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The Faddeev technique is employed to address the problem of describing the influence of both
particle-particle and particle-hole phonons on the single-particle self-energy. The scope of the few-
body Faddeev equations is extended to describe the motion of two-hole one-particle (two-particle
one-hole) excitations. This formalism allows to sum both particle-particle and particle-hole phonons,
obtained separately in the Random Phase Approximation. The appearance of spurious solutions for
the present application of the Faddeev method is related to the inclusion of a consistent set of dia-
grams. The formalism presented here appears practical for finite nuclei and achieves a simultaneous
inclusion of particle-particle and particle-hole phonons to all orders while the spurious solutions are
properly eliminated.

PACS numbers: 21.10.Jx, 21.60.-n, 21.60.Jz

I. INTRODUCTION

In recent years, the study of (e, e′p) reactions has been one of the most useful tools to probe correlations in nuclei.
Absolute spectroscopic factors have become available for many closed-shell nuclei [1–3] demonstrating that the removal
probability for nucleons from these systems is reduced by about 35% in comparison with the simple shell model. The
theoretical description of this reduction requires the inclusion of both short-range and long-range correlations. For
nuclear matter a strength removal of about 15% is obtained by including short-range correlations [4]. For 16O the
inclusion of short-range correlations leads to removal of single-particle (sp) strength of the order of 10% [5,6]. The
inclusion of long-range correlations for heavier nuclei like 48Ca yields a qualitative description of the sp strength
distribution by including in the nucleon self-energy the coupling to either low-lying collective particle-hole (ph) or
particle-particle (pp) phonons calculated in Random Phase approximation (RPA) [7]. The additional depletion of
about 10% due to short-range correlations for this nucleus leads to a reasonable quantitative agreement for the largest
fragments of the experimental strength distribution.
Theoretical calculations of hole spectroscopic factors for 16O are not so successful. The experimental spectroscopic

strength [8] for the knockout of a proton from both the p1/2 and p3/2 shells corresponds to about 60%. The 10%
reduction due to short-range correlations is mostly compensated by the proper inclusion of the center-of-mass motion
which enhances the probability for p removal by about 7% [9]. Calculations based on the Green’s function approach,
including both long- and short-range correlations, yield about a 25% reduction [10]. These results still need to be
corrected for the center-of-mass effect. It is therefore fair to conclude that the present theoretical results for 16O are
still about 20% away from the experimental data. The importance of low-energy correlations is clearly demonstrated
by the results of Ref. [10] and their proper inclusion is therefore crucial for a complete understanding of this puzzle. In
the latter work the self-energy was obtained including the effects of interactions between both pp and ph excitations
in the Tamm-Dancoff approximation (TDA). In order to account for the coupling to collective excitations that are
actually observed in 16O it is necessary to at least consider an RPA description of the isoscalar negative parity
states [11]. To account for the low-lying isoscalar positive parity states an even more complicated treatment will be
required. Sizable collective effects are also present in the pp and hole-hole (hh) excitations involving tensor correlations
for isoscalar and pair correlations for isovector states. Another argument to improve the description of the coupling of
sp states to low-lying collective excitations is provided by the lack of fragmentation at low energy obtained in present
theoretical studies [10] in disagreement with experimental data.
One of the goals of the present work is to account for the collectivity in the ph and pp (hh) channels in a consistent

way while including these excitations at least at the RPA level. Since the observed fragmentation and depletion of
the sp strength in 16O is quite substantial, it is reasonable to assume that these features are also important in the
description of the excitations that contribute to the self-energy. This results in a self-consistent formulation where
the dressing of the nucleons is incorporated in the description of the collective excitations that ultimately leads to the
dressing itself. For this reason the present work will be formulated using self-consistent Green’s functions (SCGF).
This type of self-consistency must also be considered in describing pairing correlations in semi-magic nuclei [12,13].
A formalism in which both pp and ph phonons are treated at the RPA level in the self-energy was proposed
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in [14]. This work focused on the two-time two-particle one-hole (2p1h) propagator and generated a formulation that
reduces to either including the pp-RPA or the ph-RPA phonons in the self-energy when ph or pp vertices are omitted,
respectively. This expansion, however, was obtained using some drastic assumptions and disregarding some of the
constraints that arise when propagators in different diagrams of the expansion are connected. Related to this issue is
the appearance of unphysical solutions for the 2p1h propagator that have been discussed in [15]. Results in [15] have
therefore been obtained mostly for the TDA treatment of the 2p1h propagator. Moreover, this approximation was
obtained by employing mean-field (single-pole) sp propagators. In the present self-consistent treatment, which sums
fully dressed propagators, this approach is no longer possible.
To proceed with the inclusion of both pp and ph collectivity in the nucleon self-energy it is important to note

that the naive summation of diagrams containing both pp and ph phonons leads to serious inconsistencies. This
approximation is depicted in Fig. 1. The last of the three diagrams on the right hand side is already contained in each
of the other two and must therefore be subtracted to avoid double counting. This subtraction introduces spurious
poles in the Lehmann representation of the self-energy and generates meaningless solutions of the Dyson equation. The
minus sign in front this term may also prevent in some cases the proper normalization of the spectroscopic amplitudes.
This feature can be understood by considering a possible solution near such a spurious pole. The normalization is
determined by the derivative of the self-energy at this energy [13] and will not yield a correct result on account of the
additional minus sign when the third diagram dominates. In addition, each of the first two terms in Fig. 1 ignores the
Pauli correlations between the freely propagating line and the quasi-particles forming the phonons, as noted in [7]. In
the present work a formalism is pursued which sums the contribution of the pp and ph phonons to the self-energy to
all orders avoiding the subtraction of the second order diagram. The treatment of Pauli correlations is improved over
methods that employ ph RPA phonons in the self-energy since all exchange terms at the 2p1h level are consistently
included.
Other approaches have been proposed in the literature that attempt to extend the nature of the phonon correlations

included by performing massive summations of diagrams [16–18]. Nevertheless, a consistent resummation of both pp
and ph phonons to all orders has not been achieved in these papers. The main problem in pursuing such an infinite
summation of diagrams for the 2p1h propagator, which includes both pp and ph RPA correlations, is related to
the fact that a two-body interaction can invert the sense of propagation of only two lines (i.e. change at most two
holes in two particles and vice versa) while the third line continues to propagate in the original direction. In this
way, a propagator depending on more than two times is generated. It is therefore necessary first to consider an
exact formulation involving the four-time Green’s function for the 2p1h propagator. Direct application of four-time
propagator equations presumably will remain impractical for the forseeable future. Appropriate approximations to
this equation are therefore necessary to construct the relevant two-times Green’s functions which contains the sought
after correlations. The scheme studied in this paper consists in computing the RPA phonons in the pp and ph
channels, separately, and then summing them to all orders employing a Faddeev technique [19,20].
A nontrivial problem in the implementation of the Faddeev equations is the appearance of spurious solutions [21,22]

