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Abstract. We consider a model describing the evolution of a tumor inside a host tissue in terms of
the parameters ϕp, ϕd (proliferating and necrotic cells, respectively), u (cell velocity) and n (nutrient
concentration). The variables ϕp, ϕd satisfy a vectorial Cahn–Hilliard-type system with nonzero forcing
term (implying that their spatial means are not conserved in time), whereas u obeys a variant of
Darcy’s law and n satisfies a quasi-static diffusion equation. The main novelty of the present work
stands in the fact that we are able to consider a configuration potential of singular type implying
that the concentration vector (ϕp,ϕd) is constrained to remain in the range of physically admissible
values. On the other hand, in the presence of nonzero forcing terms, this choice gives rise to a number
of mathematical difficulties, especially related to the control of the mean values of ϕp and ϕd. For
the resulting mathematical problem, by imposing suitable initial-boundary conditions, our main result
concerns the existence of weak solutions in a proper regularity class.
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1. Introduction Tumor growth remains an active area of scientific research due
to the impact on the quality of life for those diagnosed with cancer. Starting with the
seminal work of Burton [8] and Greenspan [33], many mathematical models have been
proposed to emulate the complex biological and chemical processes that occur in tumor
growth with the aim of better understanding and ultimately controlling the the behavior
of cancer cells. In recent years, there has been a growing interest in the mathematical
modelling of cancer, see for example [1, 3, 7, 19, 21, 23]. Mathematical models for tumor
growth may have different analytical features: in the present work we are focusing on the
subclass of continuum models, namely diffuse interface models. In this framework, the
tumor and surrounding host tissue occupy regions of a domain and are subject to various
balance laws mimicking the biological processes one would like to model. While it is
intuitive to represent the interfaces between the tumor and healthy tissues as idealized
surfaces of zero thickness, leading to a sharp interface description that differentiates the
tumor and the surrounding host tissue cell-by-cell, these kinds of sharp interface models
are often difficult to analyze mathematically, and may break down when the interface
undergoes a topological change. Metastasis, which is the spreading of cancer to other
parts of the body, is one important example of a change of topology. In such an event,
the interface can no longer be represented as a mathematical surface, and thus the sharp
interface models are not valid when the tumor exhibits metastasis.

On the other hand, diffuse interface models consider the interface between the
tumor and the healthy tissues as a narrow layer in which tumor and healthy cells are
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mixed. This alternative representation of the interface gives rise to model equations
that are better amenable to mathematical analysis, and the mathematical description
remains valid even when the tumor undergoes topological changes. Hence, the recent
efforts in the mathematical modeling of tumor growth have been mostly focused on
diffuse interface models, see for example [18,19,22,29,31,34,40,44], and their numerical
simulations demonstrating complex changes in tumor morphologies due to mechanical
stresses and interactions with chemical species such as nutrients or toxic agents.

The interaction of multiple tumor cell species can be described by using multiphase
mixture models (see, e.g., [1, 20, 22, 29, 42, 44]). Indeed, using multiphase porous media
mechanics, the authors of [42] represented a growing tumor as a multiphase medium
containing an extracellular matrix, tumor and host cells, and interstitial liquid. Numer-
ical simulations were also performed that characterized the process of cancer growth
in terms of the initial tumor-to-healthy cell density ratio, nutrient concentration, me-
chanical strain, cell adhesion, and geometry. The interactions of a growing tumor and
a basement membrane were studied in [5], which has been adapted to the multiphase
case [9], with additional biophysical details given in [19].

In terms of the theoretical analysis of diffuse interface models, most of the recent
literature is restricted to the two-phase variant, i.e., to models that only account for
the evolution of a tumor surrounded by healthy tissue. In this setting, there is no
differentiation among the tumor cells that exhibit heterogeneous growth behavior, and
consequently this kind of two-phase models are just able to describe the growth of a
young tumor before the onset of quiescence and necrosis. Analytical results related
to well-posedness, asymptotic limits and long-time behavior have been established in
[11,13,15,24–28,41] for tumor growth models based on the coupling of Cahn–Hilliard (for
the tumor density) and reaction–diffusion (for the nutrient or other chemical factors)
equations, and in [27, 32, 35, 37, 38] for models of Cahn–Hilliard–Darcy type. There
have also been some studies involving the optimal control and sliding modes for diffuse
interface tumor growth, see, e.g., [12, 14,30].

Comparatively, there have been fewer analytical results for the multi-phase variants,
which distinguish between the proliferating and necrotic tumor cells. In [20] a simpli-
fication of the tumor model introduced in [9] is studied. In contrast to the original
model of [9], which consists of a Cahn–Hilliard–Darcy system coupling transport-type
equations with high order source terms, and the natural energy identity of the model
appears not to provide sufficient a priori estimates, the authors in [20] analyzed the case
of constant and identical mobilities for all tumor species, which allows them to express
the simplified model as a Cahn–Hilliard–Darcy system coupled with a transport-type
equation without the high order source terms, and establish the existence of a weak
solution. Meanwhile, existence of a solution to the original model of [9] remains an
open problem due to the high order source terms and a lack of useful a priori estimates.
In [29], instead, a vectorial Cahn–Hilliard–Darcy model has been proposed to describe
multi-phase tumor growth. A new feature of the said model is the use of a volume-
average velocity, which dramatically simplifies the resulting equation for the mixture
velocity. Furthermore, differently from the system studied in [20] that consists of one
Cahn–Hilliard equation for the total tumor volume fraction coupled with transport-type
equations for the individual tumor species, which is the main source of analytical dif-
ficulties in the search for a priori estimates, in the model of [29] each tumor species
is governed by a Cahn–Hilliard-type equation, and the corresponding natural energy
identity yields better a priori estimates for an existence proof.

In this paper, we consider a multi-species tumor model posed in a smooth bounded
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domain Ω⊂Rd, d∈{2,3}, and over a reference time interval (0,T ) with no restriction
on the magnitude of T . Our model describes the evolution of proliferating tumor cells,
necrotic tumor cells, and healthy host cells. We denote the corresponding volume frac-
tions as ϕp,ϕd,ϕh∈ [0,1], respectively, so that ϕp+ϕd+ϕh= 1 almost everywhere in
Ω×(0,T ). By this relation, it suffices to track the evolution of ϕp and ϕd in order to
deduce the evolution of ϕh; for this reason it is also natural to assume that the vector
ϕ := (ϕp,ϕd)

> lies in the simplex ∆ :={y∈R2 : 0≤y1,y2, y1 +y2≤1}⊂R2. This con-
straint will be one of the key points in our approach and we will explain below how it
is enforced by the equations. The multi-species tumor model analyzed in this work is
given by

∂tϕp=Mp∆µp− div(ϕpu)+Sp, µp=F,p−∆ϕp in Q := Ω×(0,T ), (1.1a)

∂tϕd=Md∆µd− div(ϕdu)+Sd, µd=F,d−∆ϕd in Q, (1.1b)

Sp= Σp(n,ϕp,ϕd)+mppϕp+mpdϕd in Q, (1.1c)

Sd= Σd(n,ϕp,ϕd)+mdpϕp+mddϕd in Q, (1.1d)

divu=Sp+Sd in Q, (1.1e)

u=−∇q−ϕp∇µp−ϕd∇µd in Q, (1.1f)

0 =−∆n+ϕpn−B(nC−n) in Q, (1.1g)

Mi∂nµi−ϕiu ·n= 0, ∂nϕi= 0, q= 0, n= 1 on Γ :=∂Ω×(0,T ), (1.1h)

ϕp(x,0) =ϕp,0(x), ϕd(x,0) =ϕd,0(x) in Ω. (1.1i)

Note that, ϕh can be determined from the relation 1−ϕp−ϕd, and implicitly, we are
also assuming that ϕh(x,0) = 1−ϕp,0(x)−ϕd,0(x).

Equations (1.1a) and (1.1b) are convective Cahn–Hilliard-type equations (with
nonzero forcing terms) that encode the evolution of ϕp and ϕd. The variables µp and
µd are the associated chemical potentials. The constants Mp and Md denote the mobil-
ities of ϕp and ϕd, and Sp and Sd are the corresponding source terms that account for
biological mechanisms experienced by the tumor cells. Furthermore, we have assumed
that the cells are tightly packed and move together, leading to the appearance of a cell
velocity u governed by Darcy’s law (1.1f) with cell pressure q. The subsequent terms
ϕp∇µp and ϕd∇µd in (1.1f) have the meaning of Korteweg forces. Meanwhile, the gain
or loss of volume due to the source terms Sp and Sd (modeled by (1.1c) and (1.1d)
with constants mpp, mpd, mdp and mdd) and the change of mass balance is summa-
rized in the relation (1.1e). Lastly, we assumed that a chemical species is present in
the domain Ω that serves as a nutrient for tumor proliferation, whose concentration we
denote as n. Equation (1.1g) accounts for the diffusion of the nutrient (which is much
faster compared to the rate of cell proliferation, resulting in a quasi-static evolution),
its consumption by the proliferating cells modeled by the term ϕpn (host cell nutrient
intake is small compared to tumor cell intake), and the transfer of nutrients to and
from nearby capillaries modeled by the term B(nC−n), where nC ∈ (0,1) is the level of
nutrients in the capillaries and B≥0 is a constant supply rate.

In (1.1h), ∂n denotes the outer normal derivative to ∂Ω with unit normal n, while
in (1.1a) and (1.1b), F,p and F,d denote the partial derivatives of a function F (ϕp,ϕd)
with respect to ϕp and ϕd, respectively, i.e.,

F,p :=
∂F

∂ϕp
, F,d :=

∂F

∂ϕd
.
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Associated to (1.1) is the free energy functional E(ϕp,ϕd) of Ginzburg–Landau type:

E(ϕp,ϕd) :=

∫
Ω

F (ϕp,ϕd)+
1

2
|∇ϕp|2 +

1

2
|∇ϕd|2dx, (1.2)

where the function F is a multi-well configuration potential for the variables ϕp and
ϕd, which we take to be the sum of a smooth non-convex part F1 and of a non-
smooth singular convex part F0, i.e., F =F0 +F1 with F0 set to +∞ outside the
set ∆ ={(s,r)∈R2 : s≥0,r≥0,s+r≤1} of the “physically admissible” configurations.
In other words, if

∫
Ω
F0(ϕp,ϕd)dx is finite, then we necessarily have ϕp,ϕd≥0 and

ϕp+ϕd≤1. Moreover, as a further consequence, due to the fact that ϕh= 1−ϕp−ϕd,
we also have 0≤ϕh≤1. In other words, the finiteness of the “configuration energy”∫

Ω
F (ϕp,ϕd)dx automatically ensures the natural bounds

0≤ϕp,ϕd,ϕh≤1 a.e. in Ω. (1.3)

An example of singular potential F0 that we can include in our analysis is

F0(ϕp,ϕd) :=ϕp logϕp+ϕd logϕd+(1−ϕp−ϕd)log(1−ϕp−ϕd), (1.4)

which can be seen as a generalization of the standard logarithmic potential commonly
used in the framework of Cahn–Hilliard equations (cf. for example [10, 39]). Let us
also comment that, in light of the above considerations, the pure phase consisting of
proliferating tumor cells is characterized by the region {ϕp= 1, ϕd=ϕh= 0}, whereas
the pure phase corresponding to the necrotic cells is the region {ϕd= 1, ϕp=ϕh= 0}.

Mathematically speaking, the main novelty of our model, and also its main diffi-
culty from the analytical point of view, comes from the singular component F0 of the
configuration potential coupled with the nonzero source terms in the Cahn–Hilliard re-
lations (1.1a)-(1.1b). Indeed, integrating the first relations in (1.1a), (1.1b) we obtain
an evolution law for the spatial mean values yi :=

1
|Ω|
∫

Ω
ϕidx of ϕi for i=p,d (cf. (4.2)

below) which is satisfied by any hypothetical solution to the system. Such a relation,
however, does not involve directly the singular part F0. Hence, the evolution of yp,yd
are not automatically compatible with the physical constraint (1.3) and this compat-
ibility (i.e., the fact that yp, yd remain well inside the set of meaningful values) has
to be carefully proved (see Subsec. 4.1) by assuming proper conditions on coefficients
and making a careful choice of the boundary conditions. In particular, the first con-
dition in (1.1h) linking the boundary values of u, ϕi and µi seems to be necessary in
order for our arguments to work. It is worth noting that the mathematical literature
on multi-component Cahn–Hilliard systems is very poor; we can actually just mention
the papers [4, 16,17,36] (see also the references cited therein).

Concerning the approach we employ to prove existence of weak solutions to system
(1.1a)–(1.1g), the first step is to consider a regularization, which is obtained by re-
placing the singular potential F0 with its Moreau–Yosida approximation Fε depending
on an approximation parameter ε>0, and also introducing some suitable truncation
functions. The latter choice is due to the fact that Fε is no longer a singular function,
and consequently the uniform boundedness properties 0≤ϕp, 0≤ϕd, ϕp+ϕd≤1 are
not expected to hold in the approximation level. In addition, we remark that in taking
the divergence of (1.1f) and using (1.1e) leads to an elliptic equation for the pressure
q. Similar to the situation encountered in [27, 35], the presence of source terms Sp and
Sd necessarily requires a priori bounds on the pressure q in order to derive useful esti-
mates. Therefore, in the regularization we use the Darcy law (1.1f) to remove explicit
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dependence on the cell velocity u in the equation, and rewrite the transport terms in
(1.1a), (1.1b) directly in terms of the pressure q. Then, we also include a number of
regularizing terms depending on a further parameter δ>0 which is intended to go to 0
in the limit.

