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Faddeev description of two-hole–one-particle motion and the single-particle spectral function
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The Faddeev technique is employed to address the problem of describing the influence of both particle-
particle and particle-hole phonons on the single-particle self-energy. The scope of the few-body Faddeev
equations is extended to describe the motion of two-hole–one-particle~two-particle–one-hole! excitations.
This formalism allows one to sum both particle-particle and particle-hole phonons, obtained separately in the
random phase approximation. The appearance of spurious solutions for the present application of the Faddeev
method is related to the inclusion of a consistent set of diagrams. The formalism presented here appears
practical for finite nuclei and achieves a simultaneous inclusion of particle-particle and particle-hole phonons
to all orders while the spurious solutions are properly eliminated.
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I. INTRODUCTION

In recent years, the study of (e,e8p) reactions has bee
one of the most useful tools to probe correlations in nuc
Absolute spectroscopic factors have become available
many closed-shell nuclei@1–3# demonstrating that the re
moval probability for nucleons from these systems is
duced by about 35% in comparison with the simple sh
model. The theoretical description of this reduction requi
the inclusion of both short-range and long-range correlatio
For nuclear matter a strength removal of about 15% is
tained by including short-range correlations@4#. For 16O the
inclusion of short-range correlations leads to removal
single-particle~s.p.! strength of the order of 10%@5,6#. The
inclusion of long-range correlations for heavier nuclei li
48Ca yields a qualitative description of the s.p. strength d
tribution by including in the nucleon self-energy the co
pling to either low-lying collective particle-hole~ph! or
particle-particle~pp! phonons calculated in random phase a
proximation ~RPA! @7#. The additional depletion of abou
10% due to short-range correlations for this nucleus lead
a reasonable quantitative agreement for the largest fragm
of the experimental strength distribution.

Theoretical calculations of hole spectroscopic factors
16O are not so successful. The experimental spectrosc
strength@8# for the knockout of a proton from both thep1/2
and p3/2 shells corresponds to about 60%. The 10% red
tion due to short-range correlations is mostly compensa
by the proper inclusion of the center-of-mass motion t
enhances the probability forp removal by about 7%@9#.
Calculations based on the Green’s function approach, inc
ing both long- and short-range correlations, yield abou
25% reduction@10#. These results still need to be correct
for the center-of-mass effect. It is therefore fair to conclu
that the present theoretical results for16O are still about 20%
away from the experimental data. The importance of lo
energy correlations is clearly demonstrated by the result
Ref. @10# and their proper inclusion is therefore crucial for
complete understanding of this puzzle. In the latter work
self-energy was obtained including the effects of interacti
between both pp and ph excitations in the Tamm-Danc
approximation~TDA!. In order to account for the coupling t
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collective excitations that are actually observed in16O it is
necessary to at least consider an RPA description of the
scalar negative parity states@11#. To account for the low-
lying isoscalar positive-parity states an even more com
cated treatment will be required. Sizable collective effe
are also present in the pp and hole-hole~hh! excitations in-
volving tensor correlations for isoscalar and pair correlatio
for isovector states. Another argument to improve the
scription of the coupling of s.p. states to low-lying collectiv
excitations is provided by the lack of fragmentation at lo
energy obtained in present theoretical studies@10# in dis-
agreement with experimental data.

One of the goals of the present work is to account for
collectivity in the ph and pp~hh! channels in a consisten
way while including these excitations at least at the R
level. Since the observed fragmentation and depletion of
s.p. strength in16O is quite substantial, it is reasonable
assume that these features are also important in the des
tion of the excitations that contribute to the self-energy. T
results in a self-consistent formulation where the dressing
the nucleons is incorporated in the description of the coll
tive excitations that ultimately lead to the dressing itself. F
this reason the present work will be formulated using se
consistent Green’s functions~SCGF!. This type of self-
consistency must also be considered in describing pai
correlations in semimagic nuclei@12,13#.