which also have to be considered for the 2p1h propagator. As pointed out in [23], the spurious eigenstates are easy
to recognize for the few-body problem since they also diagonalize the unperturbed hamiltonian. Their main features
are that their eigenvalues are known and that their wave-function amplitudes sum up to zero. The situation is more
complicated in the many-body problem when the Faddeev technique is employed. In particular, the fulfillment of
closure relations for pp and ph amplitudes is related to the behavior of the spurious Faddeev eigenstates. Without
a consistent treatment of this relation the spurious solutions will mix with the physically meaningful ones. Applying
the Faddeev technique to the many-body problem, it is important to solve for all physical solutions that contribute
to the self-energy. Thus, it is necessary to develop a formalism in which the spurious solutions are correctly separated
from the physical ones.
The practical implementation of the present Faddeev scheme is beyond the scope of this paper. The resulting set of

equations require a great deal of computational effort, especially when dressed propagators are employed. Nevertheless,
it appears that they can be solved in practice and results using this formalism will be presented elsewhere.
In Sec. II we briefly describe the SCGF approach based on the Dyson equation and present the exact Faddeev

formalism for the four-times 2p1h propagator. The construction of a consistent formulation for the two-time 2p1h
propagator including the propagation of the pp and ph RPA phonons to all orders is presented in Sec. III. Although
sofar only the 2p1h propagator has been mentioned, it should be understood that the corresponding two-hole one-
particle (2h1p) propagator must be included in the calculation of the nucleon self-energy. In the present work no
coupling terms are considered that transform the 2p1h into the 2h1p propagators (or vice versa). For this reason the
same technique can be used for both propagators and we will use the generic 2p1h to represent both. In Sec. IV the
appearance and treatment of spurious solutions is discussed. Some technical details are relegated to the appendices.
Conclusions are drawn in Sec. V.
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II. SELF-CONSISTENT GREEN’S FUNCTION APPROACH AND 2P1H PROPAGATOR

A. Self-energy and 2p1h propagator

We consider a finite system of A fermions interacting by means of a two-body interaction V̂ . As usual one may
introduce an appropriate mean-field potential Û to localize the nucleons and split the hamiltonian into an unperturbed
one-body part Ĥ0 = T̂ + Û and a residual interaction Ĥ1 = V̂ − Û . Since we are mainly interested in low-lying bound
states of finite systems, we consider sp states with discrete quantum numbers. As a basis, we choose the set of sp
states {α} that diagonalize Ĥ0 with corresponding eigenvalues ε0α. The total hamiltonian can then be written as

Ĥ = Ĥ0 + Ĥ1 =
∑

α

ε0α c†αcα +





1
4

∑

αβγδ

Vαβ,γδ c†α c†β cδ cγ −
∑

αβ

Uα,β c†αcβ



 , (1)

where c†α (cα) are the creation (destruction) operators of a particle in the state α, Vαβ,γδ are the antisymmetrized
matrix elements of V , and Uα,β correspond to the matrix elements of U .
The one-body propagator of the A-body system with ground state |ΨA

0 〉 is defined as [24,25]

gαβ(τ) = − i 〈ΨA
0 | T [cα(τ)c†β(0)] |ΨA

0 〉 , (2)

where c†α(t) and cα(t) now correspond to operators in the Heisenberg picture. In the Lehmann representation, all the
eigenvalues of the excited states of the systems with A+ 1 and A− 1 particles appear, as well as their spectroscopic
amplitudes for transitions to those states that are relevant for comparison with experimental data.
The propagator gαβ(τ) can be obtained as the sum of an infinite set of diagrams, built from interaction vertices

and unperturbed sp propagators g
(0)
αβ corresponding to Ĥ0. In the nuclear case, a strong coupling exists between the

sp degree of freedom and both collective low-lying states as well as high-lying states. The latter coupling is related
to the strong short-range repulsion in the nuclear force. The resulting fragmentation of the sp strength, as observed
in experimental data, suggests that this feature must already be included in the description of these couplings. For
this reason self-consistent one-body propagators need to be considered in the construction of the nucleon self-energy.
This self-consistency feature also emerges in an exact formulation, involving the coupling to two-, three- and A-body
propagators, which can be derived using the equation of motion method [26]. In short, this means that for the
nuclear case one needs to develop the perturbation theory in terms of the dressed propagator (2) approximated in an
appropriate way.
The approach we use here consists in computing gαβ(τ) as a solution of the Dyson equation

gαβ(τ) = g
(0)
αβ (τ) + g(0)αγ (τ − t1)Σ

⋆
γδ(t1 − t2)gδβ(t2) , (3)

where Σ⋆
αβ(τ) is the irreducible self-energy. Here and in the following, we employ the convention of summing over all

repeated indices and integrate from −∞ to +∞ over all repeated time variables, unless specified otherwise.
By considering the equation of motion for gαβ(τ), one obtains that Σ⋆

αβ(τ) can be written as the sum of two terms

Σ⋆
αβ(τ) = ΣHF

αβ + Vαλ,µν Rµνλ,γδε(τ
−, τ, τ+; 0+, 0, 0−) Vγδ,βε , (4)

where ΣHF
αβ represents the (time independent) Hartree-Fock part of the self-energy, which can be computed from the

solution gαβ(τ) itself. The 2p1h propagator R, appearing in the last term of Eq. (4), contains the sum of all so-called
one-particle irreducible diagrams which cannot be separated by cutting a single line. These terms are included in the

2p1h Green’s function, g2p1hµνλ,αβγ , defined below. The relation between R and g2p1h is given by [27]

Rµνλ,αβγ(t1, t2, t3; t4, t5, t6)

= g2p1hµνλ,αβγ(t1, t2, t3; t4, t5, t6) − gIIµν,λη(t1, t2; t3, t
′) g−1

ησ (t
′ − t′′) gIIγσ,αβ(t6, t

′′; t4, t5) , (5)

in which g−1
ησ is the inverse of the one-body Green’s function (2) and gII and g2p1h are the 4- and 6- point Green’s

functions defined as

gIIαβ,γδ(t1, t2; t3, t4) = − i 〈ΨA
0 | T [cβ(t2)cα(t1)c†γ(t3)c†δ(t4)] |ΨA

0 〉 (6)

and
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g2p1hµνλ,αβγ(t1, t2, t3; t4, t5, t6) = − i 〈ΨA
0 | T [c†λ(t3)cν(t2)cµ(t1)c†α(t4)c

†
β(t5)cγ(t6)] |ΨA

0 〉 , (7)

respectively.
The propagator Rµνλ,αβγ is the solution of the following equation which has a similar form as the Bethe-Salpeter

equation for pp and ph propagators

Rµνλ,αβγ(t1, t2, t3; t4, t5, t6)

