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Persistence of gaps in the interacting anisotropic Hofstadter model
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We consider an interacting version of the Hofstadter model, which in the absence of interactions has a spectrum
given by a Cantor set, provided that the adimensional parameter α is an irrational number. In the anisotropic
situation where the hopping t2 is smaller then t1, we rigorously prove that the nth gap persists in the presence
of interaction, even for interactions much stronger than the gap. We assume a Diophantine property for α and
that t2/t1,U/t1 are positive and smaller than some constant, weakly depending on n. The proof relies on a subtle
interplay of renormalization group arguments combined with number-theoretic properties.
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I. INTRODUCTION

The energy spectrum of noninteracting electrons moving
through magnetic fields in a lattice provides one of the few ex-
ample of fractals in quantum physics. A paradigmatic example
is provided by the Hofstadter model [1,2] describing noninter-
acting fermions hopping on a square lattice with a magnetic
field in the orthogonal direction; one can consider also its
anisotropic generalization where the hopping in one direction
is smaller then the other one. The crucial parameter is α, the
ratio of magnetic flux for the unit cell and the magnetic flux
quantum. If α is rational Bloch theory predicts a finite number
of gaps. In correspondence of the gaps one has an integer Hall
conductivity [2]. If one considers sequences of rationals α

converging to an irrational, more and more gaps open and this
gives an indication that when α is irrational infinitely many
gaps and a fractal spectrum appear. In the noninteracting case,
the properties of the Hofstadter model can be deduced from
the one-dimensional single particle Harper or almost-Mathieu
equation. A huge mathematical effort has been devoted to its
analysis, starting from [3,4] using Kolmogorov-Arnold-Moser
(KAM) methods, and culminating in [5], where the proof that
the spectrum is a Cantor set for any irrational α and any
t ≡ t2/t1 was achieved (with all gaps open [6]).

The interest in the Hofstadter model has been renewed
by recent experiments [7] (see also [8–10]) in which, using
bilayer graphene, periodic structures with lattice periodicity
comparable to the magnetic length have been created and
information on the gap is obtained by longitudinal and Hall
conductivity measurements. Such experiments reveal also the
presence of many body interaction. The natural question is
therefore what is the influence of the interaction on the gaps;
it is rather natural to expect that the gap persists when it is
larger than the interaction, but in the opposite situation, when
the interaction is much stronger than the gap, the interaction
can, in principle, radically alter or close it.

The mathematical techniques developed for the noninter-
acting Hofstader cannot be extended to the interacting model,
as the problem has now infinite degrees of freedom. Most of
the previous studies on interactions in the Hofstadter model
have been done by approximate methods (e.g., of a mean-field

type which effectively reduces the many body effects) [11–15]
or were restricted to very small system sizes. In [16–18]
the anisotropic Hofstadter model was effectively described in
terms of an array of wires, and the continuum limit, where
the difference between the rational or irrational case is lost,
makes possible a bosonization approach. Incommensurability
effects are, however, known to be crucial in the Hofstadter
model. The effect of interaction on one-dimensional fermionic
systems with quasi-periodic potential has been studied in
generalized Aubry-André models in the extended regime in
[19], and in the related case of interacting fermions with a
Fibonacci potential in [20,21]; the interacting Aubry-André
model in the localized regime has been considered in [22,23]
and in a dynamical context in [24–28]. In the one-dimensional
Fibonacci chain, a scenario was indeed suggested in [20,21]
according to which the gaps can be closed by interactions
greater than the gaps (in the attractive case). The equivalence
between Hofstadter and one-dimensional models is lost in
the presence of interactions, but such results suggest that
the effect of interaction can indeed qualitatively change the
behavior.

To get information on the persistence of the nth gap in the
interacting Hofstatder model we compute the large distance
behavior of the thermodynamical correlations for values of
the chemical potential corresponding to the gaps of the non-
interacting case. The persistence of the gaps is signaled by
the presence of a faster than any power large distance decay.
We consider the anisotropic situation where the hopping t2 in
one direction is smaller then the other one, and we write the
correlations as series in t2/t1,U/t1.

A very important point is that we get a convergent expan-
sion. One has to face, even in the noninteracting case, with a
small divisor problem, caused by processes involving the large
exchange of momentum such that, due to Umklapp, connect
with arbitrary precision the Fermi points. Small divisors make
the problem nonperturbative; physical properties cannot be
understood by lowest order analysis, but are encoded in the
divergence or convergence of the whole perturbative series.
Typical examples of small divisor problems in classical me-
chanics are the Birkhoff series for prime integrals of the
perturbed integrable Hamiltonian system, which are typically
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diverging (Poincaré theorem), or the series for KAM tori
which are instead convergent [29]. Our approach combines
nonperturbative renormalization group (RG) methods with
techniques coming from the analysis of Lindstedt series for
KAM tori.

The main difficulty relies in the fact that incommensura-
bility produces an infinite set of effective interactions almost
connecting the Fermi points, and the persistence or not of the
nth gap is connected to their relevance or irrelevance in the
RG sense. We have a condition of smallness of the parameters,
depending on n, but no condition on the relative size between
the bare gap and U so that we get information not only when
the gap is larger than the interaction, but also in the opposite
situation, when the interaction is much stronger than the gap.