A formalism in which both pp and ph phonons are trea
at the RPA level in the self-energy was proposed in@14#.
This work focused on the two-time two-particle–one-ho
~2p1h! propagator and generated a formulation that redu
to either including the pp-RPA or the ph-RPA phonons in t
self-energy when ph or pp vertices are omitted, respectiv
This expansion, however, was obtained using some dra
assumptions and disregarding some of the constraints
arise when propagators in different diagrams of the exp
sion are connected. Related to this issue is the appearan
unphysical solutions for the 2p1h propagator that have b
discussed in@15#. Results in@15# have therefore been ob
tained mostly for the TDA treatment of the 2p1h propagat
Moreover, this approximation was obtained by employi
mean-field~single-pole! s.p. propagators. In the present se
consistent treatment, which sums fully dressed propaga
©2001 The American Physical Society13-1
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FIG. 1. Example of an approximation for the self-energy. Although this approximation contains both ph and pp correlations, i
generate incorrect results due to the need of subtracting the second order term to avoid double counting.
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ne-
this approach is no longer possible.
To proceed with the inclusion of both pp and ph colle

tivity in the nucleon self-energy it is important to note th
the naive summation of diagrams containing both pp and
phonons leads to serious inconsistencies. This approxima
is depicted in Fig. 1. The last of the three diagrams on
right-hand side is already contained in each of the other
and must therefore be subtracted to avoid double count
This subtraction introduces spurious poles in the Lehm
representation of the self-energy and generates meanin
solutions of the Dyson equation. The minus sign in front
this term may also prevent in some cases the proper nor
ization of the spectroscopic amplitudes. This feature can
understood by considering a possible solution near suc
spurious pole. The normalization is determined by the
rivative of the self-energy at this energy@13# and will not
yield a correct result on account of the additional minus s
when the third diagram dominates. In addition, each of
first two terms in Fig. 1 ignores the Pauli correlations b
tween the freely propagating line and the quasipartic
forming the phonons, as noted in@7#. In the present work a
formalism is pursued that sums the contribution of the
and ph phonons to the self-energy to all orders avoiding
subtraction of the second-order diagram. The treatmen
Pauli correlations is improved over methods that employ
RPA phonons in the self-energy since all exchange term
the 2p1h level are consistently included.

Other approaches have been proposed in the literature
attempt to extend the nature of the phonon correlations
cluded by performing massive summations of diagrams@16–
18#. Nevertheless, a consistent resummation of both pp
ph phonons to all orders has not been achieved in these
pers. The main problem in pursuing such an infinite summ
tion of diagrams for the 2p1h propagator, which includ
both pp and ph RPA correlations, is related to the fact th
two-body interaction can invert the sense of propagation
only two lines~i.e., change at most two holes in two particl
and vice versa! while the third line continues to propagate
the original direction. In this way, a propagator depending
more than two times is generated. It is therefore neces
first to consider an exact formulation involving the four-tim
Green’s function for the 2p1h propagator. Direct applicat
of four-time propagator equations presumably will rema
impractical for the forseeable future. Appropriate approxim
tions to this equation are therefore necessary to construc
relevant two-times Green’s functions that contain the soug
after correlations. The scheme studied in this paper con
in computing the RPA phonons in the pp and ph chann
separately, and then summing them to all orders employin
Faddeev technique@19,20#.

A nontrivial problem in the implementation of the Fa
03431
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deev equations is the appearance of spurious solut
@21,22#, which also have to be considered for the 2p
propagator. As pointed out in@23#, the spurious eigenstate
are easy to recognize for the few-body problem since t
also diagonalize the unperturbed Hamiltonian. Their m
features are that their eigenvalues are known and that t
wave-function amplitudes sum up to zero. The situation
more complicated in the many-body problem when the F
deev technique is employed. In particular, the fulfillment
closure relations for pp and ph amplitudes is related to
behavior of the spurious Faddeev eigenstates. Without a
sistent treatment of this relation the spurious solutions w
mix with the physically meaningful ones. Applying the Fa
deev technique to the many-body problem, it is importan
solve for all physical solutions that contribute to the se
energy. Thus, it is necessary to develop a formalism in wh
the spurious solutions are correctly separated from the ph
cal ones.

The practical implementation of the present Fadde
scheme is beyond the scope of this paper. The resulting
of equations require a great deal of computational effo
especially when dressed propagators are employed. Ne
theless, it appears that they can be solved in practice
results using this formalism will be presented elsewhere.