= gµα(t1 − t4)gνβ(t2 − t5)gγλ(t6 − t3) − gνα(t2 − t4)gµβ(t1 − t5)gγλ(t6 − t3)

+gµµ′(t1 − t′1)gνν′(t2 − t′2)gλ′λ(t
′
3 − t3)

× Kµ′ν′λ′,α′β′γ′(t′1, t
′
2, t

′
3; t

′
4, t

′
5, t

′
6) Rα′β′γ′,αβγ(t

′
4, t

′
5, t

′
6; t4, t5, t6) , (8)

which is shown in Fig. 2 in terms of Feynman diagrams. The interaction vertex, also shown in Fig. 2, is given by

Kµνλ,αβγ(t1, t2, t3; t4, t5, t6)

= K
(ph)
νλ,βγ(t2, t3; t5, t6)g

−1
µα(t1 − t4) + K

(ph)
µλ,αγ(t1, t3; t4, t6)g

−1
νβ (t2 − t5)

+ K
(pp)
µν,αβ(t1, t2; t4, t5)g

−1
γλ (t6 − t3) + K

(pph)
µνλ,αβγ(t1, t2, t3; t4, t5, t6) . (9)

In Eq. (9), K(pp) and K(ph) represent the pp and ph irreducible vertices while K(pph) is the 2p1h irreducible vertex.
It should be noted that in Eq. (4) the propagator Rµνλ,αβγ is only required at two times and therefore its complete
knowledge, as given by (5), is not necessary to solve the Dyson equation. On the other hand, the dependence on the
time variables t1, t2 and t3 is employed in the Bethe-Salpeter Eq. (8), thus requiring that at least a 4-times object be
employed to solve for the 2p1h motion exactly.
Equations (3), (4) and (8) together form a set of coupled equations, where the same propagator, which solves the

Dyson equation (3), appears as input in the Bethe-Salpeter equation (8). If the irreducible vertices K(pp), K(ph)

and K(pph) are also expressed in terms of the gαβ(τ), then Eqs. (3) and (8) will generate a self-consistent expansion.
Obviously, Eq. (8) and the irreducible vertex (9) represent the exact solution for R and therefore require a suitable
approximation.

B. Faddeev-Bethe-Salpeter equations

Eq. (8) can be reduced to a set of coupled equations in a way similar to the method proposed by Faddeev to solve
the three-body problem [19,28]. The inclusion of pp and ph RPA phonons in a consistent way requires this Faddeev
approach since it provides a natural framework for correctly iterating quantities that have already been summed to all
orders like these RPA phonons. In the present work we will neglect the contribution of the irreducible K(pph) term in
Eq. (9) since it leads to the coupling of higher order particle-hole terms than already considered in the following. We

will therefore require only three Faddeev components. Following standard notation in the literature [20], R
(i)
µνλ,αβγ

will represent the component related to all diagrams ending with a vertex between legs j and k with (i, j, k) cyclic
permutations of (1, 2, 3). We will employ the convention in which the third leg propagates in the opposite direction
with respect to the first two. The Faddeev components R(i) can be written in terms of the 2p1h propagator R and
the contribution of the three dressed but noninteracting sp propagators. This definition is given in detail here for all
three components, omitting explicit reference to the time variables for convenience of notation

R
(1)
µνλ,αβγ = gνǫgρλ K(ph)

ǫρ,ησ Rµησ,αβγ +
1

2
(gµα gνβ gγλ − gνα gµβ gγλ) , (10a)

R
(2)
µνλ,αβγ = gµǫgρλ K(ph)

ǫρ,ησ Rηνσ,αβγ +
1

2
(gµα gνβ gγλ − gνα gµβ gγλ) , (10b)

R
(3)
µνλ,αβγ = gµǫgνρ K(pp)

ǫρ,ησ Rησλ,αβγ +
1

2
(gµα gνβ gγλ − gνα gµβ gγλ) . (10c)

The factor 1
2 in Eqs. (10) properly takes into account the exchange symmetry between the parallel lines in the Faddeev

equations. With these definitions the full propagator (5) is given by

Rµνλ,αβγ =
∑

i=1,2,3

R
(i)
µνλ,αβγ − 1

2
(gµα gνβ gγλ − gνα gµβ gγλ) . (11)
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The Faddeev equations now take the following form

R
(i)
µνλ,αβγ =

1

2
(gµα gνβ gγλ − gνα gµβ gγλ)

+ gµµ′ gνν′ gλ′λ Γ
(i)
µ′ν′λ′,µ′′ν′′λ′′ (R

(j)
µ′′ν′′λ′′,αβγ + R

(k)
µ′′ν′′λ′′,αβγ) , i = 1, 2, 3 (12)

where the Γ
(i)
µνλ,αβγ vertices obey the following symmetry relations and are defined by

Γ
(1)
µνλ,αβγ(t1, t2, t3; t4, t5, t6) = Γ

(2)
νµλ,βαγ(t2, t1, t3; t5, t4, t6) = g−1

µα(t1 − t4) Γ̃
(ph)
νλ,βγ(t2, t3; t5, t6) , (13a)

Γ
(3)
µνλ,αβγ(t1, t2, t3; t4, t5, t6) = Γ

(3)
νµλ,βαγ(t2, t1, t3; t5, t4, t6) = g−1

γλ (t6 − t3) Γ̃
(pp)
µν,αβ(t1, t2; t4, t5) . (13b)

The gamma matrices Γ̃(pp) and Γ̃(ph) are the four-point functions that solve the Bethe-Salpeter equation for the pp
and ph motion. These vertex functions contain the pp and ph phonons and can be written as

Γ̃
(pp)
γδ,αβ(t1, t2; t3, t4) = K

(pp)
γδ,αβ(t1, t2; t3, t4)

+ Γ̃
(pp)
γδ,µν(t1, t2; t

′
1, t

′
2) gµη(t

′
1 − t′3) gνσ(t

′
2 − t′4) K

(pp)
ησ,αβ(t

′
3, t

′
4; t3, t4) , (14a)

Γ̃
(ph)
γδ,αβ(t1, t2; t3, t4) = K

(ph)
γδ,αβ(t1, t2; t3, t4)

+ Γ̃
(ph)
γδ,µν(t1, t2; t

′
1, t

′
2) gµη(t

′
1 − t′3) gσν(t

′
4 − t′2) K

(ph)
ησ,αβ(t

′
3, t

′
4; t3, t4) . (14b)

III. APPROXIMATE FADDEEV EQUATIONS FOR 2P1H MOTION

Apart from neglecting the K(2p1h) vertex, Eq. (12) is otherwise a complete equation for the 2p1h propagator.
This general equation involves quantities which depend on several times and is therefore too complex to be solved
numerically. In order to construct a manageable approximation scheme that includes the relevant physical ingredients
two simplifications will be considered in this section. The first one involves the restriction to two-time pp and ph
vertices that include the respective RPA contributions in these channels. This approximation is the minimum step
that maintains the simultaneous inclusion of both pp and ph collective low-lying excitations in describing the sp
propagator. Second, it is necessary to simplify Eq. (12) to include only two-times Green’s functions. This procedure
no longer allows the inversion of the the propagation direction of all three lines together. As a result, the Faddeev
equations split up in two separate expansions for the 2p1h and the 2h1p components. Although the hole spectral
function is of primary interest for comparison with experimental data, it must be stressed that both 2p1h and 2h1p
components are needed to generate the self-consistent solution for the sp propagator. Since the formalism involved is
the same for both components, we will describe only the forward-going (2p1h) expansion. The equations for the 2h1p
case are completely analogous.

