently used anti-tumor drugs in order to develop new, more potent, 

anticancer agents. DOX, platinum complexes and 5-FU have been the most frequently used drugs, 

but occasionally other anti-tumor chemotherapeutic agents have also been considered (Huang et al., 

2017b). A positive synergistic effect between NO and the considered drugs has been found in a variety 

of cancer cell lines. Only a few of these studies were specifically aimed at overcoming MDR. In the 

majority of these studies, DOX was used as the reference anticancer drug. A series of products have 

been developed in which this anthracycline was combined, via an ester bridge that is susceptible to 

metabolic cleavage, with NO-donor nitrooxy, furoxan and NONOate substructures (Chegaev et al., 

2011; Gazzano et al., 2016). Some of the prepared compounds were more cytotoxic than DOX in 

colon cancer cells, HT29-dx. One compound (26, Fig. 9) emerged as the most promising product. It 

exhibited a faster uptake and interesting extranuclear distribution, being preferentially localized in 

mitochondria. In these loci, compound 26 nitrated and inhibited the mitochondria-associated ABC 
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transporters, decreased the flux through the tricarboxylic acid cycle and the activity of complex 1, 

lowered ATP synthesis, induced oxidative and nitrosative stress, and elicited the release of 

cytochrome C and the activation of caspases 9 and 3 in DOX-resistant cells (Riganti et al., 2013). 

Liposomal formulations of the product were developed and appeared to be effective tools, in vitro 

and in vivo, against DOX-resistant breast and ovarian cells/tumors (Pedrini et al., 2014; Gazzano et 

al., 2018). In a preclinical mouse model of resistant breast tumor, the liposomal formulation 

significantly reduced tumor growth (Gazzano et al., 2018). 

Interestingly, the light-induced release of NO from compound 37 (Fig. 9), in which DOX is 

attached via a spacer with a nitroaniline photodonor, has been shown to increase toxicity towards the 

human melanoma M14 cellular line following nitration of critical tyrosine residues in ABC 

transporters that were overexpressed by these cells (Chegaev et al., 2017). Finally, a light-responsive 

NO donor has been tested in vivo in HeLa tumor-bearing nude mice; passive targeting to the tumor 

site and significant tumor reduction were observed (Wang et al., 2018a). 

Hypoxia-induced drug resistance appears to result, at least in part, from the suppression of 

endogenous NO production (Matthews et al., 2001; Yasuda, 2008). It has therefore been suggested 

that NODs may help to overcome this modality of chemoresistance. Studies carried out on human 

breast carcinoma (MDA-MB-231) and mouse melanoma (B16F10) cells that were incubated with the 

NOS inhibitor L-NMMA after exposure to hypoxia (1% O2), showed that the cells increased their 

resistance to DOX and 5-FU. This effect was reversed by GTN and DETA/NO (Matthews et al., 

2001). The hypoxia-induced resistance to DOX that was observed in human PC-3 and mouse 

TRAMP-C2 prostatic adenocarcinoma cells after incubation under 0.5% O2 was inhibited by low 

concentrations of GTN (Frederiksen et al., 2003). Low concentrations of GTN were also effective in 

vivo; it was shown that GTN increased DOX chemosensitivity in human prostate cancer xenografts 

(Frederiksen et al., 2003). Research carried out on MDA-MB-231 cells (Postovit et al., 2002; Postovit 

et al., 2004) has shown that hypoxia increases tumor cell invasiveness and metastasis enhancement 
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by inhibiting cGMP-dependent NO-signaling. A series of hybrids, a 3-phenylsulfonylfuroxan moiety 

together with 16,17-pyrazo-annulated steroids, has been synthesized and underwent anti-proliferation 

evaluation in cancer cell lines. Compound 38 (Fig. 9) was found to be active at a concentration of 1 

M on a tamoxifen-resistant breast cancer cell line (HCC1806) (Huang et al., 2015b). Interestingly, 

a study has shown that SNP significantly reduced cellular injury, triggered in C6 glioma cells by 

chemical hypoxia, via the activation of Na+-Ca2+ exchange (Amoroso et al., 2000). 