In Sec. II we briefly describe the SCGF approach ba
on the Dyson equation and present the exact Faddeev for
ism for the four-time 2p1h propagator. The construction o
consistent formulation for the two-time 2p1h propagator
cluding the propagation of the pp and ph RPA phonons to
orders is presented in Sec. III. Although so far only the 2p
propagator has been mentioned, it should be understood
the corresponding two-hole–one-particle~2h1p! propagator
must be included in the calculation of the nucleon se
energy. In the present work no coupling terms are conside
that transform the 2p1h into the 2h1p propagators~or vice
versa!. For this reason the same technique can be used
both propagators and we will use the generic 2p1h to rep
sent both. In Sec. IV the appearance and treatment of sp
ous solutions is discussed. Some technical details are
egated to the Appendices. Conclusions are drawn in Sec

II. SELF-CONSISTENT GREEN’S FUNCTION APPROACH
AND 2p1h PROPAGATOR

A. Self-energy and 2p1h propagator

We consider a finite system ofA fermions interacting by
means of a two-body interactionV̂. As usual, one may in-
troduce an appropriate mean-field potentialÛ to localize the
nucleons and split the Hamiltonian into an unperturbed o
body partĤ05T̂1Û and a residual interactionĤ15V̂2Û.
3-2
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Since we are mainly interested in low-lying bound states
finite systems, we consider s.p. states with discrete quan
numbers. As a basis, we choose the set of s.p. states$a% that
diagonalizeĤ0 with corresponding eigenvalues«a

0 . The to-
tal Hamiltonian can then be written as

Ĥ5Ĥ01Ĥ1

5(
a

«a
0ca

†ca

1S 1

4 (
abgd

Vab,gdca
†cb

†cdcg2(
ab

Ua,bca
†cbD , ~1!

whereca
† (ca) are the creation~destruction! operators of a

particle in the statea, Vab,gd are the antisymmetrized matri
elements ofV, andUa,b correspond to the matrix elemen
of U.

The one-body propagator of theA-body system with
ground stateuC0

A& is defined as@24,25#

gab~t!52 i ^C0
AuT@ca~t!cb

†~0!#uC0
A&, ~2!

whereca
†(t) and ca(t) now correspond to operators in th

Heisenberg picture. In the Lehmann representation, all
eigenvalues of the excited states of the systems withA11
andA21 particles appear, as well as their spectroscopic
plitudes for transitions to those states that are relevant
comparison with experimental data.
th

d

on
s
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The propagatorgab(t) can be obtained as the sum of a
infinite set of diagrams, built from interaction vertices a
unperturbed s.p. propagatorsgab

(0) corresponding toĤ0. In the
nuclear case, a strong coupling exists between the s.p. de
of freedom and both collective low-lying states as well
high-lying states. The latter coupling is related to the stro
short-range repulsion in the nuclear force. The resulting fr
mentation of the s.p. strength, as observed in experime
data, suggests that this feature must already be include
the description of these couplings. For this reason, s
consistent one-body propagators need to be considered i
construction of the nucleon self-energy. This se
consistency feature also emerges in an exact formulat
involving the coupling to two-, three-, andA-body propaga-
tors, which can be derived using the equation of mot
method@26#. In short, this means that for the nuclear ca
one needs to develop the perturbation theory in terms of
dressed propagator~2! approximated in an appropriate way

The approach we use here consists in computinggab(t)
as a solution of the Dyson equation

gab~t!5gab
(0)~t!1gag

(0)~t2t1!Sgd* ~ t12t2!gdb~ t2!, ~3!

whereSab* (t) is the irreducible self-energy. Here and in th
following, we employ the convention of summing over a
repeated indices and integrate from2` to 1` over all re-
peated time variables, unless specified otherwise.

