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Abstract.

Nuclear matrix elements (NMEs) for double beta decays (DBDs) are crucial for

studying the neutrino mass and other neutrino properties beyond the standard electro-

weak model by measuring neutrino-less DBDs. The spin-dipole (SD) Jπ=2− NME is

one of the major components associated with the DBD NME. The SD NME for 76Ge

was derived for the first time by using the (3He,t) charge-exchange reactions (CERs)

on 74,76Ge at RCNP Osaka. The obtained SD NME for the 76Ge→76As ground-state

transition is |M−
EXP (SD)|=1.5×10−3 in natural units. This is smaller by a coefficient

around k ≈ 0.2 with respect to the quasi-particle (QP) model NME |M−
QP (SD)|. The

impact of the reduced (quenched) SD NME on DBD neutrino studies is discussed.
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Neutrino-less double beta decay (DBD) is a very sensitive and realistic probe for

studying neutrino properties such as the Majorana nature, the absolute mass scale and

the mass hierarchy, the lepton-sector CP phase and other properties beyond the standard

electro-weak model (SM). The nuclear matrix element (NME) is a key element for

extracting the effective neutrino mass and other properties of particle -physics interest

beyond the SM from the experimental DBD rate, if the decay is observed. It is even

crucial for the design of the DBD detector since the detector sensitivity depends very

much on the NME (one needs to build an order of magnitude larger detector if the

NME is smaller by a factor 2). These subjects are discussed in review articles and

references therein [1, 2, 3, 4, 5]. The DBD NMEs are also discussed in DBD reviews

[6, 7, 8, 9, 10, 11, 12, 13] and references therein. The single-β and DBD trasition

operators and their NMEs are as given in [1, 2, 3, 14, 15].

The present letter aims to report for the first time an experimental study of the

spin-dipole (SD) single-β NME M−(SD) for the 76Ge→76As ground-state transition by

means of the (3He,t) charge-exchange reaction (CER). Here the SD NME is one of the

major components associated with the DBD NME, and 76Ge is one of the key DBD

nuclei in DBD experiments [3, 7, 8].

Actually, it is extremely difficult to accurately calculate the DBD NME since the

NME is very sensitive to nucleonic and non-nucleonic correlations and nuclear medium

effects, some of which are effectively incorporated in the effective axial-vector coupling

geffA . Consequently, calculated DBD NMEs strongly depend on nuclear models and nu-

clear parameters to be used for the NME calculation. Accordingly, the evaluated NMEs

scatter over an order of magnitude [3, 9]. Thus experimental inputs are quite important

to help evaluate the DBD NME [2, 3, 7, 9].

The neutrino-less DBD transition of AZX↔A
Z−2X with A being the mass number and

Z being the atomic number is considered. In case of the light Majorana-mass process,

the decay process is expressed schematically as A
ZX↔A

Z−1X↔A
Z−2X, where the virtual

neutrino with the the light mass and the medium momentum of q ≈ 20 - 300 MeV/c is

exchanged in the intermediate nucleus A
Z−1X via the neutrino potential [3, 9].

The neutrino-less DBD NME is associated with the τ−- and τ+- side single-β NMEs,

M−(α) for A
ZX→A

Z−1X and M+(α) for A
Z−1X←A

Z−2X, with τ− and τ+ being the isospin-

lowering and isospin-raising operators and α being the transition mode. The single-β

NMEs associated with the DBD NME are M±(Jπ) with Jπ being the spin-parity of the

intermediate state. The states with Jπ = 0±, 1±, 2± and so on up to J ≈6 are involved.

Among them, M±(2−) plays an important role for the neutrino-less DBD NME, while

M±(1+) does for the two-neutrino DBD NME. The 2− transition, which is mainly due

to the spin dipole (SD) operator as we discuss later, is denoted as SD, while the 1+ one

due to the Gamow-Teller (GT) is denoted as GT.