Introducing the cutoff operator

T (r) := max
{

0,min{1,r}
}
, (1.5)

our regularized system takes the form

∂tϕ
δ,ε
p =Mp∆µ

δ,ε
p + div

(
T (ϕδ,εp )2∇µδ,εp +T (ϕδ,εp )T (ϕδ,εd )∇µδ,εd

)
(1.6a)

+ div(T (ϕδ,εp )∇qδ,ε)+Sp,

µδ,εp =−δ∆∂tϕδ,εp +Fε,p(ϕ
δ,ε
p ,ϕδ,εd )+F1,p(ϕ

δ,ε
p ,ϕδ,εd )−∆ϕδ,εp , (1.6b)

∂tϕ
δ,ε
d =Md∆µ

δ,ε
d + div

(
T (ϕδ,εd )2∇µδ,εd +T (ϕδ,εp )T (ϕδ,εd )∇µδ,εp

)
(1.6c)

+ div(T (ϕδ,εd )∇qδ,ε)+Sd,

µδ,εd =−δ∆∂tϕδ,εd +Fε,d(ϕ
δ,ε
p ,ϕδ,εd )+F1,d(ϕ

δ,ε
p ,ϕδ,εd )−∆ϕδ,εd , (1.6d)

Sp= Σp(n
δ,ε,ϕδ,εp ,ϕδ,εd )+mppϕ

δ,ε
p +mpdϕ

δ,ε
d , (1.6e)

Sd= Σd(n
δ,ε,ϕδ,εp ,ϕδ,εd )+mdpϕ

δ,ε
p +mddϕ

δ,ε
d , (1.6f)

δ∂tq
δ,ε= ∆qδ,ε−δ∆2qδ,ε+ div

(
T (ϕδ,εp )∇µδ,εp +T (ϕδ,εd )∇µδ,εd

)
+Sp+Sd, (1.6g)

0 =−∆nδ,ε+T (ϕδ,εp )nδ,ε−B(nC−nδ,ε), (1.6h)

furnished with the initial and boundary conditions

ϕδ,εp (0) =ϕp,0,δ, ϕδ,εd (0) =ϕd,0,δ, qδ,ε(0) = 0 in Ω, (1.7a)

Mi∂nµ
δ,ε
i +T (ϕδ,εi )(∇qδ,ε+T (ϕδ,εp )∇µδ,εp +T (ϕδ,εd )∇µδ,εd ) ·n= 0 on Γ, (1.7b)

∂nϕ
δ,ε
i = 0, nδ,ε= 1, qδ,ε= 0, ∆qδ,ε= 0 on Γ, (1.7c)

where the regularized initial data {ϕp,0,δ,ϕd,0,δ} are chosen in such a way that they
converge strongly to the original initial data {ϕp,0,ϕd,0} as δ→0. Let us mention that
in (1.6b) and (1.6d), we use the notation

Fε,p :=
∂Fε
∂ϕp

, F1,p :=
∂F1

∂ϕp
, Fε,d :=

∂Fε
∂ϕd

, F1,d :=
∂F1

∂ϕd
.

For fixed δ,ε>0, we show the existence of a weak solution to (1.6)-(1.7) by means
of a Schauder fixed point argument. It turns out that eliminating the velocity in the
equations allows us to decouple the complicated model (1.6) into two subsystems. For
given functions (q̄, n̄) we first show the well-posedness of (1.6a)-(1.6f) with qδ,ε and

nδ,ε replaced by q̄ and n̄. Then, using (ϕδ,εp ,µδ,εp ,ϕδ,εd ,µδ,εd ) as data, we show the well-
posedness of (1.6g)-(1.6h). This allows us to define a compact mapping K : (q̄, n̄) 7→ (q,n),
and a fixed point of this map K is a weak solution to the regularized system (1.6)-(1.7).
We then derive uniform estimates in δ and ε, and then pass to the limit in the order
δ→0 followed by ε→0 to deduce the existence result for (1.1).

Let us now compare (1.1) and the model of [9] which was analyzed by [20]:
• In [9], the effect of a basement membrane on the growing tumor is also con-

sidered, which leads to additional coupling of the model with a Cahn–Hilliard
equation transported by the velocity u. In this work we do not consider such
effects.
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• The key distinction is that in our choice of a multi-well potential F in (1.2), we
included interfacial energy for the proliferating-necrotic tumor interface and also
for the tumor-host interfaces. On the other hand, in [9] the free energy depends
only on the total tumor volume fraction ϕT =ϕp+ϕd, i.e., E(ϕT ) =

∫
Ω
f(ϕT )+

1
2 |∇ϕT |

2
dx for scalar double-well potential f with minima at 0 and 1. This

reduction to the total tumor volume fraction implies that the proliferating-
necrotic tumor interface in [9] is not energetic.

• More precisely, in [9], like in the multiphase models studied in [22, 44, 45], the
differentiation between proliferating and necrotic tumor cells is done a posteriori
based on the local density of nutrients after computing ϕT . In contrast, our
model (1.1) follows a similar approach to [29] in which ϕp and ϕd are computed
without any post processing.

• Moreover, we consider here different boundary conditions with respect to [9],
where a zero Dirichlet boundary datum was taken for the chemical potentials,
while here we consider a coupled condition for µi and u (the first of (1.1h)).
It is worth noting that the (easier) case of Dirichlet boundary conditions for
µi could also be treated, but we preferred to handle (1.1h) which seems to be
more reasonable from the modeling point of view. On the contrary, the case of
no-flux conditions for µi (which would also be meaningful) seems not easy to
be treated mathematically.

• The source term in the Cahn–Hilliard equation [9, (2)] have been modified
and differs from the earlier model of Wise et al. [44]. The effect of such a
modification is that in the corresponding energy identity, the right-hand side
can be controlled more easily (cf. [20, Lem. 3.4]). However, in our present
setting we encounter terms of the form Spµp+Sdµd in the energy identity (see
(4.4)), which are more difficult to control and require a priori bounds on the
mean values of ϕp and ϕd.

• Finally, differently from [20], we allow possibly different mobility coefficients,
which would have given rise to a number of mathematical complications in
the setting of [20]. On the other hand, we infer stronger spatial and temporal
regularities for the individual volume fractions ϕp and ϕd compared to just
boundedness in the setting of [20].

Plan of the paper. The assumptions and main results are stated in Section 2.
The proof is carried out in the remainder of the paper and is subdivided into several
steps: namely, in Section 3 the existence of weak solutions to the regularized system
(1.6)-(1.7) is outlined. Then, in Section 4 uniform estimates that are independent of
the regularization parameters δ and ε are derived in order to pass to the limit to obtain
weak solutions for the original system (1.1).

2. Assumptions and main result For the remainder of the paper, we denote
the mean of a function f over Ω as f . We start by presenting our assumptions:

Assumption 2.1.
(A1) Mp,Md are strictly positive constants, B is a non-negative constant and nC ∈

(0,1).

(A2) We set Σ := (Σp,Σd) and denote as M =

(
mpp mpd

mdp mdd

)
the matrix of the coeffi-

cients in (1.1c), (1.1d), so that(
Sp
Sd

)
= Σ(n,ϕp,ϕd)+M

(
ϕp
ϕd

)
.
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Then, we assume that Σ∈C0,1(R3;R2) and there exist a closed subset ∆0 with
C1-boundary contained in the open simplex ∆ and constants Kp,−, Kp,+, Kd,−,
Kd,+∈R and c>0, with Kp,−≤Kp,+ and Kd,−≤Kd,+, such that

Σ(R3)⊂ [Kp,−,Kp,+]× [Kd,−,Kd,+], ‖DΣ‖L∞(R3;R6)≤ c, (2.1)

and for x= (Σp,Σd)
>∈ [Kp,−,Kp,+]× [Kd,−,Kd,+], it holds that

(My+x) ·n<0 for all y∈∂∆0, (2.2)

where n denotes the outer unit normal vector to ∆0.
(A3) The potential F is the sum of a convex part F0 and of a (possibly nonconvex)

perturbation F1. We assume that F0 :R2→ [0,+∞], with the effective domain
of F0 (i.e., the set where F0 assumes finite values) being given either by ∆
or by the closure ∆. Furthermore, F0∈C1(∆;[0,∞)), i.e., F0 is smooth once
restricted to the simplex ∆ and there exists constants c1,c3>0 and c2,c4≥0
such that

F0(s,r)≥ c1(|s|2 + |r|2)−c2 ∀(s,r)∈∆, (2.3)

and for all (s,r) 6= (S,R)∈∆, it holds

∇F0(s,r) ·(s−S,r−R)>≥ c3|∇F0(s,r)|−c4, (2.4)

where ∇F0(s,r) = (∂F0(s,r)
∂s , ∂F0(s,r)

∂r )>. Meanwhile, we assume F1∈C1,1(R2)
with ∣∣∣∣∂F1(s,r)

∂s

∣∣∣∣+ ∣∣∣∣∂F1(s,r)

∂r

∣∣∣∣≤C (1+ |s|+ |r|) ∀r,s∈R. (2.5)

(A4) The initial conditions satisfy ϕp,0,ϕd,0∈H1(Ω) with

ϕp,0≥0, ϕd,0≥0, ϕp,0 +ϕd,0≤1 a.e. in Ω, F0(ϕp,0,ϕd,0)∈L1(Ω). (2.6)

Moreover, the mean values yi,0 := 1
|Ω|
∫

Ω
ϕi,0(x)dx for i=p,d satisfy

(yp,0,yd,0)∈ int∆0. (2.7)

Examples. In order to clarify the above assumptions, and particularly those re-
garding the singular potential F , we introduce one example which is particularly sig-
nificant and will be considered as a model case in the sequel. Namely, we consider the
multi-phase logarithmic potential

F0(s,r) :=slogs+r logr+(1−s−r)log(1−s−r),

F1(s,r) :=
χ

2

(
r(1−r)+s(1−s)+(1−r−s)(r+s)

)
,

(2.8)

for a fixed positive constant χ. Then, the assumption (2.3) is fulfilled by (2.8) due to
the boundedness of the simplex ∆, and the assumption (2.4) is also fulfilled as we prove
in Lemma 2.1 below.

Lemma 2.1. Let F0 be defined as

F0(s,r) =slogs+r logr+(1−s−r)log(1−s−r)
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and let ∆0 be a compact subset of ∆. Then, there exist positive constants c∗,C∗ depend-
ing only on ∆0 such that (2.4) holds.

Proof. For any (S,R)∈∆0, direct computation of ∇F0 leads to

∇F0(s,r) ·(s−S,r−R)>= (s−S)logs+(r−R)logr

+((R+S)−(r+s))log(1−(r+s)).

Observe for s,S∈ (0,1),

(s−S)logs=


>0 if s<S,

<0 if s>S,

= 0 if s=S,

and (s−S)logs→

{
0 as s→1,

∞ as s→0.

In particular, the function (s−S)log(s) is bounded from below by some negative con-
stant. Hence, there exists a constant d1≥0 such that

(s−S)logs≥ S
2
|logs|−d1,

and it is clear that as S∈ (0,1) we can choose d1 independent of S. In a similar fashion,
there exists a constant d2≥0 (that can be chosen independent of R) such that

(r−R)logr≥ R
2
|logr|−d2.

Lastly, (s,r)∈∆ implies that r+s∈ (0,1), and consequently there exists a constant
d3≥0 independent of R,S such that

((R+S)−(r+s))log(1−(r+s))≥ 1−(R+S)

2
| log(1−(r+s))|−d3.

Summing the above then yields

∇F0(s,r) ·(s−S,r−R)>

≥ 1

2
min(R,S,1−(R+S))

(
| logr|+ |logs|+ | log(1−(r+s))|

)
−C(d1,d2,d3)

≥ 1

4
min(R,S,1−(R+S))|∇F0(s,r)|−C(d1,d2,d3).

Now for (R,S)∈∆0, we see that

min(R,S,1−(R+S))≥ c∗>0

for some constant c∗>0 depending only on ∆0. This concludes the proof of Lemma 2.1.

Moreover, as a consequence of (2.4) we obtain by interchanging the roles of (s,r)
and (S,R) an analogous inequality

∇F0(S,R) ·(S−s,R−r)>≥ c3|∇F0(S,R)|−c4.

Then, a short computation shows that(
∇F0(s,r)−∇F0(S,R)

)
·(s−S,r−R)>

=∇F0(s,r) ·(s−S,r−R)>+∇F0(S,R) ·(S−s,R−r)>

≥ c3|∇F0(s,r)|+c3|∇F0(S,R)|−2c4

≥ c3|∇F0(s,r)−∇F0(S,R)|−2c4.

(2.9)
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In particular, the inequality (2.9) together with (2.3) shows that F0 fulfills the hypothe-
ses of [16, Prop. 2.10]. This property would be important later when we consider the
Moreau–Yosida approximation of F0 for the derivation of uniform estimates.

Let us also sketch a couple of examples of functions Σp,Σd and M that fulfill the
assumption (2.2).

• First, we consider the source terms Sp, Sd defined as

Sp=λMg(n)−λAϕp, (2.10)

Sd=λAϕp−λLϕd, (2.11)

for positive constants λM ,λA,λL and a bounded positive function g such that
0<g(s)≤1. The archetypal example is g(s) = max(nC ,min(s,1)) for the con-
stant nC ∈ (0,1) in (1.1g). The biological effects that we model here are: the
proliferation of tumor cells due to nutrient consumption at a constant rate λM ,
the apoptosis of tumor cells at a constant rate λA, which leads to a source
term for the necrotic cells, and the lysing/disintegration of necrotic cells at a
constant rate λL.
With the choice (2.10)-(2.11) one can take Kp,−= 0, Kp,+ =λM , Kd,−=Kd,+ =
0. Then, integrating (1.1a) and (1.1b) over Ω, and applying the boundary
conditions (1.1h) leads to the following ODE system for the mean values yp :=ϕp
and yd :=ϕd:

d

dt

(
yp
yd

)
=

(
−λA 0
λA −λL

)(
yp
yd

)
+

(
λMg(n)

0

)
=M

(
yp
yd

)
+

(
λMg(n)

0

)
.