 

Figure 9. Representative structures of NO-donor hybrid compounds. 

 

5. Acridine derivatives as an example of the pharmaco-modulation of a key scaffold in 

overcoming drug resistance 

Acridines are compounds that have been known ever since the 19th century. The most important 

agent in this class is amsacrine (m-AMSA, Fig. 10). Amsacrine, and its less active isomer o-AMSA, 

intercalate into DNA via the acridine ring in a dynamic process (Liu et al., 2007, Jangir et al., 2012). 

The acridine derivatives that were synthesized after amsacrine, showed a variety of mechanisms of 

action, including inhibition of both topoisomerases I and II, HDACs, PK, proteasome, Akt1 kinase 

and PARP-1. One of these derivatives, (N-[2-(dimethylamino)ethyl]acridine-4-carboxamide, DACA, 

Fig. 10) was found to be highly active against a number of cancer types (Lewis lung murine 

carcinoma, murine colon carcinoma and human melanoma) (Atwel et al., 1987). DACA is devoid of 

P-gp-mediated MDR and this may be due to its lipophilic character (Atwel et al., 1987), which allows 

uptake by tumor. DACA is also devoid of topoisomerase II-mediated resistance, which may be 

explained by the lack of an anilino side chain and the fact that its interactions with topoisomerase II 

are different from those of amsacrine (Finlay et al., 1993). The discovery of amsacrine and DACA 

was the beginning of an intensive research into the use of acridines as anticancer agents in order to 
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develop new molecules with improved anticancer activity (including those that are active towards 

MDR cell lines) and less untoward toxicity. 

In recent decades, several strategies of modifying amsacrine structure have resulted in 

compounds with activity towards drug resistant tumor cell lines. These modifications include either 

relatively minor changes in the amsacrine side chain (e.g. change of type and position of substituents 

on the anilino ring) or major changes in its structure (e.g. addition of new heterocyclic rings to the 

acridine moiety and changes in its side chain). 

Finlay and co-workers have tested the activity of a group of 9-anilinoacridine derivatives (38, 

Fig. 10), which are structurally similar to amsacrine, towards five MDR human leukemia cell sublines 

(JL/AMSA, JL/DOX, JB/AMSA, JB/DOX and K/AMSA) (Finlay et al., 1990). After an analysis of 

the activities towards the JL/AMSA and JB/AMSA cell lines, it was concluded that the resistance 

factors of compounds 38 were significantly reduced (5-10-fold) compared to amsacrine. 

Stefańska et al., have synthesized a group of pyridazinoacridines (39, Fig. 10) for use as 

potential active agents towards resistant tumors (Stefańska et al., 2005). Antitumor activity was tested 

in leukemia cell lines (sensitive murine L1210 and human K562 and HL-60, as well as resistant 

sublines K562/DX (MDR-type resistance), HL-60/VINC (MDR-type resistance) and HL-60/DX 

(MRP-type resistance). Significant improvements in cytotoxicity against resistant tumor cell lines 

(K562/DX, HL-60/VINC and HL-60/DX) were observed when compared to DOX and mitoxantrone. 

Bontemps-Gracz et al., have tested two groups of acridines with fused heterocyclic rings 

(pyrazoloacridines – 40 and pyrazolopyrimidoacridines – 41, Fig. 10) in several human leukemia cell 

lines, including those with P-gp-dependent MDR (K562/DX and HL60/VINC) and MRP-1 dependent 

resistance (HL60/DX), as well as in the human SCLC-sensitive cell line GLC4/DX with MRP/LRP 

dependent resistance (multidrug resistance-associated protein dependent resistance/lung resistance 

related protein dependent resistance) (Bontemps-Gracz et al., 2002). The results confirmed their 

earlier hypothesis as to the importance of the heterocyclic ring, fused to the acridine ring, in 
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overcoming MDR. Additionally, the location and type of substituents on this condensed ring 

significantly influenced cytotoxic activity and the ability to overcome MDR. 

