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Abstract. We consider a coupled hyperbolic system which describes the evo-
lution of the electromagnetic field inside a ferroelectric cylindrical material in
the framework of the Greenberg-MacCamy-Coffman model. In this paper we
analyze the asymptotic behavior of the solutions from the viewpoint of infinite-
dimensional dissipative dynamical systems. We first prove the existence of an
absorbing set and of a compact global attractor in the energy phase-space. A
sufficient condition for the decay of the solutions is also obtained. The main
difficulty arises in connection with the study of the regularity property of the
attractor. Indeed, the physically reasonable boundary conditions prevent the
use of a technique based on multiplication by fractional operators and boot-
strap arguments. We obtain the desired regularity through a decomposition
technique introduced by Pata and Zelik for the damped semilinear wave equa-
tion. Finally we provide the existence of an exponential attractor.

1. Introduction. In this work we investigate the asymptotic behavior of a coupled
hyperbolic system of the form

{
utt + ut + pt − ∆u = 0
ptt + pt − ut − ∆p+ p+ φ(p) = 0

(1.1)

in Ω × (0,∞), where Ω ⊂ R
2 is a bounded and connected domain with smooth

boundary ∂Ω. This system of equations governs the evolution of the electromagnetic
field inside a ferroelectric material occupying the cylindrical region Ω×R, according
with a physical model recently proposed by Greenberg et al. (see [10]). In this model
u represents a field connected to the electric field ε (directed along the z axis) and to
the components of the magnetic field h1, h2 (lying in the x, y plane) by the relations

ε = ut h1 = −cuy h2 = cux

c being the velocity of light in vacuum, while p is the polarization field inside the
material (directed along the z axis). In [10] the nonlinearity φ is a smooth globally
lipschitz function satisfying a certain coercivity property. For the sake of more
generality, here we shall assume φ with polynomial growth of finite and arbitrary
order and all the results will be deduced under this general assumption. In [10] a
quite detailed analysis of the stationary states is performed. However, the study
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of the asymptotic behavior is still at a preliminary stage. In the present paper we
want to deepen the analysis of the long time behavior by studying global asymptotic
properties such that the existence of a bounded absorbing set (thus showing the
dissipative feature of the system), of the global attractor and its regularity, as well
as the existence of an exponential attractor of optimal regularity. The results will be
obtained under the physically significant Dirichlet-Neumann boundary conditions

u = ∂np = 0, on ∂Ω × (0,∞),

∂n being the outward normal derivative. The Dirichlet-Dirichlet boundary condi-
tions

u = p = 0, on ∂Ω × (0,∞)

can also be considered. Indeed, these latter conditions, although less significant from
the physical point of view, allow to obtain more easily some results concerning the
regularity of the attractor and the existence of the exponential attractor, through
the use of standard techniques. Such results will be obtained in this paper under the
Dirichlet-Neumann boundary conditions exploiting a recent approach due to Pata
and Zelik (see [16]) based on suitable decomposition of the evolution semigroup.
The formal problem we want to analyze is therefore the following
Problem P. Find (u, p) solution to the system (1.1) in Ω × (0,∞) with boundary
conditions u = ∂np = 0 on ∂Ω×(0,∞), and initial conditions u(0) = u0, ut(0) = u1,
p(0) = p0, pt(0) = p1 in Ω.

This paper is organized in the following way. In Section 2 we introduce some
functional notation and state Gronwall type lemmas useful in the following. Section
3 is devoted to the weak formulation of Problem P and to the well-posedness result.
In particular, we associate with P a strongly continuous semigroup acting on the
energy phase-space H0. In other words, P is interpreted, in the theory of infinite
dimensional dynamical systems, as a generator of trajectories in the energy phase-
space. This result, as well as the nonlinear feature of the system (causing the great
sensibility to the initial conditions) suggests that the correct approach to study
its asymptotic dynamics is geometric. In Section 4 the dissipativity of the system
is deduced by proving the existence of a bounded absorbing set on the energy
phase-space, as well as the existence of a bounded absorbing set in the second
order phase-space H1. In this section we also deduce a sufficient condition on the
nonlinearity φ which ensures the uniform decay of the trajectories departing from
every bounded subset of H0 (see Proposition 4.1). The existence of the global
attractor is shown in Section 5. The remarkable fact is that this result can be
obtained by means of the same hypotheses used for the well-posedness result in
H0 (see (H1)-(H3)). No further assumption is needed. In Section 6 we consider
the regularity of the attractor, for the Dirichlet-Neumann case, obtained, adding
further regularity assumptions on the nonlinearity, through the use of the Pata-Zelik
technique. Such technique can obviously be applied for the Dirichlet-Dirichlet case
as well. The last section is devoted to the existence of an exponential attractor.
For this purpose we exploit the abstract result due to Efendiev, Miranville and
Zelik (see [6, Proposition 1]) concerning the existence of exponential attractors for
evolution equations.

2. Functional setting and notation. We denote by (·, ·) and ‖ · ‖ the inner
product and the norm on L2(Ω), respectively. The symbol 〈·, ·〉 will stand for the
duality pairing between a Banach space and its dual. We introduce the operators
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A = −∆ + I and B = −∆ (∆ is the laplacian in two dimensions) with domains
D(A) = {v ∈ H2(Ω) : ∂nv = 0 on ∂Ω} and D(B) = H2(Ω) ∩H1

0 (Ω), respectively.
As is well known, A and B are (unbounded) linear, strictly positive, self-adjoint
operators with compact inverse. The spectral theory of this class of operators allows
defining, for all s ∈ R, the fractional operators As and Bs, with domains D(As)
and D(Bs). Identifying L2(Ω) with its dual L2(Ω)′, for any s ∈ R we consider the
two families of Hilbert spaces V s := D(As/2) and V s

0 := D(Bs/2) with the natural
inner products and norms. We recall that V s = V s

0 for s ∈ (−1/2, 1/2). Moreover,
(V s)′ = V −s and (V s

0 )′ = V −s
0 . We observe that V 0 = V 0

0 = L2(Ω), V 1 = H1(Ω),
V 1

0 = H1
0 (Ω) and V −1

0 = H−1(Ω). We have the continuous injections V s
0 →֒ V s,

V −s →֒ V −s
0 , for s ≥ 0 and the compact and dense injections V s →֒→֒ V r, V s

0 →֒→֒
V r

0 , for s > r. In particular, denoting by λA and λB the first eigenvalues of A and
B respectively, we have the inequalities

‖Ar/2v‖ ≤ λ
(r−s)/2
A ‖As/2v‖, ∀v ∈ V s (2.1)

‖Br/2v‖ ≤ λ
(r−s)/2
B ‖Bs/2v‖, ∀v ∈ V s

0 . (2.2)

Formula (2.2), for r = 0 and s = 1, is the Poincaré inequality. Concerning the
phase-space for our problem, we introduce, for s ∈ R, the product Hilbert spaces

Hs := V 1+s
0 × V s

0 × V 1+s × V s,

with corresponding norms, induced by their inner products, given by

‖z‖2
s := ‖z‖2

Hs
= ‖B(1+s)/2u‖2 + ‖Bs/2v‖2 + ‖A(1+s)/2p‖2 + ‖As/2q‖2

for all z = (u, v, p, q) ∈ Hs. In particular we have

H0 = H1
0 (Ω) × L2(Ω) ×H1(Ω) × L2(Ω).

From Section 5 on, we denote by c ≥ 0 a generic constant, that may vary even from
line to line within the same equation, depending on Ω and φ. Further dependences
will be specified when necessary. Furthermore, we will use, sometimes without
explicit reference, relations (2.1) and (2.2) as well as the Young and generalized
Hölder inequalities and the usual Sobolev embeddings. We conclude this section
with two technical lemmas that will be needed in the course of the investigation.

Lemma 2.1. Let X be a Banach space, and Z ⊂ C([0,+∞);X). Let be given a
functional E : X → R such that supt≥0E(z(t)) ≥ −m and E(z(0)) ≤ M , for some

m,M ≥ 0 and for every z ∈ Z. In addition assume that E(z(·)) ∈ C1([0,+∞)) for
every z ∈ Z and that the differential inequality

d

dt
E(z(t)) + δ0‖z(t)‖2

X ≤ k

holds for all t ≥ 0 and for some δ0 > 0, k ≥ 0, both independent of z ∈ Z. Then,
for every ǫ > 0 there is t0 = t0(M, ǫ) ≥ 0 such that, for every z ∈ Z

E(z(t)) ≤ sup
ζ∈X

{E(ζ) : δ0‖ζ‖2
X ≤ k + ǫ}, ∀t ≥ t0.

Furthermore, the time t0 can be expressed by t0 = (M +m)/ǫ.