The matrix M is invertible with eigenvalues {−λA,−λL}, hence the fixed point(
y∗p
y∗d

)
=−M−1

(
λMg(n)

0

)
=

(
λM
λA
g(n)

λM
λL
g(n)

)
is asymptotically stable. Under the following constraints on the rates:

λM (λA+λL)<λAλL, λA<2λL,

we can easily show that (y∗p,y
∗
d) lies in the interior of the simplex ∆, and (2.2)

holds when we take ∆0 to be a ball centered at (y∗p ,y
∗
d) with sufficiently small

radius η>0. Indeed, thanks to nC >0 we easily see that y∗p ,y
∗
d>0. Meanwhile,

using g≤1 shows that

y∗p+y∗d≤λM
(

1

λA
+

1

λL

)
<1

when we assume the hypothesis λM (λA+λL)<λAλL. Furthermore, taking
a parameterization of the circle ∂∆0 as (ηcosθ+y∗p,η sinθ+y∗d) for θ∈ [0,2π]
with normal n= (cosθ,sinθ), a short computation shows that (recalling x=
(λMg(n),0)>)[

M

(
ηcosθ+y∗p
η sinθ+y∗d

)
+

(
λMg(n)

0

)]
·
(

cosθ
sinθ

)
=−λAηcos2θ+λAηcosθsinθ−λLη sin2θ

≤−λA
2
ηcos2θ−

(
λL−

λA
2

)
η sin2θ≤−1

2
min(λA,2λL−λA)η<0

under the assumption 2λL>λA.
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• As a second model case, for λ>0 we take M as −λ times the identity matrix
(a more general negative definite diagonal matrix could also be considered) and

Σ(n,ϕp,ϕd) =

(
λ/3
λ/3

)
+Σ0(n,ϕp,ϕd),

where Σ0 is a C1(R3;R2) function such that ‖Σ0‖L∞(R3;R2)≤K for some K>0.
In fact, this choice of Σ allows us to write(

Sp
Sd

)
=M

(
ϕp−1/3
ϕd−1/3

)
+Σ0(n,ϕp,ϕd)

and in particular we can take Kp,−=Kd,−=λ/3−K and Kp,+ =Kd,+ =λ/3+
K. Note also that the point (1/3,1/3) can be seen as the “center” of the
simplex (indeed, it represents the configuration where all the species have the
same volume fraction). Hence, we can decompose (Sp,Sd)

> as the sum of an
affine part that tends to keep the configuration close to the center of the simplex
and the perturbation part Σ0.
With this choice, we now check that, at least if λ is large enough (depending
on K), then there exists a small constant ε>0 such that

yi=ε ⇒ y′i>0, (1−yp−yd) =ε ⇒ y′p+y′d<0.

Indeed, let a∈ [−K,K]. Then, for yi=ε we have

−λ(yi−1/3)+a=λ(1/3−ε)+a≥λ(1/3−ε)−K

which, for ε<1/3, is greater than 0 if λ is large enough compared to K. Anal-
ogously, for a,b∈ [−K,K] and yp+yd= 1−ε,

−λ(yp+yd−2/3)+a+b=−λ(1/3−ε)+a+b≤−λ(1/3−ε)+2K

which, for ε<1/3, is negative if λ is chosen large enough compared to K.
Consequently, one can take ∆0 as a subset of {yp≥ε, yd≥ε,yp+yd≤1−ε}
with C1-boundary.

We can now define a suitable notion of weak solution to the initial-boundary value
problem for system (1.1a)-(1.1g):

Definition 2.1. We say that a multiple (ϕp,µp,ηp,ϕd,µd,ηd,u,q,n) is a weak solution
to the multi-species tumor model (1.1) over the interval (0,T ) if

(1) the following regularity properties hold:

ϕi∈H1(0,T ;H1(Ω)′)∩L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω)), (2.12a)

with 0≤ϕi≤1, ϕp+ϕd≤1 a.e. in Q,

µi∈L2(0,T ;H1(Ω)), (2.12b)

ηi∈L2(Q), (2.12c)

u∈L2(Q) with divu∈L2(Q), (2.12d)

q∈L2(0,T ;H1
0 (Ω)), (2.12e)

n∈ (1+L2(0,T ;H2(Ω)∩H1
0 (Ω))), 0≤n≤1 a.e. in Q, (2.12f)

for i=p,d.
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(2) Equations (1.1a)-(1.1g) hold, for a.e. t∈ (0,T ) and for i=p,d, in the following
weak sense:

〈∂tϕi,ζ〉+
∫

Ω

Mi∇µi ·∇ζ−ϕiu ·∇ζ dx=

∫
Ω

Siζ dx ∀ζ ∈H1(Ω), (2.13a)∫
Ω

µiζ dx=

∫
Ω

∇ϕi ·∇ζ+ηiζ+F1,i(ϕp,ϕd)ζ dx ∀ζ ∈H1(Ω), (2.13b)∫
Ω

u ·∇ξdx=−
∫

Ω

(Sp+Sd)ξdx ∀ξ∈H1
0 (Ω), (2.13c)∫

Ω

u ·ζdx=

∫
Ω

−∇q ·ζ−ϕp∇µp ·ζ−ϕd∇µd ·ζdx ∀ζ ∈ (L2(Ω))d, (2.13d)

0 =−∆n+ϕpn+B(nC−n) a.e. in Ω, (2.13e)

ηi=F0,i(ϕp,ϕd) a.e. in Ω, (2.13f)

Sp= Σp(n,ϕp,ϕd)+mppϕp+mpdϕd a.e. in Ω, (2.13g)

Sd= Σd(n,ϕp,ϕd)+mdpϕp+mddϕd a.e. in Ω, (2.13h)

where 〈·, ·〉 denotes the duality pairing between H1(Ω) and its dual H1(Ω)′.
Moreover,

ϕp(x,0) =ϕp,0(x), ϕd(x,0) =ϕd,0(x) a.e. in Ω. (2.13i)

It is worth noting that now the first two boundary conditions in (1.1h) have been incor-
porated in the weak formulations (2.13a), (2.13b). Moreover, the boundary conditions
q= 0 and n= 1 a.e. on Σ are built into the function spaces in (2.12e) and (2.12f).
Furthermore, the attainment of the initial conditions (2.13i) is due to the continuous
embedding

H1(0,T ;H1(Ω)′)∩L∞(0,T ;H1(Ω))⊂C0([0,T ];L2(Ω)),

and thus the initial conditions (2.13i) makes sense as equalities in the space L2(Ω).
Finally, it is worth saying some words about the auxiliary variables ηp and ηd. Using
the language of convex analysis, relations (2.13f) for i=p,d may be equivalently stated
by saying that the vector η= (ηp,ηd) belongs at almost every point (x,t)∈Q to the
subdifferential ∂F0(ϕp,ϕd) which is a maximal monotone graph in R2×R2. In principle
such an object may be a multivalued mapping; here, however, in view of the fact that
F0 is assumed to be smooth in ∆ (cf. (A3)), ∂F0 may be simply identified with the
gradient ∇F0. On the other hand, the use of some techniques from convex analysis and
monotone operators will be required in the last part of the proof.

We are now ready to state the main result of this paper.

Theorem 2.1. Let the hypotheses stated in Assumption 2.1 hold. Then, there exists
at least one weak solution (ϕp,µp,ηp,ϕd,µd,ηd,u,q,n) to the multi-species tumor model
(1.1) in the sense of Definition 2.1.

3. Approximation scheme For ε∈ (0,1) intended to go to 0 in the limit, we
consider the Moreau–Yosida approximation of F0 (cf. [6]) defined as

Fε(s,r) := min
(p,q)∈R2

(
1

2ε
|(p−s,q−r)|2 +F0(p,q)

)
for ε∈ (0,1). (3.1)

It is well-known that Fε is convex and differentiable with derivative ∇Fε that is globally
Lipschitz continuous with Lipschitz constant scaling with ε−1. More importantly, thanks
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to the fact that F0 satisfies (2.9), it turns out that F0 fulfills the hypothesis of [16,
Prop. 2.10], whence, by [16, Prop. 2.13], there exist positive constants c∗,C∗ such that

c∗|∇Fε(s,r)−∇Fε(S,R)|≤ (∇Fε(s,r)−∇Fε(S,R)) ·(s−S,r−R)>+C∗ (3.2)

for all (s,r) 6= (S,R)∈R2. In particular an analogue of (2.9) also holds for Fε with
constants c∗,C∗ independent of ε∈ (0,1).

Concerning the regularized initial data appearing in (1.7a), for each δ∈ (0,1), i=p,d,
we take ϕi,0,δ ∈H2

n(Ω) as the solution fi to

−δ∆fi+fi=ϕi,0 in Ω, ∂nfi= 0 on ∂Ω, (3.3)

where {ϕp,0,ϕd,0} is the initial data prescribed for (1.1). Note that the parameter ε does
not appear and hence the regularized data is only indexed by δ. We have used here
the notation H2

n(Ω) for the space of H2(Ω)-functions satisfying homogeneous Neumann
boundary condition on ∂Ω. Then, it is well-known that, for each δ∈ (0,1), fi∈H2

n(Ω).
More precisely, testing (3.3) by fi and −∆fi, respectively, one obtains

2δ‖∇fi‖2L2(Ω) +‖fi‖2L2(Ω)≤‖ϕi,0‖
2
L2(Ω),

2δ‖∆fi‖2L2(Ω) +‖∇fi‖2L2(Ω)≤‖∇ϕi,0‖
2
L2(Ω).

(3.4)

Furthermore, elliptic regularity arguments yield the additional estimate

‖fi‖H2(Ω)≤C
(
‖∆fi‖L2(Ω) +‖f‖L2(Ω)

)
≤C

(
1+δ−

1
2

)
‖ϕi,0‖H1(Ω). (3.5)

3.1. Auxiliary Cahn–Hilliard problem Fix now q̄∈L2(0,T ;H1(Ω)) and n̄∈
L2(Q) with 0≤ n̄≤1 almost everywhere in Q. Then, we first consider the auxiliary
problem

∂tϕp=Mp∆µp+ div(T (ϕp)∇q̄)+ div
(
T (ϕp)

2∇µp+T (ϕp)T (ϕd)∇µd)+Sp, (3.6a)

µp=−δ∆∂tϕp+Fε,p(ϕp,ϕd)+F1,p(ϕp,ϕd)−∆ϕp, (3.6b)

∂tϕd=Md∆µd+ div(T (ϕd)∇q̄)+ div
(
T (ϕp)T (ϕd)∇µp+T (ϕd)

2∇µd)+Sd, (3.6c)

µd=−δ∆∂tϕd+Fε,d(ϕp,ϕd)+F1,d(ϕp,ϕd)−∆ϕd, (3.6d)

Sp= Σp(n̄,ϕp,ϕd)+mppϕp+mpdϕd, (3.6e)

Sd= Σd(n̄,ϕp,ϕd)+mdpϕp+mddϕd, (3.6f)

complemented with the initial and boundary conditions (1.7a)-(1.7c). Recall the cutoff
operator T defined in (1.5). The above is a Cahn–Hilliard system with source term.
Note that q̄ and n̄ are given. Existence of a solution can be proved for instance via a
Galerkin approximation, and we will only derive the necessary a priori estimates.

Lemma 3.1. For each ε∈ (0,1), δ∈ (0,1), suppose (2.1) holds, and Fε :R2→ [0,+∞)
and F1 :R2→R are given such that ∇Fε, ∇F1 are globally Lipschitz continuous.
Then, for given q̄∈L2(0,T ;H1(Ω)) and n̄∈L2(Q), there exists a unique weak solution
(ϕp,µp,ϕd,µd) to (3.6) in the following sense:

(1) the functions have the following regularity properties:

ϕi∈H1(0,T ;H2(Ω)), µi∈L2(0,T ;H1(Ω)),

with

ϕi(0) =ϕ0,i,δ a.e. in Ω.
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(2) Equations (3.6b), (3.6d), (3.6e) and (3.6f) hold a.e. in Q, and equations (3.6a)
and (3.6c) hold for a.e. t∈ (0,T ) in the following weak sense:

0 =

∫
Ω

(∂tϕp−Sp)ζ+
(
Mp∇µp+T (ϕp)

(
∇q̄+T (ϕp)∇µp+T (ϕd)∇µd

))
·∇ζ dx,

0 =

∫
Ω

(∂tϕd−Sd)ζ+
(
Md∇µd+T (ϕd)

(
∇q̄+T (ϕd)∇µd+T (ϕp)∇µp

))
·∇ζ dx,

for all ζ ∈H1(Ω).
Proof. In the following, the symbol C denotes positive constants that are indepen-

dent of (ϕp, µp, ϕd, µd).

First estimate. Testing (3.6a) with µp and (3.6b) with ∂tϕp yields

d

dt

1

2
‖∇ϕp‖2L2(Ω) +

∫
Ω

(Fε,p+F1,p)(ϕp,ϕd)∂tϕp dx

+δ‖∇∂tϕp‖2L2(Ω) +Mp‖∇µp‖2L2(Ω) +‖T (ϕp)∇µp‖2L2(Ω)

=

∫
Ω

Spµp−T (ϕp)(∇q̄+T (ϕd)∇µd) ·∇µp dx.

(3.7)

An analogous identity is derived similarly by testing (3.6c) with µd and (3.6d) with
∂tϕd. Then, adding the two resulting equalities leads to

d

dt
Eε(ϕp,ϕd)+Mp‖∇µp‖2L2(Ω) +Md‖∇µd‖2L2(Ω)

+δ‖∇∂tϕp‖2L2(Ω) +δ‖∇∂tϕd‖2L2(Ω) +

∫
Ω

|T (ϕp)∇µp+T (ϕd)∇µd|2dx

=

∫
Ω

(Spµp+Sdµd)dx−
∫

Ω

(
T (ϕp)∇q̄ ·∇µp+T (ϕd)∇q̄ ·∇µd

)
dx,

(3.8)

where Eε is the approximate energy given by

Eε=

∫
Ω

Fε(ϕp,ϕd)+F1(ϕp,ϕd)+
1

2

(
|∇ϕp|2 + |∇ϕd|2

)
dx

in light of the Moreau–Yosida approximation Fε appearing in the system (3.6). Note
that the additional (nonnegative) contribution

∫
Ω
|T (ϕd)∇µp+T (ϕd)∇µd|2dx comes

from the fact that the equations have been restated in terms of the pressure q.
The approximate energy Eε may be no longer be coercive with respect to the H1(Ω)-

norms of ϕp and ϕd. For this reason, we test (3.6a) with ϕp to obtain

1

2

d

dt
‖ϕp‖2L2(Ω) =

∫
Ω

Spϕp−∇ϕp ·(Mp∇µp+T (ϕp)(∇q̄+T (ϕp)∇µp+T (ϕd)∇µd)) dx,

and obtain an analogous identity by testing (3.6c) with ϕd. Then, upon summing the
two resulting equalities and using Young’s inequality leads to

1

2

d

dt

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
≤σ
(
‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω)

)
+cσ

(
‖∇ϕp‖2L2(Ω) +‖∇ϕd‖2L2(Ω)

)
+C

(
1+‖∇q̄‖2L2(Ω) +‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

) (3.9)
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for small constant σ>0 and correspondingly large constant cσ. In (3.9) we employed
the boundedness of the cutoff operator as well as the assumption (A2). In particular,
(A2) implies

‖Sp‖L2(Ω)≤ c|Ω|+ |mpp|‖ϕp‖L2(Ω) + |mpd|‖ϕd‖L2(Ω), (3.10)

and a similar bound holds for ‖Sd‖L2(Ω). Let K>0 be a positive constant yet to be
determined, then upon adding (3.8) and K times (3.9) we obtain

d

dt

(
Eε(ϕp,ϕd)+

K

2

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

))
+δ‖∇∂tϕd‖2L2(Ω)

+δ‖∇∂tϕp‖2L2(Ω) +(Mp−Kσ)‖∇µp‖2L2(Ω) +(Md−Kσ)‖∇µd‖2L2(Ω)

≤
∫

Ω

Spµp+Sdµd−∇q̄ ·(T (ϕp)∇µp+T (ϕd)∇µd) dx

+Kcσ

(
‖∇ϕp‖2L2(Ω) +‖∇ϕd‖2L2(Ω)

)
+KC

(
1+‖∇q̄‖2L2(Ω) +‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

(3.11)

Notice, the Moreau–Yosida approximation Fε is nonnegative (see (3.1)), and by the
growth condition (2.5) of the smooth nonconvex part F1, we can find positive constants
d1, d2 such that ∫

Ω

F1(ϕp,ϕd)dx≥−d1

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
−d2.