So far, the single-β M±(GT ) for DBD nuclei have been studied by using single-

β± and EC rates for some DBD nuclei where the ground state is 1+ and the half-life

is measured. CERs on DBD nuclei have been used to measure M±(GT ) for the low-



Spin-dipole nuclear matrix element for the double beta decay of 76Ge by the (3He,t) charge-exchange reaction3

lying GT(1+) states in DBD nuclei, as given in [3]. Recently muon CERs have been

shown to be a useful tool to study the M+(Jπ) in wide energy and momentum ranges

[16, 17, 18, 19]. Experimental studies of the DBD NMEs by using lepton, photon and

nuclear probes are given in recent reviews [3, 2, 20]. The quenching of the axial-vector

coupling gA for the large momentum transfer, which is relevant to the neutrino-less

DBD, is discussed in [21]. The GT response for 116Sn has been studied recently [22].

Double CERs are interesting to study DBD NMEs [23, 24].

The CER cross section is expressed in terms of the nuclear response B(α) as [2, 3]

dσ(α)

dΩ
= C(α)B(α), (1)

B(α) = (2Ji + 1)−1|M(α)|2, (2)

C(α) = K(α, ω)F (α, q, ω)J(α, ω)2, (3)

where K(α, ω) and J(α, ω) are the kinematic factor and the volume integral of the

α mode 3He-n interaction, respectively, for the momentum q and energy ω transfers.

In the present case of the even-even DBD nucleus with the initial state spin Ji=0,

one gets B(α) = |M(α)|2. The kinematic q, ω-dependence of F (α, q, ω) is given by

the DWBA (distorted wave Born approximation) calculation. The CER responses for

α = 0+ → 0+, 1+ and 2− low-lying states in DBD nuclei are discussed in [2, 3, 25, 29].

The high energy-resolution (3He,t) CERs for GT (α=GT) transitions have been

applied extensively for decades at RCNP to study τ−-side GT responses in DBD and

neighboring nuclei, where the GT responses (B(GT )) for the ground states in the mass

region are known from the measured EC/β+ rates. Thus, the coefficient C(GT ) to relate

the GT CER cross-section to the GT response is known experimentally, as discussed in

the reviews [2, 3, 13].

The SD NMEs M±(SD) for DBD nuclei, however, have not been known

experimentally. The ground states in the intermediate nuclei for the DBD nuclei, except
76Ge, are not the SD (2−) state, thus no EC/β+ data are available. In case of 76Ge, the

M+(SD) is known from the β−-decay rate, but the M−(SD) is not known because the

EC rate is too small to be measured accurately.

Recently, SD states in DBD nuclei have been shown to be well excited by the (3He,t)

CERs at RCNP, and the SD cross-sections are compared with the FSQP (Fermi surface

quasi particle) SD responses [25], but the SD NMEs are not derived since the coefficient

C(SD) to relate the CER cross section to the SD response is not known experimentally.

So, in the present work, we select 76Ge, which has been extensively studied in DBD

experiments by using high energy-resolution Ge detectors [26, 27], and we study experi-

mentally the CER cross section for the ground SD state in 74Ge, where the SD response

B(SD) is known from the SD EC rate (f1t value), in order to derive the coefficient

C(SD). Then, using this C(SD) in 74Ge for 76Ge and the cross section measured in the

previous experiment for the SD state in 76Ge [25, 28, 29], we get the response B(SD)
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in 76Ge.

The (3He,t) CER on 74Ge was studied by using the 420 MeV 3He beam provided

by the RCNP ring cyclotron. The beam was transported to the target via the WS beam

line and the out-going triton (t) was momentum-analyzed by using the high energy-

resolution spectrometer GRAND RAIDEN [30]. The experimental details are the same

as those for the previous experiment [28]. The target used is a thin 0.25 mg/cm2 Ge

film enriched to 94 % in 74Ge. The energy resolution of around 70 keV in FWHM was

good enough to separate the 2− ground state from the 1+ and other excited states at

around 200 keV [31].