The rest of this paper is organized as follows. In Sec. II
we introduce the model and we present the main result.
In Sec. III we recall the main features of the nointeracting
case. In Sec. IV we analyze the Euclidean correlations of the
interacting model by rigorous renormalization group methods.
In Sec. V we show the convergence of the RG iteration, using
a Diophantine property for α. Finally in Sec. VI the main
conclusions are presented.

II. INTERACTING HOFSTADTER MODEL

We consider an interacting version of the Hofstadter model
in which spinful fermions in a square lattice are subject
to a vector potential �A = (−By, 0, 0) and interact through a
Hubbard interaction.

The Hamiltonian of the (anisotropic) Hofstadter-Hubbard
model is H = H0 + V with H0 =∑

�r,σ=↑,↓

{
− t1

2

(
a+
�r+�e1,σ

e−i e
h̄c Byaa−

�r,σ + a+
�r,σ ei e

h̄c Byaa−
�r+�e1,σ

)
− t2

2

(
a+
�r+�e2,σ

a−
�r,σ + a+

�r,σ a−
�r+�e2,σ

) + μa+
�r,σ a−

�r,σ

}
(1)

where a±
�r,σ are fermionic operators, �e1 = (1, 0), �e2 = (0, 1), σ

is the spin, �r = (x, y) = a(nx, ny) are points in a square lattice
with step a (pbc in the x direction and Direchelet in direction
y, nx, ny integers), t1, t2 are the hopping parameters, μ is the
chemical potential. We set e

h̄c Bya = 2παny and α = ea2

hc B is
adimensional and α = φ/φ0 where φ0 = hc/e is the magnetic
flux quantum and Ba2 is the magnetic flux for the unit cell;
equivalently, 2πα is the squared ratio of the lattice step and
the magnetic length

√
h̄c
eB . The interaction is

V = U
∑

�r
a+
�r,↑a−

�r,↑a+
�r,↓a−

�r,↓ (2)

with U > 0. In the t2 = 0 case, the multiwire limit, the sys-
tem reduces to uncoupled one-dimensional interacting chains
parametrized by y. We choose a chemical potential such that
|μ| < t1 and we define μ = t1 cos pF where pF = akF is the
Fermi momentum.

The Hamiltonian can be written as H0 = ∑
k H0(k); the

eigenfunctions of H0(k) are Slater determinants of the eigen-
functions of the (single-particle) one-dimensional almost-
Mathieu or Aubry-André equation, parametrized by k

−t2
(
uny−1 + uny+1

) − 2t1 cos(ak − 2παny)uny = Euny . (3)

The existence of quasi-Floquet states was proven by KAM
methods in [3,4] assuming that α is Diophantine, that is there
exists C0, τ such that

||2sπα|| � C0|s|−τ , s �= 0, (4)

||.|| being the norm on the one-dimensional 2π torus, k
integer. Any irrational except a zero measure set verifies such
a property for some C0, τ . In particular in [4] the existence of
gaps was proved in correspondence of rotation number nπα

for small t1/t2. After several developments, it was proved that
the spectrum is a Cantor set [5] for any irrational α and any
t1, t2. The above properties say that the gaps of H0 are located
in correspondence of Fermi momenta of the form

pF = nπα mod 2π, (5)

with n integer; equivalently (5) can be written as N/N0 =
nα + s, with N the number if fermions, N0 the maximal
number of fermions, and s integer.

When the interaction is present the system is not reducible
to a one-dimensional one. Information on the spectrum can
be obtained by the large distance decay of imaginary time
correlations. If a±

r̄,σ = eHτ a±
�r,σ e−Hτ with r = (τ, x, y) = (r, y)

the zero temperature 2-point is S(r, r′) = 〈a−
r,σ a+

r′,σ 〉 with

〈O〉 = limβ→∞,L→∞ Tre−βH T O/Tre−βH , T is time ordering
and S(r, 0) ≡ S(r). Let us fix the Fermi level in a gap and
switch on the interaction.

As the interaction changes the Fermi momentum, we
choose μ = t1 cos pF + νy and we choose νy so that the Fermi
momentum is equal to (5). Our main result is the following:

Theorem. Assume pF verifying (5) and α verifying (4);
there exists ε0 such that for a suitable νy and assuming 0 <

t2/t1,U/t1 < ε0 then, for any N ,

|S(r)| � 1

(a−1|r|)1+η

CN

1 + (�̄a−1|y| + σna−1|r|)N
, (6)

with η = bU 2 + O(U 3), b > 0, �̄ = | log t2/t1| and, if σ 0
n is

σn at U = 0

σn = σ 0
n + RU |RU | � (t2/t1)nCnU

2 (7)

and 3−n(t2/t1)n � σ 0
n � Cn(t2/t1)n.