By considering the equation of motion forgab(t), one
obtains thatSab* (t) can be written as the sum of two term
Sab* ~t!5Sab
HF1Val,mnRmnl,gd«~t2,t,t1;01,0,02! Vgd,b« , ~4!
d by
1h

-

whereSab
HF represents the~time independent! Hartree-Fock

part of the self-energy, which can be computed from
solutiongab(t) itself. The 2p1h propagatorR, appearing in
the last term of Eq.~4!, contains the sum of all so-calle
e
one-particle irreducible diagrams that cannot be separate
cutting a single line. These terms are included in the 2p
Green’s functiongmnl,abg

2p1h defined below. The relation be
tweenR andg2p1h is given by@27#
Rmnl,abg~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!5gmnl,abg
2p1h ~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!2gmn,lh

II ~ t1 ,t2 ;t3 ,t8!ghs
21~ t82t9!ggs,ab

II ~ t6 ,t9;t4 ,t5!, ~5!
qua-
in which ghs
21 is the inverse of the one-body Green’s functi

~2! and gII and g2p1h are the four- and six-point Green’
functions defined as

gab,gd
II ~ t1 ,t2 ;t3 ,t4!

52 i ^C0
AuT@cb~ t2!ca~ t1!cg

†~ t3!cd
†~ t4!#uC0

A&

~6!

and
gmnl,abg
2p1h ~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!

52 i ^C0
AuT@cl

†~ t3!cn~ t2!cm~ t1!ca
†~ t4!cb

†~ t5!cg~ t6!#

3uC0
A&, ~7!

respectively.
The propagatorRmnl,abg is the solution of the following

equation that has a similar form as the Bethe-Salpeter e
tion for pp and ph propagators:
3-3
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FIG. 2. Bethe-Salpeter equation~8! for the
2p1h propagator with vertices given by Eq.~9!.
The irreducible interaction vertices for the pp an
two ph channels are denoted byKpp and Kph,
respectively. The irreducible vertex involving a
three lines simultaneously is denoted byKpph.
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Rmnl,abg~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!

5gma~ t12t4!gnb~ t22t5!ggl~ t62t3!

2gna~ t22t4!gmb~ t12t5!ggl~ t62t3!

1gmm8~ t12t18!gnn8~ t22t28!gl8l~ t382t3!

3Km8n8l8,a8b8g8~ t18 ,t28 ,t38 ;t48 ,t58 ,t68!

3Ra8b8g8,abg~ t48 ,t58 ,t68 ;t4 ,t5 ,t6!, ~8!

which is shown in Fig. 2 in terms of Feynman diagrams. T
interaction vertex, also shown in Fig. 2, is given@27# by

Kmnl,abg~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!

5Knl,bg
(ph) ~ t2 ,t3 ;t5 ,t6!gma

21~ t12t4!

1Kml,ag
(ph) ~ t1 ,t3 ;t4 ,t6!gnb

21~ t22t5!

1Kmn,ab
(pp) ~ t1 ,t2 ;t4 ,t5!ggl

21~ t62t3!

1Kmnl,abg
(pph) ~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!. ~9!

In Eq. ~9!, K (pp) andK (ph) represent the pp and ph irredu
ible vertices whileK (pph) is the 2p1h irreducible vertex. I
should be noted that in Eq.~4! the propagatorRmnl,abg is
only required at two times and therefore its complete kno
edge, as given by Eq.~5!, is not necessary to solve the Dyso
equation. On the other hand, the dependence on the
variablest1 , t2, and t3 is employed in the Bethe-Salpete
equation~8!, thus requiring that at least a four-time object
employed to solve for the 2p1h motion exactly.

Equations~3!, ~4!, and~8! together form a set of couple
equations, where the same propagator, which solves
Dyson equation~3!, appears as input in the Bethe-Salpe
equation ~8!. If the irreducible verticesK (pp), K (ph), and
K (pph) are also expressed in terms of thegab(t), then Eqs.
~3! and ~8! will generate a self-consistent expansion. Ob
ously, Eq. ~8! and the irreducible vertex~9! represent the
exact solution forR and therefore require a suitable appro
mation.
03431
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B. Faddeev-Bethe-Salpeter equations

Equation~8! can be reduced to a set of coupled equatio
in a way similar to the method proposed by Faddeev to so
the three-body problem@19,28#. The inclusion of pp and ph
RPA phonons in a consistent way requires this Faddeev
proach since it provides a natural framework for correc
iterating quantities that have already been summed to
orders like these RPA phonons. In the present work we w
neglect the contribution of the irreducibleK (pph) term in Eq.
~9! since it leads to the coupling of higher order particle-ho
terms than already considered in the following. We w
therefore require only three Faddeev components. Follow
standard notation in the literature@20#, Rmnl,abg

( i ) will repre-
sent the component related to all diagrams ending wit
vertex between legsj andk with ( i , j ,k) cyclic permutations
of (1,2,3). We will employ the convention in which the thir
leg propagates in the opposite direction with respect to
first two. The Faddeev componentsR( i ) can be written in
terms of the 2p1h propagatorR and the contribution of the
three dressed but noninteracting s.p. propagators. This
nition is given in detail here for all three components, om
ting explicit reference to the time variables for convenien
of notation

Rmnl,abg
(1) 5gnegrlKer,hs

(ph) Rmhs,abg

1
1

2
~gmagnbggl2gnagmbggl!, ~10a!