A. Faddeev equations

To construct the present approximation scheme, it is more convenient to use the energy representation. The
corresponding Lehmann representation of the sp propagator (2) is given by

gαβ(ω) =
∑

n

(Xn
α )

∗ Xn
β

ω − ε+n + iη
+

∑

k

Yk
α

(

Yk
β

)∗

ω − ε−k − iη
, (15)

where Xn
α = 〈ΨA+1

n |c†α|ΨA
0 〉 (Yk

α = 〈ΨA−1
k |cα|ΨA

0 〉) are the spectroscopic amplitudes for the excited states of a system

with A+1 (A− 1) particles and the poles ε+n = EA+1
n −EA

0 (ε−k = EA
0 −EA−1

k ) correspond to the excitation energies
with respect to the A-body ground state. In Eq. (15) and in the following, we use the indices n and k to enumerate
the fragments associated with the one-particle and one-hole excitations, respectively.
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Employing the bare interaction Vαβ,γδ for the vertices K(pp) and K(ph), the Bethe-Salpeter equations (14) reduce
to the usual dressed RPA (DRPA) equations [29,30]. The solutions of these equations depend only on two times.
These pp and ph phonons correspond to the dressed version of the phonons that are considered in Ref. [7] (see also
Fig. 1). These excitations describe the correlations that we aim to iterate to all orders and, subsequently, to include
in the self-energy as explained in the introduction. These DRPA solutions can then be substituted in Eqs. (13) to
generate the Γ(i) matrices to be used in the Faddeev expansion. Both the forward- and backward-going components
of the DRPA solutions are included into the expansion as illustrated in Fig. 3. This is crucial in order to eliminate
the spurious solutions of the Faddeev equations as will be explained in Sec. IV and Appendix C.
The working expression for the Γ(i) matrices, which depends on only two times (or equivalently one energy), is given

in some detail in Appendix A. Here we only need to stress that the resulting Γ(i)’s cannot invert the freely propagating
line from hole to particle or vice versa, i.e. they cannot connect the 2p1h amplitudes with the 2h1p ones. For this
reason, the pp and ph phonons will be summed only in one time direction in a TDA way contributing separately
to the 2p1h and 2h1p propagators. The reader may notice that two contributions of the type shown in Fig. 4 can
connect the 2p1h and the 2h1p propagators. The inclusion of such terms leads to the simultaneous propagation of two
phonons which requires an extension of the approximation presented in this paper. Since these terms are expected to
contribute only in higher order, we will neglect them in the following. We note that the collective RPA correlations
in the pp and ph channels have already been computed through Eqs. (14) and therefore remain properly included in
our approximation.
The remaining complication, related to the use of dressed propagators, concerns the interactions vertices (13). As

explained in Appendix A, the Γ(i) and the propagators R(i) need to be redefined in such a way that their matrix
elements also depend on the indices (n, n′, k), which label the fragments of the propagators. This implies that the
eigenvalue equations will involve summations on both the sp indices (α, β, γ) and the ones corresponding to the
fragmentation, (nα, nβ, kγ). The 2p1h propagator and its Faddeev components, as defined in Eqs. (5) and (10), are
recovered only at the end by summing the solutions over all values of (nα, nβ , kγ) and (nµ, nν , kλ).
Putting together all the above considerations, the resulting approximation to the Faddeev equations (12) can be

rewritten in a way where all the propagators involved depend only on one energy variable (or two time variables).
The forward-going part of this expansion can be written as follows

R
(i)
µnµνnνλkλ,αnαβnβγkγ

(ω)

=
1

2

(

G0>
µnµνnνλkλ,αnαβnβγkγ

(ω)−G0>
νnνµnµλkλ,αnαβnβγkγ

(ω)
)

+ G0>
νnνµnµλkλ,µ′n′

µν
′n′

νλ
′k′

λ
(ω) Γ

(i)
ν′n′

νµ
′n′

µλ
′k′

λ
,µ′′n′′

µν
′′n′′

νλ
′′k′′

λ

(ω)

×
(

R
(j)
µ′′n′′

µν
′′n′′

νλ
′′k′′

λ
,αnαβnβγkγ

(ω) + R
(k)
µ′′n′′

µν
′′n′′

νλ
′′k′′

λ
,αnαβnβγkγ

(ω)
)

, i = 1, 2, 3 . (16)

In Eq. (16), G0> is the forward-going part of the 2p1h propagator for three dressed but noninteracting lines. Using
the notations introduced after Eq. (15) we have

G0>
µnµνnνλkλ,αnαβnβγkγ

(ω) = δnµ,nα
δnν ,nβ

δkλ,kγ

(

Xnµ
µ Xnν

ν Ykλ

λ

)∗

Xnα
α Xnβ

β Ykγ
γ

ω − (ε+nα + ε+nβ − ε−kγ) + iη
. (17)

Eqs. (16), together with the Γ(i)’s given in Appendix A, approximate the general “Faddeev-Bethe-Salpeter” expan-
sion to a tractable set of equations involving only two-time objects. It is important to note that these equations are
still expressed in terms of the self-consistent solution gαβ(ω) and include both pp and ph RPA phonons in a correct
way. Thus they maintain all the features relevant for the physics we aim to describe.

B. Faddeev amplitudes

Eqs. (16) involve the use of propagators depending on a large number of indices. As a consequence, the dimension of
the problem could easily grow up to a point where no practical application is feasible for a real system. This difficulty
can be overcome by introducing a new set of spectroscopic amplitudes which depend only on the indices labelling the
particle and hole fragments (n, n′, k) [31,32]. Thereby the problem is reexpressed by changing from the basis of sp
states {α}, used in definitions (5) and (10), to a new formulation constructed in terms of the fragments labeled by
{n, k}. This procedure also allows to rewrite the eigenvalue and normalization conditions corresponding to Eqs. (16)
in a more concise way. As long as the interaction elements Vαβ,γδ are energy independent, all the solutions can then
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be obtained through a single diagonalization. This approach is particularly satisfactory from a physical point of view
since the equations reflect the mixing of the 2p1h states represented by the (n, n′, k) fragments. This new formulation
does not introduce any further approximation. Nevertheless, since it appears relevant for a practical solution of the
problem, we will describe it in the following.