The proof can be found, for instance, in [2, Lemma 2.7]. The next result is a
generalized version of the standard Gronwall lemma
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Lemma 2.2. Let Ψ : [0,+∞) → [0,+∞) be an absolutely continuous function
satisfying

d

dt
Ψ(t) + 2ǫΨ(t) ≤ h(t)Ψ(t) + k

where ǫ > 0, k ≥ 0 and
∫ t

s
h(τ)dτ ≤ ǫ(t− s)+m, for all t ≥ s ≥ 0 and some m ≥ 0.

Then

Ψ(t) ≤ Ψ(0)eme−ǫt +
kem

ǫ
, ∀t ≥ 0.

For the proof, we refer the reader to [3, Lemma 2.1].

3. Well-Posedness. The assumptions we make on the nonlinearity are the follow-
ing

(H1) φ ∈ C1(R)
(H2) |φ′(s)| ≤ c0(1 + |s|r−2), ∀s ∈ R, 2 ≤ r < +∞, c0 ≥ 0

(H3) lim inf |s|→+∞
φ(s)

s > −λA.

Remark 3.1. For the well-posedness we can substitute condition (H3) with the
weaker assumption

(H3∗) F (s) ≥ −αs2 − β, ∀s ∈ R, α, β ≥ 0, F (s) :=
∫ s

0 φ(σ)dσ.

We can now introduce the notion of weak solution to Problem P.

Definition 3.1. Let (H1) to (H3) hold. Suppose z0 := (u0, u1, p0, p1) ∈ H0. For
T > 0, setting I := [0, T ], we say that z := (u, ut, p, pt) which fulfills

u ∈ C0(I;V 1
0 ) ∩ C1(I;V 0) ∩ C2(I;V −1

0 ), p ∈ C0(I;V 1) ∩C1(I;V 0) ∩ C2(I;V −1)

is a weak solution to P in I with initial data z0 provided that

〈utt, v0〉 + (ut, v0) + (pt, v0) + (B1/2u,B1/2v0) = 0 (3.1)

〈ptt, v〉 + (pt, v) − (ut, v) + (A1/2p,A1/2v) + (φ(p), v) = 0 (3.2)

for every v0 ∈ V 1
0 and v ∈ V 1, almost everywhere in I, and u(0) = u0, ut(0) = u1,

p(0) = p0, pt(0) = p1, almost everywhere in Ω.

Existence, uniqueness and continuous dependence, according to Definition 3.1,
can be deduced by standard arguments based on a Faedo-Galerkin approximation
scheme and on the use of the energy identity. We shall obtain energy type estimates
in Section 4 (see (4.1), (4.14)). More precisely, we have the following well-posedness
result

Theorem 3.2. In the hypotheses (H1)-(H3), for any T > 0, Problem P has a
unique (weak) solution z on the time interval I = [0, T ] with initial data z0 ∈ H0.
Moreover, if z01 and z02 are two sets of data in H0, and z1 and z2 are the two
corresponding solutions on [0,∞), there exists θ0 > 0, depending (continuously and
increasingly) only on the H0-norms of the data ‖z0i‖0 for i = 1, 2 (besides on Ω and
φ) such that

‖z2(t) − z1(t)‖0 ≤ eθ0t‖z02 − z01‖0, ∀t ≥ 0. (3.3)

Since the system is autonomous, the well-posedness result immediately leads to
the following
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Corollary 3.1. The one-parameter family of continuous (nonlinear) operators S(t) :
H0 → H0 defined by S(t)z0 := z(t), for every t ≥ 0 and every z0 ∈ H0, where z(t)
is the solution to P at time t with z(0) = z0, is a strongly continuous semigroup on
the phase-space H0.

Remark 3.2. The particular time dependence in the estimate (3.3) holds if either
(H3) or (H3∗) with the further assumption α < λA/2 are fulfilled. Indeed, in
this case from the energy identity (see (4.14)) we easily get the control ‖z(t)‖0 ≤
Λ(‖z0‖0) for every t ≥ 0 (see also Corollary 4.1). The assumption (H3∗) with
α ≥ λA/2 still yields well-posedness, but the time dependence in the estimate (3.3)
is more involved.

Furthermore, due to standard regularity results, it is possible to prove that, under
the assumptions (H3) and

(H4) φ ∈ C2(R)
(H5) |φ′′(s)| ≤ c′0(1 + |s|r−3), ∀s ∈ R, 3 ≤ r < +∞, c′0 ≥ 0

S(t) is also a strongly continuous semigroup on the phase-space H1. In particular,
the continuous dependence estimate holds in H1 in the following form: for every
R1, T > 0 there exists C1 = C1(R1, T ) ≥ 0 such that

‖S(t)z2 − S(t)z1‖1 ≤ C1‖z2 − z1‖1 (3.4)

for every t ∈ [0, T ] and every z1, z2 ∈ H1 with ‖z1‖1, ‖z2‖1 ≤ R1.

4. Dissipativity. Here we would like to see whether the trajectories originating
from any given bounded subset of the phase-space H0 eventually fall, uniformly in
time, into a fixed bounded subset, which we call absorbing set. For this purpose we
shall need some uniform (with respect to time) energy type estimates.

Theorem 4.1. Let (H1)-(H3) hold. Then, there exists a constant R0 > 0 with the
following property: given any R > 0, there exists t0 = t0(R) such that, whenever
‖z0‖0 ≤ R, the inequality ‖S(t)z0‖0 ≤ R0 holds for every t ≥ t0(R). Consequently,
the set

B0 = {z0 ∈ H0 : ‖z0‖0 ≤ R0}
is a bounded absorbing set for the semigroup S(t) generated by Problem P on H0,
that is, for every given bounded subset B ⊂ H0, there exists a time t0 = t0(B) ≥ 0
such that S(t)B ⊂ B0 for every t ≥ t0.

Proof. We suppose to work within a proper approximation scheme, with regular
data and solutions, to justify the formal estimates we derive below. We multiply
(1.1)1 and (1.1)2 in L2(Ω) by the auxiliary variables ξ := ut + ǫu and ζ := pt + ǫp,
respectively, with 0 < ǫ ≤ ǫ0 and ǫ0 to be chosen later. Adding together the
resulting equations, we get

1

2

d

dt
{‖B1/2u‖2 + ‖ξ‖2 + ‖A1/2p‖2 + ‖ζ‖2} + ǫ‖B1/2u‖2 + (1 − ǫ)‖ξ‖2

+ǫ‖A1/2p‖2 + (1 − ǫ)‖ζ‖2 +
d

dt

∫

Ω

F (p) = ǫ(1 − ǫ)(ξ, u) + ǫ(1 − ǫ)(ζ, p)

+ǫ(ξ, p) − ǫ(ζ, u) − ǫ(p, φ(p)). (4.1)

By (H3) it is easy to show that there exists ν ∈ (0, 1] such that

(p, φ(p)) ≥ −(1 − ν)‖A1/2p‖2 − c1, ∀p ∈ V 1 (4.2)
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and

2

∫

Ω

F (p) ≥ −(1 − ν)‖A1/2p‖2 − c2, ∀p ∈ V 1. (4.3)

We now introduce the following functional E : H0 → [0,+∞), defined by

E(z) := ‖B1/2u‖2 + ‖v + ǫu‖2 + ‖A1/2p‖2 + ‖q + ǫp‖2 + 2

∫

Ω

F (p) (4.4)

for every z = (u, v, p, q) ∈ H0. Using (4.3) and the Young inequality, it is not
difficult to show that

E(z) ≥ ν

2
‖z‖2

0 − c2, ∀z ∈ H0 (4.5)

provided that ǫ0 is small enough, say ǫ0 ∈ (0, ǫ′0] (see Remark 4.1 below). From (H2),
by means of relations (2.1), (2.2) and by the Sobolev embedding H1(Ω) →֒ Lr(Ω)
for every r ∈ [1,+∞) (N = 2), we also get

E(z) ≤ c3‖z‖0(1 + ‖z‖r−1
0 ), ∀z ∈ H0. (4.6)

By virtue of (4.2) and taking into account the definition of the functional E, from
(4.1) we obtain

1

2

d

dt
E(z) + ǫ‖B1/2u‖2 + (1 − ǫ)‖ξ‖2 + ǫ‖A1/2p‖2 + (1 − ǫ)‖ζ‖2

≤ ǫ‖ξ‖‖u‖+ ǫ‖ζ‖‖p‖+ ǫ‖ξ‖‖p‖+ ǫ‖ζ‖‖u‖+ ǫ(1 − ν)‖A1/2p‖2 + ǫc1. (4.7)

Using again the Young inequality and choosing ǫ0 small enough, namely ǫ0 ∈ (0, ǫ′′0 ]
(cf. Remark 4.1 again), we obtain from (4.7)

1

2

d

dt
E(z) +

ǫν

3
{‖B1/2u‖2 + ‖ξ‖2 + ‖A1/2p‖2 + ‖ζ‖2} ≤ ǫc1. (4.8)