Then, taking K>2d1 shows that

Eε+
K

2

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
≥k
(
‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
−C, (3.12)

for some k>0 independent of ε. Then, after K is fixed, we also take σ sufficiently small
so that min{Mp−Kσ,Md−Kσ}≥κ for some constant κ>0. It remains to control the
integral terms on the right-hand side of (3.11). Observe that, by Young’s inequality,∣∣∣∣∫

Ω

∇q̄ ·(T (ϕp)∇µp+T (ϕd)∇µd) dx
∣∣∣∣

≤ κ
4

(
‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω)

)
+C‖∇q̄‖2L2(Ω).

Furthermore, recalling the notation f for the mean value of f over Ω, we have by the
Lipschitz continuity of Fε,p with Lipschitz constant 1/ε together with assumption (2.5)

|µp|≤
1

|Ω|

∫
Ω

|Fε,p(ϕp,ϕd)−Fε,p(0,0)|+ |F1,p(ϕp,ϕd)| dx

+
1

|Ω|

∫
Ω

|Fε,p(0,0)| dx

≤C
(
ε−1 +1

)(
‖ϕp‖L1(Ω) +‖ϕd‖L1(Ω) +1

)
+Cε

≤Cε
(
1+‖ϕp‖L2(Ω) +‖ϕd‖L2(Ω)

)
.
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Then, using (3.10) and the Poincaré inequality, we see that∫
Ω

Spµpdx=

∫
Ω

Sp(µp−µp)dx+µp

∫
Ω

Spdx

≤C‖Sp‖L2(Ω)‖∇µp‖L2(Ω) +C |µp|‖Sp‖L2(Ω)

≤ κ
4
‖∇µp‖2L2(Ω) +Cε

(
1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

(3.13)

The term Sdµd is controlled analogously. Then, collecting the above computations,
(3.11) becomes

d

dt

(
Eε(ϕp,ϕd)+

K

2

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

))
+
κ

2

(
‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω)

)
+δ‖∇∂tϕp‖2L2(Ω) +δ‖∇∂tϕd‖2L2(Ω)

≤Cε
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
+C‖∇q̄‖2L2(Ω),

(3.14)

for some positive constants C, Cε that are independent of δ. By virtue of the coercivity
property (3.12), a Gronwall argument then yields

‖ϕp‖L∞(0,T ;H1(Ω)) +‖ϕd‖L∞(0,T ;H1(Ω))≤Cε, (3.15a)

‖µp‖L2(0,T ;H1(Ω)) +‖µd‖L2(0,T ;H1(Ω))≤Cε, (3.15b)

‖∇∂tϕp‖L2(0,T ;L2(Ω)) +‖∇∂tϕd‖L2(0,T ;L2(Ω))≤Cε,δ. (3.15c)

Second estimate. Testing (3.6b) with −∆∂tϕp leads to

1

2

d

dt
‖∆ϕp‖2L2(Ω) +δ‖∆∂tϕp‖2L2(Ω) =

∫
Ω

(Fε,p(ϕp,ϕd)+F1,p(ϕp,ϕd)−µp)∆∂tϕpdx.

One can control the right-hand side with Young’s inequality, the linear growth of
Fε,p,F1,p and the estimates (3.15a)-(3.15b). Together with the initial condition ∆ϕp,0,δ ∈
L2(Ω), we infer

‖∆ϕp‖H1(0,T ;L2(Ω)) +‖∆ϕd‖H1(0,T ;L2(Ω))≤Cε,δ,

where the bound for ∆ϕd follows along a similar argument from testing (3.6d) with
−∆∂tϕd. By elliptic regularity we get the following additional estimate:

‖ϕp‖H1(0,T ;H2(Ω)) +‖ϕd‖H1(0,T ;H2(Ω))≤Cε,δ. (3.16)

The estimates (3.15a)-(3.16) are sufficient to pass to the limit in a Galerkin approxima-
tion to deduce the existence of a quadruple (ϕp,µp,ϕd,µd) that satisfies the assertions
of Lemma 3.1. We now establish the uniqueness of solutions for the auxiliary problem
(3.6).

Uniqueness. Let us denote by ϕ̂p, ϕ̂d, µ̂p and µ̂d the differences ϕp,1−ϕp,2, ϕd,1−
ϕd,2, µp,1−µp,2 and µd,1−µd,2, respectively. Then, upon testing the difference of the
equations (3.6a) by µ̂p and the difference of the equations (3.6b) by ∂tϕ̂p−∆ϕ̂p leads
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to

d

dt

1

2

(
‖∇ϕ̂p‖2L2(Ω) +δ‖∆ϕ̂p‖2L2(Ω)

)
+‖∆ϕ̂p‖2L2(Ω) +δ‖∇∂tϕ̂p‖2L2(Ω) +

∫
Ω

(
Mp+(Tp,2)2

)
|∇µ̂p|2 dx

=

∫
Ω

Ŝpµ̂p− µ̂p∆ϕ̂p−T̂p∇q̄ ·∇µ̂p−
(
F̂ε,p+ F̂1,p

)
(∂tϕ̂p−∆ϕ̂p) dx

−
∫

Ω

∇µ̂p ·
(

(̂Tp)2∇µp,1 +
(
T̂pTd,1 +Tp,2T̂d

)
∇µd,1 +Tp,2Td,2∇µ̂d

)
dx

=:J1 +J2,

(3.17)

where we used the notation

Tp,1 =T (ϕp,1), T̂p=Tp,1−Tp,2, F̂ε,p=Fε,p(ϕp,1,ϕd,1)−Fε,p(ϕp,2,ϕd,2),

F̂1,p=F1,p(ϕp,1,ϕd,1)−F1,p(ϕp,2,ϕd,2), (̂Tp)2 = (Tp,1)2−(Tp,2)2 = T̂p(Tp,1 +Tp,2),

Ŝp= Σp(n̄,ϕp,1,ϕd,1)−Σp(n̄,ϕp,2,ϕd,2)+mppϕ̂p+mpdϕ̂d.

Using the Lipschitz continuity of Fε,p, F1,p, T (·), Σi and the boundedness of T (·) and
Σi, we deduce

J1≤C
(
‖ϕ̂p‖L2(Ω) +‖ϕ̂d‖L2(Ω) +‖∆ϕ̂p‖L2(Ω)

)(
‖µ̂p− µ̂p‖L2(Ω) +

∣∣µ̂p∣∣)
+C

(
‖ϕ̂p‖L2(Ω) +‖ϕ̂d‖L2(Ω)

)(
‖∆ϕ̂p‖L2(Ω) +‖∂tϕ̂p−∂tϕ̂p‖L2(Ω) +

∣∣∂tϕ̂p∣∣) ,
+C‖ϕ̂p‖L∞(Ω)‖∇µ̂p‖L2(Ω)‖∇q̄‖L2(Ω),

J2≤C‖∇µ̂p‖L2(Ω)

(
‖ϕ̂p‖L∞(Ω) +‖ϕ̂d‖L∞(Ω)

)(
‖∇µp,1‖L2(Ω) +‖∇µd,1‖L2(Ω)

)
+

1

2

∫
Ω

(Tp,2)2|∇µ̂p|2 +(Td,2)2|∇µ̂d|2dx.

Note that by the Lipschitz property of Σi, Fε,p and F1,p,∣∣∂tϕ̂p∣∣= ∣∣∣Ŝp∣∣∣≤C (‖ϕ̂p‖L2(Ω) +‖ϕ̂d‖L2(Ω)

)
,∣∣µ̂p∣∣= ∣∣∣F̂ε,p+ F̂1,p

∣∣∣≤Cε(‖ϕ̂p‖L2(Ω) +‖ϕ̂d‖L2(Ω)

)
,

and so, upon adding (3.17) to the corresponding equation for ϕ̂d, and applying the
estimates for the right-hand sides leads to

d

dt

1

2

∑
i=p,d

(
‖∇ϕ̂i‖2L2(Ω) +δ‖∆ϕ̂i‖2L2(Ω)

)
+

1

2

∑
i=p,d

(
‖∆ϕ̂i‖2L2(Ω) +δ‖∇∂tϕ̂i‖2L2(Ω) +Mi‖∇µ̂i‖2L2(Ω)

)
≤Cε

[
1+‖∇q̄‖2L2(Ω) +

∑
i=p,d
j=1,2

‖∇µi,j‖2L2(Ω)

] ∑
i=p,d

(
‖ϕ̂i‖2L2(Ω) +‖∆ϕ̂i‖2L2(Ω)

)
,

(3.18)

where in the above we have used the elliptic estimate and the Sobolev embedding
H2(Ω)⊂L∞(Ω):

‖f‖L∞(Ω)≤C‖f‖H2(Ω)≤C
(
‖∆f‖L2(Ω) +‖f‖L2(Ω)

)
, (3.19)
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for ϕ̂p and ϕ̂d as they satisfy no-flux boundary conditions.
Next, we test the difference of the equations (3.6a) with ϕ̂p which yields

d

dt

1

2
‖ϕ̂p‖2L2(Ω) =−

∫
Ω

∇ϕ̂p ·
(
Mp∇µ̂p+ T̂p∇q̄+(̂Tp)2∇µp,1 +(Tp,2)2∇µ̂p

)
dx

−
∫

Ω

∇ϕ̂p ·
((
T̂pTd,1 +Tp,2T̂d

)
∇µd,1 +Tp,2Td,2∇µ̂d

)
− Ŝpϕ̂pdx

≤C
[
1+‖∇q̄‖2L2(Ω) +

∑
i=p,d
j=1,2

‖∇µi,j‖2L2(Ω)

]‖∇ϕ̂p‖2L2(Ω) +
∑
i=p,d

‖ϕ̂i‖2L∞(Ω)


+
Mp

4
‖∇µ̂p‖2L2(Ω) +

Md

4
‖∇µ̂d‖2L2(Ω),

and upon adding the analogous estimate obtained from testing (3.6c) with ϕ̂d and then
adding to (3.18), after applying the elliptic estimate (3.19), we arrive at the following
differential inequality

d

dt

1

2

∑
i=p,d

(
‖ϕ̂i‖2L2(Ω) +‖∇ϕ̂i‖2L2(Ω) +δ‖∆ϕ̂i‖2L2(Ω)

)
+

1

2

∑
i=p,d

(
‖∆ϕ̂i‖2L2(Ω) +δ‖∇∂tϕ̂i‖2L2(Ω) +

1

2
Mi‖∇µ̂i‖2L2(Ω)

)
≤Cε

[
1+‖∇q̄‖2L2(Ω) +

∑
i=p,d
j=1,2

‖∇µi,j‖2L2(Ω)

] ∑
i=p,d

(
‖ϕ̂i‖2H1(Ω) +‖∆ϕ̂i‖2L2(Ω)

)
.

Applying a Gronwall argument easily entails uniqueness.

3.2. Auxiliary pressure and nutrient equations We now consider, for
(ϕp,µp,ϕd,µd) obtained from Lemma 3.1, the following system:

δ
(
∂tq+∆2q)−∆q= div

(
T (ϕp)∇µp+T (ϕd)∇µd

)
+(Sp+Sd)(n,ϕp,ϕd), (3.20a)

0 =−∆n+T (ϕp)n−B(nC−n), (3.20b)

furnished with the initial-boundary conditions resulting from (1.7a)-(1.7c).

Lemma 3.2. Let (ϕp,µp,ϕd,µd) denote a weak solution obtained from Lemma 3.1.
Then, there exists a unique pair (q,n) of solutions to (3.20) in the following sense:

(1) the functions have the following regularity properties:

q∈L2(0,T ;H3(Ω))∩L∞(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)),

n∈L∞(0,T ;W 2,r(Ω)) for any r<∞ and 0≤n≤1 a.e. in Q,

with

q(0) = 0 in Ω, q= ∆q= 0, n= 1 on Γ.

(2) Equation (3.20b) holds a.e. in Q and equation (3.20a) holds for a.e. t∈ (0,T )
in the following weak sense:

0 = δ〈∂tq,ζ〉H1
0

+

∫
Ω

(∇q−δ∇∆q+T (ϕp)∇µp+T (ϕd)∇µd) ·∇ζ dx
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−
∫

Ω

(Sp+Sd)(n,ϕp,ϕd)ζ dx,

for all ζ ∈H1
0 (Ω), where 〈·, ·〉H1

0
denotes the duality pairing between H1

0 (Ω) and

H−1(Ω).
Proof. We investigate the nutrient and pressure equations separately.

Nutrient equation. Since T (·) is bounded and non-negative, we may first consider a
parabolic regularization to (3.20b), namely, we add γ∂tn on the right-hand side (for γ∈
(0,1)) and we complement the resulting parabolic equation (for example) with the initial
condition nγ(0) := 1 (which is consistent with the boundary datum). Then, applying
the standard parabolic theory and the weak comparison principle it is easy to show that
there exists a unique function nγ ∈L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))
with 0≤nγ≤1 a.e. in Q (see for example [30, Lem. 3.1]). It turns out that nγ is
uniformly bounded in L2(0,T ;H1(Ω)) and in passing to the limit γ→0 we deduce the
existence of a weak solution n∈L2(0,T ;H1(Ω)) to (3.20b) with 0≤n≤1 a.e. in Q.
Then, as T (ϕp)n+B(nC−n)∈L∞(0,T ;L∞(Ω)), applying elliptic regularity we infer
n∈L∞(0,T ;W 2,r(Ω)) for any r<∞.