Rmnl,abg
(2) 5gmegrlKer,hs

(ph) Rhns,abg

1
1

2
~gmagnbggl2gnagmbggl!, ~10b!

Rmnl,abg
(3) 5gmegnrKer,hs

(pp) Rhsl,abg

1
1

2
~gmagnbggl2gnagmbggl!. ~10c!

The factor 1
2 in Eqs. ~10! properly takes into account th

exchange symmetry between the parallel lines in the F
deev equations. With these definitions the full propagator~5!
3-4
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FADDEEV DESCRIPTION OF TWO-HOLE–ONE- . . . PHYSICAL REVIEW C 63 034313
is given by

Rmnl,abg5 (
i 51,2,3

Rmnl,abg
( i ) 2

1

2
~gmagnbggl2gnagmbggl!.

~11!

The Faddeev equations now take the following form:

Rmnl,abg
( i ) 5

1

2
~gmagnbggl2gnagmbggl!

1gmm8gnn8gl8lGm8n8l8,m9n9l9
( i )

~Rm9n9l9,abg
( j )

1Rm9n9l9,abg
(k)

!, i 51,2,3, ~12!

where theGmnl,abg
( i ) vertices obey the following symmetr

relations and are defined by

Gmnl,abg
(1) ~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!

5Gnml,bag
(2) ~ t2 ,t1 ,t3 ;t5 ,t4 ,t6!

5gma
21~ t12t4!G̃nl,bg

(ph) ~ t2 ,t3 ;t5 ,t6!, ~13a!

Gmnl,abg
(3) ~ t1 ,t2 ,t3 ;t4 ,t5 ,t6!

5Gnml,bag
(3) ~ t2 ,t1 ,t3 ;t5 ,t4 ,t6!

5ggl
21~ t62t3!G̃mn,ab

(pp) ~ t1 ,t2 ;t4 ,t5!. ~13b!

The gamma matricesG̃ (pp) andG̃ (ph) are the four-point func-
tions that solve the Bethe-Salpeter equation for the pp an
motion. These vertex functions contain the pp and
phonons and can be written as

G̃gd,ab
(pp) ~ t1 ,t2 ;t3 ,t4!

5Kgd,ab
(pp) ~ t1 ,t2 ;t3 ,t4!1G̃gd,mn

(pp) ~ t1 ,t2 ;t18 ,t28!

3gmh~ t182t38!gns~ t282t48!Khs,ab
(pp) ~ t38 ,t48 ;t3 ,t4!, ~14a!

G̃gd,ab
(ph) ~ t1 ,t2 ;t3 ,t4!

5Kgd,ab
(ph) ~ t1 ,t2 ;t3 ,t4!1G̃gd,mn

(ph) ~ t1 ,t2 ;t18 ,t28!

3gmh~ t182t38!gsn~ t482t28!Khs,ab
(ph) ~ t38 ,t48 ;t3 ,t4!. ~14b!

III. APPROXIMATE FADDEEV EQUATIONS
FOR 2p1h MOTION

Apart from neglecting theK (2p1h) vertex, Eq.~12! is oth-
erwise a complete equation for the 2p1h propagator. T
general equation involves quantities that depend on sev
times and is therefore too complex to be solved numerica
In order to construct a manageable approximation sch
that includes the relevant physical ingredients, two simp
cations will be considered in this section. The first one
volves the restriction to two-time pp and ph vertices th
include the respective RPA contributions in these chann
This approximation is the minimum step that maintains
03431
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simultaneous inclusion of both pp and ph collective lo
lying excitations in describing the s.p. propagator. Second
is necessary to simplify Eq.~12! to include only two-times
Green’s functions. This procedure no longer allows the
version of the propagation direction of all three lines t
gether. As a result, the Faddeev equations split up in
separate expansions for the 2p1h and the 2h1p compon
Although the hole spectral function is of primary interest f
comparison with experimental data, it must be stressed
both 2p1h and 2h1p components are needed to generat
self-consistent solution for the s.p. propagator. Since the
malism involved is the same for both components, we w
describe only the forward-going~2p1h! expansion. The
equations for the 2h1p case are completely analogous.