A series of bis- (42, Fig. 10) and tetra-(43, Fig. 10) acridine derivatives have been tested on 

sensitive (HL-60) and MDR (HL-60/MX2) cancer cell lines (Vispe et al., 2007). The presence of the 

acridine moiety in their structure led the authors to evaluate the DNA intercalation and topoisomerase 

II inhibition properties of these compounds. The inhibition of topoisomerase II-mediated DNA 

decatenation was observed, but the evaluation of cytotoxicity towards cancer cell lines that are either 

sensitive or resistant to reference topoisomerase inhibitors indicated that topoisomerase was not the 

only target of these compounds. The authors revealed that some of these molecules also acted as 

proteasome inhibitors, meaning that they are potent multi-target ligands. 

Murahari and coworkers have recently synthesized hybrid molecules that contain the acridone 

ring and substituted pyrimidine (44, 45, Fig. 10) (Murahari et al., 2017). Their aim was to obtain 

compounds with the ability to exert anticancer activity by interacting with multiple targets. 

Absorption titrations with Calf Thymus DNA and gel electrophoresis showed that these molecules 

displayed anticancer activity that was partly due to DNA intercalation, while the results of a Western 

blot analysis with Akt kinase showed that they also possessed an ability to inhibit Akt kinase activity 

and induce apoptosis. Immunoblot analysis of the ABCC1 (MRP1) transporter in MDA-MB-231 

cells, which had been treated with the selected compounds, showed reduced ABCC1 (MRP1) 

expression. Several other groups of acridine-ring containing hybrid molecules, such as those that 

exert activity against Src and MEK kinases (Cui et al., 2016), topoisomerase II and PARP-1 (Yuan 

et al., 2017) as well as topoisomerase II and HDACs (Chen et al., 2018b), have recently been 

synthesized. These dual targeting molecules possess anticancer activity and, as discussed above, have 

the potential to act towards resistant cancer cell lines. However, this potential has yet to be 

experimentally confirmed. 

 

Figure 10. Structures of amsacrine and its derivatives/analogs. 
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6. Other approaches to overcome MDR: glycoconjugation and polymer conjugation 

One of the hallmarks of cancer is the so-called Warburg Effect (Warburg, 1956), based on the 

observation that, among other features, tumors consume larger amounts of glucose than normal cells. 

This is caused by the overexpression, in human cancers, of several glycolytic enzymes and the insulin-

independent glucose transporter (GLUT1) (Altenberg and Greulich, 2004; Medina and Owen, 2002). 

This unusually elevated flow of carbohydrates towards tumors has garnered much attention from the 

scientific research community, leading to the design and development of several sugar-based targeted 

drug delivery systems (Calvaresi and Hergenrother, 2013; Hossain and Andreana, 2019). The final 

glycosidase-mediated cleavage step of the sugar-containing prodrug is required for active antitumor 

drug release. The glycoconjugated antitumor agents gained increased selectivity and became less 

toxic to normal cells than the parent aglycon agents (de Freitas Junior and Morgado-Diaz, 2016; 

Johansson et al., 2010; Sztandera et al., 2019). More recently, this strategy has also been aimed at 

counteracting MDR tumors (Vogus et al., 2017; Wu et al., 2016). Mitragotri and co-workers have 

developed a delivery vehicle for DOX and gemcitabine (GEM) based on hyaluronic acid (HA) 

conjugation that optimizes the synergistic effect of drug release and is able to treat triple-negative 

breast cancer (Vogus et al., 2017). Gao and co-workers have conjugated a (trans-R,R-cyclohexane-

1,2-diamine)-2-chloromalonato-platinum(II) complex with galactose (Gal-Pt) and tested it on several 

tumor cell lines (Wu et al., 2016), including human colon cancer cells (HT29), which are resistant to 

both oxaliplatin and docetaxel (El Khoury et al., 2016). The Gal-Pt conjugate showed superior 

cytotoxic potency in HT29 cells compared to a non-cytotoxic dose of oxaliplatin. The important role 

of galactose was confirmed when a reduction in the cytotoxic potency of Gal-Pt was induced by 

quercetin, an inhibitor of glucose transporters (Wu et al., 2016). 