The Lehmann representation of the Faddeev components R
(i)
µnµνnνλkλ,αnαβnβγkγ

, contains all the poles εFd
m of the

2p1h propagator, each with its own residue. One obtains for these components

R
(i)
µnµνnνλkλ,αnαβnβγkγ

=
∑

m

(

β
(i),m
µnµνnνλkλ

)∗

bmαnαβnβγkγ

ω − εFd
m + iη

+ R
(i)
free(ω) , (18)

where the superscriptm labels the solutions of Faddeev equations. In Eq. (18), R
(i)
free represent components containing

the same poles as G0> (17). The sum of these terms cancels exactly the contribution of the three freely propagating
lines in Eq. (11), leaving in the Lehmann representation of the Faddeev propagator only those poles εFd

m , that
correspond to correlated 2p1h states. This is most easily demonstrated by applying the the DRPA equations to both
sides of Eq. (16).

The vectors β
(i),m
µnµνnνλkλ

represent the amplitudes of the three Faddeev components and sum up to the residues of

the full propagator

bmαnαβnβγkγ
=

∑

i=1,2,3

β
(i),m
αnαβnβγkγ

. (19)

We now define new Faddeev amplitudes x
(i),m
n1n2k

which are related to the β(i)’s in such a way that [31]

β
(i),m
αn1βn2γk

= Xn1

α Xn2

β Yk
γ x

(i),m
n1n2k

, (20)

where no summation is performed over the particle and hole indices n1, n2 and k. We also introduce the notation for
the spectroscopic amplitude, analogous to Eq. (19)

xm
n1n2k =

∑

i=1,2,3

x
(i),m
n1n2k

. (21)

In general, xn1n2k and the components x
(i)
n1n2k

define four vectors x and x(i) all belonging to the same linear space.
It is useful to split up the latter in two spaces VA and VS containing all the vectors that are antisymmetric and
symmetric with respect to the exchange of the two particle indices n1 and n2, respectively. Thus,

x , x(i) ∈ VA ⊗ VS . (22)

We also define a vector X containing all the three components

X =





x(1)

x(2)

x(3)



 ∈ V 3
A ⊗ V 3

S . (23)

Here and in the following, we use the convention to denote vectors with lower case boldface and operators (matrices)
with plain capital letters belonging to the space VA⊗VS. Both vectors and matrices in the space V 3

A⊗V 3
S are denoted

by capital boldface letters. We will also use I for the identity matrix in the VA ⊗ VS space and the superscript ex to
indicate the vectors obtained by exchanging the two particle indices (thus, Iex is the operator exchanging n1 and n2

in Eqs. (20) and (21) ).

C. Faddeev Hamiltonian

The eigenvalue equation for the Faddeev expansion can be obtained by substituting the Lehmann representation (18)
into Eqs. (16) and extracting the residues εFd

m of the poles. After some algebra, one obtains the following set of
equations in terms of the x(i) vectors
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x(i) =

[

H(i)H(i)† + U (i) 1

ω −D(i)
T (i)†

]

(

x(j) + x(k)
)

i = 1, 2, 3 . (24)

In Eq. (24), the components of the matrices H(i), U (i) and T (i) are related to the spectroscopic amplitudes of the
DRPA propagators, as explained in Appendix B. The D(i)’s are diagonal matrices containing the eigenvalues of the
corresponding DRPA.
One can now define block-diagonal matrices H, D, etc... which contain on the diagonal the matrices H(i), D(i), etc.

These matrices act on the vectors X defined in (23). Using this notation one combine Eqs. (24) as follows

X =

[

HH† + U
1

ω −D
T†

]

M X , (25)

where we have also introduced the matrix

M =





I I
I I
I I



 (26)

that takes into account the proper mixing between the Faddeev components.
By introducing the vector

Y ≡ 1

ω −D
T† M X (27)

(which appears in Eq. (25) ) and remembering that D is a diagonal matrix, it is possible to manipulate Eq. (25) into
the usual form of an eigenvalue equation

ω X = F X (28)

where we have introduced the Faddeev hamiltonian F [23], which is given by

F =
[

I−HH†M
]−1

U
{

TM + D(U−1)
[

I−HH†M
]}

. (29)

The form (28) of the Faddeev eigenvalue equations is useful, since it reduces the problem to the diagonalization of a
single (non-hermitian) hamiltonian.
The hamiltonian F can still correspond to a large matrix requiring a large amount of CPU time to diagonalize. As

will be explained later in Sec. IV, about 2/3 of its solutions are trivial and without physical meaning. Thus, it is not
necessary to diagonalize the full Faddeev hamiltonian (29) but one can project it onto the space of physical solutions.

D. Symmetry Requirements and Normalization Conditions

As a consequence of the Pauli exclusion principle, the spectroscopic amplitudes for the 2p1h motion have to be
antisymmetric with respect to the exchange of the two particle indices. This statement applies to the full spectroscopic
amplitudes (19) and (21) but not to the single Faddeev components, which have more complicated exchange properties.
To exhibit the correct symmetry requirements for the Faddeev components, it is useful to introduce the following
exchange operator, which works on the space (23) of the three x(i) components:

P =





Iex

Iex

Iex



 . (30)

The form of matrix (30) takes into account that the component x(1) has to change into x(2) when the first two legs
(i.e. the two particles) are exchanged. Since P is idempotent (i.e. P2 = P), it has only eigenvalues +1 and −1 and
the respective eigenvectors are of the form

X−1 =





xa

−Iex xa

xb − Iex xb



 and X+1 =





xa

+Iex xa

xb + Iex xb



 , (31)
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in which xa and xb are any two vectors. One easily recognizes that the three Faddeev components of X−1 and X+1

give rise to antisymmetric and symmetric spectroscopic amplitudes, respectively, when they are inserted in Eq. (21).
Using the symmetry properties of the interaction boxes (13) and the definition of M (26), one can show that P

commutes with the matrix multiplying X in Eq. (25) and therefore with the Faddeev hamiltonian (29). Thus, P and
F must have a common set of eigenvalues. The relevant eigenvectors in the present case correspond to those involving
X−1.
The normalization condition is derived as usual by considering the Lehmann representation (18) for the components

R
(i)
µνλ,αβγ(ω) [33,34]. One can expand around a given pole εFd

m and consider terms to order zero and then make use

of the conjugate of the eigenvalue equation (24). The result is a condition for the X(i)’s which only allows proper
normalization for the antisymmetric component. These antisymmetric solutions X−1 satisfy the following condition

x†x −
∑

i=1,2,3

y(i)†y(i) = 2 , (32)

where x is the spectroscopic amplitude appearing in Eq. (21) and the factor of 2 appears because a sum over all indices
of xm

n1n2k
(20) is implied, which includes also the exchange terms. Eq. (32) differs from the usual normalization of a

wavefunction for the fact that we have to subtract the additional terms

y(i) =

[

V (i)H(i)† + J (i) 1

ω −D(i)
T (i)†

]

(

x(j) + x(k)
)

i = 1, 2, 3. (33)

These contributions correspond to the diagrams shown in Fig. 4 which have been discarded in the present expansion.