We now have

‖B1/2u‖2 + ‖ξ‖2 + ‖A1/2p‖2 + ‖ζ‖2 ≥ 1

2
‖z‖2

0, z = (u, ut, p, pt) (4.9)

provided we choose ǫ ∈ (0, ǫ′0] small enough. Therefore, by means of (4.9), inequality
(4.8) entails

d

dt
E(z) + δ0‖z‖2

0 ≤ 2ǫ0c1 (4.10)

where δ0 = ǫ0ν/3 and ǫ0 = min{ǫ′0, ǫ′′0}. The existence of a bounded absorbing set
is now a direct consequence of (4.10), in light of Lemma 2.1. Actually, let us fix
R > 0 and a set of initial data z0 ∈ H0, with ‖z0‖0 ≤ R. By (4.6) we have the
bound

E(z(0)) ≤ c3‖z0‖0(1 + ‖z0‖r−1
0 ) ≤ c3R(1 +Rr−1). (4.11)

We now take X = H0 and Z ⊂ C0([0,+∞);H0) given by the family of the trajec-
tories departing from the initial data z0 ∈ H0 with ‖z0‖0 ≤ R. From Lemma 2.1
we therefore conclude that there exists a time t0 = t0(R) > 0 such that

E(z(t; z0)) ≤ sup{E(ζ) : ζ ∈ H0, δ0‖ζ‖2
0 ≤ 2ǫ0c1 + 1} (4.12)

for every t ≥ t0 and for every z0 ∈ H0 with ‖z0‖0 ≤ R. Here we have set z(t; z0) :=
S(t)z0. Estimating the right hand side of (4.12) by means of (4.6) and taking
account of (4.5), we conclude that there exists R0 > 0 such that

‖z(t; z0)‖0 ≤ R0, ∀t ≥ t0(R), ∀z0 ∈ H0, ‖z0‖0 ≤ R. (4.13)

It follows that B0 = {z ∈ H0 : ‖z‖0 ≤ R0} is a bounded absorbing set for the
semigroup. This completes the proof.
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A straightforward consequence of Theorem 4.1 is

Corollary 4.1. Let (H1)-(H3) hold. Then, for every R > 0, there exists a positive
constant Λ = Λ(R) such that, whenever ‖z0‖0 ≤ R, the corresponding solution
fulfills ‖z(t)‖0 ≤ Λ for all t ≥ 0.

Another important corollary, that will be useful in the following, provides the
uniform control of the dissipation integral, namely,

Corollary 4.2. Let (H1)-(H3) hold. Then, for every R > 0, there exists a positive
constant Λ = Λ(R) such that, whenever ‖z0‖0 ≤ R, there holds

∫ +∞

0

(‖ut(τ)‖2 + ‖pt(τ)‖2)dτ ≤ Λ.

Proof. We write (4.1) for ǫ = 0 getting the energy identity

1

2

d

dt
‖z‖2

0 + ‖ut‖2 + ‖pt‖2 +
d

dt

∫

Ω

F (p) = 0. (4.14)

Integrating with respect to time and using (4.3) we are led to

ν

2
‖z(t)‖2

0 +

∫ t

0

(‖ut(τ)‖2 + ‖pt(τ)‖2)dτ ≤ 1

2
‖z0‖2

0 +

∫

Ω

F (p0) +
c2
2
.

From this inequality, letting t→ ∞, we deduce the thesis.

Remark 4.1. We can furnish an estimate for the radius R0 of the absorbing set
B0 in terms of the parameters of the problem. First let us introduce the following
notation. Given a1, a2, a3 ≥ 0 and r ≥ 2, we denote by γ = γ(a1, a2, a3; r) a
nonnegative constant such that a1t

r + a2t
2 + a3t ≤ γ(t + tr) for every t ≥ 0. We

indicate by c̃0 a nonnegative constant such that |F (s)| ≤ c̃0(|s|+|s|r) for every s ∈ R.
With the previous notation we can also take c̃0 = γ(c0/2, c0/2, |φ(0)|; r), where c0 is
the constant appearing in (H2). For the constants ν, c1 and c2 in (4.2), (4.3) we can

assume ν = min{(λA − λ̃)/2λA, 1}, c1 = |Ω|max{C, 0} and c2 = |Ω|D, where λ̃ =

− lim inf|s|→+∞
φ(s)

s ∈ R∪{−∞}, C = −min|r|≤ρ rφ(r) and D = −2 min|r|≤ρ F (r),

with ρ ≥ 0 such that rφ(r) ≥ −max{(λA + λ̃)/2, 0}r2 for every |r| ≥ ρ. The
constant c3 in (4.6) can be calculated to give c3 = γ(2c̃0c

r
i , 2, 2c̃0|Ω|1/2/

√
λA; r),

where ci ≥ 0 is the constant of the continuous embedding H1(Ω) →֒ Lr(Ω) (i.e.
‖w‖Lr(Ω) ≤ ci‖w‖H1(Ω) for every w ∈ H1(Ω). We recall that we can assume ci =√

2[r/2]‖P‖, where [x] is the smallest integer greater or equal to x, for every x > 0,
and P : H1(Ω) → H1(R2) is a bounded and linear extension operator). The
constant ci depends on Ω and r. Finally, the values of ǫ′0, ǫ

′′
0 can be given by

ǫ′20 = min{νλA, λB}/4 and ǫ′′0 = (1 + λ−1
B + (νλA)−1 + ν/3)−1. We observe that in

(4.6) the constant c3 is given as above, provided ǫ ≤ ǫ′0. From (4.5), (4.6), (4.12)
we thus can deduce the required estimate

R2
0 =

2

ν

[
c3

(2ǫ0c1 + 1

δ0

)1/2(
1 +

(2ǫ0c1 + 1

δ0

)(r−1)/2)
+ c2

]
, δ0 =

ǫ0ν

3
.

Remark 4.2 (Uniform decay of the trajectories). Exploiting the considerations of
the previous remark and using Lemma 2.1 once more, we can immediately deduce
a sufficient condition which ensures the decay in H0 of the trajectories uniformly
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from every bounded subset B ⊂ H0. Indeed, let η > 0 be fixed arbitrary. Then,
the quantity R0,η > 0 given by

R2
0,η =

2

ν

[
c3

(2ǫ0c1 + η

δ0

)1/2(
1 +

(2ǫ0c1 + η

δ0

)(r−1)/2)
+ c2

]

is the radius of an absorbing ball B0 = BH0(0, R0,η). Therefore, for every R > 0,
there exists a time t0 = t0(R, η) > 0, such that, for every t ≥ t0(R, η) we have
‖z(t; z0)‖0 ≤ R0,η for any z0 ∈ H0 with ‖z0‖0 ≤ R. From Lemma 2.1, (4.5) and
(4.6) we can also infer t0 = [c3R(1 + Rr−1) + c2]/η. We hence recognize at once
the desired sufficient condition, that is c1 = c2 = 0, and we can state the following
proposition

Proposition 4.1. Let (H1) to (H3) hold. In addition, suppose that the following
conditions

min
|r|≤ρ

rφ(r) ≥ 0, min
|r|≤ρ

F (r) = 0 (4.15)

be satisfied, with ρ ≥ 0 as in Remark 4.1. Then, for every R > 0, we have

‖z(t; z0)‖0 → 0 as t→ +∞
uniformly for ‖z0‖0 ≤ R. In particular, assumption (4.15) holds if sφ(s) ≥ 0 for
every s ∈ R.

Remark 4.3. The assumptions of Proposition 4.1 are satisfied if we take, for ex-
ample, φ(s) = s|s|r−2/(r − 1), r ≥ 2.

We conclude this section with the result concerning the existence of a bounded
absorbing set in H1 for the semigroup S(t) : H1 → H1. This will be guaranteed by
the next theorem whose proof, based on the generalized Gronwall lemma recalled in
Section 2 (see Lemma 2.2), requires, besides (H3)-(H5), the following further (but
reasonable) assumption

(H6) φ′(s) ≥ −l, ∀s ∈ R, l ≥ 0.

Theorem 4.2. Let (H3)-(H6) hold. Given R0 ≥ 0 and R1 ≥ 0 such that ‖z0‖0 ≤
R0 and ‖z0‖1 ≤ R1, there exist constants C = C(R0), K = K(R1), depending
increasingly and continuously on R0 and R1 respectively, and ǫ1 > 0 such that, for
every t ≥ 0,

‖z(t)‖1 ≤ Ke−ǫ1t + C.