The covalent conjugation of a low molecular weight drug to a hydrophilic polymeric carrier 

can lead to an increased therapeutic effect by altering drug pharmacokinetics at the cellular level and 
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by restricting its endocytosis uptake. Polymer conjugation of conventional chemotherapeutic drugs 

is a promising approach in cancer treatment offering more effective treatment, improved drug 

delivery, side effect reduction and decreased drug resistance (Seifu and Nath, 2019). There are many 

strategies for the development of these polymeric pro-drugs, and they mainly differ in the type of 

polymer used, which can be simple, such as dextran, cyclodextrin, N-(2-hydroxypropyl) 

methacrylamide, poly-L-glutamic acid, polyethylene glycol, etc. (Greco and Vicent, 2008), or more 

complex, such as peptides (Vrettos et al., 2018), dendrimers (Dib et al., 2019; Muniswamy et al., 

2019), proteins (Muniswamy et al., 2019; Sasaki et al., 2019), gold NPs (Chen et al., 2016; Eissa et 

al., 2014), quantum dots (Bae and Chung, 2014; Javanbakht and Namazi, 2018) and antibodies 

(Akkapeddi et al., 2019; Birrer et al., 2019). Several of these strategies have already been successfully 

used to circumvent MDR (Huang et al., 2016; Kumbhar et al., 2018; Soe et al., 2019). Manjappa and 

coworkers have devised an integrative approach to improving the in vitro cytotoxicity of the antifolate 

methotrexate (MTX) against the human carcinoma cell lines KB and MDR KBV, significantly 

reducing its in vivo toxicity (Kumbhar et al., 2018). The authors combined gluconic acid conjugation 

with an encapsulation step into micelles composed of D-α-tocopheryl poly (ethylene glycol) 1000 

succinate, as an MDR reversing copolymer, and poloxamer 407 (P-407) to deliver the MTX prodrug 

to tumor tissues via the EPR effect. The final drug delivery system showed a remarkable IC50 value 

of 5.4 μg/mL, compared to free MTX (85.2 μg/mL), in the MDR KBv cell line. Cao and coworkers 

have developed a dual nano-drug delivery system, in which DOX is conjugated to a xyloglucan 

polymer to form stable NPs that were able to encapsulate PTX (Huang et al., 2016). This conjugate 

system showed synergism between PTX and DOX and a significant effect on the IC50 values of the 

MDR cell line HepG2/DR (0.4 μmol/l for the conjugate vs 6.4/15.8 μmol/l for free PTX/DOX). Kim 

and coworkers have used transferrin conjugated to poloxamer 407 and 123 for the targeted delivery 

of DOX to the MDA-MB-231(R) cell line (Soe et al., 2019). The authors reported the in vivo 

accumulation of NPs in DOX-resistant tumor cells, and the accelerated and controlled release of DOX 

from the conjugate, which resulted in higher cytotoxicity via induction of apoptosis. 
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An alternative strategy to target tumor cells and circumvent some of the drug resistance 

mechanisms is based on the use of non-covalently bound carriers as encapsulating agents, forming 

NPs (Wang et al., 2019b). They should be stable, non-toxic, biocompatible, biodegradable and non-

immunogenic. They should also entrap lipophilic chemotherapeutic drugs, enhance their membrane 

permeability and cellular retention, and allow a controlled release within the body. There are several 

types of carriers in this class that have shown promising cancer-therapy results, including micelles 

and liposomes. pH-sensitive micelle systems have also been developed (Tian et al., 2018; Wang et 

al., 2018) and they have shown superior MDR reversal performance against DOX-resistant tumor 

cells when coupled with polyhistidine or folate polymers (Cao et al., 2019; Li et al., 2015). Liposomes 