IV. TREATMENT OF SPURIOUS SOLUTIONS

The Faddeev formalism is based on the introduction of different components x(i), which belong to the same linear
space of the total spectroscopic amplitude x (22). These components are the solutions of the Faddeev-eigenvalue
equation (28), which is formulated in a larger space in terms of the vectors X containing all three x(i). Only one third
of the solutions in this larger space have physical meaning while the others have to be discarded. One can clarify this
problem by looking at how the complete spectroscopic amplitudes x are obtained from the components x(i) through
Eq. (21). Relevant details for treating this issue are discussed below.
The antisymmetric solutions of the Faddeev equations X−1 are determined from two independent vectors xa and

xb as shown in Eq. (31). In particular, one has to specify both the symmetric and antisymmetric parts of the first
vector (xa) and only the antisymmetric part of the seocnd (xb). These solutions therefore belong to the space

VF ≡ VA ⊗ VA ⊗ VS . (34)

The complete spectroscopic amplitudes x must also be antisymmetric under the exchange of the two particle indices,
so they belong to VA. Thus, Eq. (21) must be regarded as a projection from VF to the smaller space VA and therefore
must have a nonvanishing kernel. We denote this kernel by VSp and refer to its vectors as spurious states, YSp.
Although these states satisfy the Pauli requirements, they don’t yield any contribution to the full 2p1h propagator
and have no physical meaning. We also consider the space VPh, which is orthogonal to the kernel VSp and contains
the antisymmetric states YPh which generate nonvanishing spectroscopic amplitudes x. The vectors belonging to VPh

produce contributions to the 2p1h propagator and therefore in the following they will be referred as physical states.
In Appendix C, explicit basis sets for the VPh and VSp spaces are given. Obviously the combination of these two basis
sets forms an orthogonal basis of VF and one has VPh ≡ VA and VSp ≡ VA ⊗ VS .
It must be stressed that in general the solutions of the Faddeev eigenvalue equation (28) do not automatically

separate into the physical and spurious states just defined. Nevertheless, it is shown in Appendix C that the states of
VSp are proper eigenstates of the Faddeev hamiltonian for the expansion presented in this paper. This feature always
occurs for the three-body problem but is not guaranteed when working with quasiparticle and quasihole excitations
unless a proper set of diagrams is considered. When this condition is satisfied, there exist a set of spurious solutions
of the Faddeev equation (28) which spans the space VSp completely. The projection of the Faddeev hamiltonian (29)
onto the physical and spurious subspaces VPh and VSp then takes the form

F =

[

〈Ph|F|Ph〉 0
〈Sp|F|Ph〉 〈Sp|F|Sp〉

]

. (35)
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It should be noted that the physical states YPh, belonging to VPh, differ from the spurious ones YSp (∈ VSp) not
only because they give rise to physically meaningful spectroscopic amplitudes but also because they are not solutions
of the Faddeev equations (28). In general, a physically meaningful eigenvector of (35), Xphysical, is a mixture of states
belonging to both VPh and VSp, due to the mixing term 〈Sp|F|Ph〉. Thus,

Xphysical = c1 YPh + c2 YSp , (36)

with c1 and c2 some constants. In other words, a spurious componentYSp is also generated which will be automatically
projected out when computing the spectroscopic amplitude x (22).
It is important to recognize that such spurious contributions are indeed needed since they account for the differences

of the three Faddeev components (20). The relation between the usual Faddeev components for a given physical or
spurious state can be inferred from the basis sets (C1). There it is shown that all the Faddeev components x(i) of a
state YPh or YSp are equal up, to a sign. As a consequence, if a general solution is a pure physical state YPh, all
its Faddeev components cannot differ from each other in a significant way. Having a mixing between physical and
spurious states allows the possibility of obtaining two independent Faddeev components. This result corresponds to
the physical ingredients which involve identical ph phonons for the components x(1) and x(2) but a pp phonon for
x(3).
When all the Faddeev components are summed to generate the full x in (21), the contribution of the spurious states

cancels out. Thus, for any nonspurious solution of the Faddeev equations, only the contribution from physical states
YPh is needed to determine the 2p1h propagator. By looking at Eq. (35), it is easy to see that these contributions
can be directly obtained by diagonalizing the upper-left block

ωm Ym
Ph = 〈Ph|F|Ph〉 Ym

Ph , (37)

where m is used to label the solutions. The solutions of Eq. (37) are sufficient to determine the 2p1h propagator. For
some applications one may need the individual components x(i). In that case, the contribution from spurious states
YSp can be determined by solving the remaining part of the Faddeev equations

ωm Ym
Sp = 〈Sp|F|Ph〉 Ym

Ph + 〈Sp|F|Sp〉 Ym
Sp . (38)

We note that if the upper-right block of Eq. (35) is not zero, a mixing between the YPh and YSp states occurs for all
the eigenstates of the Faddeev hamiltonian. In this situation, the spurious eigenvalues will differ from the unperturbed
energies and all of the solutions of the Faddeev equations will contain a component YPh. The Faddeev formalism
would therefore become useless, since it would no longer be possible to discern between “good” and “bad” solutions.
In Appendix C we show how the correct behavior of spurious solutions is related to the presence of backward-going
contributions of the DRPA Γ-matrices (see Fig. 3). In case these diagrams are neglected, the spurious states YSp

no longer diagonalize the Faddeev hamiltonian. Such diagrams may give a small contribution to the description of
low-lying states but they are essential to make the whole formalism presented here meaningful. As a general rule,
when deriving expansions based on the Faddeev equations, it should be kept in mind that not all possible sets of
diagrams can be effectively summed to all orders. Instead, one must first check the consistency of the set of diagrams
with respect to the behavior of spurious solutions.