Proof. We rewrite system (1.1) in the form
{
utt + ut + pt +Bu = 0
ptt + pt − ut +Ap+ ψ(p) = lp

(4.16)

where ψ(s) := φ(s) + ls. For z0 ∈ H1, we consider the linear nonhomogeneous
problem





vtt + vt + qt +Bv = 0
qtt + qt − vt +Aq + ψ′(p)q = lpt

v(0) = u1 =: v0, vt(0) = −u1 − p1 −Bu0 =: v1
q(0) = p1 =: q0, qt(0) = −p1 + u1 −Ap0 − φ(p0) =: q1

(4.17)

obtained by differentiation of the above system with respect to time. Since we have
(v0, v1, q0, q1) ∈ H0, by virtue of standard well-posedness results for linear equations
(see, e.g., [17]), problem (4.17) admits a unique weak solution w := (v, vt, q, qt) such
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that w ∈ C0([0,∞);H0). By comparision with the solution to Problem P we obtain
v(t) = ut(t), q(t) = pt(t) and hence w(t) = zt(t). Now, for ǫ > 0 to be determined
later, we multiply in L2(Ω) (4.17)1 by ξ := vt + ǫv, (4.17)2 by ζ := qt + ǫq and we
add together the resulting equations. After some calculations we obtain

1

2

d

dt

(
‖B1/2v‖2 + ‖ξ‖2 + ‖A1/2q‖2 + ‖ζ‖2 + (ψ′(p)q, q)

)
+ ǫ‖B1/2v‖2 + (1 − ǫ)‖ξ‖2

−ǫ(1 − ǫ)(v, ξ) + ǫ‖A1/2q‖2 + (1 − ǫ)‖ζ‖2 − ǫ(1 − ǫ)(q, ζ) + ǫ(ψ′(p)q, q)

=
1

2
(ψ′′(p)pt, q

2) + l(pt, ζ) + ǫ(pt, ξ) − ǫ(ut, ζ). (4.18)

If we define

Φ := ‖B1/2v‖2 + ‖ξ‖2 + ‖A1/2q‖2 + ‖ζ‖2 + (ψ′(p)q, q) (4.19)

it is easy to see that there holds

k1‖w(t)‖2
0 ≤ Φ(t) ≤ k2‖w(t)‖2

0, ∀t ≥ 0 (4.20)

provided ǫ is small enough, where k1 and k2 are positive constants, with only k2

depending on the H0-norm of the initial data z0. To prove (4.20) one uses (H2), the
control ‖z(t)‖0 ≤ Λ(‖z0‖0) (provided by Corollary 4.1), Young inequality and the
fact that ψ′(s) ≥ 0 for every s ∈ R. From now on, in the course of this proof, we
denote by k some positive constant depending, increasingly and continuously, on
‖z0‖0. After exploiting Corollary 4.1 to estimate the last three terms on the right
hand side of (4.18) as

l(pt, ζ) + ǫ(pt, ξ) − ǫ(ut, ζ) ≤ ǫ‖ξ‖2 + ǫ‖ζ‖2 +
k

2
,

we can write for ǫ small enough

ǫ‖B1/2v‖ + (1 − 2ǫ)‖ξ‖2 − ǫ(1 − ǫ)(v, ξ) + ǫ‖A1/2q‖2 + (1 − 2ǫ)‖ζ‖2

−ǫ(1 − ǫ)(q, ζ) + ǫ(ψ′(p)q, q) ≥ ǫ

2
Φ. (4.21)

Finally, using (H5) and Corollary 4.1 once more, the first term on the right hand
side of (4.18) can be estimated as follows

(ψ′′(p)pt, q
2) ≤ c(1 + ‖A1/2p‖r−3)‖pt‖‖A1/2q‖2 ≤ k‖pt‖‖A1/2q‖2. (4.22)

Now, by means of (4.21), (4.22) and (4.19), we get from (4.18) the following differ-
ential inequality

d

dt
Φ + ǫΦ ≤ k‖pt‖Φ + k (4.23)

and we observe that, on account of the integral bound provided by Corollary 4.2,
for every 0 ≤ s ≤ t, there holds

∫ t

s

‖pt(τ)‖dτ ≤ Λ(‖z0‖0)(t− s)1/2 ≤ ǫ

2
(t− s) + k. (4.24)

Therefore, we can apply Lemma 2.2 and, due to (4.20), we deduce

‖w(t)‖0 ≤ k‖w0‖0e
− ǫ

4 t + k (4.25)

with w0 := w(0). To conclude the proof we observe that, from (4.17)3 and (4.17)4
we can write

‖w0‖0 ≤ c(‖z0‖1) (4.26)
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with c(·) a nondecreasing continuous function, whereas using (4.16)1 and (4.16)2
and the fact that ‖z0‖0 ≤ R0, for every t ≥ 0, we have

‖z(t)‖1 ≤ c‖w(t)‖0 + k. (4.27)

The thesis follows from (4.25), (4.26) and (4.27).

Corollary 4.3. Let the assumptions of Theorem 4.2 hold. Then, the (closed) ball
in H1 given by

B(1)
0 := {z0 ∈ H1 : ‖z0‖1 ≤ 2C(R0)}

where R0 is the radius of a bounded absorbing set in H0 (given by Theorem 4.1), is
a bounded absorbing set in H1 for the semigroup S(t) : H1 → H1.

5. The global attractor. The aim of this section is to prove the existence of the
global attractor for the semigroup S(t) on H0. We consider Problem P, that is
system (1.1) endowed with Dirichlet-Neumann boundary conditions. Nevertheless
the same procedure, with few modifications, can be repeated in the case of Dirichlet-
Dirichlet boundary conditions as well. We recall that the global attractor is the
(unique) compact set A ⊂ H0 which is fully invariant, i.e., S(t)A = A for every
t ≥ 0, and attracting in the sense of the Hausdorff semidistance. See, for instance,
[1, 11, 12, 17] for reference on the general theory of dissipative infinite-dimensional
dynamical systems. Let us state the main result of this section.

Theorem 5.1. In the hypotheses (H1)-(H3), the semigroup S(t) on H0 associated
to Problem P possesses the global attractor.

Proof. We decompose the solution z = (u, ut, p, pt) to P with initial data z0 =
(u0, u1, p0, p1) ∈ H0 as z = zd + zc, where zd = (ud, ∂tud, pd, ∂tpd) and zc =
(uc, ∂tuc, pc, ∂tpc) are the solutions to the problems





∂ttud + ∂tud + ∂tpd +Bud = 0
∂ttpd + ∂tpd − ∂tud +Apd = 0
zd(0) = z0

(5.1)

and 



∂ttuc + ∂tuc + ∂tpc +Buc = 0
∂ttpc + ∂tpc − ∂tuc +Apc + φ(p) = 0
zc(0) = 0.

(5.2)

It is easy to check that problems (5.1) and (5.2) are well posed. The thesis of the
theorem follows from the general theory of dynamical systems once we show that,
uniformly for z0 ∈ B0 zd(t) → 0 in H0 as t → +∞, whereas (for z0 ∈ B0) zc(t) lies
in a compact subset of H0 (possibly depending on t) for all t ≥ 0. This is precisely
the content of Lemma 5.2 and Lemma 5.3.

Lemma 5.2. The solution zd to (5.1) fulfills

lim
t→+∞

[ sup
z0∈B0

‖zd(t; z0)‖0] = 0.

Proof. The thesis can be deduced immediately from Proposition 4.1 for the case
φ = 0.

Lemma 5.3. The solution zc to (5.2) fulfills

zc(t; z0) ∈ K(t), ∀t ≥ 0, ∀z0 ∈ B0

where K(t) is a compact subset of H0.
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Proof. We multiply (5.2)1 by Bs∂tuc and (5.2)2 by As∂tpc, where we fix s ∈ (0, 1/2).
Adding the resulting identities we are led to the differential equality

1

2

d

dt
{‖B(1+s)/2uc‖2 + ‖Bs/2∂tuc‖2 + ‖A(1+s)/2pc‖2 + ‖As/2∂tpc‖2}

+‖Bs/2∂tuc‖2 + ‖As/2∂tpc‖2

= −(Bs∂tuc, ∂tpc) + (As∂tpc, ∂tuc) − (As∂tpc, φ(p)).