Pressure equation. As (3.20a) is a linear fourth-order parabolic equation with given
right-hand side (recall we treat (ϕp,µp,ϕd,µd) as given data), the existence of a solution
can be obtained via a Galerkin approximation once we establish the necessary a priori
estimates below. Given n, ϕp, µp, ϕd and µd, we test (3.20a) with q−∆q. Using the
boundary conditions q= ∆q= 0 on Γ, we then obtain

d

dt

δ

2

(
‖q‖2L2(Ω) +‖∇q‖2L2(Ω)

)
+(1+δ)‖∆q‖2L2(Ω) +δ‖∇∆q‖2L2(Ω) +‖∇q‖2L2(Ω)

=

∫
Ω

(Tp∇µp+Td∇µd) ·∇(∆q−q)+(Sp+Sd)(q−∆q)dx

≤ C
δ

(
‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω)

)
+
δ

2

(
‖∇∆q‖2L2(Ω) +‖∇q‖2L2(Ω)

)
+
C

δ

(
1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
+
δ

2

(
‖q‖2L2(Ω) +‖∆q‖2L2(Ω)

)
.

(3.21)

Integrating in time, using q(0) = 0, and applying first a Gronwall argument and then
elliptic regularity leads to

‖q‖L∞(0,T ;H1(Ω)) +‖q‖L2(0,T ;H3(Ω))≤Cδ. (3.22)

Then, consider testing (3.20a) with an arbitrary test function ζ ∈H1
0 (Ω) and integrating

by parts; then, employing the estimates (3.22) allows us to infer that

‖∂tq‖L2(0,T ;H−1(Ω))≤Cδ. (3.23)

Uniqueness. Let n̂ :=n1−n2 and q̂ := q1−q2 denote the difference between two solu-
tion pairs (q1,n1) and (q2,n2) corresponding to the same data (ϕp,µp,ϕd,µd). Then it
is straightforward to see that

0 =−∆n̂+T (ϕp)n̂+Bn̂, δ(∂tq̂+∆2q̂)−∆q̂= Σ̂p+Σ̂d, (3.24)

where for i=p,d,

Σ̂i := Σi(n1,ϕp,ϕd)−Σi(n2,ϕp,ϕd).

By testing the first equation of (3.24) with n̂ we easily deduce that n̂= 0 by the Poincaré
inequality. Then, testing the second equation of (3.24) with q̂ and noting that Σ̂i= 0
due to n1 =n2, the uniqueness of solutions is clear.
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3.3. Fixed point argument We will now apply a fixed point argument locally in
time, and consider for some T0∈ (0,T ] the pair (q̄, n̄)∈L2(0,T0;H1(Ω))×L2(0,T0;L2(Ω))
with 0≤ n̄≤1 a.e. in Ω×(0,T0). Let us introduce the mapping K : (q̄, n̄)→ (q,n), where
(q,n) is the unique solution pair to (3.20) with (ϕp,µp,ϕd,µd) as the unique solution
quadruple to (3.6). To specify the domain of K we define

X :=
{

(q,n) :‖q‖L2(0,T0;H1(Ω)) +‖n‖L2(0,T0;L2(Ω))≤R, 0≤n≤1 a.e. in Ω×(0,T0)
}
,

where R>0 is arbitrary but otherwise fixed. For example, one can take R= 1. Let
us mention that applying Gronwall’s inequality to (3.14) on the interval [0,t] yields
analogous bounds to (3.15a)-(3.15b) with T replaced by t and constants Cε,R, Cε,δ,R
now also depending on R due to the term ‖∇q̄‖L2(0,t;L2(Ω)) that will appear on the
right-hand side. Then, applying Gronwall’s inequality to (3.21) on [0,t] leads to the
estimate ‖q‖L∞(0,t;H1(Ω))≤Cε,δ,R. Hence, one obtains the estimate

‖q‖2L2(0,t;H1(Ω))≤ t‖q‖
2
L∞(0,T ;H1(Ω))≤ tCε,δ,R

for any t∈ (0,T ]. On the other hand, since 0≤n≤1 a.e. in Q, we get

‖n‖2L2(0,t;L2(Ω))≤ t|Ω|.

Consequently, for T0 sufficiently small (in a way that possibly depends on ε, δ and R),
we have

‖q‖L2(0,T0;H1(Ω)) +‖n‖L2(0,T0;L2(Ω))≤Cε,δ,RT
1
2

0 ≤R. (3.25)

This implies that for such a choice of T0, the operator K maps X (which is a convex
closed subset of the product Banach space L2(0,T0;H1(Ω))×L2(0,T0;L2(Ω))) into itself.

Continuity. We now aim to show that K :X→X is continuous with respect to the
norm of L2(0,T0;H1(Ω))×L2(0,T0;L2(Ω)), keeping in mind that thanks to the unique-
ness results for the auxiliary problems (3.6) and (3.20), K is a single-valued map-
ping. Let (q̄k,n̄k)k∈N⊂X be a sequence that converges strongly to a limit (q̄, n̄) in
X. We denote (qk,nk) =K(q̄k,n̄k) and (q,n) :=K(q̄, n̄). Then, it is easy to see that
from Lemma 3.1 (more precisely (3.15a)-(3.16)) there exists a corresponding sequence
(ϕp,k,µp,k,ϕd,k,µd,k)k∈N such that

‖ϕi,k‖H1(0,T0;H2(Ω)) +‖µi,k‖L2(0,T0;H1(Ω))≤Cε,δ,R

for i=p,d and some constant C=Cε,δ,R independent of k. Then, standard compactness
results [43, § 8, Cor. 4] yield

ϕi,k→ϕi strongly in C0([0,T0];W 1,r(Ω))∩C0(Ω× [0,T0]),

µi,k→µi weakly in L2(0,T0;H1(Ω)),

along a non-relabelled subsequence for i=p,d, and any r∈ [1,∞) in two dimensions
and r∈ [1,6) in three dimensions. Hence, along a non-relabelled subsequence, ϕp,k→ϕp
uniformly in Ω× [0,T0] and thus T (ϕp,k)→T (ϕp) uniformly in Ω× [0,T0]. Moreover,
one can easily check that the limit functions ϕi, µi solve (3.6) with q,n in place of q̄, n̄.
Next, taking the difference of (3.20b) for two indices a and b leads to

−∆(na−nb)+(T (ϕp,a)−T (ϕp,b))na+T (ϕp,b)(na−nb)+B(na−nb) = 0,
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and by testing with na−nb we obtain by the Poincaré inequality

‖∇(na−nb)‖2L2(0,T0;L2(Ω))

≤‖na−nb‖L2(0,T0;L2(Ω))‖T (ϕp,a)−T (ϕp,b)‖L2(0,T0;L2(Ω))

≤C‖∇(na−nb)‖L2(0,T0;L2(Ω))‖T (ϕp,a)−T (ϕp,b)‖L2(0,T0;L2(Ω))

(3.26)

after neglecting the non-negative term (T (ϕp,b)+B)|na−nb|2. Applying the uniform
convergence of T (ϕp,k) we see that {nk}k∈N is a Cauchy sequence in L2(0,T0;H1(Ω))
and thus nk→n∗ strongly in L2(0,T0;L2(Ω)) for some limit function n∗. Meanwhile,
from the a priori estimates (3.22)-(3.23) and standard compactness results, along a
non-relabelled subsequence it holds that

qk→ q∗ strongly in L2(0,T ;H1(Ω)).

Let us mention here that thanks to the strong convergence of nk→n∗ in L2(0,T0;L2(Ω)),
along a further subsequence we have a.e. convergence in Ω×(0,T0). Continuity of Σi,
i=p,d, and boundedness are sufficient to ensure that the source terms Σi(nk,ϕp,k,ϕd,k),
i=p,d, converge to Σi(n,ϕp,ϕd) strongly in L2(0,T0;L2(Ω)).

Hence, along a non-relabelled subsequence K(q̄k,n̄k)→ (q∗,n∗). On the other hand,
it is easy to check that (q∗,n∗) solve (3.20) (with the limit ϕi,µi). Then, thanks to the
uniqueness of the solutions for the auxiliary equations (3.20), one infers that, necessarily,
(q∗,n∗) = (q,n) =K(q̄, n̄) and the whole sequence converges. This shows the required
continuity of the map K.

Compactness. To apply Schauder’s fixed point theorem to K, it remains to show that
K :X→X is a compact mapping. This amounts to prove for any sequence (q̄k,n̄k)k∈N⊂
X, there exists a subsequence (q̄kl ,n̄kl)l∈N such that (qkl ,nkl) :=K(q̄kl ,n̄kl) converges
strongly to some limit (q,n) in L2(0,T0;H1(Ω))×L2(0,T0;L2(Ω)). Note that by the
definition of X we have

‖qk‖L2(0,T0;H1(Ω)) +‖nk‖L2(0,T0;L2(Ω))≤R

and 0≤nk≤1 a.e. in Ω×(0,T0). This boundedness and a similar argument to the proof
of the continuity of K permit us to conclude. Indeed, by repeating the a priori estimates
given above, one can easily prove that the sequence (qk,nk) is uniformly bounded in a
better space, whence follows the desired compactness assertion.

We now state the main result of this section.

Theorem 3.1 (Local existence). Let Assumption 2.1 hold. Moreover, for each ε∈ (0,1),
δ∈ (0,1) let us assume that Fε :R2→ [0,+∞) and F1 :R2→R are given such that ∇Fε,
∇F1 are globally Lipschitz continuous. Then, there exist a time T0∈ (0,T ] and functions
(ϕp,µp,ϕd,µd,q,n) such that

(1) the following regularity properties

ϕi∈H1(0,T0;H2(Ω)) for i=p,d,

µi∈L2(0,T0;H1(Ω)) for i=p,d,

q∈L2(0,T0;H3(Ω))∩L∞(0,T0;H1
0 (Ω))∩H1(0,T0;H−1(Ω)),

n∈L∞(0,T0;W 2,r(Ω)) for any r<∞ and 0≤n≤1 a.e. in Ω×(0,T0),

hold together with

ϕi(0) =ϕ0,i,δ, q(0) = 0 in Ω, ∆q= 0, n= 1 on ∂Ω×(0,T0),

for i=p,d.
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(2) Equations (1.6b), (1.6d), (1.6e), (1.6f) and (1.6h) hold a.e. in Ω×(0,T0), and
equations (1.6a), (1.6c) and (1.6g) hold for a.e. t∈ (0,T0) in the following weak
sense:

0 =

∫
Ω

(∂tϕp−Sp)ζ+
(
Mp∇µp+T (ϕp)

(
∇q+T (ϕp)∇µp+T (ϕd)∇µd

))
·∇ζ dx,

0 =

∫
Ω

(∂tϕd−Sd)ζ+
(
Md∇µd+T (ϕd)

(
∇q+T (ϕd)∇µd+T (ϕp)∇µp

))
·∇ζ dx,

0 = δ〈∂tq,ξ〉H1
0

+

∫
Ω

(
∇q−δ∇∆q+T (ϕp)∇µp+T (ϕd)∇µd

)
·∇ξ−(Sp+Sd)ξdx

for all ζ ∈H1(Ω) and ξ∈H1
0 (Ω).

3.4. A priori estimates We now derive some a priori estimates for the solution
(ϕp,µp,ϕd,µd,q,n) to (1.6) obtained from Theorem 3.1. All these estimates will be
independent of T0, which will allow us to extend the solution up to the full time interval
[0,T ]. For this reason, although with some abuse of notation, we shall directly work on
the original time interval [0,T ] and postpone the details of the extension argument to
the next subsection. Below the symbol C denotes constants that are independent of δ
and ε.

First estimate. Testing the nutrient equation (1.6h) with n−1∈H1
0 (Ω), we obtain

from the boundedness of the cut-off operator T and of n the estimate

‖∇n‖2L2(Ω) +

∫
Ω

(T (ϕp)+B)|n−1|2︸ ︷︷ ︸
≥0

dx

=

∫
Ω

T (ϕp)(1−n)+B(1−nC)(1−n)dx≤C.

Hence, integrating in time and applying the Poincaré inequality yields

‖n‖L2(0,T ;H1(Ω))≤C.

The weak comparison principle then yields that 0≤n≤1 a.e. in Ω×(0,T ). Hence, by
elliptic regularity, we arrive at

‖n‖L∞(0,T ;W 2,r(Ω))≤C ∀r<∞. (3.27)

Second estimate. Testing (1.6a) with µp, (1.6b) with ∂tϕp and comparing leads to an
analogous identity to (3.7) but with q̄ replaced by q. Combining this with the identity
obtained from testing (1.6c) with µd and (1.6d) with ∂tϕd yields an analogous identity
to (3.8) but with q̄ replaced by q. Then, adding the resulting identity to that obtained
from testing (1.6g) with q leads to the equality

d

dt

(
Eε(ϕp,ϕd)+

δ

2
‖q‖2L2(Ω)

)
+
∑
i=p,d

(
Mi‖∇µi‖2L2(Ω) +δ‖∇∂tϕi‖2L2(Ω)

)
+δ‖∆q‖2L2(Ω) +‖∇q+T (ϕp)∇µp+T (ϕd)∇µd‖2L2(Ω)

=

∫
Ω

(Spµp+Sdµd)+(Sp+Sd)qdx.

(3.28)
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Testing now (1.6a) with ϕp, (1.6c) with ϕd and summing the obtained relations yields

1

2

d

dt

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
=−

∑
i=p,d

∫
Ω

Mi∇µi ·∇ϕi−Siϕidx

−
∫

Ω

(
∇q+T (ϕp)∇µp+T (ϕd)∇µd

)
·
(
T (ϕp)∇ϕp+T (ϕd)∇ϕd

)
dx.

(3.29)

Summing (3.28) and (3.29) then gives

d

dt

∫
Ω

(Fε+F1)(ϕp,ϕd)dx+
∑
i=p,d

1

2
‖ϕi‖2H1(Ω) +

δ

2
‖q‖2L2(Ω)


+δ‖∆q‖2L2(Ω) +

∑
i=p,d

(
1

2
Mi‖∇µi‖2L2(Ω) +δ‖∇∂tϕi‖2L2(Ω)

)
+

1

2
‖∇q+T (ϕp)∇µp+T (ϕd)∇µd‖2L2(Ω)

≤C+C
∑
i=p,d

(
‖ϕi‖2L2(Ω) +‖∇ϕi‖2L2(Ω)

)
+

∫
Ω

Spµp+Sdµd+(Sp+Sd)qdx.