The faster than any power decay in the imaginary time
signals the presence of a gap in the spectrum of the interacting
Hofstadter model; the decay rate σn provides an estimate of
the gap. The interacting gap is equal to the noninteracting one
σ 0

n plus a correction RU expressed by a convergent expansion
in U, t . From (7) we see that interacting and bare gap have
the same size not only when U 
 σ 0

n but also in the opposite
situation U � σ 0

n (it is sufficient to require 3CnU 2 < 1).
Therefore gaps persist even in a situation when the interaction
U is much larger than the gap, so excluding a scenario like
the one in [20,21]. The result of persistence of gaps is proved
in the anisotropic case and assuming t2,U small; our estimate
on ε0 can be obtained by collecting all the constants in §5,
like (41), and it depends on n,C0, τ . It is likely that such
dependence is spurious and due to the use of KAM methods
for getting convergence; it is indeed known to be absent in the
U = 0 case [5] but the methods used there cannot be extended
to infinitely many particles (even extensions to 2 particles are
hard [30]). The dependence we got in ε0 on n is weak and the
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result proves that there is a region of parameters for which,
for fixed t2,U , the gap with n not too large persists even
if U is much larger than the gap; convergence allows us to
exclude nonperturbative effects, quite possible in presence of
small divisors. The analysis is based on a multiscale expansion
expressing quantities in terms of running coupling constants.
There are two phenomena apparently spoiling convergence
producing factorials in the bounds; one is the small divisor
problem and the other are the presence of fermionic loops in
the presence of interaction again producing factorials. Con-
vergence is achieved using determinant bounds for fermionic
expectations (what eliminates the k! present in Feynman graph
expansions at order k which spoil convergence) and using
techniques coming from the analysis of Lindstedt KAM series
to deal with small divisors. One has also to control the flow of
the effective coupling, and the partial asymptotic freedom is
what makes necessary the condition U > 0. The condition of
smallness of t2,U is due to the fact that we expand in t2,U .
One cannot, however, rely on results on the noninteracting
case (expanding only in U and not on t2,U as we do) as the
theory is not analytically close to the noninteracting one, due
to the presence of anomalous exponents, see (6) and Luttinger
liquid behavior in the t2 = 0 case; an expansion in U would
be convergent only for U smalller than O(log σ 0

n ).

III. SMALL DIVISORS AND FEYNMAN GRAPHS

We set a = 1 and t1 = 1 for definiteness (the dependence
on costants is easily determined by dimensional considera-
tions) and we set t2 = t . The persistence of gaps is studied
expanding the imaginary-time correlations around the point
U = t = 0, where the system reduces to a collection of inde-
pendent fermionic wires labeled by y with dispersion relation
cos(k − 2παy); the Fermi points are given by, if pF = πnF α

py
± = ±pF + 2παy (8)

if μ = cos pF . The 2-point function S(r, r′)|t=U=0 ≡ ḡ(r, r′)
is

ḡ(r, r′) = δy,y′

∫
dkeik(r−r′ )ĝy(k), (9)

where k = (k0, k)

ĝy(k) = 1

−ik0 + cos(k − 2παy) − cos pF
. (10)

We call gy(r − r′) the Fourier transform of ĝy(k). It is conve-
nient to write the imaginary-time correlations in terms of the
following Grassmann integral

eW (φ) =
∫

P(dψ )e−T −V −N−(ψ,φ) (11)

with

T =
∑
y,σ

∫
dr(ψ+

r,y+1,σ ψ−
r,y,σ + ψ+

r,y−1,σ ψ−
r,y,σ ),

V = U
∑
y,σ

∫
drψ+

r,y,↑ψ−
r,y,↑ψ+

r,y,↓ψ−
r,y,↓,

N =
∑
y,σ

νy

∫
drψ+

r,y,σ ψ−
r,y,σ , (12)

FIG. 1. A graph with four external lines of order t3U 3 and
another with two external lines of order t4.

and (ψ, φ) = ∑
y,σ

∫
dr(ψ+

r,y,σ φ−
r,y,σ + ψ−

r,y,σ φ+
r,y,σ ). The

term N has been introduced writing the chemical potential
as μ = cos pF + νy, to take into account its possible
renormalization due to the interaction.

One can write the correlation in terms of Feynman dia-
grams with propagators (9); examples are in Fig. 1. The small
divisors problem is clearly exhibited already in the noninter-
acting case U = 0. Consider a chain graph contributing to the
effective potential

∫
dkφ+

y,kW2(k)φ−
y′,k with y′ = y + ∑n

s=1 εs,
εk = ±1 and

W2(k) = t n
n−1∏
s=1

1

−ik0 + cos(k − 2πα(y + εs)) − cos pF
.

(13)

The infrared divergences in many body perturbation theory
are associated with the repetitions of propagators with the
same momentum k′ measured from the Fermi points, that
is k = k′ + py

ω, if ω = ±; if y and y′ are the coordinates
associated to two propagators, this happens if y = y′, ω = ω′,
ω = ± or, if pF = nF πα, if y − y′ = −ωnF and ω = −ω′:
in such cases the subgraph are resummed in the self energy
or the mass terms. If α is rational, if y − y′ �= 0, ωnF the
denominators differ by a finite quantity O(1/q) if α = p/q
with p, q coprime. If α is irrational, however, 2πα(y − y′) can
be arbitrarily close mod. 2π to 0 or 2nF πα; in other words,
due to Umklapp terms involving the exchange of 2π , there
are propagators with almost the same size which cannot be
resummed in self energy or mass terms. This produces an ac-
cumulation of small divisors which causes a O(nτ !) bound for
(13), possibly breaking the convergence of the series. Physical
information cannot be decided on the basis of lowest order
analysis, but it depends on the convergence or divergence of
the whole series. Formal series for prime integrals in perturbed
integrable Hamiltonian systems are order by order finite but
typically non convergent, that is no prime integrals except the
energy exists (Poincaré theorem). In other cases, instead, the
bounds can be improved and the factorials cancel out; this is
what happens in Lindstedt series for KAM tori. This is also
what happens in the Hofstadter model, where convergence
of perturbation theory is implied by results on the almost
Mathieu equation using KAM methods. The persistence of
the gap in the interacting Hofstadter model depends on the
convergence or divergence of its series expansions, which
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x2 x2 − nF

FIG. 2. The upper graph is a contribution to the mass of order
U 2t3nF ; the lower graph is a contribution t nF .

contains also graphs with loops in addition to chain graphs,
and cannot be decided on the basis of lowest order perturba-
tive considerations.