(5.3)

Observe now that

(As∂tpc, ∂tuc) ≤ ‖B−s/2As∂tpc‖‖Bs/2∂tuc‖
≤ c‖A−s/2As∂tpc‖‖Bs/2∂tuc‖ = c‖As/2∂tpc‖‖Bs/2∂tuc‖ (5.4)

where we have exploited the embedding D(Bs/2) →֒ D(As/2), for every s > 0, from
which follows D(A−s/2) →֒ D(B−s/2), for every s > 0. Moreover

− (Bs∂tuc, ∂tpc) ≤ ‖A−s/2Bs∂tuc‖‖As/2∂tpc‖ ≤ c‖Bs/2∂tuc‖‖As/2∂tpc‖ (5.5)

where we have used the fact that, for s ∈ (0, 1/2), D(As/2) = D(Bs/2) and the op-
erator A−s/2Bs/2 is bounded (i.e., ‖A−s/2Bs/2w‖ ≤ c‖w‖ for every w ∈ D(Bs/2)).
Integrating (5.3) with respect to time from 0 to t and taking into account (5.2)3,
(5.4), (5.5) we get

1

2
{‖B(1+s)/2uc‖2 + ‖Bs/2∂tuc‖2 + ‖A(1+s)/2pc‖2 + ‖As/2∂tpc‖2}

+

∫ t

0

{‖Bs/2∂tuc‖2 + ‖As/2∂tpc‖2}dτ

≤ c

∫ t

0

‖Bs/2∂tuc‖‖As/2∂tpc‖dτ −
∫ t

0

(As∂tpc, φ(p))dτ. (5.6)

Now, we integrate by parts the last term on the right side of (5.6) and get

−
∫ t

0

(As∂tpc, φ(p))dτ = −(Aspc, φ(p)) +

∫ t

0

(Aspc, φ
′(p)pt)dτ. (5.7)

It is easy to see that the first term on the right side of (5.7) is bounded. Indeed, for
z0 ∈ B0, denoting henceforth by c a nonnegative constant depending on R0 (besides
on Ω and φ), we have ‖Aspc(t)‖ ≤ c‖A1/2pc(t)‖ ≤ c, for all t ≥ 0, as a conse-
quence of the decay to zero of pd (Lemma 5.2), and of Corollary 4.1 (which implies
‖A1/2p(t)‖ ≤ c for every t ≥ 0). Also, by (H2), ‖φ(p(t))‖ ≤ c(1+‖A1/2p(t)‖r−1) ≤ c
for all t ≥ 0. Furthermore, we have

∫ t

0

(Aspc, φ
′(p)pt)dτ ≤

∫ t

0

∫

Ω

|Aspc||φ′(p)||pt|dxdτ

≤
∫ t

0

‖Aspc‖L2/s‖φ′(p)‖L2/(1−s)‖pt‖dτ ≤ c

∫ t

0

‖A(1+s)/2pc‖dτ (5.8)

where we have used the embedding D(A(1−s)/2) →֒ L2/s(Ω) and the fact that, for
z0 ∈ B0, ‖φ′(p)‖L2/(1−s) , ‖pt‖ ≤ c, by virtue of Corollary 4.1. Substituting (5.8)
into (5.6), we obtain the differential inequality

Φ(t) ≤ ct+ c

∫ t

0

Φ(τ)dτ
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where Φ := ‖B(1+s)/2uc‖2 + ‖Bs/2∂tuc‖2 + ‖A(1+s)/2pc‖2 + ‖As/2∂tpc‖2. The stan-
dard Gronwall lemma yields Φ(t) ≤ c(t) for all t ≥ 0, where c(t) generally depends
on t, but it is independent of z0 (provided z0 ∈ B0). Hence zc(t) ∈ BHs(0, c(t)),
for every t ≥ 0 and every z0 ∈ B0. Hence, the thesis follows from the compact
embedding Hs →֒→֒ H0.

6. Smooth attracting sets. We now establish the existence of a bounded subset
in H1, denoted by B1, which attracts the bounded subsets in H0 exponentially fast.
This circumstance, on one hand, will provide the regularity of the attractor, and,
on the other hand, will turn to be very useful in the construction of the exponential
attractor. We point out that, through the use of a different proof of Lemma 5.3
obtained by multiplying (5.2)1 and (5.2)2 by Bs∂tuc + ǫBsuc and As∂tpc + ǫAspc,
respectively, and taking ǫ small enough, it can be shown that the solution zc of (5.2)
actually fulfills

‖zc(t; z0)‖s ≤ cs, ∀t ≥ 0, ∀z0 ∈ B0, s ∈ (0, 1/2).

This implies that the global attractor A is a bounded subset of the Hilbert space
Hs, for s ∈ (0, 1/2), which is compactly embedded into the phase-space H0. In this
section we show that the bounded inclusion A ⊂ Hs can be pushed up to s = 1.
For this purpose, the application of the technique based on the multiplication by
fractional operators and on bootstrap arguments, which works perfectly for the the
system (1.1) with Dirichlet-Dirichlet boundary conditions, is problematic in the
case of the Dirichlet-Neumann boundary conditions, due essentially to the different
domains of As/2 and Bs/2 for s ≥ 1/2, and to the presence of the coupling terms.
In order to achieve the existence of B1 and hence the H1-regularity of the attractor
for Problem P we therefore employ a different approach, which consists in the
application to system (1.1) of a new technique due to Pata and Zelik (see [16]), whose
key step is a suitable decomposition of the solution semigroup. This decomposition
has been recently employed successfully in other recent works (see, e.g., [8, 9, 18]).
Notice that this procedure can also be intended as a proof of existence of the global
attractor A. Nevertheless, the only existence of A can be deduced under weaker
assumptions, like those of Section 5 and Section 4. Following [16], we shall need,
besides (H3), the assumptions (H4), (H5) and (H6). Here is the result we want to
prove

Theorem 6.1. Let (H3)-(H6) hold. Then, there exists a subset B1 ⊂ H1 closed
and bounded in H1 and ν > 0 such that

distH0(S(t)B0,B1) ≤Me−νt, ∀t ≥ 0 (6.1)

for some M > 0 depending on R0.

As a straightforward consequence, by virtue of the minimality property of the
global attractor, we have the following

Corollary 6.1. In the hypotheses (H3)-(H6), the global attractor A of the semi-
group on H0 associated with Problem P is contained and bounded in H1.

In order to prove Theorem 6.1 we consider the initial data z0 ∈ B0 and we
decompose the solution z to P into the sum z = z1 +z2, where z1 = (u1, u1t, p1, p1t)
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and z2 = (u2, u2t, p2, p2t) are the solutions to the problems, respectively,





u1tt + u1t + p1t +Bu1 = 0
p1tt + p1t − u1t +Ap1 + ψ(p) − ψ(p2) = 0
z1(0) = z0

(6.2)

and 




u2tt + u2t + p2t +Bu2 = 0
p2tt + p2t − u2t +Ap2 + ψ(p2) = θp
z2(0) = 0.

(6.3)

Here we have set

ψ(s) := φ(s) + θs

with θ ≥ l, in order to have, by (H6), ψ′(s) ≥ 0. The following lemmas will be
needed for the proof of Theorem 6.1. We stress that c ≥ 0 stands for a generic
constant depending possibly only on R0 (the radius of the absorbing set) and on Ω
and φ, but neither on z0 ∈ B0 nor on the time t.

Lemma 6.2. We have ‖z2(t)‖0 ≤ c, for every t ≥ 0.

Proof. We can use the same argument of the proof of Theorem 4.1. Indeed, identity
(4.1) can be obviously rewritten for system (6.3), replacing F (p) with Ψ(p2) :=∫ p2

0
ψ(σ)dσ on the left hand side of (4.1) and adding the additional term θ(p, ζ2)

on the right hand side. It is immediate to verify that (H3) is still fulfilled with
φ replaced by ψ and hence (4.3) still holds for Ψ(p2) in place of F (p). Writing
θ(p, ζ2) ≤ 1

2‖ζ2‖2 + c‖p‖2, we are led to

d

dt
E(z2(t)) + δ0‖z2(t)‖2

0 ≤ 2ǫ0c1 + c‖p‖2 ≤ c

for z0 ∈ B0. By means of Lemma 2.1 (observe that here z2(0) = 0) we immediately
conclude the proof.

Lemma 6.3. For every 0 ≤ s ≤ t and every ω > 0 we have
∫ t

s

(‖u2t(τ)‖2 + ‖p2t(τ)‖2)dτ ≤ ω(t− s) +
c

ω
+ c.

Proof. We multiply (6.3)1 by u2t and (6.3)2 by p2t. Adding the resulting equations
we get

d

dt

{
‖B1/2u2‖2 + ‖u2t‖2 + ‖A1/2p2‖2 + ‖p2t‖2 + 2

∫

Ω

Ψ(p2) − 2θ(p, p2)
}

+2‖u2t‖2 + 2‖p2t‖2 = −2θ(pt, p2). (6.4)

Setting

Λ := ‖B1/2u2‖2 + ‖u2t‖2 + ‖A1/2p2‖2 + ‖p2t‖2 + 2

∫

Ω

Ψ(p2) − 2θ(p, p2)

it is easy to see that Λ(t) ≤ c, for all t ≥ 0, as a consequence of Corollary 4.1,
Lemma 6.2 and (H5). We now can write

dΛ

dt
+ 2‖u2t‖2 + 2‖p2t‖2 = −2θ(pt, p2) ≤

c

ω
‖pt‖2 + 2ω (6.5)

where we have used Lemma 6.2 once more. Integrating (6.5) with respect to time
between s and t and taking account of Corollary 4.2 and of the bound Λ(t) ≤ c, for
every t ≥ 0, we get the thesis.
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Collecting the above results, for all z0 ∈ B0 and all t ≥ s ≥ 0 we have the bounds

‖z(t)‖0 + ‖z2(t)‖0 ≤ c (6.6)
∫ t

s

(‖ut(τ)‖2 + ‖pt(τ)‖2 + ‖u2t(τ)‖2 + ‖p2t(τ)‖2)dτ ≤ ω(t− s) +
c

ω
+ c (6.7)

for every ω > 0.
We are now in a position to prove

Lemma 6.4. There exists ν > 0 such that

‖z1(t)‖0 ≤ ce−νt, ∀t ≥ 0, ∀z0 ∈ B0.