The measured energy spectrum is shown in Figure 1. The 2− ground state and

the 0+ 6.72 MeV state (isobaric analogue state, IAS) are clearly excited. Note that

the 1+ 0.21 MeV state is well separated from the ground state. The observed angular

distribution for the 2− state shows a typical distribution characteristic of the orbital

angular-momentum transfer ∆L=1 in accordance with the DWBA distribution as shown

in Figure 2.

Here, we consider two modes, α=SD for the 2− ground state and α=F for the 0+

IAS, respectively. The F state is strongly excited in the CER, and is conventionally

used as a reference state with the full strength of B(F ) = N − Z where N and Z are

the neutron and proton numbers of the target nucleus [2, 32, 33].

Then, using the F cross section and the F response as references, the SD cross

section and the SD response are expressed as

dσ(SD)

dσ(F )
= R(SD/F )

B(SD)

B(F )
, R(SD/F ) =

C(SD)

C(F )
, (4)

where dσ(SD) and dσ(F ) are, respectively, the differential cross-section for the SD

transition at θ ≈ 2.3◦ and that for the F (IAS) transition at θ ≈0◦. Note the SD

(∆L=1) and F (∆L=0) cross sections have maximum, respectively, at around 2.3◦ (q ≈
0.3 fm−1) and 0◦ (q ≈ 0 fm−1) in their angular (q) distributions for both 74Ge and 76Ge,

as shown in Figure 2 and Figure 3 in [28], and thus dσ(SD) and dσ(F ) are rather stable,

being insensitive to the momentum transfer (angle), at θ ≈2.3◦ and 0◦, respectively.

R(SD/F ) is the ratio of the SD to F coefficients as given in eq. (4). The ratio of

R(SD/F ) is expressed by a product of the three SD to F ratios of the kinematic fac-

tors of K(α, ω), the distortion factors of F (α, q, ω) and the volume integral squares of

J(α, ω)2 (see eq.(3)). The incident 3He energy is 420 MeV and the out-going t energies

are around 418 MeV and 411 MeV for the SD and F states in both 74Ge and 76Ge. The

momentum transfers for both 74Ge and 76Ge are almost the same, the difference being

0.2 % and 0.005% for the SD and F transitions. Therefore, the kinematic conditions

for the CERs on both nuclei are nearly the same. The present SD transition from the

ground state (0+) to the ground state (2−) is given approximately by the simple well-

bound QP transition of the (1g9/2 quasi-neutron → 1f5/2 quasi-proton) for both 74Ge

and 76Ge, where the neutron and proton binding energies are similar in both 74Ge and
76Ge [25, 34]. Accordingly, the ratios for the three factors should be nearly the same
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Figure 1. The energy spectra of the 74Ge (3He,t)74As reaction. The spectra at θ ≈0-

1◦(red), θ ≈1-2◦ (pink) and θ ≈2-3◦(blue) are overlaid. The GT and F states with

∆L=0 show a peak (red) at the forward angles of θ ≈0-1◦, while the SD ground state

with ∆L=1 shows a large yield (blue) at larger angles of θ ≈2-3◦
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Figure 2. Measured (squares) and DWBA (solid line) angular distributions for the

SD state in the 74Ge (3He,t)74As. The solid line (mainly ∆L=1) includes a small

component of ∆L=3 at the large angles [28].

for both 74Ge and 76Ge, and thus the ratio R(SD/F ) for the two isotopes remains the

same within a few %. Actually, the coefficient C(GT ), which is a kind of the GT unit

cross section, reflects the interaction integral associated with the GT transition and the

value for C(GT ) has been determined experimentally by referring to the coefficient in

the neighboring nuclei as used in the present SD case [2, 3, 35].