IV. RENORMALIZATION GROUP ANALYSIS

We study the 2-point function of the interacting Hofstatder
model by exact RG methods. The starting point is the multi-
scale decomposition of the propagator

gy(r, r′) = g(1)
y (r, r′) +

∑
ω=±

g(�0)
ω;y (r, r′), (14)

where ĝ(�0)
ω;y (k) has support in a region around (0, py

ω ), ω = ±,
and ĝ(1)

y (k) in the complement of such regions.
It is convenient to measure the momenta from the Fermi

points writing k = k′ + ωpF + 2παy; therefore ψ = ψ (1) +∑
ω=± eipy

ωxψ̄ (�0)
ω and the propagator of ψ̄ (�0)

ω is

g(�0)
ω (r, r′) = δy,y′

∫
dk′ χ0(k′)eik′(r−r′ )

−ik0 + ωvF k′ + r(k′)
, (15)

with r(k′) = O(k′2) and χ0(k′) has support around k′ = 0.
Integrating the scales � 0 we get a sequence of effec-

tive potentials sum of terms of the form
∫

Wn
∏n

i=1 ψ
εi

ωi,k′
i,yi

,

ε, ω =±, with momenta k′
i verifying the relations∑

i

εik
′
i =

∑
i

εiωi pF +
∑

i

εi2παyi mod.2π. (16)

Note that the momenta measured from the Fermi points are
not conserved unless the right-hand side (r.h.s.) of the above
expression is vanishing.

After the integration of ψ (1) a mass term, which was absent
in the original interaction, is generated, of the form∑

y

∫
dk′W 0

2 (k′)
(
ψ

(�0),+
+,y−nF ,k′ψ

(�0),−
−,y,k′ + ψ

(�0),+
−,y,k′ ψ

(�0),−
+,y−nF ,k′

)
,

(17)

which connect fields in chains y, y − nF , with momenta
near p+

y−nF
= pF + 2πα(y − nF ) to p−

y = −pF + 2πα(y) =
p+

y−nF
. The lowest order contribution to W 0

2 (k) is the chain
graph, see Fig. 2, with

Gy−nF ,y(k) = t nF g(1)
y−nF +1(k)g(1)

y−nF +2(k) . . . g(1)
y−1(k) (18)

and the contribution to α is obtained by computing it at
k = p+

y ≡ (0, p+
y ). This chain graph is independent from U ;

regarding the lowest order contribution in U , there are no
linear terms in U as the interaction connect only fields with
the same y. The second order contribution in U is given by,
see Fig. 2, if Gy,y′ (k) is defined in (18)

A(p+
y ) =

∫
dk1dk2Gy−nF ,y(k1)G(y,y−nF )(k2)

× G(y,y−nF )(k1 + k2 − p+
y ), (19)

with p+
y = (0, p+

y ). Similar contributions appear integrating
out the lower scales. It is convenient to add and subtract a
factor

M =
∑

y

αy

∫
dr

(
ψ+

+,r,y−nF
ψ−

−,r,y + ψ+
−,r,yψ

−
+,r,y−nF

)
, (20)

which is included in the free integration. We set
P(dψ�0)eM ≡ P̃(dψ�0), with P̃(dψ�0) with propagator,
if ω1 = −; ω2 = + and δ1 = 0, δ2 = −1

〈
ψ−

ωi,k′,y+δinF
ψ+

ω j ,k′,y′+δ j nF

〉 = δy,y′χ0(k′)

(
−ik0 − vF sin k′ + c(k′) σy

σy −ik0 + vF sin k′ + c(k′)

)−1

i, j

. (21)

We consider σy and αy as independent, and we will choose αy as a function of U and σ so that the flow of the corresponding
coupling is bounded; at the end we impose the condition

σy = αy. (22)

We describe our RG analysis inductively. We write ψ (�0)
ω = ∑0

h=−∞ ψ (h)
ω and the corresponding propagator has cutoff fh with

support in γ h−1 � |k′| � γ h+1 with γ > 1 a momentum scale.
After the integration of ψ (0), . . . , ψ (h−1) one gets that the generating function has the form∫

P(dψ (�h) )eV
(h) (ψ�h,φ), (23)

where the propagator is

〈
ψ−

ωi,k′,y+δinF
ψ+

ω j ,k′,y′+δ j nF

〉 = δy,y′

Zh
χh(k′)

(
−ik0 − vh sin k′ + c(k′) σy

σy −ik0 + vh sin k′ + c(k′)

)−1

i,ȷ

(24)
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and V (h)(ψ, 0) =∑
m,ω

∑
y1,..,ym

∫
dk′

1 . . . dk′
mW (h)

m (k′)
∏

i

ψ
εi (�h)
ωi,k′

i,yi
δm, (25)

where δm vanishing in correspondence of (16); Zh is a wave
function renormalization, vh is an effective Fermi velocity,
and χh = ∑

k�h fk with support in |k′| � γ h+1; V (h)(ψ, φ) as
a similar expression as (25) with some of the fields ψ replaced
by external fields φ.