(3.30)

It remains to control the integral on the right-hand side of (3.30). To handle the pressure
term we consider, for a.e. t∈ (0,T ), the function Nq(t)∈H2(Ω)∩H1

0 (Ω) as the unique
solution to the Poisson problem

−∆Nq(t) = q(t) in Ω, Nq(t) = 0 on Γ.

As q(t)∈L2(Ω), elliptic regularity shows that ‖Nq‖H2(Ω)≤C∗‖q‖L2(Ω) for a positive
constant C∗ depending only on Ω. Furthermore, it can be shown that (see for example
[26, §2.2])

〈∂tq,Nq〉H1
0

=
1

2

d

dt
‖∇Nq‖2L2(Ω).

We additionally claim that Nq(0) = 0. Indeed, as q(0) = 0 from (1.7a), the only solution
to the Laplace equation with zero Dirichlet condition is zero. Then, upon testing (1.6g)
with Nq leads to

δ

2

d

dt
‖∇Nq‖2L2(Ω) +‖q‖2L2(Ω) +δ‖∇q‖2L2(Ω)

=

∫
Ω

(Sp+Sd)Nq−(T (ϕp)∇µp+T (ϕd)∇µd) ·∇Nq dx

≤C
[
1+

∑
i=p,d

‖ϕi‖L2(Ω)

]
‖Nq‖L2(Ω) +

∑
i=p,d

‖∇µi‖L2(Ω)‖∇Nq‖L2(Ω),

where we have also used that

−
∫

Ω

δ∆q∆Nq dx=

∫
Ω

δq∆qdx=−δ‖∇q‖2L2(Ω).
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Therefore, by Young’s inequality and Poincaré’s inequality, and the estimate
‖Nq‖H2(Ω)≤C∗‖q‖L2(Ω), we arrive at

δ

2

d

dt
‖∇Nq‖2L2(Ω) +

1

2
‖q‖2L2(Ω) +δ‖∇q‖2L2(Ω)

≤C
[
1+

∑
i=p,d

(
‖∇µi‖2L2(Ω) +‖ϕi‖2L2(Ω)

)]
.

(3.31)

By virtue of the computations performed in (3.13) we infer that∫
Ω

Spµp+Sdµddx

≤Mp

4
‖∇µp‖2L2 +

Md

4
‖∇µd‖2L2(Ω) +Cε

(
1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

(3.32)

Then, letting κ be a sufficiently small constant such that κC≤ 1
4 min(Mp,Md), where

C is the constant on the right-hand side of (3.31), and adding κ times (3.31) to (3.30)
yields

d

dt

∫
Ω

(Fε+F1)(ϕp,ϕd)dx+
∑
i=p,d

1

2
‖ϕi‖2H1(Ω) +

δ

2

(
‖q‖2L2(Ω) +κ‖∇Nq‖2L2(Ω)

)
+
∑
i=p,d

(
1
4Mi‖∇µi‖2L2(Ω) +δ‖∇∂tϕi‖2L2(Ω)

)
+
κ

4
‖q‖2L2(Ω) +δκ‖∇q‖2L2(Ω)

+δ‖∆q‖2L2(Ω) +
1

2
‖∇q+T (ϕp)∇µp+T (ϕd)∇µd‖2L2(Ω)

≤Cε+Cε
∑
i=p,d

‖ϕi‖2H1(Ω),

(3.33)

where we have estimated the last term on the right-hand side of (3.30) as follows:∫
Ω

(Sp+Sd)qdx≤
κ

4
‖q‖2L2(Ω) +C

(
1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

Then, applying Gronwall’s inequality to (3.33) yields the following estimates uniform in
δ:

‖(Fε+F1)(ϕp,ϕd)‖L∞(0,T ;L1(Ω)) +‖ϕp‖L∞(0,T ;H1(Ω)) +‖ϕd‖L∞(0,T ;H1(Ω))≤Cε,
‖∇µp‖L2(0,T ;L2(Ω)) +‖∇µd‖L2(0,T ;L2(Ω)) +‖q‖L2(0,T ;L2(Ω))≤Cε,√

δ
(
‖q‖L∞(0,T ;L2(Ω)) +‖∇∂tϕp‖L2(0,T ;L2(Ω)) +‖∇∂tϕd‖L2(0,T ;L2(Ω))

)
≤Cε,

(3.34)

also thanks to the fact that q(0) = ∆q(0) =Nq(0) = 0 and that

‖ϕi,0,δ‖H1(Ω)≤C‖ϕi,0‖H1(Ω)

from (3.4). Then, testing (1.6g) wth q and estimating the right-hand side gives

δ

2

d

dt
‖q‖2L2(Ω) +‖∇q‖2L2(Ω) +δ‖∇∆q‖2L2(Ω)

≤C
[
1+‖q‖2L2(Ω) +

∑
i=p,d

(
‖ϕi‖2L2(Ω) +‖∇µi‖2L2(Ω)

)]
+

1

2
‖∇q‖2L2(Ω).
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In light of (3.34), and recalling the initial condition q(0) = 0, we find that

‖∇q‖L2(0,T ;L2(Ω))≤Cε. (3.35)

Third estimate. Thanks to the Lipschitz regularity of Fε,i and F1,i for i=p,d, it is
easy to see that by (3.34)

|µi|2≤Cε
(

1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
∈L∞(0,T ).

Hence, by Poincaré’s inequality and (3.34), we deduce

‖µp‖L2(0,T ;H1(Ω)) +‖µd‖L2(0,T ;H1(Ω))≤Cε. (3.36)

Fourth estimate. Testing (1.6b) with ∆ϕp, and in light of (3.36) and the Lipschitz
regularity of Fε,p and F1,p, we have

1

2
‖∆ϕp‖2L2(Ω) +

d

dt

δ

2
‖∆ϕp‖2L2(Ω)≤Cε

(
1+‖µp‖2L2(Ω) +‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
. (3.37)

Recalling (3.5) we see that

δ‖∆ϕp,0,δ‖2L2(Ω)≤Cδ(1+δ−1)‖ϕp,0‖2H1(Ω)≤C. (3.38)

Thus, integrating (3.37) in time and applying the elliptic estimate

‖v‖H2(Ω)≤C
(
‖∆v‖L2(Ω) +‖v‖L2(Ω)

)
(holding as v satisfies no-flux boundary conditions), we obtain

‖ϕp‖L2(0,T ;H2(Ω)) +‖ϕd‖L2(0,T ;H2(Ω))≤Cε,√
δ
(
‖ϕp‖L∞(0,T ;H2(Ω)) +‖ϕd‖L∞(0,T ;H2(Ω))

)
≤Cε.

(3.39)

Then, by inspection of (1.6a) we find that

‖∂tϕp‖H1(Ω)′ ≤C
(
‖∇q‖L2(Ω) +‖∇µp‖L2(Ω) +‖∇µd‖L2(Ω) +‖Sp‖L2(Ω)

)
,

with a similar relation holding for ϕd. Hence, we infer that

‖∂tϕp‖L2(0,T ;H1(Ω)′) +‖∂tϕd‖L2(0,T ;H1(Ω)′)≤Cε. (3.40)

Fifth estimate. Testing (1.6g) with q−∆q∈H1
0 (Ω) and performing standard compu-

tations leads to the analogue of (3.21). Then, multiplying both sides of (3.21) by δ and
using a Gronwall argument yields

δ‖q‖L∞(0,T ;H1(Ω)) +δ‖∇∆q‖L2(0,T ;L2(Ω)) +
√
δ‖∆q‖L2(0,T ;L2(Ω))≤Cε. (3.41)

Then, by inspection of (1.6g), and recalling (3.34), (3.35) and (3.41), we infer

δ‖∂tq‖L2(0,T ;H−1(Ω))≤C
∑
i=p,d

(
1+‖∇µi‖L2(0,T ;L2(Ω)) +‖ϕi‖L2(0,T ;L2(Ω))

)
+C‖∇q‖L2(0,T ;L2(Ω)) +Cδ‖∇∆q‖L2(0,T ;L2(Ω)) +C

≤Cε.

(3.42)
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Note that by the Lipschitz continuity of ∇Fε and ∇F1, and the boundedness of ϕp,ϕd
in L2(0,T ;L2(Ω)) from (3.34), we can easily infer that

‖Fε,i(ϕp,ϕd)‖L2(0,T ;L2(Ω)) +‖F1,i(ϕp,ϕd)‖L2(0,T ;L2(Ω))≤Cε for i=p,d.

Then, by testing (1.6b) with −δ∆∂tϕp and (1.6d) with −δ∆∂tϕd we obtain using the
boundedness of µi−Fε,i(ϕp,ϕd)−F1,i(ϕp,ϕd)−∆ϕi in L2(0,T ;L2(Ω))

δ
(
‖∆∂tϕp‖L2(0,T ;L2(Ω)) +‖∆∂tϕd‖L2(0,T ;L2(Ω))

)
≤Cε. (3.43)

On the other hand, testing (1.6a) with
√
δ∂tϕp, we obtain

√
δ‖∂tϕp‖2L2(Ω)≤C

(
1+

∑
i=,p,d

(
‖∇µi‖2L2(Ω) +‖ϕi‖2L2(Ω)

)
+‖∇q‖2L2(Ω) +δ‖∇∂tϕp‖2L2(Ω)

)
+

1

2

√
δ‖∂tϕp‖2L2(Ω).

Recalling (3.34) and (3.35), we then deduce that

√
δ‖∂tϕp‖2L2(0,T ;L2(Ω)) +

√
δ‖∂tϕd‖2L2(0,T ;L2(Ω))≤Cε,

whence by repeating the same argument on ϕd and by applying elliptic regularity, (3.43)
yields

δ‖ϕp‖H1(0,T ;H2(Ω)) +δ‖ϕd‖H1(0,T ;H2(Ω))≤Cε. (3.44)

3.5. Extension to [0,T ] Thanks to the a priori estimates (3.27), (3.34), (3.36),
(3.39), (3.40), (3.41), (3.42), (3.43) and (3.44), which have a uniform character with
respect to the time variable, we can extend the local solution obtained from Theorem 3.1
up to the full reference interval [0,T ]. This can be achieved by means of a standard
contradiction argument which we now outline. Suppose there exists a maximal time of
existence Tm∈ (0,T ] for the weak solution (ϕp,µp,ϕd,µd,q,n) to (1.6). To be precise,
Tm is defined as the largest time such that (ϕp,µp,ϕd,µd,q,n) exists with the regularity
properties specified in the statement of Theorem 3.1. We want to prove that, in fact,
Tm=T . If this is not the case, repeating the a priori estimates mentioned above (but
now working on the maximal time interval [0,Tm]), we deduce in particular that

‖ϕp‖C0([0,Tm];H2(Ω)) +‖ϕd‖C0([0,Tm];H2(Ω)) +‖q‖C0([0,Tm];H1
0 (Ω))≤Cε,δ,

where Cε,δ is independent of Tm. Note that, to obtain the above bound, we used in
particular (3.43) with the continuous embedding H1(0,Tm)⊂C0([0,Tm]) and (3.41)-
(3.42) with the continuous embedding

L2(0,Tm;H3(Ω)∩H1
0 (Ω))∩H1(0,Tm;H−1(Ω))⊂C0([0,Tm];H1

0 (Ω)).

In particular, the triple (ϕp(t),ϕd(t),q(t)) remains bounded in H2(Ω)×H2(Ω)×H1
0 (Ω),

and actually (strongly) converges in the same space to a limit (ϕp(Tm),ϕd(Tm),q(Tm)),
as t↗Tm. This allows us to restart the system by taking ϕp(Tm), ϕd(Tm) and q(Tm)
as new “initial” data (note that the other equations of the system have a quasi-static
nature; hence they do not involve any initial data). To be precise, we should observe
that we performed the fixed point argument by assuming the initial condition q(0) = 0,
while we are restarting the argument from q(Tm) 6= 0. On the other hand, it is easy
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to realize that the choice q(0) = 0 was taken just for convenience (indeed, that initial
datum will disappear when taking the limit δ→0) and the argument still works for any
datum in H1

0 (Ω) (as is q(Tm)). Hence, restarting from Tm we get a new local solution
which is defined on an interval of the form (Tm,Tm+ε) for some ε>0 and still enjoys
the regularity properties detailed in Theorem 3.1. This contradicts the maximality of
Tm. Hence Tm=T .

3.6. Passing to the limit δ→0 We now pass to the limit δ→0 to obtain a
weak solution (ϕεp,µ

ε
p,ϕ

ε
d,µ

ε
d,q

ε,nε) defined over (0,T ) to the following problem:

∂tϕp=Mp∆µp+ div(T (ϕp)∇q)+ div
(
T (ϕp)

2∇µp+T (ϕp)T (ϕd)∇µd
)

+Sp, (3.45a)

µp=Fε,p(ϕp,ϕd)+F1,p(ϕp,ϕd)−∆ϕp, (3.45b)

∂tϕd=Md∆µd+ div(T (ϕd)∇q)+ div
(
T (ϕp)T (ϕd)∇µp+T (ϕd)

2∇µd
)

+Sd, (3.45c)

µd=Fε,d(ϕp,ϕd)+F1,d(ϕp,ϕd)−∆ϕd, (3.45d)

Sp= Σp(n,ϕp,ϕd)+mppϕp+mpdϕd, (3.45e)

Sd= Σd(n,ϕp,ϕd)+mdpϕp+mddϕd, (3.45f)

0 = ∆q+ div
(
T (ϕp)∇µp+T (ϕd)∇µd

)
+Sp+Sd, (3.45g)

0 =−∆n+T (ϕp)n−B(nC−n), (3.45h)

furnished with the initial and boundary conditions

ϕp(0) =ϕp,0, ϕd(0) =ϕd,0 in Ω, (3.46a)

Mi∂nµi+T (ϕi)(∇q+T (ϕp)∇µp+T (ϕd)∇µd) ·n= 0 on Γ, (3.46b)

n= 1, q= 0, ∂nϕi= 0 on Γ. (3.46c)

Note that in (3.45) the regularized convex part Fε of the potential F is still present.