can effectively encapsulate chemotherapeutic drugs and be coupled with innovative strategies to 

surmount MDR. Ying and coworkers have prepared novel PTX/hydroxypropyl-β-cyclodextrin 

complex-loaded liposomes that exhibited pH-sensitive PTX release, potent cytotoxicity, and 

enhanced intracellular accumulation in the PTX-resistant human lung adenocarcinoma (A549/T) cell 

line (Shen et al., 2019). Talegaonkar and coworkers have prepared hyaluronic acid-coated liposomes 

that contained imatinib mesylate, and showed that they were 3.5-fold more cytotoxic to the Colo-320 

cell line (a CD-44 expressing MDR cancer cell line) than the drug solution (Negi et al., 2019). Du 

and coworkers have devised a rather complex liposome-based drug-delivery system that co-delivered 

PTX and sorafenib, which is a chemosensitizing agent (Lei et al., 2019). The liposome was based on 

D-α-tocopheryl polyethylene glycol 1000 succinate and a polylysine-deoxycholic acid copolymer 

coated with hyaluronic acid. The multifunctional liposome was able to significantly enhance drug 

accumulation in resistant MCF-7/MDR cells by inhibiting P-gp efflux, and effectively inhibited the 

growth of tumor cells by 78.5%. 

The TME contributes to the intrinsic chemoresistance of malignant cancers (Assaraf et al., 2019; 

Taylor et al., 2015; Wang et al., 2019b). A key factor of the TME is its acidosis; the pH values in the 

extracellular milieu of the TME range from 6.0 to 6.8, with the stronger acidity being present in the 

more aggressive tumors (Logozzi et al., 2019). The low extracellular pH is a hallmark of the TME 
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and can be a target for cancer therapeutics that are either aimed at reducing the acidity of the TME or 

use drug carriers that are specifically activated by acidic pH (Cao et al., 2019; Tian et al., 2018; Wang 

et al., 2018; Zhou et al., 2017). The first approach has been successfully implemented using proton 

pump inhibitors, such as lansoprazole, to help sensitize cancer cells to conventional anti-tumor drugs 

and obtain positive synergistic effects that can overcome resistance both in vitro and in vivo (Azzarito 

et al., 2015; Taylor et al., 2015). 

However, taking advantage of the acidity of the TME and attempts to actively increase 

antitumor drug concentration in tumor cells, beyond the EPR effect, has been quite challenging (Park 

et al., 2019). pH(Low) Insertion Peptide (pHLIP) is a family of peptides that insert into cell 

membranes in a pH-dependent manner (Wyatt et al., 2018). The pHLIP pKa of insertion can be easily 

fine-tuned (Vila-Vicosa et al., 2018; Weerakkody et al., 2013). It inserts into the membrane in a 

unidirectional manner, leaving its arginine-containing N-terminus on the extracellular side, and can 

be conjugated with a variety of agents for both diagnostic and therapeutic applications (Burns et al., 

2015; Cheng et al., 2015; Demoin et al., 2016; Moshnikova et al., 2013; Reshetnyak et al., 2011; 

Wijesinghe et al., 2011; Zhang et al., 2019), including strategies to surmount MDR (Song et al., 2016; 

Zhang et al., 2017d). 

 

7. Considerations used for in silico prediction of drug uptake, bioavailability and ADMET 

in MDR tumor cells  

7.1 In silico modeling of MDR transporters and their ligands. 

A great deal of efforts has been invested in the search for potent and specific inhibitors of the 

efflux activity of the MDR pumps in recent years. Several generations of MDR modulators have been 

developed, starting with well-known drugs, such as verapamil, cyclosporine A, quinidine, and ending 

with novel 3rd generation molecules, such as zosuquidar, tariquidar and elacridar (Muller et al., 2008; 
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Pajeva and Wiese, 2009; Pajeva et al., 2013a). Effective approaches towards the improvement of 

conventional antitumor drugs and the development of novel drugs should consider a drug’s ability to 

interact with the transporter proteins to possibly avoid efflux. A key element in the search for these 

improved drugs is an understanding of the way they interact with the transporter proteins. In silico 

methods that, in general, rely on the structure-activity relationships of the drugs and the structure-

function relationships of their target proteins can play an essential role in these efforts. Structure-

based design methods that utilize 3D structural data on the proteins and their complexes with the 

ligands are the most effective of these in silico methods as they provide a prediction of the interaction 

between the transport proteins and their substrates and inhibitors. 