We have to extract from the effective potential the rel-
evant and marginal terms, which contribute to the corre-
sponding running coupling constants. The scaling dimension
of the theory is D = 2 − m/2, so all the terms with m �
6 are irrelevant. If we renormalize all the quartic terms
ψ+

ω1,y1
ψ−

ω2,y2
ψ+

ω2,y3
ψ−

ω3,y4
we would get a huge number of run-

ning coupling constants, one for any choice of ω1, . . . , ω4

and y1, . . . , y4. There is, however, a dramatic improving with
respect to power counting, and a huge class of quadratic or
quartic terms are indeed irrelevant, namely:

(1) The terms such that the r.h.s. of (16) is nonvanishing;
(2) The quartic terms with different yi, and the marginal

quadratic terms with different yi.
Condition (1) is quite natural in the commensurate case
α = p/q; indeed if it is violated than the corresponding
process disappears at scales smaller that some energy scale
h̄ = O(log 1/q) by conservation of momenta measured from
the Fermi points. In the incommensurate case things are,
however, more subtle. The left-hand side (l.h.s.) of (16) can
be arbitrarily small and there is no a finite scale below which
such terms disappear. In other terms, there are quadratic
processes which connect with arbitrary precision Fermi points
py

ω can be arbitrarily close to py′
ω′ for large y − y′; deciding if

they are relevant or irrelevant is a rather subtle issue which
will be discussed below, and it can depend on the specific
form of the considered quasiperiodic system. Condition (2),
instead, depends on the presence of a gap. We introduce
a renormalization operation which acts on the quadratic or
quartic terms. Regarding the quadratic terms, condition (1)
says that the nonirrelevant terms verify

(ω1 − ω2)pF + 2πα(y1 − y2) = 0. (26)

If ω1 = ω2 we define a renormalization operation R consist-
ing in extracting from the kernel W h(k) the term W h(py

ω ) +
(k − py

ω )∂W h(py
ω ) + k0∂W h(0). The first term contributes to

the renormalization of the chemical potential

F (h)
ν =

∑
ω,σ

∑
y

∫
drγ hνyψ

+
r,ω,σ ψ−

r,ω,σ , (27)

while the other terms contribute to the wave function, that is
Zh−1 = Zh(1 + ∂0W h), and Fermi velocity renormalization.

On the other hand if ω1 = −ω2 = ± the r.h.s. of (16) is
vanishing if nF = (y2 − y1) and py

− = py−nF
+ ; we define the

renormalization operation R in this case as the subtraction
from the kernel W h(k) of the term W h(py

−) and this produces
an effective interaction

F (h)
α =

∫
dx2hαy

(
ψ+

+,y−nF
ψ−

−,y + ψ+
−,yψ

−
+,y−nF

)
. (28)

Regarding the quartic terms, the R operation is nontrivial only
on the quartic terms with the same y, and in such a case we
extract from W h

4 (k1, k2, k2) the term W h
4 (py

ω1 , py
ω2 , py

ω3 , py
ω4).

The effective potential can be therefore written as V (h) =
LV (h) + RV (h) where LV (h) is the relevant or marginal part

V (h)(ψ, 0) = F (h)
ν + F (h)

α + F (h)
1 + F (h)

2 + F (h)
4 , (29)

with

F (h)
1 =

∑
y,σ,σ ′,ω

∫
drg1,h,yψ

+
r,ω,σ ψ−

r,−ω,σ ψ+
r,−ω,σ ′ψ

−
r,ω,σ ′ ,

F (h)
2 =

∑
y,σ,σ ′,ω

∫
drg2,h,yψ

+
r,ω,σ ψ−

r,ω,σ ψ+
r,−ω,σ ′ψ

−
r,−ω,σ ′ ,

F (h)
4 =

∑
y,σ,σ ′,ω

∫
drg4,h,yψ

+
r,ω,σ ψ−

r,ω,σψ+
r,ω,σ ′ψ

−
r,ω,σ ′ .

Note that the quartic marginal terms in LV h only connect
fermions with the same y, that is in the same wire; all
the processes connecting different wires are irrelevant. The
only terms connecting different wires are the hopping terms.
Integrating the field ψh one gets an expression similar to (23)
with h replaced by h − 1 and the procedure can be iterated.