V. SUMMARY AND CONCLUSIONS

The present theoretical description of the distribution of spectroscopic strength at low energies lacks important
ingredients for a successful comparison with experimental data. One of these ingredients is a proper description of the
coupling of sp motion to low-lying collective modes that are present in the system. Recent calculations for 16O [10],
for example, only include a TDA description of these collective modes. A new method is proposed here to study the
influence of pp and ph RPA correlations on the sp propagator for a system with a finite number of fermions. This
method is formulated in the context of SCGF theory by evaluating the nucleon self-energy in terms of the 2p1h and
2h1p propagators. The description of the 2p1h (or 2h1p) excitations has been studied by using the Faddeev formalism,
which is usually applied to solve the three-body problem. The Faddeev formalism is necessary since we consider the
collective pp and ph RPA phonons as the basic building blocks to describe the 2p1h motion.
The computational scheme presented here employs only two-time propagators, thus leading to a tractable set of

equations. At the same time the contributions of pp and ph RPA phonons have been consistently summed to all orders
thereby including the physical effects that appear to be relevant for the study of the 16O nucleus. Unlike previous
calculations in which ph phonons have been included, the present formalism takes the Pauli-exchange correlations
properly into account up to the 2p1h level.
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In deriving the set of Faddeev equations a formulation has been chosen which involves only a single diagonalization
for the 2p1h fragments. The appearance of spurious solutions has also been discussed in some detail, showing that the
inclusion of the contribution of certain diagrams is necessary to separate such spurious solutions from the physically
meaningful ones. When this separation occurs, it is straightforward to project out the physical eigenstates from the
Faddeev equations, thereby eliminating the spurious ones.
The Faddeev formalism has been used to include specific correlations corresponding to pp and ph phonons in a

natural way. Extensions to the inclusion of more complicated excitations like the extended DRPA [30] can be obtained
in a convenient way by starting from the formalism presented in Sec. II.
The formalism presented here appears practical for describing the spectroscopic strength in 16O in a similar space

as was employed in [10]. This implementation is currently in progress and will be reported elsewhere.
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APPENDIX A: INTERACTION BOXES.

The Γ̃(pp) matrix (14a) obtained by solving the DRPA equation has the following Lehmann representation

Γ̃
(pp)
µν,αβ(ω) = Vµν,αβ +

∑

n+

(

∆n+
µν

)∗
∆n+

αβ

ω − εΓ+n+ + iη
−

∑

k−

∆k−
µν

(

∆k−
αβ

)∗

ω − εΓ−k− − iη
,

≡ Vµν,αβ + ∆Γ̃>
µν,αβ(ω) + ∆Γ̃<

µν,αβ(ω) (A1)

in which n+ (k−) label the forward-going (backward-going) contributions. In obtaining the Γ(3) vertex given by
Eq. (13b) we want to keep both the forward- and backward-going terms of (A1). This implies that all three diagrams of
Fig. 3 are included. The main problem encountered when working with dressed propagators is that the contribution of

these three diagrams do not factorize in an expression of the form G0>ΓG0> when G0> is represented by a propagator
of the form

G0>
µνλ,αβγ(ω) =

∑

n1,n2,k

(

Xn1
µ Xn2

ν Yk
λ

)∗ Xn1
α Xn2

β Yk
γ

ω − (ε+n1
+ ε+n2

− ε−k ) + iη
, (A2)

This factorization cannot be made because of the implicit sums over the particle and hole excitation indices (n, n′, k)
in Eq. (A2). For example, the hole label k cannot change in Fig. 3 [12,30,35].

This difficulty can be overcome with a slight reformulation of the problem. We no longer regard Γ(3) and G0> only
as functions of the model space indices (α, β, γ), but instead assign an additional dependence on the particle and hole

indices. Thus promoting the (n, n′, k) quantum numbers to external indices, the Lehmann representation of G0> (17)
will contain at most one pole for every matrix element. As a consequence, all the components (10) appearing in the
Faddeev equations have to be reformulated in the same way. The original propagators can then be retrieved at the
end by summing the solutions over all the particle and hole fragments. With this procedure it becomes possible to

write the sum of the three diagrams in Fig. 3 in terms a matrix product of two G0> (17) propagators and the following
vertex

Γ
(3)
µnµνnνλkλ,αnαβnβγkγ

(ω) = 1
2

δkλ,kγ

∑

σ

∣

∣

∣
Ykλ
σ

∣

∣

∣

2

×
{

Vµν,αβ +
∑

n+

(

∆n+
µν

)∗
∆n+

αβ

ω − (εΓ+n+ − ε−kλ
) + iη

+
∑

k−

[ω − ε+nµ
− ε+nν

− ε+nα
− ε+nβ

+ ε−kλ
+ εΓ−k− ] ∆k−

µν

(

∆k−
αβ

)∗

(εΓ−k− − ε+nµ − ε+nν )(ε
Γ−
k− − ε+nα − ε+nβ )











, (A3)
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which corresponds to the expression for the pp interaction box (13b). With this prescription, we are able to write an
expansion that sums diagrams like those of Fig 3. This is achieved at the cost of an increased size of the matrices
to be dealt with. After further manipulation, it is possible to avoid this complication by dropping the dependence
on the model space indices (α, β, γ), as explained in Sec. III B. The advantage of the present procedure lies in the
possibility to diagonalize the Faddeev amplitudes in one step instead of solving the equations with energy-dependent
vertex functions as discussed in Sec. III C. The expressions for the ph interaction boxes Γ(1) and Γ(2) are derived in
a completely analogous way.

APPENDIX B: DRESSED RPA EQUATIONS.

To clarify the notations used in the paper, we give here a brief overview of the DRPA equation for the pp interaction
matrix. We also give the explicit expressions for the normalization and closure relations used in the development of
the formalism.
The pp-DRPA equation is derived from Eq. (14a) by choosing K

(pp)
αβ,γδ = Vαβ,γδ and is shown in Fig. 5. Using

the Lehmann representation (A1) and extracting the poles εΓ+n+ (εΓ−k−) from the DRPA equation, we get the usual
eigenvalue problem

∆
n+(k−)
αβ = ∆

n+(k−)
γδ g

(0)
γδ,ǫρ(ω)

1
2 Vǫρ,αβ

∣

∣

∣

ω=εΓ+

n+
(εΓ−

k−
)
, (B1)

where n+ (k−) refer to the forward-going (backward-going) solutions. It is useful to introduce the following notation,
in analogy to the convention introduced in Eq. (20) for the Faddeev components,

Un+
n1,n2

=
Xn1

α Xn2

β

(

∆n+
αβ

)∗

√
2 (εΓ+n+ − ε+n1

− ε+n2
)
, (B2a)

Hk−
n1,n2

=
Xn1

α Xn2

β ∆k−
αβ√

2 (εΓ−k− − ε+n1
− ε+n2

)
, (B2b)

Jn+
k1,k2

=

(

Yk1
α Yk2

β ∆n+
αβ

)∗

√
2 (εΓ+n+ − ε−k1

− ε−k2
)
, (B2c)

V k−
k1,k2

=

(

Yk1
α Yk2

β

)∗

∆k−
αβ√

2 (εΓ−k− − ε−k1
− ε−k2

)
. (B2d)