P-gp is perhaps the most commonly studied ABC transporter and hundreds of biologically 

active compounds have been reported to act as its substrates and/or inhibitors. The DrugBank 

database (v.5.1.4) currently contains records of more than 380 drugs that interact with P-gp, including 

some of the most recent novel drugs approved by FDA (e.g. entrectinib for the treatment of non-small 

cell lung cancer), alpelisib (breast cancer), erdafitinib (advanced or metastatic bladder cancer) and 

gilteritinib (acute myeloid leukemia). 

The 3D structure of human P-gp has recently been resolved, which opens new perspectives for 

antitumor drug development. Figure 11 illustrates the 3D structure of P-gp in complex with PTX 

(Alam et al., 2019). The analysis of the binding pose and the interactions of this antitumor drug with 

the surrounding amino acid residues provides insight into the binding mode of the compound and 

could direct possible rational modifications towards preventing its action as a P-gp substrate. 

 

Figure 11. 3D structure of human P-gp in complex with the antitumor drug taxol (PDB ID 6QEX): 

A. General view of the protein. The protein backbone is rendered as a line ribbon; B. Close view of 

the taxol binding site with the 27 amino acids in the protein cavity surrounding the ligand. The binding 

site of taxol is outlined by its molecular surface, colored in light gray. 
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The huge protein cavity (Fig. 11A) can accommodate more than one drug, which has been 

demonstrated using a 3D structural complex of P-gp with two molecules of the inhibitor zosuquidar 

(PDB ID 6QEE) (Alam et al., 2019). Moreover, this 3D structure shows that the same drug can have 

more than one binding site and multiple binding modes. Thus, it becomes evident that the availability 

of reliable information on the potential binding sites of substrates is a key aspect for the successful in 

silico structure-based modeling of the interactions of antitumor drugs with transporter proteins. 

Utilizing experimental data from various pharmacological tests and assays of P-gp substrates and 

inhibitors, including rhodamine 123 (R-site), Hoechst33342 (H-site), prazocin (regulatory site), 

tariquidar and elacridar, a number of binding sites have been proposed for use in 3D homology models 

of the human P-gp (Pajeva et al., 2013a; Pajeva et al., 2013b). However, except for PTX (mentioned 

above), there is currently no direct experimental evidence for the possible binding sites of most 

currently used antitumor agents. Nevertheless, 3D structural data have been used to direct the in silico 

docking of new P-gp inhibitors, as demonstrated in a recently published study on novel Hsp90 

inhibitors (Dinić et al., 2019). The analysis of the binding sites of PTX and zosuquidar molecules 

revealed that their sites partially overlap, suggesting that zosuquidar is involved in a competitive 

inhibitory mechanism. However, the most recent findings reveal that the transport control of the 

protein is more complex in nature as it is related to the different roles played by the transport 

substrates and inhibitors in the structural symmetry of the nucleotide binding sites (Dastvan et al., 

2019). The same study proposes a model of P-gp transport and inhibition that includes basal, 

substrate-coupled and inhibition cycles. The conformational flexibility of the protein raises the 

question of how relevant the protein conformation used for in silico studies is to drug binding. The 

transport protein undergoes huge conformational changes during the transport cycle as it passes 

through various states over the translocation pathway between the transmembrane and nucleotide-

binding domains. This movement changes the 3D arrangement of the residues surrounding the 

binding sites in the protein cavity used for in silico modeling. The problem has been addressed in a 

molecular dynamics study of P-gp that demonstrates the need for a critical evaluation of the results 
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obtained by simulations of large flexible proteins such as P-gp and other MDR transporters (Condic-

Jurkik et al., 2018). 