We have to discuss the flow of the running coupling con-
stants. Note that the RG flow stops at a scale h∗ = − log σ .
One has first to fix the counterterms α, ν so that the flow of
the relevant running coupling constants is bounded. We write

αh−1 = γαh + βh
α, (30)

where in βh
α one can separate two kinds of terms: (a) the

ones independent from U , which are O(t nF γ ϑk ) (the factor
γ ϑk , 0 < ϑ < 1 follows from the irrelevance of the t vertices,
see the following section); (b) the ones with at least one
U or gi,k quartic coupling, which are at least quadratic in
U (both the initial interaction V and the quartic effective
interactions in LV k involve fields with the same y) and
O(U 2σ 3γ −3h). Therefore we can choose α0 ≡ αy so that the
flow is bounded, that is α0 = −∑0

k=h∗ γ kβk
α and the r.h.s.

is bounded by
∑0

k=h∗ (γ kt nF γ ϑk + U 2σ 3γ −2k ) and finally,
extracting the dominant term

αy = t nF (anF + R), |R| � C(t + U 2), (31)

and t nF anF is the contribution from the chain graph, see Fig. 2,

anF =
nF −1∏
k=1

1

cos(−nF πα + 2παk) − cos(nF πα)
, (32)

which is independent from y; moreover αh behave as t nF γ ϑh +
U 2σ 3γ −2h.

Similarly we have to control the flow of νh; we write
νh = γ νh+1 + βh

ν with βh
ν the sum of terms O(Uγ ϑh) (the

contributions independent on t , where the γ ϑh comes from
a parity cancellation), and O(tγ ϑh) (the terms containing t
vertices) or O(Uσ 2γ −2h); to have νh small we choose a ν0 so
that ν0 = −∑0

k=h∗ γ kβk and |ν0| � C(U + t ) and νh behave
as (t + U )γ ϑh + Uσ 2γ −h.
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To discuss the flow of the quartic running coupling con-
stants g1,h, g2,h, g4,h, we notice that we can write gi,h−1 =
gi,h + βh

i,1 + βh
i,2 with βh

i,1 sum of graphs containing only
quartic vertices g1,k and βh

i,2 with at least a vertex t, νk, αk, σ .

By iteration, if i = 2 gi,h−1 = gi,0 + ∑h
k=0(βk

2,1 + βk
2,2) and

the second addend is bounded by
∑h

k=0 U 2(αh + νh) hence
is O(U 2) while βh

2,1 again is summable as is proportional
to g2

1,h; therefore g2,h, g4,h−1 tends to values which are U +
O(U 2). On the other hand g1,h ∼ U

1−aUh , that is tends to vanish
for repulsive interactions while vh → v−∞ = vF (1 + O(U ));
finally the wave function renormalization behaves as Zh ∼ γ ηh

with η = bU 2 + O(U 2), b > 0. By imposing the condition
α = σ one gets the size of the gap in the interacting case.

It is finally convenient to compare the above flow with
the one in one-dimensional models. In the interacting Aubry-
André model the flow of the gap term is linear in the effec-
tive coupling, as the quasiperiodic potential involve fermions
on the same chain; therefore one has a contribution to the
analogous of βα of the form σγ −k which corresponds to the
generation of anomalous critical exponents in the gaps [19].
In interacting fermionic Fibonacci chains one considers in-
finitely many quadratic couplings and this produce a complex
flow suggest the closure of all gaps except a finite number in
the attractive case [20,21].

V. CONVERGENCE

As we discussed before the presence of small divisors in
the expansions has the effect that information on persistence
of gaps are encoded in the convergence or divergence of the
whole renormalized series; in particular, one has to discuss
the relevance or irrelevance of the Umklapp terms almost
connecting Fermi points.

The kernels of the effective potential V h can be written as
sum of graphs such that to each line connecting two points
r with r′ is associated a scale h and it corresponds to a
propagator δy,y′ ḡ(h)(r, r′) defined by (25); to the vertices are
associated the effective couplings gh, νh, αh and the couplings
λ, t, ν. The scales induce a structure of clusters in the graph;
each cluster v with scale hv contains a connected subset of
the graph, such that the internal propagators have scale � hv

and at least one of them scale hv , and the external lines
scales >hv; the clusters can be represented as a tree τ , see
Fig. 3. We call Sv the number of subclusters w in the cluster
v, with w′ = v, connected by Sv − 1 propagators g(hv ). We
associate a scale hv also to the end-points and v′ is the first

FIG. 3. A graph with its clusters and the corresponding tree.

cluster enclosing it; regarding the end-point gh, δh, νh one has
hv′ = hv − 1. We call m̄i

v , i = t, gh, νh, αh the number of i
end-points in v and not contained in other smaller clusters, and
mi

v , α = t, gh, νh, αh the total number of i end-points in v. To
each cluster v is associated a set of pv external lines with scale
<hv and coordinate xi. We can define two kinds of clusters:

(1) The nonresonant clusters v ∈ NR are such that∑
i εi pωi

yi
�= 0;

(2) The resonant clusters v ∈ R are such that
∑

εi pωi
yi

= 0;
v ∈ R1 are such that all the yi of the external lines are equal;
v ∈ R2 are such that all the yi of the external lines are not all
equal.

According to the previous definitions, the R operation acts
nontrivially only on the clusters v ∈ R1 with 2 or 4 external
lines or v ∈ R2 with two external lines. In the quartic terms
the action of R consists in replacing an external field ψx with
ψr − ψr′ = (r − r′)

∫ 1
0 dt∂ψ ; the same action is for the terms

with two external lines v ∈ R2, while there is a replacement
with the second difference when v ∈ R1 and two external
lines. With respect to the R = 0 case, this corresponds to an
extra derivative on the external lines, giving a factor γ hv′ and
an extra (r − r′) which can be associated to the propagators
ghv and produces dimensionally a factor γ −hv . The same
factor is obtained in the quadratic terms v ∈ R2 while in the
quadratic term v ∈ R1 the second difference produces a term
γ 2(hv′ −hv ). In conclusion the R operation produces a factor
γ zv (hv′ −hv ) with (a) zv = 1 if pv = 4 v ∈ R1; (b) zv = 2 if
pv = 2 and v ∈ R1; (c) zv = 1 if v ∈ R2 and pv = 2; zv = 0
in all the other cases.