Proof. For ǫ ∈ (0, 1) to be determined later, we multiply (6.2)1 by u1t + ǫu1, (6.2)2
by p1t + ǫp1, respectively, and add the resulting equations. After some calculations
we obtain

d

dt
{‖B1/2u1‖2 + ‖u1t‖2 + ǫ‖u1‖2 + 2ǫ(u1t, u1) + ‖A1/2p1‖2 + ‖p1t‖2

+ǫ‖p1‖2 + 2ǫ(p1t, p1) + 2(ψ(p) − ψ(p2), p1) − (ψ′(p)p1, p1)}
+2ǫ‖B1/2u1‖2 + 2(1 − ǫ)‖u1t‖2 + 2ǫ‖A1/2p1‖2 + 2(1 − ǫ)‖p1t‖2

+2ǫ(p1t, u1) − 2ǫ(u1t, p1) + 2ǫ(p1, ψ(p) − ψ(p2))

= 2((ψ′(p) − ψ′(p2))p2t, p1) − (ψ′′(p)pt, p
2
1). (6.8)

Introducing the functionals

Λ := ‖B1/2u1‖2 + ‖u1t‖2 + ǫ‖u1‖2 + 2ǫ(u1t, u1) + ‖A1/2p1‖2 + ‖p1t‖2

+ǫ‖p1‖2 + 2ǫ(p1t, p1) + 2(ψ(p) − ψ(p2), p1) − (ψ′(p)p1, p1), (6.9)

and

Γ := ǫ‖B1/2u1‖2 + (2 − 3ǫ)‖u1t‖2 − ǫ2‖u1‖2 − 2ǫ2(u1t, u1) +
ǫ

2
‖A1/2p1‖2

+(2 − 3ǫ)‖p1t‖2 − ǫ2‖p1‖2 − 2ǫ2(p1t, p1) + ǫ(ψ′(p)p1, p1)

+2ǫ(p1t, u1) − 2ǫ(u1t, p1), (6.10)

then, identity (6.8) can be rewritten in the form

dΛ

dt
+ ǫΛ +

ǫ

2
‖A1/2p1‖2 + Γ = 2((ψ′(p) − ψ′(p2))p2t, p1) − (ψ′′(p)pt, p

2
1). (6.11)

On the other hand, we obtain, using (H6)

2(ψ(p) − ψ(p2), p1) = 2(φ(p) − φ(p2), p1) + 2θ‖p1‖2 ≥ 2(θ − l)‖p1‖2 (6.12)

and also

|(φ′(p)p1, p1)| ≤ c(1 + ‖A1/2p‖r−2)‖p1‖‖A1/2p1‖ ≤ c‖p1‖‖A1/2p1‖

≤ 1

2
‖A1/2p1‖2 + c‖p1‖2 (6.13)

where we have used the fact that, for z0 ∈ B0, we have ‖A1/2p(t)‖ ≤ c for all t ≥ 0
(see (6.6) or Corollary 4.1). From (6.12) and (6.13) we deduce

2(ψ(p) − ψ(p2), p1) − (ψ′(p)p1, p1) ≥ −1

2
‖A1/2p1‖2 (6.14)

where we suppose to fix θ large enough (θ ≥ 2l + c). By means of the Young
inequality, from (6.9) and (6.14) it is now straightforward to prove that, choosing
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0 < ǫ ≤ ǫ0 with ǫ0 small enough, there holds (always for z0 ∈ B0 and θ fixed as
above)

Λ(t) ≥ c1‖z1(t)‖2
0, ∀t ≥ 0. (6.15)

Furthermore, we have

2|(ψ(p) − ψ(p2), p1)| ≤ c‖p1‖2 + c(‖A1/2p‖r−2 + ‖A1/2p2‖r−2)‖A1/2p1‖2

≤ c‖A1/2p1‖2 (6.16)

and

|(ψ′(p)p1, p1)| ≤ c‖p1‖2 + c‖A1/2p‖r−2‖A1/2p1‖2 ≤ c‖A1/2p1‖2 (6.17)

where we have exploited (6.6) once again (or Corollary 4.1) and Lemma 6.2. There-
fore, by means of (6.16) and (6.17), we obtain at once (always for z0 ∈ B0)

Λ(t) ≤ c2‖z1(t)‖2
0, ∀t ≥ 0. (6.18)

As far as the functional Γ is concerned, we first observe that (ψ′(p)p1, p1) ≥ 0 (for
θ ≥ l) and

ǫ

2
‖A1/2p1‖2 − ǫ2‖p1‖2 ≥ ǫ

4
‖A1/2p1‖2, (for 0 < ǫ < 1/4).

Thus, using also the Poincaré inequality, we can write

Γ ≥ ǫ(1 − 2ǫ

λB
)‖B1/2u1‖2 + (2 − 3ǫ− ǫ2)‖u1t‖2 +

ǫ

4
‖A1/2p1‖2

+(2 − 3ǫ− ǫ2)‖p1t‖2 − ǫ2‖p1‖2 − 2ǫ‖p1t‖‖u1‖ − 2ǫ‖u1t‖‖p1‖.
From this last inequality it is easy to infer that

Γ ≥ c‖z1‖2
0 (6.19)

for ǫ small enough. Finally, the first and the second term on the right hand side of
(6.11) can be controlled by

c(1 + ‖A1/2p‖r−3 + ‖A1/2p2‖r−3)‖p2t‖‖A1/2p1‖2 ≤ c‖p2t‖‖A1/2p1‖2 (6.20)

and by

c(1 + ‖A1/2p‖r−3)‖pt‖‖A1/2p1‖2 ≤ c‖pt‖‖A1/2p1‖2 (6.21)

respectively. Therefore, collecting (6.11), (6.20) and (6.21), we can write

dΛ

dt
+ ǫΛ +

ǫ

2
‖A1/2p1‖2 + Γ ≤ c(‖p2t‖ + ‖pt‖)‖A1/2p1‖2

≤
[ ǫ
2

+ c(‖p2t‖2 + ‖pt‖2)
]
‖A1/2p1‖2 (6.22)

and, by means of (6.15) and (6.19), (6.22) leads us to the differential inequality

dΛ

dt
+ ǫΛ ≤ c(‖p2t‖2 + ‖pt‖2)Λ. (6.23)

Now we observe that, by virtue of (6.7), the hypotheses for the application of Lemma
2.2 to inequality (6.23) are satisfied (with the choice k = 0, h = ‖p2t‖2 + ‖pt‖2 and
ω = ǫ/2c). Thus, we deduce

Λ(t) ≤ cΛ(0)e−ǫt/2, ∀t ≥ 0, z0 ∈ B0 (6.24)

and, by means of (6.15) and (6.18), we get the thesis.
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Lemma 6.5. We have

‖z2(t)‖1 ≤ c, ∀t ≥ 0, ∀z0 ∈ B0.

Proof. We differentiate (6.3)1 and (6.3)2 with respect to time and we set v := u2t

and q := p2t. We obtain
{
vtt + vt + qt − ∆v = 0
qtt + qt − vt − ∆q + q + ψ′(p2)q = θpt.