The measured SD to F cross section ratio is dσ(SD)/dσ(F ) = 0.0442 ± 0.0031 for

the 74Ge→74As ground state transition. The large error (7%) is mainly a statistical one

since the systematic errors cancel out in the ratio. The SD to F response ratio is derived

by using the B(SD)=2.82±0.34 in units of 10−6 (n.u. natural unit)2 [34] from the EC

rate [31] and the B(F ) = N − Z=10 as B(SD)/B(F )=0.282 ±0.034 in units of 10−6
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(n.u.)2. Then one gets the coefficient ratio as R(SD/F )=0.157 ±0.022 in units of 10−6

(n.u.)2 for 74Ge.

The cross-section ratio is derived as dσ(SD)/dσ(F )= 0.0295±0.0015 for 76Ge from

the CER data on 76Ge [28]. By using this cross-section ratio and the coefficient ratio of

R(SD/F ) for 74Ge one gets the response ratio B(SD)/B(F )=0.188±0.039 in units of

10−6 (n.u.)2 for 76Ge. Here the SD response includes the systematic error of around 15%

due to the small admixture of the spin-octupole contribution to the cross sections for
74,76Ge at θ ≈2.3◦. Then, using the F response of B(F ) = N − Z=12 for 76Ge, the SD

response is derived as B(SD)=2.26 ±0.46 in units of 10−6 (n.u.)2, and the SD NME for
76Ge is obtained as |M−

EXP (SD)|=1.50 ±0.15 in units of 10−3 n.u.. Note that we used

the F cross section at θ ≈0 ◦ where the momentum transfer is around q ≈0.085/fm, and

that the cross section extrapolated to q=0 fm−1 is larger by 7 % for both 74Ge and 76Ge.

This effect cancels out in the present ratio of the C(F ) coefficients for both nuclei. The

obtained SD NME for 76Ge is similar to the NME of 1.68 in units of 10−3 n.u. for 74Ge

[34], but smaller than the value evaluated on the basis of the FSQP [25].

The experimental SD NME for 76Ge derived from the present CER, together with

the ones for the neighboring nuclei derived from EC/β± decay data [34], are all around

|M±
EXP (SD)| ≈ 1.9±0.5 in units of 10−3 n.u., as shown in Figure 3.
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Figure 3. Experimental SD NMEs (squares) for the Ge ground-state to ground-state

transitions, |M±
EXP (SD)| , in units of 10−3 n.u. in the mass region of A=72-78. τ−

and τ+ are for the τ−- and τ+-side NMEs. The errors of the experimental NMEs are

within the size of the squares.

Now we briefly discuss the obtained SD NME in views of the axial-vector NMEs

and DBD NMEs. Since the main component of the present SD transition is the spin-

stretched QP transition of (l+1/2)n ↔ ((l−1)−1/2)p with l=4, the transition operator

in the present case of q ≈ 0.3 fm−1 is given by the first-order SD (i.e. β-decay) one as

T (SD) = gτ±[i1σ × rY1]2, (5)

where τ and σ are the isospin and spin operators, respectively, and g is the interaction

constant [1, 2, 14, 15]. Note that the nuclear radius r (inverse of momentum q) is
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included in M(SD), following the convention of β-γ NMEs, and thus the momentum q

is included in K(SD, ω) [3, 25]. Here we follow the definition of the SD NME obtained

from the SD f1t as given in eq.(3) in [34], which differs from that in [14].

The SD NME for the QP transition is expressed as

M±(SD) = k±M±
QP (SD), (6)

where M±
QP (SD) is the SD NME in the QP model and k± is the re-normalization

coefficient. The QP NMEs scatter around M±
QP (SD)= 10-15 in units of 10−3 n.u. [34].

The experimental SD NMEs are indeed much reduced by the coefficient of k± ≈ 0.2 with

respect to the single QP NMEs [1, 2, 34]. The reduction of the SD NMEs in Ge nuclei

is in accordance with the reductions for the axial-vector β-γ NMEs in medium heavy

nuclei as discussed in [1, 2, 3, 14, 15, 34, 36]. The reduction is considered to be due to

various kinds of nuclear interactions as nucleonic multipole interactions, nucleonic τσ

interactions, non-nucleonic (mesons, isobars) interactions and other interactions, which

are not in the simple QP model. Among them, the strong nucleonic τσ interaction gives

rise to the SD giant resonance at the high excitation region and plays a crucial role

for the reduction of the axial-vector NMEs for low -lying states, as shown by using the

τσ multipole interaction and QRPA (quasi particle random phase approximation) in

[37, 38] and in the reviews [1, 2, 3, 15].