The size of a generic Feynman graph is easily obtained
using that |gh(r)| � Cγ h and

∫
dr|gh(r)| � Cγ −h, if ĝh(k)

has support around pω
y in a region between γ h−1, γ h+1, γ > 1

the RG momentum scale parameter; by choosing in the graph
a tree of propagators connecting the Sv clusters or end-points,
see Fig. 4, we get by integrating a factor γ −2hv (Sv−1) while
the remaining propagators are bounded by γ hv (nv−Sv+1), where
nv is the number of propagators ghv : note that the sum over
y is done using the kronecker deltas in the propagator of the
tree, causing that only one sum remain. The bound for the
Feynman graph is proportional to, up to a constant Cm, m
is the number of vertices and not taking into account the R

v v

FIG. 4. A representation of a cluster v and the Sv subclusters.
The lines internal to the blob have scale hv , the lines external hv′ ; the
gray blobs have a similar structure and so on.
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operation∏
v

γ −2hv (Sv−1)
∏
v

γ nvhv

∏
v

(
νhv

γ hv
)m̄ν

v ,

∏
v

t m̄t
v

∏
v

(
αhv

γ hv
)m̄α

v = γ (2−n/2)h
∏
v

γ −(hv−hv′ )Dv ,

∏
v

(tγ −hv )m̄t
v

∏
v

(
νhv

)m̄ν
v

∏
v

(
αhv

)m̄α
v , (33)

with Dv = 2 − ne
v/2 and ne

v is the number of external lines
of v. In principle a bound on Feynman graphs is not enough
for getting nonperturbative information; even if a finite bound
is obtained at order m, one has to worry about extra combi-
natorial m! due to the large number of graphs which could
ruin convergence. It is, however, a well-known fact that can-
cellations due to Pauli principle in fermionic expansions has
the effect that such extra m! are absent, see, e.g., [23]. We
get therefore the following estimate, if ε = max(|U |, t

1
2 ) and

using that the gi,h are bounded by bare coupling U times a
constant, if U > 0, as discussed in the previous section

1

Lβ

∫
dr

∣∣W h
n (r)

∣∣ �
∑

m

εm
∑

τ,hv ,nv

γ (2−n/2)h

[∏
v

(σγ −hv )m̄σ
v

][∏
v

γ −(hv−hv′ )(Dv+zv )
∏
v

(
t

1
2 γ −hv

)m̄t
v

]
,

where we take into account the effect of the R operation
and of the presence of nondiagonal propagators, giving extra
factors

∏
v (σγ −hv )m̄σ

v . One needs to sum over all the possible
attributions of scales hv; the sum would be finite of Dv + zv

can be vanishing or negative, what, however, is not the case.
This lack of convergence is a manifestation of the small
divisor problem, as it is due also to the fact that we have not
renormalized the quadratic and quartic non resonant terms. In
order to show that they give a finite contribution one has to
improve the estimate by the Diophantine property of α (4). Let
us consider a nonresonant cluster v ∈ NR with two external
lines; we get, δ = 0, 1

2γ hv′ � ||k′
1|| + ||k′

2|| � ||k′
1 − k′

2||
� ||2δnF πα + 2πα(y − y′)|| � C0|y − y′|−τ

so that

|y − y′| � Cγ
−h

v′
τ . (34)

This says that to have a cluster at low scales the difference of
coordinates must be large. In addition, if we apply this to the
t vertices when y − y′ = ±1 it says that h′

v is bounded by a
constant so that∏

v

(
t

1
2 γ −hv

)m̄t
v �

∏
v

(
t

1
2 C

)m̄t
v . (35)

Regarding the terms with four lines we can write

4γ hv′ �
∥∥∥∥∥∑

i

εik′
i

∥∥∥∥∥ �
∥∥∥∥∥2πα

4∑
i=1

εiyi +
∑

i

εiωiπnF α

∥∥∥∥∥
� C0

∣∣∣∣∣
4∑

i=1

εiyi +
∑

i

εiωinF

∣∣∣∣∣
−τ

� C|ȳ − ȳ′|−τ ,

where |ȳ − ȳ′| is the maximal difference of the y of the
incoming and outcoming lines; therefore

|ȳ − ȳ′| � Cγ
−h

v′
τ . (36)

Note that there is a path of propagators connecting the external
lines with coordinates ȳ and ȳ′ and

|ȳ − ȳ′| � nF Nv + mt
v � 2nF Nv, (37)

where Nv is the number of vertices in the cluster v; the reason
is that one modify the coordinate by non diagonal propagators
or vertices t . In conclusion

Nv � C0γ
−h

v′
τ /n

1
τ

F , (38)

where C0, τ are the parameters appear in in the Diophantine
condition (5).