(6.25)

We multiply (6.25)1 by vt + ǫv, (6.25)2 by qt + ǫq, with ǫ > 0 to be chosen later,
and we add the resulting equations. Performing the same kind of calculations done
in the proof of Lemma 6.4, we get

dΛ

dt
+ ǫΛ + ǫ‖B1/2v‖2 + (2 − 3ǫ)‖vt‖2 − ǫ2‖v‖2 − 2ǫ2(vt, v) + ǫ‖A1/2q‖2

+(2 − 3ǫ)‖qt‖2 − ǫ2‖q‖2 − 2ǫ2(qt, q) + ǫ(ψ′(p2)q, q) + 2ǫ(qt, v) − 2ǫ(vt, q)

= (ψ′′(p2)p2t, q
2) + 2θ(pt, qt) + 2ǫθ(pt, q)

where

Λ := ‖B1/2v‖2 + ‖vt‖2 + ǫ‖v‖2 + 2ǫ(vt, v) + ‖A1/2q‖2 + ‖qt‖2

+ǫ‖q‖2 + 2ǫ(qt, q) + (ψ′(p2)q, q). (6.26)

If we set

Γ := ǫ‖B1/2v‖2 + (2 − 3ǫ)‖vt‖2 − ǫ2‖v‖2 − 2ǫ2(vt, v) +
ǫ

2
‖A1/2q‖2

+(1 − 3ǫ)‖qt‖2 − ǫ2‖q‖2 − 2ǫ2(qt, q) + ǫ(ψ′(p2)q, q)

+2ǫ(qt, v) − 2ǫ(vt, q) (6.27)

we are thus led to

dΛ

dt
+ ǫΛ + Γ +

ǫ

2
‖A1/2q‖2 + ‖qt‖2 = (ψ′′(p2)p2t, q

2) + 2θ(pt, qt) + 2ǫθ(pt, q).(6.28)

We now have

(ψ′′(p2)p2t, q
2) ≤ c(1 + ‖A1/2p2‖r−3)‖p2t‖‖A1/2q‖2

≤ c‖p2t‖‖A1/2q‖2 ≤ (
ǫ

2
+ c‖p2t‖2)‖A1/2q‖2 (6.29)

by (H5) and Lemma 6.2, being z0 ∈ B0. Therefore, from (6.28), (6.29) we deduce

dΛ

dt
+ ǫΛ + Γ ≤ c‖p2t‖2‖A1/2q‖2 + c‖pt‖2 + c‖p2t‖2

≤ c‖p2t‖2‖A1/2q‖2 + c. (6.30)

using Corollary 4.1 and Lemma 6.2 again in the last estimate. Now, it is not difficult
to see, with the help of the Young inequality, that, for 0 < ǫ ≤ ǫ0 with ǫ0 small
enough, and θ ≥ l, we have

c1‖(v, vt, q, qt)‖0 ≤ Λ ≤ c2‖(v, vt, q, qt)‖0

and Γ ≥ 0. From (6.30) we thus obtain

dΛ

dt
+ ǫΛ ≤ c‖p2t‖2Λ + c (6.31)
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and the application of Lemma 2.2 to the differential inequality (6.31) (cf. (6.7))
yields the bound Λ(t) ≤ c for all t ≥ 0, and for all z0 ∈ B0, which entails

‖B1/2u2t(t)‖ + ‖u2tt(t)‖ + ‖A1/2p2t(t)‖ + ‖p2tt(t)‖ ≤ c.

From this last bound we recover, with the help of (6.3)1 and (6.3)2, the further
controls ‖Bu2(t)‖ ≤ c and ‖Ap2(t)‖ ≤ c, from which we get the thesis.

We can now conclude the proof of the main result of this section.

Proof of Theorem 6.1. Let us put B1 := {z ∈ H1 : ‖z‖1 ≤ c} with c as in Lemma
6.5. Then, by using Lemma 6.4 and Lemma 6.5 we immediately get (6.1).

7. The exponential attractor. The global attractor is not always a nice object
to describe the longterm dynamics of a system. Actually, the rate of convergence
of the trajectories to the attractor is not controlled in general and, in some con-
crete cases, may be arbitrarily small (see, e.g., [13]). This means that, when only
the existence of the global attractor is proved, it is in general very difficult, if not
impossible, to know the time needed to stabilize the system. A more precise infor-
mation on the convergence rate can be achieved when, for instance, the stationary
solutions are hyperbolic. In that case, the global attractor (the so-called regular
attractor in the terminology of A.V. Babin and M.I. Vishik [1]) is regular and ex-
ponential (in a sense that we shall precise below). For the regular attractors the
rate of convergence can also be estimated in terms of the hyperbolicity contants
of the equilibria, but, even in this situation, it is usually very difficult to estimate
these constants for concrete equations. We also point out that the global attractor
presents other defaults. Indeed, it is very difficult to express the convergence rate
in terms of the physical parameters of the problem and, in addition, the global at-
tractor may be sensitive to perturbations. In order to overcome all these difficulties
Eden, Foias, Nicolaenko and Temam (see [4], [5]) introduced the notion of expo-
nential attractor. This is a compact, positively invariant subset of the phase-space
of finite fractal dimension that attracts bounded subsets of initial data exponen-
tially fast (with a rate independent from the chosen subset of initial data) and it is
more robust under perturbations. Unfortunately, contrary to the global attractor,
the exponential attractor is not unique. However, if there exists an exponential
attractor E , then the semigroup possesses a compact attracting set, and thus it has
a global attractor A ⊂ E of finite fractal dimension, being dimFA ≤ dimFE . In
spite of its lack of uniqueness, the exponential attractor can be considered a good
compromise between the necessity of confining the longterm dynamics in a small
set, and the necessity of having a satisfactory time control of the convergence of
the trajectories. For a more extensive discussion and a review on recent results on
exponential attractors for evolution equations we refer the reader to, e.g., [14].
In this section we prove that system (1.1) subject to Dirichlet-Neumann omogeneous
boundary conditions possesses an exponential attractor which attracts all bounded
subsets of H0. We first recall, for the reader’s convenience, the definition of expo-
nential attractor, which is a generalization of the definition in [4], [5] justified by
the fact that we can prove that the exponential attractor has a basin of attraction
coinciding with the whole phase-space (see, e.g., [15]).

Definition 7.1. A compact set E ⊂ H0 is called an exponential attractor for the
semigroup S(t) if the following conditions hold

(i) E is positively invariant, that is, S(t)E ⊂ E for every t ≥ 0;
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(ii) E has finite fractal dimension, that is, dimF E <∞;
(iii) there exists an increasing function J : [0,+∞) → [0,+∞) and κ > 0 such

that, for every R > 0 and for every set B ⊂ H0 with supz0∈B ‖z0‖0 ≤ R there
holds

distH0(S(t)B, E) ≤ J(R)e−κt. (7.1)

We are now ready to state the main result of this section.

Theorem 7.2. In the hypotheses (H3)-(H6) the semigroup S(t) on H0 associated
with problem P possesses an exponential attractor E.

In order to prove Theorem 7.2 we exploit the approach introduced in [6] by
Efendiev, Miranville and Zelik, which allows the construction of the exponential
attractor without the use of orthogonal projectors. For our purpose the abstract
result we need is the following (see [15])

Lemma 7.3. Let X ⊂ H0 be a relatively compact (positively) invariant subset for
the semigroup S(t). Assume that there exists a time t∗ > 0 such that

(i) the map

(t, z) 7→ S(t)z : [0, t∗] ×X → X
is Lipschitz continuous (with the topology inherited from H0);

(ii) the map S(t∗) : X → X admits a decomposition of the form

S(t∗) = Sd + Sc, Sd : X → H0, Sc : X → H1

where Sd and Sc satisfy the conditions

‖Sd(z2) − Sd(z1)‖0 ≤ 1

8
‖z2 − z1‖0, ∀z1, z2 ∈ X

and

‖Sc(z2) − Sc(z1)‖1 ≤ C∗‖z2 − z1‖0, ∀z1, z2 ∈ X
for some C∗ > 0.

Then there exists an invariant compact set E ⊂ X such that

distH0(S(t)X , E) ≤ J0e
− log2

t∗
t (7.2)

where

J0 = 2L∗ sup
z0∈X

‖z0‖0e
log2
t∗

and L∗ is the Lipschitz constant of the map S(t∗) : X → X . Moreover

dimFE ≤ 1 +
logN∗

log 2
(7.3)

where N∗ is the minimum number of balls of radius 1
8C∗

of H0 necessary to cover
the unit ball of H1.

Besides Lemma 7.3 we recall another important abstract result which, in particu-
lar, shall be applied to show that the basin of attraction of the exponential attractor
coincides with the whole phase-space. This result concerns the transitivity property
of exponential attraction (see [7, Theorem 5.1]).
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Lemma 7.4. Let K1,K2,K3 be subsets of H0 such that

distH0(S(t)K1,K2) ≤ L1e
−θ1t, distH0(S(t)K2,K3) ≤ L2e

−θ2t

for some θ1, θ2 > 0 and L1, L2 ≥ 0. Assume also that for all z1, z2 ∈ ∪t≥0S(t)Kj

(with j = 1, 2, 3) there holds

‖S(t)z2 − S(t)z1‖0 ≤ L0e
θ0t (7.4)

for some θ0, L0 ≥ 0. Then we have

distH0(S(t)K1,K3) ≤ Le−θt

where θ = θ1θ2

θ0+θ1+θ2
and L = L0L1 + L2.

We now state and prove some lemmas that will be useful to verify the assumptions
of Lemma 7.3.

Lemma 7.5. There exists C > 0 such that

sup
z0∈B1

‖zt(t)‖0 ≤ C, ∀t ≥ 0.

