Effects of climate change on the Nossana karst spring (northern Italy): future discharge projections and water distribution system sustainability

Corrado Camera, Andrea Citrini, Giovanni Pietro Beretta
Objectives

• Quantification of the expected changes in precipitation and temperature in the study area (reference period 1998-2017)
• Calibration and validation of a hydrological lumped-parameter model based on observed data
• Recognition of possible limits in the future utilization of the spring as a drinking supply (2021-2100)
Study Area
Methods

Input
- RCMs P
- RCMs T

Output
- Local scale Climate Change signature
- Future local time series
 - Precipitation
 - Minimum Temperature
 - Maximum Temperature
 - Calculated Evapotranspiration
- Future discharges

Methodology
- Climate Model Evaluation
 - Performance Indices
- Selected Climate Models
- Statistical Downscaling
- Calculated hydrological model
 - GR4J + CemaNeige Calibration – Vadation
 - Performance Indices
 - Warning Thresholds

Reference
- 1998-2017
- p1 2021-2040
- p2 2041-2060
- p3 2061-2080
- p4 2081-2100

RCP 2.6 → 3 models
RCP 4.5 → 3 models
RCP 8.5 → 3 models
Step 1 - Climate Model Evaluation

Precipitation → NSE > 0.0; MAE < 20%

Temperature → NSE > 0.8; MAE < 20%

<table>
<thead>
<tr>
<th>Model</th>
<th>Precipitation</th>
<th>Temperature</th>
<th>Tmax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSE</td>
<td>MAE (mm)</td>
<td>%MAE</td>
</tr>
<tr>
<td>Mod_1 RCP 2.6</td>
<td>0.79</td>
<td>12.35</td>
<td>10.71</td>
</tr>
<tr>
<td>Mod_1 RCP 4.5</td>
<td>0.66</td>
<td>14.97</td>
<td>12.97</td>
</tr>
<tr>
<td>Mod_1 RCP 8.5</td>
<td>0.76</td>
<td>12.71</td>
<td>11.20</td>
</tr>
<tr>
<td>Mod_2 RCP 2.6</td>
<td>0.31</td>
<td>19.81</td>
<td>17.16</td>
</tr>
<tr>
<td>Mod_2 RCP 4.5</td>
<td>0.52</td>
<td>17.44</td>
<td>15.12</td>
</tr>
<tr>
<td>Mod_2 RCP 8.5</td>
<td>0.31</td>
<td>22.90</td>
<td>19.85</td>
</tr>
<tr>
<td>Mod_3 RCP 2.6</td>
<td>0.23</td>
<td>20.53</td>
<td>17.79</td>
</tr>
<tr>
<td>Mod_3 RCP 4.5</td>
<td>0.37</td>
<td>17.17</td>
<td>14.88</td>
</tr>
<tr>
<td>Mod_3 RCP 8.5</td>
<td>0.52</td>
<td>17.78</td>
<td>15.41</td>
</tr>
</tbody>
</table>

Reference → 1998-2017
Step 2 - Statistical Downscaling

Using

\[\frac{P^{\text{Fut}}}{P^{\text{Obs}}} = \frac{P^{\text{RCMFut}}}{P^{\text{RCMCon}}} \]

where \(\frac{P^{\text{RCMFut}}}{P^{\text{RCMCon}}} = \alpha \)

\[P^{\text{Fut}} = \alpha \cdot P^{\text{Obs}} \]

P = any variable

Model Parameters

- Storm origin time \((\lambda) \) [h⁻¹]
- Number of raincells \((\nu) \) [-]
- Raincell origin delay \((\beta) \) [h⁻¹]
- Raincell intensity \((\xi) \) [h/mm]
- Raincell duration \((\eta) \) [h⁻¹]

RainSim V3.0 (Burton et al., 2008),

Stochastic rainfall model
Neyman-Scott Rectangular Pulses (NSRP) model

Rainfall Generator

Image by De Luca and Galasso (2019)

Step 2 - Local Scale Climate Change

SUMMARY

- Not all models agree regarding mean annual prcp trends in different periods
- General prcp decrease in summer
- Temperature increases up to $\approx 5 ^\circ C$

Changes in monthly climatology (precipitation and temperature) for twenty-year periods

Relative changes (%) in mean annual precipitation

<table>
<thead>
<tr>
<th>Period</th>
<th>RCP2.6</th>
<th>RCP4.5</th>
<th>RCP8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mod_1</td>
<td>Mod_2</td>
<td>Mod_3</td>
</tr>
<tr>
<td>p1</td>
<td>-3.8</td>
<td>2.7</td>
<td>2.4</td>
</tr>
<tr>
<td>p2</td>
<td>6.6</td>
<td>-5.2</td>
<td>0.7</td>
</tr>
<tr>
<td>p3</td>
<td>-4.4</td>
<td>5.4</td>
<td>-13.4</td>
</tr>
<tr>
<td>p4</td>
<td>-4.4</td>
<td>8.3</td>
<td>-2.0</td>
</tr>
</tbody>
</table>
Step 3 - Hydrologic Model Calibration

- Random generation of 10,000 model parameter sets
- Calibration: 2000-2008
- Validation: 2009-2017
- Criteria 1: KGE > 0.70; INSE > 0.5
- Criteria 2: number of days and consecutive with discharge below warning thresholds
Step 3 - Hydrologic Model Calibration

- 10 parameter sets
- Underestimation number of days below warning thresholds
- Maximum number of days below the warning threshold best indicator

<table>
<thead>
<tr>
<th>n. days</th>
<th>Obs_Cal</th>
<th>Obs_Val</th>
<th>Mod_Cal</th>
<th>Mod_Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 1.32</td>
<td>758</td>
<td>335</td>
<td>141-310</td>
<td>102-207</td>
</tr>
<tr>
<td>Q 1.52</td>
<td>992</td>
<td>522</td>
<td>307-513</td>
<td>219-391</td>
</tr>
<tr>
<td>Max days</td>
<td>71</td>
<td>47</td>
<td>57-63</td>
<td>33-44</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>59</td>
<td>63-66</td>
<td>44-53</td>
</tr>
</tbody>
</table>
Step 4 - Future discharges

SUMMARY

- Variation of recharge periods
- Variation of annual cycle trend
- Decrease in mean discharge
Step 4 - Future discharges

132 m³/s threshold

152 m³/s threshold

After 2060

- Longest period below the 132 m³/s warning threshold 36 extra days
- Longest period below the 152 m³/s warning threshold 64 extra days.
Conclusion

• Considered bias-corrected EURO-CORDEX RCMs have very good skills in reproducing observed temperature climatology while larger errors persist regarding precipitation.

• Mean temperature will likely increase throughout the rest of the XXI century, from 0.7 °C in 2021-2040 (RCP4.5, Mod_2) to 5.8 °C in 2081-2100 (RCP8.5, Mod_1).

• No clear trend for precipitation, changes in mean annual rainfall varies between −18.5% (2041-2060, RCP4.5, Mod_2) and 15.1% (2041-2060, RCP8.5, Mod_2).

• Pronounced decrease of precipitation is expected in the summer period after 2060.

• Mean discharges are generally projected to decrease in comparison to observed flow.

• After 2060, the length of the periods with discharge lower than the warning thresholds is expected to increase. These periods could last up to 64 days (86%) longer than in 1998-2017.

• Additional water resources might be needed to satisfy the population water demand in the Nossana Spring area, especially after 2060.
THANK YOU

Contacts: corrado.camera@unimi.it