We can now associate to each vertex in the graph a constant
c̄ < 1 (at the expense of a factor c̄−m in the final bound).
Moreover we can write c̄ = ∏1

h=−∞ c̄2h/2 so that we can

associate a factor c̄2h
v/2 to each of the Nv vertices contained

in a cluster v; therefore

c̄m �
∏
v

c̄Nv2hv �
∏
v

c̄Nv2h
v′

(39)

and using (38) one gets

c̄m �
∏

v∈NR

c̄C0γ
−h

v′
τ 2h

v′ /n
1
τ
F � C̄n

∏
v∈NR

γ 2(hv′ −hv ) (40)

provided that γ
1
τ /2 = γ ξ̄ with ξ̄ > 0 (γ > 1, τ > 1), and we

have used e−αxxN � (Ne/α)N with x = γ −ξ̄h. We can choose
for instance γ

1
τ = 4, γ ξ̄ = 2. It is sufficient to take N = 4τ

and

C̄ =
⎛⎝ 4τen

1
τ

F

C0|logc̄|

⎞⎠4τ

. (41)

We have finally to consider the quartic terms or the
marginal quadratic terms v ∈ R2. We note first that due to
the presence of a gap there is a scale h∗ = − log σ , with σ =
O(t nF ), such that the fields �h∗ can be integrated in a single
step; that is, the iterative integration stops at h∗. As the exter-
nal lines of the clusters v ∈ R2 have different coordinate y, the
clusters necessarily contain a non diagonal propagator or a t or
α end-point; in the first case one of the factors (33) (σγ −hv ) �
γ (h∗−hv ) provides the dimensional gain of all the clusters
containing such non diagonal propagator. If there is a t vertex

we use t
1
2 � γ

(h∗−hv )
2nF . Similarly is there is an α vertex we use

that αh is O(σ 2Uγ −h) or O(tUγ ϑh) one gets an extra γ
(h∗−hv )

2nF .
In conclusion

1

Lβ

∫
dr

∣∣W h
n (r)

∣∣ �
∑

m

∑
τ,hv ,nv

γ (2−n/2)hεm

×
[∏

v

γ −(hv−hv′ )(Dv+z̄v )

]
, (42)

where
(1) z̄v = 2 if v ∈ NR and nv

e = 4, 2;
(2) z̄v = 1 if v ∈ R1 and nv

e = 4, zv = 2 if v ∈ R1 and
nv

e = 2;
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(3) zv = 1 + 1/nF if v ∈ R2 and nv
e = 2; zv = 1/nF if v ∈

R2 and nv
e = 4.

Therefore we can sum over the scales and one gets a
convergent estimate for the effective potential; moreover the
contributions with an irrelevant t coupling have an extra
γ ϑh due to the fact that the dimensions are all negative.
Therefore for each contribution of order n to the renormalized
expansion we get a bound Cn

1 εn, C1 depending on nF ,C0, τ

[some dependence follows from (40) and other from the sum
over scales]; this condition ensure convergence if the r.c.c.
are small enough (and they are small for U, t small, by the
analysis of the flow of the previous section); the inverse of C1

is just ε0 in the main Theorem. Note that by (32)

2−nF � anF � CnF
1 , (43)

where the lower bound follows simply from the fact the
denominators are larger than 2 and the upper by the multi-
scale analysis; hence by (22) σ = t nF anF (1 + a−1

nF
R) and |R| �

2C(U 2 + t ).
It is immediate to get the large distance asymptotic decay

of the 2-point function. The decay in r is an immediate
consequence of the fact that there is a last scale h∗; the decay
rate σ provide an estimate in the gap of the interacting case,
which is always nonvanishing for U small. The decay in the
direction y is faster than any power with rate log t because the
contribution in t starts from order y − y′.

VI. CONCLUSION

We have proven that there is a region of parameters for
which, for fixed t2,U , the gaps with n not too large persists

even if U is much stronger than the gap. The main difficulty
relies in the presence of infinitely many processes which, due
to Umklapp scattering and the incommensurability of the two
periods, connect arbitrarily close the Fermi points. We can,
however, rigorously establish the irrelevance of such terms
by combining nonperturbative RG methods with a strategy
inspired to KAM problems and relying on number theoretical
properties of irrationals. In principle an interaction much
stronger than the noninteracting gap can destroy it, as in inter-
acting Fibonacci chains [20,21], but our result excludes this
possibility. This seems of possible application to experiments,
where gaps with n too large are outside resolution but the
many body interaction can be greater than the gap on which
the Fermi level is set.

As we said the dependence on n of ε0 is quite weak and
is due to the use of KAM methods; indeed our result can
be seen as the analog of [3,4] in an interacting situation.
Getting results for t2/t1 and U small uniformly in n is surely
a challenging mathematical problem. Other interesting open
issues include what happens to gaps in the case of attractive
potential U < 0.

One could consider also the case of chemical potentials in
the spectrum of the noninteracting case, and investigate the
question of the generation of gaps due to the interaction. The
same argument explained above shows that the nonresonant
terms are irrelevant, but resonant terms connecting different
wires are instead marginal and have a complicate flow which
could exhibit non trivial fixed points. This opens the way to
the quantitative understanding starting from a microscopic
lattice model of the opening of new gaps caused by the
interaction, as it appears in experiments [7–10].
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