Recently, the 3D structure of the human BCRP (ABCG2) has also been resolved in a complex 

with two antigen-binding fragments of the human-specific, inhibitory antibody 5D3 (Taylor et al., 

2017). The X-ray structure of BCRP, similarly to P-gp, has been used for the docking of potential 

MDR modulators of BCRP efflux (Ji et al., 2019). In a recent study, selonsertib (GS-4997), a selective 

ASK1 inhibitor with potential antineoplastic activity, has been shown to sensitize ABCB1 

overexpressing cells to DOX and PTX, and ABCG2 overexpressing t cells displaying resistance to 

mitoxantrone and topotecan. Docking studies revealed the possible existence of specific hydrogen-

bonding and π-π stacking interactions in the drug binding site of BCRP and outline possible ways by 

which other ligand structures could be rationally modified. 

In summary, in silico structure-based methods show great potential as a means to evaluate the 

ability of antineoplastic drugs to interact with MDR efflux transporters. The recently resolved X-ray 

structure of human P-gp is especially appropriate for such studies. Despite limitations in the 

knowledge on the possible binding sites of the most commonly used antitumor drugs, the 3D structure 

of both P-gp and BCRP could help delineate their drug interaction sites. In addition, the knowledge 

that has been gained on the PTX site of Pgp could be used to identify possible differences in the 

interactions of next-generation taxenes that have already been synthesized and tested for their 

anticancer activity (Ojima et al., 2018). To be successful, such simulation studies should be carefully 

designed, should be supported with reliable experimental data and subsequently confirmed by 

pharmacological assays. 

7.2 In silico ADMET profiling 

Many cytotoxic agents cross biomembranes and enter cells via passive diffusion (Tredan et al., 

2007). A deep understanding of this process at the molecular level is therefore essential to efficiently 

optimize drug uptake, bioavailability and the ADMET of MDR tumor cells (Di et al., 2011; Dickson 
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et al., 2017; Lipinski et al., 1997). Several approaches have been devised to estimate passive 

membrane permeation rates, including computational methods, with special emphasis on those based 

on the solubility-diffusion models (Diamond and Katz, 1974; Dickson et al., 2017; Hummer, 2005; 

Marrink and Berendsen, 1994). Over the years, this approach has evolved towards correctly 

describing the inhomogeneous nature of a lipid bilayer, resulting in more complex methods that rely 

on molecular dynamics simulations, umbrella sampling and the potential of mean force calculations 

(Dickson et al., 2017; Vila-Vicosa et al., 2017; Yue et al., 2019). The permeability coefficients in 

many of these methods are derived using the inhomogeneous solubility-diffusion model (ISDM) 

(Dickson et al., 2017; Hummer, 2005; Vila-Vicosa et al., 2017). 

The acidity of the TME can also alter the membrane permeability coefficients of many 

anticancer drugs. It is common to find antitumor drugs bearing Lewis base groups with pKa values 

typically ranging from 7.5 to 9.5 (Gotink et al., 2011; Zhitomirsky and Assaraf, 2017, 2015; 

Zhitomirsky et al., 2018), that are able to shift their pKa to lower values when interacting with lipid 

bilayers (Assaraf et al., 2019; Teixeira et al., 2016). This mechanism allows these compounds to 

transiently deprotonate, cross the hydrophobic barrier of the membrane and re-protonate to facilitate 

the final membrane-leaving step. This (de)protonation-concerted mechanism of passive diffusion 

explains why the acidic TME is, in fact, a drug resistance mechanism and an important barrier to 

many anticancer agents entering tumor cells (Assaraf et al., 2019). Computational methods that aim 

to correctly describe the pH-dependent membrane permeabilities of antitumor drugs will probably 

need to couple the ISDM calculations to Constant-pH MD methods (Radak et al., 2017; Teixeira et 

al., 2016; Yue et al., 2019). 
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