These represents the generalization to dressed propagators of the usual RPA components (the
√
2 has been inserted

only in the pp case for convenience). In Eq. (B2) the quantities X (Y) and ε+n (ε−k ) represent the spectroscopic

amplitudes and the poles of the forward-going (backward-going) part of the one-body propagator, while ε
Γ+(−)
n+(k−) are

the eigenvalues of the DRPA equation (B1).
The normalization condition for the DRPA solutions, given in terms of the components (B2), is the generalization

of the normalization for the usual RPA [36] and can be put in matrix notation as

[

U † J†

H† V †

] [

I
−I

] [

U H
J V

]

=

[

I
−I

]

, (B3)

while the closure relations are given by
[

U H
J V

] [

I
−I

] [

U † J†

H† V †

]

=
1

2

[

I − Iex

Iex − I

]

, (B4)

where U , H , J and V are the matrices containing the elements of Eq. (B2). In dealing with the formalism for the
Faddeev equations, it is also useful to introduce the following two matrices:
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T n+
n1,n2

=
1√
2
Xn1

α Xn2

β

(

∆n+
αβ

)∗

, (B5a)

W k−
k1,k2

=
1√
2

(

Yk1

α Yk2

β

)∗

∆k−
αβ . (B5b)

which are trivially related to the components (B2a) and (B2d).
The matrix elements given in Eqs. (B2) and (B5) correspond to the matrices H(3), U (3), and T (3) introduced after

Eq.(24) for the 2p1h Faddeev expansion (J , V , and W being the corresponding ones for the 2h1p expansion).

APPENDIX C: PROPERTIES OF SPURIOUS STATES

The set of solutions X−1 (31) which satisfy the Pauli requirements can be divided in two subsets of physical VPh

and spurious states VSp. Orthogonal basis sets for these two spaces are given by

YPh =





u− uex

u− uex

u− uex



 ∈ VPh and YSp =





−u

+uex

u− uex



 ∈ VSp . (C1)

where the u represent unit vectors which belong to the space (22). Their components are given by

un1n2k = δn1,n′δn2,n′′δk,k′ (C2)

with n′, n′′ and k′ fixed fragmentation indices which label all the possible u. The vectors uex = Iex u are given by
the exchange of the two particle indices n1 and n2. The physical states YPh are characterized by the fact that they
do not produce vanishing spectroscopic amplitudes while the spurious states YSp do. Thus VSp represents the kernel
of Eq. (21).
It is clear from Eq. (C1) that the YPh states span a space equivalent to the space of antisymmetric vectors x (21),

thus VPh ≡ VA. Analogously, the YSp states depend on both the symmetric and the antisymmetric parts of the u

vectors, which implies VSp ≡ VA ⊗ VS . Therefore, the vectors (C1) form a basis for the full antisymmetric Faddeev
space VF (34).
In general, the physical and spurious states (C1) defined here are not solutions of the Faddeev equations (28),

they simply define a basis over which these solutions can be expanded. Nevertheless, for both the normal three-body
Faddeev equations and the expansion proposed in this paper, it can be seen that the spurious states YSp (and only
those) diagonalize the Faddeev hamiltonian. The eigenvalues correspond to the poles of the three freely propagating
lines ω = ε+n′ + ε+n′′ − ε−k (17). This feature serves as a sum rule on the solutions of the Faddeev equations and (unlike
the case of 3-body systems) is not always satisfied when applying the formalism to particle and hole excitations.
Instead this property depends on the diagrams included in the expansion and a proper set of diagrams needs to
be employed in order to apply the Faddeev formalism. For the particular Faddeev expansion described here, this
constraint is achieved by including the backward-going terms of DRPA phonons in the Γ(i) matrices and by using the
closure relations (B4), which turn out to play an important role. In the following, the proof that the YSp states of
Eq. (C1) actually represent a set of spurious solutions of the present Faddeev formalism is outlined. This also clarifies
the relationship between the correct behavior of the spurious solutions and the backward-going DRPA diagrams.
Consider a spurious state ỸSp of the form (C1), with ũ given by Eq. (C2) and eigenvalue ω̃. We now observe that

the matrices U (B2a) and T (B5a) differ from each other only by an energy denominator. In particular, we have

− 1

ω̃ −D
T → U , (C3)

were U, T and D are defined in Sec. III. If the eigenvalue is given by ω̃ = ε+n′ + ε+n′′ − ε−k , the equivalence of the
left- and right-hand side holds only for the matrix elements having the same indices (n′, n′′, k′). Indeed, only in that
case the denominator ω̃ − D will be equal to the one in Eq. (B2a). On the other hand, we see from Eq. (C2) that
the components of ũ are nonzero only for the same indices. This allows the substitution of the → in Eq. (C3) by an

equal sign when acting on the vector ỸSp. Substituting Eq. (C3) into Eq. (25) and using the closure relations of the
DRPA, we obtain the equation

ỸSp = − M ỸSp , (C4)
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which is valid only for the specific state ỸSp, labeled by the indices (n′, n′′, k′). The last equation is satisfied for a

spurious states of the form (C1) but not for the corresponding physical state ỸPh. Thus, we have obtained a set of
spurious solutions of the Faddeev equations which form an orthogonal basis of VSp.
In this proof, we note that the closure relation (B4) can be applied to derive Eq.(C4) because of the presence of

the backward-going term HH† in Eq. (25), which comes directly from the last diagram of Fig. 3.
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FIG. 1. Example of an approximation for the self-energy. Although this approximation contains both ph and pp correlations
it would generate incorrect results, due to the need of subtracting the 2nd order term to avoid double counting.
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FIG. 2. Bethe-Salpeter equation (8) for the 2p1h propagator with vertices given by (9). The irreducible interaction vertices
for the pp and two ph channels are denoted by K

pp and K
ph, respectively. The irreducible vertex involving all three lines

simultaneously is denoted by K
pph.

FIG. 3. Diagrams that are included in the definition of the vertex for the pp channel. Here ∆Γ> and ∆Γ< are the forward-
and backward-going part of the energy dependent contribution to the pp DRPA vertex (A1). The contribution of these three
diagrams can be factorized in an expression of the form G

0> Γ(3)
G

0> only after having redefined the propagators G0> and Γ(3)

to depend also on the particle and hole fragmentation indices (n,n′,k). The last diagram has a smaller effect on the physical
solutions of the problem, although it is essential for the elimination of spurious solutions.

FIG. 4. A combination of two diagrams of the type shown here can be used to connect the 2p1h and 2h1p propagators.
Diagrams like these are not included in the present approximation scheme. Nevertheless, their contribution appears in the
normalization of spectroscopic amplitudes. Explicit time-ordering is implied in this diagram.

FIG. 5. DRPA equation for the Γ̃(pp) matrix.
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>Γ ∆ <Γ ∆



(pp)Γ



= +(pp)Γ
(pp)Γ