Theorem 3.2. Let Assumption 2.1 hold. For ε∈ (0,1) and δ∈ (0,1), let Fε :R2→
[0,+∞) be the Moreau-Yosida approximation of F0 as detailed in Sec. 3. Let also ϕi,0,δ ∈
H2
n(Ω) be the unique solution to (3.3). Then, there exists δ0>0 such that for all δ<δ0,

the weak solution (ϕδ,εp ,µδ,εp ,ϕδ,εd ,µδ,εd ,qδ,ε,nδ,ε) to (1.6) defined on [0,T ] and obtained
from Theorem 3.1 satisfies the following properties:

(1) there exist functions (ϕεp,µ
ε
p,ϕ

ε
d,µ

ε
d,q

ε,nε) such that for i=p,d and any s<∞
in two dimensions and any s∈ [1,6) in three dimensions, and any r<∞,

ϕδ,εi →ϕεi weakly* in L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;H1(Ω)′),

ϕδ,εi →ϕεi strongly in C0([0,T ];Ls(Ω))∩L2(0,T ;W 1,s(Ω)) and a.e. in Q,

µδ,εi →µεi weakly in L2(0,T ;H1(Ω)),

qδ,ε→ qε weakly in L2(0,T ;H1(Ω)),

nδ,ε→nε weakly* in L∞(0,T ;W 2,r(Ω)) and strongly in L2(0,T ;H1(Ω)).

(2) The tuple (ϕεp,µ
ε
p,ϕ

ε
d,µ

ε
d,q

ε,nε) satisfies equations (3.45b), (3.45d), (3.45e),
(3.45f), (3.45h) a.e. in Q, whereas equations (3.45a), (3.45c) and (3.45g) hold
for a.e. t∈ (0,T ) in the following weak sense:

0 = 〈∂tϕεp,ζ〉+
∫

Ω

(
Mp∇µεp+T (ϕεp)

(
∇qε+T (ϕεp)∇µεp+T (ϕεd)∇µεd

))
·∇ζ−Spζ dx,

0 = 〈∂tϕεd,ζ〉+
∫

Ω

(
Md∇µεd+T (ϕεd)

(
∇qε+T (ϕεd)∇µεd+T (ϕεp)∇µεp

))
·∇ζ−Sdζ dx,
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0 =

∫
Ω

(
∇qε+T (ϕεp)∇µεp+T (ϕεd)∇µεd

)
·∇ξ−(Sp+Sd)ξdx

for all ζ ∈H1(Ω) and ξ∈H1
0 (Ω). Moreover, 0≤nε≤1 a.e. in Q, and ϕεi (0) =

ϕ0,i a.e. in Ω.
Proof. Recalling the estimate (3.4), we immediately infer the following properties

of the initial data (ϕp,0,δ,ϕd,0,δ):

‖ϕp,0,δ‖H1(Ω) +‖ϕd,0,δ‖H1(Ω)≤C,
ϕp,0,δ→ϕp,0, ϕd,0,δ→ϕd,0 weakly in H1(Ω) and strongly in L2(Ω).

Furthermore, this choice of initial data for the regularized system (1.6) implies that the
estimate (3.34) is uniform in δ∈ (0,δ0).

Then, most of the weak/weak* convergence properties in the statement are directly
deduced from the uniform estimates (3.27), (3.34), (3.36) and (3.39), while the strong
convergences follow from using [43, § 8, Cor. 4]. On the other hand, the strong conver-
gence of nδ,ε is proved, similarly as before, by a Cauchy argument which we now sketch.
Let (a small) η>0 and (a large) C∗>0 be given but otherwise arbitrary. Then, thanks
to the a.e. convergence of ϕδ,εp to ϕεp in Q, by Egorov’s theorem there exists a measurable

subset Xη⊂Q with C∗|Xη|< 1
4η and ϕδ,εp →ϕεp uniformly in the complement Q\Xη. By

this uniform convergence, there exists δ∗>0 such that for any two indices 0<δ1,δ2<δ∗,

C∗

∫
Q\Xη

|T (ϕδ1,εp )−T (ϕδ2,εp )|2dxdt< η

2
.

Then, following the computation in (3.26) and using the boundedness of T , we find that

‖nδ1,ε−nδ2,ε‖2L2(0,T ;H1(Ω))≤C∗‖T (ϕδ1,εp )−T (ϕδ2,εp )‖2L2(0,T ;L2(Ω))

≤C∗
∫
Q\Xη

|T (ϕδ1,εp )−T (ϕδ2,εp )|2dxdt+C∗

∫
Xη

|T (ϕδ1,εp )−T (ϕδ2,εp )|2dxdt

<
η

2
+2C∗|Xη|<η,

for 0<δ1,δ2<δ∗. Here C∗ is exactly the constant C in (3.26). This shows that
{nδ,ε}δ∈(0,δ∗) is a Cauchy sequence in L2(0,T ;H1(Ω)). The property 0≤nε≤1 a.e.
in Q can be deduced also from a weak comparison principle.

Now passing to the limit δ→0 in (1.6e), (1.6f), (1.6h) lead to (3.45e), (3.45f) and
(3.45h), respectively. Let us fix ζ ∈L2(0,T ;H1(Ω)) and test (1.6b) with ζ. Then,∫ T

0

∫
Ω

(
µδ,εp +∆ϕδ,εp −(Fε,p+F1,p)(ϕ

δ,ε
p ,ϕδ,εd )

)
ζ−δ∇∂tϕδ,εp ·∇ζ dxdt= 0.

Using the weak convergences of µδ,εp , ∆ϕδ,εp in L2(0,T ;L2(Ω)) and the Lipschitz continu-

ity of Fε,p and F1,p, as well as the boundedness ‖
√
δ∇∂tϕδ,εp ‖L2(0,T ;L2(Ω))≤Cε resulting

from (3.34), passing to the limit δ→0 in the above equality leads to∫ T

0

∫
Ω

(
µεp+∆ϕεp−(Fε,p+F1,p)(ϕ

ε
p,ϕ

ε
d)
)
ζ dxdt= 0.

Since the above identity holds for arbitrary ζ ∈L2(0,T ;H1(Ω)) and all the terms in the
integrand belong to L2(0,T ;L2(Ω)), the fundamental lemma of calculus of variations
then yields (3.45b).
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In a similar fashion, we infer from testing (1.6a) with an arbitrary test function
ζ ∈L2(0,T ;H1(Ω)) and then passing to the limit δ→0 the identity

0 =

∫ T

0

〈∂tϕεp,ζ〉dt−
∫ T

0

∫
Ω

Sp(n
ε,ϕεp,ϕ

ε
d)ζ dxdt

+

∫ T

0

∫
Ω

(
Mp∇µεp+T (ϕεp)

(
∇qε+T (ϕεp)∇µεp+T (ϕεd)∇µεd

))
·∇ζ dxdt,

where in the above we used the strong L2-convergences of nδ,ε and ϕδ,εi with the general-
ized Lebesgue dominated convergence theorem and the assumption (2.1) to deduce that

Sp(n
δ,ε,ϕδ,εp ,ϕδ,εd ) converges to Sp(n

ε,ϕεp,ϕ
ε
d) strongly in L2(0,T ;L2(Ω)). Furthermore,

by the continuity and boundedness of T (·), it is easy to see that

T (ϕδ,εp )→T (ϕεp) weakly∗ in L∞(Q) and strongly in Lp(Q) for all p∈ [1,∞).

Moreover, the strong convergence of the initial data ϕp,0,δ to ϕp,0 in L2(Ω) and the
strong convergence of ϕδ,εp to ϕεp in C0([0,T ];L2(Ω)) yield ϕεp(0) =ϕp,0 as an equality in
L2(Ω).

Lastly, it remains to pass to the limit in (1.6g). Consider testing (1.6g) with the
product η(t)ξ(x) for arbitrary test functions η∈C1(0,T ) with η(T ) = 0 and ξ∈H2(Ω)∩
H1

0 (Ω), then we have

0 =

∫ T

0

∫
Ω

−δqδ,εξ∂tη−(Sp+Sd)(n
δ,ε,ϕδ,εp ,ϕδ,εd )η(t)ξdxdt

+

∫ T

0

η(t)

∫
Ω

(
∇qδ,ε+T (ϕδ,εp )∇µδ,εp +T (ϕδ,εd )∇µδ,εd

)
·∇ξ+δ∆qδ,ε ·∆ξdxdt.

Thanks to ‖qδ,ε‖L2(0,T ;L2(Ω))≤Cε from (3.34) and
√
δ‖∆qδ,ε‖L2(0,T ;L2(Ω))≤Cε from

(3.41), after passing to the limit we obtain

0 =

∫ T

0

η(t)

∫
Ω

(
∇qε+T (ϕεp)∇µεp+T (ϕεd)∇µεd

)
·∇ξ−(Sp+Sd)(n

ε,ϕεp,ϕ
ε
d)ξdxdt,

holding for all ξ∈H2(Ω)∩H1
0 (Ω) and η∈C1(0,T ) with η(T ) = 0. Using the density

of H2(Ω)∩H1
0 (Ω) in H1

0 (Ω) and the fundamental lemma of calculus of variations, we
obtain the weak formulation of (3.45g) as stated in Theorem 3.2.

4. Passing to the limit ε→0 Let (ϕεp,µ
ε
p,ϕ

ε
d,µ

ε
d,q

ε,nε) denote a weak solution
to (3.45) obtained from Theorem 3.2. Introducing the velocity variable as uε :=−∇qε−
T (ϕεp)∇µεp−T (ϕεd)∇µεd, we can now rewrite (3.45) as

∂tϕ
ε
p=Mp∆µ

ε
p− div(T (ϕεp)u

ε)+Sp, (4.1a)

µεp=Fε,p(ϕ
ε
p,ϕ

ε
d)+F1,p(ϕ

ε
p,ϕ

ε
d)−∆ϕεp, (4.1b)

∂tϕ
ε
d=Md∆µ

ε
d− div(T (ϕεd)u

ε)+Sd, (4.1c)

µεd=Fε,d(ϕ
ε
p,ϕ

ε
d)+F1,d(ϕ

ε
p,ϕ

ε
d)−∆ϕεd, (4.1d)

Sp= Σp(n
ε,ϕεp,ϕ

ε
d)+mppϕ

ε
p+mpdϕ

ε
d, (4.1e)

Sd= Σd(n
ε,ϕεp,ϕ

ε
d)+mdpϕ

ε
p+mddϕ

ε
d, (4.1f)

uε=−∇qε−T (ϕεp)∇µεp−T (ϕεd)∇µεd, (4.1g)
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divuε=Sp+Sd, (4.1h)

0 =−∆nε+T (ϕεp)n
ε−B(nC−nε), (4.1i)

furnished with the initial-boundary conditions (3.46a)-(3.46c) (in fact, the system is
satisfied in the weak form specified in the statement; nevertheless, it is probably clearer
to report the equations in their strong formulation).

The aim of this section is to derive uniform a priori estimates in ε and then pass to
the limit ε→0. Let us point out that the estimate (3.27) involving nε is already uniform
in ε. For convenience, we will drop the superscript ε in the variables, and denote with
the symbol C positive constants that are independent of ε.

4.1. A priori estimates We will now derive a number of estimates uniform with
respect to ε. We start controlling the mean values of ϕp and ϕd. Denoting

y(t) := (ϕp(t),ϕd(t)), Σ(t) = (Σp(t),Σd(t)),

then by testing (4.1a) and (4.1c) with 1 leads to the following system of ordinary dif-
ferential equations:

d

dt
y(t) =Σ(t)+My(t) (4.2)

for any 0≤ t≤T . Thanks to (2.1), (2.2) and (2.7) we infer that the vector y(t) =
(ϕp(t),ϕd(t)) belongs to the interior int∆0 for all times t∈ [0,T ]. Indeed, at the time
t= 0, y(0)∈ int∆0 by (2.7). Suppose that there exists a time t∗ such that y(t∗)∈∂∆0.
Then, taking t= t∗ in the above ODE, multiplying with the outer unit normal n to ∆0

and applying (2.2), we necessarily have that

d

dt
y(t∗) ·n<0.

As a consequence, y(t)∈ int∆0 for t in a right neighbourhood of t∗, whence it is apparent
that y(t) can never leave ∆0. From this we deduce that there exist positive constants
0<c1<c2<1 independent of ε such that

c1≤ϕp(t),ϕd(t)≤ c2, c1≤ (ϕp+ϕd)(t)≤ c2 ∀t∈ [0,T ]. (4.3)

Testing now (4.1a) with µp, (4.1c) with µd, (4.1b) with ∂tϕp, (4.1d) with ∂tϕd, (4.1g)
with u and summing leads to

d

dt

∫
Ω

Fε(ϕp,ϕd)+F1(ϕp,ϕd)+
1

2

(
|∇ϕp|2 + |∇ϕd|2

)
dx

+Mp‖∇µp‖2L2(Ω) +Md‖∇µd‖2L2(Ω) +‖u‖2L2(Ω)

=

∫
Ω

Spµp+Sdµd+q(Sp+Sd)dx.

(4.4)

In the above we used Darcy’s law and integration by parts to deduce that∫
Ω

(
T (ϕp)∇µp+T (ϕd)∇µd

)
·udx=

∫
Ω

−∇q ·u−|u|2dx=

∫
Ω

q(Sp+Sd)−|u|2dx.

Let us now observe that, by the boundedness of Σp, we have∫
Ω

Spµpdx≤C‖µp−µp‖L1(Ω) +C|µp|+
∑
i=p,d

∫
Ω

mpiϕi(µp−µp+µp)dx
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=C‖µp−µp‖L1(Ω) +C|µp|+
∑
i=p,d

∫
Ω

mpi(ϕi−ϕi)(µp−µp)dx,

+µp

∫
Ω

mppϕp+mpdϕddx

≤C‖µp−µp‖L1(Ω) +C|µp|+C
∑
i=p,d

‖∇ϕi‖L2(Ω)‖∇µp‖L2(Ω),

where we have used that (ϕp,ϕd) never leaves the set ∆0 and so mppϕp+mpdϕd is
bounded. An analogous estimate holds for Sdµd, whence, by the Poincaré and Young
inequalities, we obtain∣∣∣∣∫

Ω

Spµp+Sdµd dx

∣∣∣∣≤C (|µp|+ |µd|)+
Mp

4
‖∇µp‖2L2(Ω)

+
Md

4
‖∇µd‖2L2(Ω) +C

(
1+‖∇ϕp‖2L2(Ω) +‖∇ϕd‖2L2(Ω)

)
.