The nucleonic τσ interaction is somehow incorporated in the pn (proton-neutron )

QRPA model [34]. Then, the NME is given as

M±(α) = k±NMM
±
QR(α), (7)

where M±
QR(α) is the pnQRPA model NME and k±NM stands for the re-normalization

(quenching) coefficient due to non-nucleonic interactions and nuclear medium effects,

which are not explicitly included in the pnQRPA model. It is noted that the re-

normalization (quenching) coefficient k±NM is conventionally expressed as geffA /gA where

geffA is the effective axial-weak coupling and gA=1.27 is the coupling for a free nucleon in

unit of the vector coupling gV [1, 3]. The pnQRPA NME for the 74Ge is M−
QR(SD)=4.87

in units of 10−3 n.u. [34], and the re-normalization coefficient is k±NM ≈0.35. This shows

a severe re-normalization (reduction) effect for the SD NME. It is interesing to evaluate

the SD NME for 76Ge by using the pnQRPA.

The neutrino-less DBD NME is expressed by [3, 20]

M0ν = [M0ν(GT ) +M0ν(T )] + (
gV
gA

)2M0ν(F ), (8)

where M0ν(GT ), M0ν(T ) and M0ν(F ) are the axial-vector, tensor and vector DBD-

NMEs, respectively, and gV /gA is the vector coupling in unit of the axial-vector coupling

of gA=1.27. Here g2A for the GT and T NMEs is included in the phase-space factor. The

M0ν(GT ) involves the axial-vector NMEs with 2−, 3+ and others [3].

The axial-vector and tensor DBD-NMEs are considered to be reduced with respect

to the QP and pnQRPA DBD-NMEs by the re-normalization (quenching) coefficients
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of k2 ≈ 0.04 and k2NM ≈ 0.2 with respect to the simple QP and pnQRPA DBD-NMEs,

respectively [3, 20]. Then the DBD NME M0ν may be reduced by the re-normalization

(quenching) coefficient of around 0.3, depending on the relative weight of the vector

NME with respect to the sum of the axial-vector and tensor DBD-NMEs. The DBD

isotope (detector) mass required for a given ν-mass sensitivity is inversely proportional

to (M0ν)4 [3, 7]. Then, the detector mass gets two orders of magnitude more than the

detector mass in case of the pnQRPA DBD-NME without the quenching [3, 20]. The

reduction (quenching) of the DBD NMEs is discussed in [3, 20, 39].

In case of the two-neutrino ββ NMEs at the low momentum of q ≤ a few

MeV/c, the matrix element consists of M−(GT )×M+(GT )/∆ with ∆ being the energy

denominator [4, 7, 8]. Thus, the two-neutrino ββ NMEs are reduced by the coefficient

k ≈ k−×k+ ≈0.04, with k± ≈0.2 being the reduction coefficients for the τ± GT NMEs,

with respect to the QP two-neutrino NME [3, 40, 41].

On the other hand, in case of the neutrino-less DBD, the major components as-

sociated with the DBD-NME are the τ−-side and τ+-side 2− NMEs at the medium

momentum of q=30-100 MeV/c via the neutrino potential. Then, it is worthwhile to

evaluate the neutrino-less DBD-NME by using, for example, such pnQRPA model with

the re-normalization coefficient that reproduces the experimental τ−- and τ+-SD NMEs

for 76Ge. Theoretical pnQRPA calculations on the τ± SD NMEs and DBD-NMEs for
76Ge are under progress to be presented elsewhere.
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