Proof. The proof follows immediately from the proof of Theorem 4.2. Indeed, by
means of (4.25), (4.26) and recalling that w(t) = zt(t), we get the thesis.

Now, if we set

X :=
⋃

t≥0

S(t)B1

then, X is positively invariant and furthermore we have

• X is a bounded subset of H1 and thus relatively compact in H0. This is an

easy consequence of the existence of a bounded absorbing set B(1)
0 in H1 and

of the continuous dependence estimate that holds in H1. Indeed, let t1 > 0

be such that ∪t≥t1S(t)B1 ⊂ B(1)
0 . We only have to show that ∪0≤t≤t1S(t)B1

is bounded in H1 as well. But this fact is immediately implied by (3.4).
• X satisfies

distH0(S(t)B0,X ) ≤Me−νt (7.5)

for some M ≥ 0 and ν > 0. Indeed, we have distH0(S(t)B1,X ) = 0 and,
on account of Theorem 6.1 as well, we can apply Lemma 7.4 with the choice
K1 = B0, K2 = B1 and K3 = X . Assumption (7.4) of Lemma 7.4 holds in
light of the continuous dependence estimate in H0 ensured by Theorem 3.2
(see (3.3)).

• There exist C > 0 such that

sup
z0∈X

‖zt(t)‖0 ≤ C, ∀t ≥ 0.

This is a direct consequence of Lemma 7.5.

Our purpose now is to verify assumptions (i) and (ii) of Lemma 7.3 taking for X
the subset we have just constructed.

Lemma 7.6. For every T > 0 the mapping (t, z0) → S(t)z0 is Lipschitz continuous
from [0, T ] × X with values in H0. Therefore, assumption (i) of Lemma 7.3 holds
true.
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Proof. Let z1, z2 ∈ X and t1, t2 ∈ [0, T ]. We write

‖S(t2)z2 − S(t1)z1‖0 ≤ ‖S(t2)z2 − S(t2)z1‖0 + ‖S(t2)z1 − S(t1)z1‖0.

Due to (3.3), we have ‖S(t2)z2−S(t2)z1‖0 ≤ K‖z2−z1‖0, where K = eθ0T depends
only on R0 and T . Moreover, by Lemma 7.5,

‖S(t2)z1 − S(t1)z1‖0 =
∥∥∥

∫ t2

t1

zt(τ ; z1)dτ
∥∥∥

0
≤

∣∣∣
∫ t2

t1

‖zt(τ ; z1)‖0dτ
∣∣∣ ≤ C|t2 − t1|.

Hence
‖S(t2)z2 − S(t1)z1‖0 ≤ L(‖z2 − z1‖0 + |t2 − t1|)

with L = max{K,C} = L(T ) > 0.

Lemma 7.7. Assumption (ii) of Lemma 7.3 holds true.

Proof. We consider two trajectories departing from X , namely, z1 = (u1, u1
t , p

1, p1
t )

and z2 = (u2, u2
t , p

2, p2
t ) corresponding to z10, z20 ∈ X . Then we set

z := z2 − z1 =: (u, ut, p, pt), z0 := z20 − z10

and we decompose z as z = zd +zc =: (ud, ∂tud, pd, ∂tpd)+(uc, ∂tuc, pc, ∂tpc), where
the components of zd and zc solve, respectively,






∂ttud + ∂tud + ∂tpd +Bud = 0
∂ttpd + ∂tpd − ∂tud +Apd = 0
zd(0) = z0

(7.6)

and 



∂ttuc + ∂tuc + ∂tpc +Buc = 0
∂ttpc + ∂tpc − ∂tuc +Apc = φ(p1) − φ(p2)
zc(0) = 0.

(7.7)

Arguing as in the proof of Lemma 5.2, for zd we obtain

‖zd(t)‖0 ≤ c‖z0‖0e
−ν0t, ∀t ≥ 0

for some c and ν0 > 0. Hence, choosing t = t∗ = 1
ν0

log(8c), the first part of

assumption (ii) of Lemma 7.3 is fulfilled. In order to verify the second part of
assumption (ii), from system (7.7), by multiplying the first equation by B∂tuc, the
second by A∂tpc and summing the resulting identities, we easily obtain

1

2

d

dt
‖zc(t)‖2

1 + ‖B1/2∂tuc‖2 + ‖A1/2∂tpc‖2 = (φ(p1) − φ(p2), A∂tpc). (7.8)

We now have to control the nonlinear term on the right hand side of (7.8) in terms
of the H0-norm of the difference of the initial data z0. First we observe that

(φ(p1) − φ(p2), A∂tpc) =

∫

Ω

(φ′(p1)∇p1 − φ′(p2)∇p2) · ∇∂tpc

+

∫

Ω

(φ(p1) − φ(p2))∂tpc ≤ ‖(φ′(p1) − φ′(p2))∇p1‖‖∇∂tpc‖

+‖φ′(p2)(∇p1 −∇p2)‖‖∇∂tpc‖ + ‖φ(p1) − φ(p2)‖‖∂tpc‖. (7.9)

Concerning the first two terms on the right hand side of (7.9), with the aid of (H5)
and of the equivalence of the H2-norm and of the graph norm on D(A), we get the
estimates

‖(φ′(p1) − φ′(p2))∇p1‖ ≤ c(

∫

Ω

(1 + |p1|2(r−3) + |p2|2(r−3))|p1 − p2|2|∇p1|2) 1
2

≤ c(1 + ‖A1/2p1‖r−3 + ‖A1/2p2‖r−3)‖Ap1‖‖A1/2p‖ (7.10)
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and

‖φ′(p2)(∇p1 −∇p2)‖ ≤ c(

∫

Ω

(1 + |p2|2(r−2))|∇p1 −∇p2|2) 1
2

≤ c(1 + ‖Ap2‖r−2)‖A1/2p‖. (7.11)

Obviously, we also have

‖φ(p1) − φ(p2)‖ ≤ c(1 + ‖A1/2p1‖r−2 + ‖A1/2p2‖r−2)‖A1/2p‖. (7.12)

Exploiting the continuous dependence estimate on H0 and taking into account the
fact that, for z01, z02 ∈ X ⊂ H1 we have ‖z1(t)‖1, ‖z2(t)‖1 ≤ c for every t ≥ 0, by
combination of (7.9)-(7.12) we deduce

(φ(p1) − φ(p2), A∂tpc) ≤ c‖A1/2p‖(‖∇∂tpc‖ + ‖∂tpc‖)

≤ 1

2
‖A1/2∂tpc‖2 + cT ‖z0‖2

0, ∀t ∈ [0, T ] (7.13)

for every T > 0. Therefore, from (7.8) and (7.13) we eventually get

d

dt
‖zc(t)‖2

1 ≤ 2cT‖z0‖2
0, ∀t ∈ [0, T ]

so that

‖zc(t
∗)‖1 ≤ C∗‖z0‖0

with C∗ =
√

2t∗ct∗ . This implies the second part of assumption (ii).

Proof of Theorem 7.2. By virtue of Lemma 7.6 and of Lemma 7.7 all the assump-
tions of Lemma 7.3 are fulfilled thus yielding the existence of a compact invariant
subset E ⊂ X ⊂ H1 such that (7.2) and (7.3) hold. We now show that E is an
exponential attractor for the semigroup S(t) on H0. Indeed, being E of finite frac-
tal dimension, there only remains to show that E attracts (exponentially fast) all
bounded subset of the whole phase-space H0 (see (7.1)). Let B ⊂ H0 be a bounded
subset of H0 and R > 0 be such that supz0∈B ‖z0‖0 ≤ R. Recalling (7.5) and (7.2),
we can apply the transitivity property of exponential attraction (Lemma 7.4) with
K1 = B0, K2 = X and K3 = E . Assumption (7.4) of Lemma 7.4 is easily checked
due to (3.3) and to the fact that ∪t≥0S(t)Kj is bounded in H0 for j = 1, 2, 3. Hence,
we obtain distH0(S(t)B0, E) ≤ Le−θt, for all t ≥ 0, for some L, θ ≥ 0 with only L
depending (increasingly and continuously) on the radius R0 of the absorbing set B0.
Now, let t0 = t0(R) ≥ 0 be such that S(t)B ⊂ B0, for all t ≥ t0. Then

distH0(S(2t)B, E) ≤ distH0(S(t)B0, E) ≤ Le−θt, ∀t ≥ t0(R).

On the other hand, thanks to Corollary 4.1, we have distH0(S(t)B, E) ≤ L̃, for all

t ≥ 0, for some L̃ = L̃(R). Collecting the last two inequalities we get

distH0(S(t)B, E) ≤ Je−
θ
2 t, ∀t ≥ 0,

with J = J(R) := L+ L̃(R)eθt0(R). This completes the proof.
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