(4.5)

For the term involving the pressure q, we have∣∣∣∣∫
Ω

(Sp+Sd)qdx

∣∣∣∣≤Cη(1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
+η‖q‖2L2(Ω)

for some positive constant η to be fixed below. To get an L2-estimate of the pressure,
we use the Poincaré inequality for H1

0 (Ω)-functions and Darcy’s law to deduce that

‖q‖2L2(Ω)≤C‖∇q‖
2
L2(Ω)≤C

(
‖u‖2L2(Ω) +‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω)

)
. (4.6)

Take now η sufficiently small so that∣∣∣∣∫
Ω

(Sp+Sd)qdx

∣∣∣∣≤ 1

2
‖u‖2L2(Ω) +

Mp

4
‖∇µp‖2L2(Ω) +

Md

4
‖∇µd‖2L2(Ω)

+C
(

1+‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

(4.7)

Then, substituting (4.5) and (4.7) into (4.4) yields

d

dt

∫
Ω

Fε(ϕp,ϕd)+F1(ϕp,ϕd)+
1

2

(
|∇ϕp|2 + |∇ϕd|2

)
dx

+
Mp

2
‖∇µp‖2L2(Ω) +

Md

2
‖∇µd‖2L2(Ω) +

1

2
‖u‖2L2(Ω)

≤C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω) + |µp|+ |µd|
)
.

(4.8)

The key point is now to derive uniform estimates on the mean values |µp| and |µd| in
order to obtain useful a priori bounds from (4.8). To this aim, we test (4.1b) with
ϕp−ϕp, leading to∫

Ω

|∇ϕp|2 +Fε,p(ϕp−ϕp)dx=

∫
Ω

(µp−µp−F1,p)(ϕp−ϕp)dx.

Here, we have used that∫
Ω

µp(ϕp−ϕp)dx=µp

∫
Ω

ϕp−ϕp dx= 0.
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Then, using the growth condition (2.5) and the Poincaré inequality, we obtain∫
Ω

|∇ϕp|2 +Fε,p(ϕp−ϕp)dx≤C
(
1+‖ϕp‖L2(Ω) +‖ϕd‖L2(Ω) +‖∇µp‖L2(Ω)

)
‖∇ϕp‖L2(Ω).

A similar inequality can be obtained by testing (4.1d) with ϕd−ϕd. Upon adding these
two inequalities and recalling that ∇Fε= (Fε,p,Fε,d)

>, we have

‖∇ϕp‖2L2(Ω) +‖∇ϕd‖2L2(Ω) +

∫
Ω

∇Fε(ϕp,ϕd) ·(ϕp−ϕp,ϕd−ϕd)> dx

≤C‖∇µp‖L2(Ω)‖∇ϕp‖L2(Ω) +C‖∇µd‖L2(Ω)‖∇ϕd‖L2(Ω)

+C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
.

(4.9)

At this point we will use the fact that Fε satisfies (3.2), and consider s=ϕp, r=ϕd,
S=ϕp, R=ϕd. Then, we find that

c∗|∇Fε(ϕp,ϕd)−∇Fε(ϕp,ϕd)|
≤ (∇Fε(ϕp,ϕd)−∇Fε(ϕp,ϕd)) ·(ϕp−ϕp,ϕd−ϕd)>+C∗.

(4.10)

We recall another property of the derivative of the Moreau–Yosida approximation,
namely

|∇Fε(p,q)|≤ |(∂F0)◦(p,q)| ∀(p,q)∈∆,

where ∂ denotes here the subdifferential in the sense of convex analysis and (∂F0)◦(p,q)
is the element of minimum norm in the set ∂F0(p,q), that, at least in principle, could
contain more than one element. Here, however, F0 is assumed to be C1 in ∆ and,
consequently, |(∂F0)◦(p,q)|= |(∇F0)(p,q)|<∞. Then, thanks to the fact that (ϕp,ϕd)∈
∆0 for all t∈ [0,T ], we see that |∇Fε(ϕp,ϕd)|≤C for all t∈ [0,T ], and hence integrating
(4.10), rearranging and applying the Poincaré inequality leads to

c∗‖∇Fε(ϕp,ϕd)‖L1(Ω)≤ c∗‖∇Fε(ϕp,ϕd)‖L1(Ω) +c∗‖∇Fε(ϕp,ϕd)−∇Fε(ϕp,ϕd)‖L1(Ω)

≤C+C∗ |Ω|+
∫

Ω

∇Fε(ϕp,ϕd) ·(ϕp−ϕp,ϕd−ϕd)> dx

+C
(
‖∇ϕp‖L2(Ω) +‖∇ϕd‖L2(Ω)

)
.

(4.11)
Substituting this inequality into (4.9) and applying Young’s inequality then yields

‖∇ϕp‖2L2(Ω) +‖∇ϕd‖2L2(Ω) +‖∇Fε(ϕp,ϕd)‖L1(Ω)

≤θ
(
Mp

4
‖∇µp‖2L2(Ω) +

Md

4
‖∇µd‖2L2(Ω)

)
+C

(
1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
,

(4.12)

for some constant θ>0 yet to be determined. Then, in light of (4.12), observe that, by
testing (4.1b) and (4.1d) with ±1, we obtain that the terms involving the mean values
|µp| and |µd| appearing on the right-hand side of (4.8) can be estimated as follows:

C (|µp|+ |µd|)≤C
(
‖∇F1(ϕp,ϕd)‖L1(Ω) +‖∇Fε(ϕp,ϕd)‖L1(Ω)

)
≤Mp

4
‖∇µp‖2L2(Ω) +

Md

4
‖∇µd‖2L2(Ω)

+C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
,

(4.13)
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by choosing θ appropriately small. Returning to (4.8) and substituting the estimate
(4.13), we infer

d

dt

∫
Ω

Fε(ϕp,ϕd)+F1(ϕp,ϕd)+
1

2

(
|∇ϕp|2 + |∇ϕd|2

)
dx

+
Mp

4
‖∇µp‖2L2(Ω) +

Md

4
‖∇µd‖2L2(Ω) +

1

2
‖u‖2L2(Ω)

≤C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
.

(4.14)

To (4.14) we now add the following inequality obtained from testing (4.1a) with ϕp and
(4.1c) with ϕd and summing (cf. (3.29)):

1

2

d

dt

(
‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
≤Mp

8
‖∇µp‖2L2(Ω) +

Md

8
‖∇µd‖2L2(Ω) +

1

4
‖u‖2L2(Ω)

+C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
,

leading to

d

dt

∫
Ω

Fε(ϕp,ϕd)+F1(ϕp,ϕd)dx+
d

dt

1

2

(
‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
+
Mp

8
‖∇µp‖2L2(Ω) +

Md

8
‖∇µd‖2L2(Ω) +

1

4
‖u‖2L2(Ω)

≤C
(

1+‖ϕp‖2H1(Ω) +‖ϕd‖2H1(Ω)

)
.

(4.15)

By definition of the Moreau–Yosida approximation, we have

Fε(s,r)≤F0(s,r) ∀(s,r)∈R2, ∀ε∈ (0,1).

Hence, recalling (2.6), we arrive at∫
Ω

Fε(ϕp,0,ϕd,0)+F1(ϕp,0,ϕd,0)dx≤C.

Applying Gronwall’s inequality to (4.15), we deduce

‖Fε(ϕp,ϕd)‖L∞(0,T ;L1(Ω)) +‖ϕp‖L∞(0,T ;H1(Ω)) +‖ϕd‖L∞(0,T ;H1(Ω))

+‖∇µp‖L2(0,T ;L2(Ω)) +‖∇µd‖L2(0,T ;L2(Ω)) +‖u‖L2(0,T ;L2(Ω))≤C.
(4.16)

Thus, returning to (4.9), using the boundedness of ‖ϕp(t)‖H1(Ω) and ‖ϕd(t)‖H1(Ω) for
all t∈ [0,T ] leads to∫

Ω

∇Fε(ϕp,ϕd) ·(ϕp−ϕp,ϕd−ϕd)> dx≤C
(
1+‖∇µp‖L2(Ω) +‖∇µd‖L2(Ω)

)
. (4.17)

Then, substituting the above inequality into (4.11) yields

‖∇Fε(ϕp,ϕd)‖L1(Ω)≤C
(
1+‖∇µp‖L2(Ω) +‖∇µd‖L2(Ω)

)
(4.18)

thanks to the estimate (4.16), whence ∇Fε(ϕp,ϕd) is bounded in L2(0,T ;L1(Ω)). In
turn, by the first line of (4.13) we find that |µp| and |µd| are bounded in L2(0,T ). Hence,
recalling (4.16) and using once more the Poincaré inequality, we get

‖µp‖L2(0,T ;H1(Ω)) +‖µd‖L2(0,T ;H1(Ω))≤C. (4.19)
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Furthermore, recalling (4.6), thanks to (4.16) we now have

‖q‖L2(0,T ;H1(Ω))≤C. (4.20)

Next, we infer estimates on Fε,p by testing (4.1b) with Fε,p(ϕp,ϕd)−Fε,p(ϕp,ϕd), lead-
ing to

‖Fε,p(ϕp,ϕd)−Fε,p(ϕp,ϕd)‖2L2(Ω)

+

∫
Ω

Fε,pp(ϕp,ϕd)|∇ϕp|2 +Fε,pd(ϕp,ϕd)∇ϕp ·∇ϕddx

=

∫
Ω

(µp−µp−F1,p(ϕp,ϕd))(Fε,p(ϕp,ϕd)−Fε,p(ϕp,ϕd))dx,

where

Fε,pp=
∂2Fε
∂ϕ2

p

, Fε,pd=
∂2Fε

∂ϕp∂ϕd
.

Adding the similar identity obtained testing (4.1d) with Fε,d(ϕp,ϕd)−Fε,d(ϕp,ϕd) and
employing the Poincaré inequality together with the linear growth of ∇F1, it is not
difficult to deduce

1

2
‖Fε,p(ϕp,ϕd)−Fε,p(ϕp,ϕd)‖2L2(Ω) +

1

2
‖Fε,d(ϕp,ϕd)−Fε,d(ϕp,ϕd)‖2L2(Ω)

+

∫
Ω

(∇ϕp,∇ϕd) ·D2Fε(ϕp,ϕd)(∇ϕp,∇ϕd)>dx

≤C
(

1+‖∇µp‖2L2(Ω) +‖∇µd‖2L2(Ω) +‖ϕp‖2L2(Ω) +‖ϕd‖2L2(Ω)

)
.

Since Fε is convex, the Hessian D2Fε is non-negative and consequently we can neglect
the integral term on the left-hand side. Then, recalling (4.16) leads to

‖Fε,p(ϕp,ϕd)−Fε,p(ϕp,ϕd)‖L2(0,T ;L2(Ω))

+‖Fε,d(ϕp,ϕd)−Fε,d(ϕp,ϕd)‖L2(0,T ;L2(Ω))≤C.
(4.21)

Upon recalling the boundedness of ∇Fε(ϕp,ϕd) in L2(0,T ;L1(Ω)) resulting from (4.18),
we deduce a control of the quantities ‖Fε,p‖L2(0,T ) and ‖Fε,d‖L2(0,T ). Hence, from (4.21)
we eventually obtain

‖Fε,p(ϕp,ϕd)‖L2(0,T ;L2(Ω)) +‖Fε,d(ϕp,ϕd)‖L2(0,T ;L2(Ω))≤C. (4.22)

Viewing (4.1b) and (4.1d) as elliptic equations for ϕp and ϕd, respectively, with right-
hand sides bounded in L2(0,T ;L2(Ω)) and no-flux boundary conditions, the elliptic
regularity theory gives

‖ϕp‖L2(0,T ;H2(Ω)) +‖ϕd‖L2(0,T ;H2(Ω))≤C. (4.23)

Lastly, from inspection of (4.1a) and (4.1c), and thanks to the estimate (4.16) we have

‖∂tϕp‖L2(0,T ;H1(Ω)′) +‖∂tϕd‖L2(0,T ;H1(Ω)′)≤C. (4.24)
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4.2. Compactness and passing to the limit Thanks to the uniform estimates
(4.16), (4.19), (4.20), (4.22), (4.23) and (4.24), by standard compactness arguments we
infer the existence of functions (ϕp,µp,ϕd,µd,q,u) and of a pair (ηp,ηd) such that

ϕεi→ϕi weakly∗ in L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;H1(Ω)′), (4.25a)

ϕεi→ϕi strongly in C0([0,T ];Ls(Ω))∩L2(0,T ;W 1,s(Ω)), (4.25b)

ϕεi→ϕi a.e. in Ω×(0,T ), (4.25c)

µεi→µi weakly in L2(0,T ;H1(Ω)), (4.25d)

uε→u weakly in L2(0,T ;L2(Ω)), (4.25e)

qε→ q weakly in L2(0,T ;H1(Ω)), (4.25f)

and

Fε,p(ϕp,ϕd)→ηp weakly in L2(0,T ;L2(Ω)), (4.26a)

Fε,d(ϕp,ϕd)→ηd weakly in L2(0,T ;L2(Ω)), (4.26b)

for any s<∞ in two dimensions and any s∈ [1,6) in three dimensions. Using a sim-
ilar argument as in the proof of Theorem 3.2, by the a.e convergence of ϕεp to ϕp in
Ω×(0,T ) and Egorov’s theorem, we can show that {nε}ε∈(0,1) is a Cauchy family in
L2(0,T ;H1(Ω)). Then, there also exists a function n∈L∞(0,T ;W 2,r(Ω)), for any r<∞,
with 0≤n≤1 a.e. in Ω×(0,T ), such that

nε→n strongly in L2(0,T ;H1(Ω)).

It now remains to pass to the limit ε→0 in (4.1). Actually, in view of the above
convergence properties, the argument is very similar to that used before when we pass
to the limit δ→0. Hence, we just outline the differences which are mainly related to the
terms depending on Fε. Actually, combining (4.25b), (4.26a)-(4.26b) with the standard
monotonicity argument in [2, Prop. 1.1, p. 42], we readily deduce that (ϕp,ϕd)∈∆
a.e. in Ω×(0,T ) and that ηp=F0,p(ϕp,ϕd), ηd=F0,d(ϕp,ϕd). This in particular implies
that the truncation operator T (·) disappears in the limit formulation of the problem;
namely, we have T (ϕp) =ϕp and T (ϕd) =ϕd a.e. in Q.

Let us also point out that from the structural assumption (2.2) and from the deriva-
tion of (4.3) the limit functions ϕp and ϕd satisfy (ϕp(t),ϕd(t))∈∆0 and

0<c1≤ϕp(t),ϕd(t)≤ c2<1, c1≤ϕp+ϕd(t)≤ c2

for all t∈ [0,T ]. Hence, we have proved that the tuple (ϕp,µp,ϕd,µd,u,q,n) is a weak
solution to system (1.1) in the sense of Definition 2.1. This concludes the proof of
Theorem 2.1.
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