A. Faddeev equations

To construct the present approximation scheme, it is m
convenient to use the energy representation. The corresp
ing Lehmann representation of the s.p. propagator~2! is
given by

gab~v!5(
n

~X a
n !* X b

n

v2«n
11 ih

1(
k

Y a
k ~Y b

k !*

v2«k
22 ih

, ~15!

where X a
n5^Cn

A11uca
† uC0

A& (Y a
k 5^Ck

A21ucauC0
A&) are the

spectroscopic amplitudes for the excited states of a sys
with A11(A21) particles and the poles«n

15En
A112E0

A

(«k
25E0

A2Ek
A21) correspond to the excitation energies wi

respect to theA-body ground state. In Eq.~15! and in the
following, we use the indicesn andk to enumerate the frag
ments associated with the one-particle and one-hole ex
tions, respectively.

Employing the bare interactionVab,gd for the vertices
K (pp) andK (ph), the Bethe-Salpeter equations~14! reduce to
the usual dressed RPA~DRPA! equations@29,30#. The solu-
tions of these equations depend only on two times. These
and ph phonons correspond to the dressed version of
phonons that are considered in Ref.@7# ~see also Fig. 1!.
These excitations describe the correlations that we aim
iterate to all orders and, subsequently, to include in the s
energy as explained in the introduction. These DRPA so
tions can then be substituted in Eqs.~13! to generate theG ( i )

FIG. 3. Diagrams that are included in the definition of the ver
for the pp channel. HereDG. and DG, are the forward- and
backward-going part of the energy dependent contribution to the
DRPA vertex~A1!. The contribution of these three diagrams can
factorized in an expression of the formG0.G (3)G0. only after
having redefined the propagatorsG0. and G (3) to depend also on
the particle and hole fragmentation indices (n,n8,k). The last dia-
gram has a smaller effect on the physical solutions of the probl
although it is essential for the elimination of spurious solutions.
3-5
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C. BARBIERI AND W. H. DICKHOFF PHYSICAL REVIEW C63 034313
matrices to be used in the Faddeev expansion. Both
forward- and backward-going components of the DRPA
lutions are included into the expansion as illustrated in F
3. This is crucial in order to eliminate the spurious solutio
of the Faddeev equations as will be explained in Sec. IV
Appendix C.

The working expression for theG ( i ) matrices, which de-
pends on only two times~or equivalently one energy!, is
given in some detail in Appendix A. Here we only need
stress that the resultingG ( i )’s cannot invert the freely propa
gating line from hole to particle or vice versa, i.e., they ca
not connect the 2p1h amplitudes with the 2h1p ones. For
reason, the pp and ph phonons will be summed only in
time direction in a TDA way contributing separately to th
2p1h and 2h1p propagators. The reader may notice that
contributions of the type shown in Fig. 4 can connect
2p1h and the 2h1p propagators. The inclusion of such te
leads to the simultaneous propagation of two phonons
requires an extension of the approximation presented in
paper. Since these terms are expected to contribute on
higher order, we will neglect them in the following. We no
that the collective RPA correlations in the pp and ph ch
nels have already been computed through Eqs.~14! and
therefore remain properly included in our approximation.

The remaining complication, related to the use of dres
propagators, concerns the interactions vertices~13!. As ex-
plained in Appendix A, theG ( i ) and the propagatorsR( i )

need to be redefined in such a way that their matrix elem
also depend on the indices (n,n8,k), which label the frag-
ments of the propagators. This implies that the eigenva
equations will involve summations on both the s.p. indic
(a,b,g) and the ones corresponding to the fragmentati
(na ,nb ,kg). The 2p1h propagator and its Faddeev com
nents, as defined in Eqs.~5! and ~10!, are recovered only a
the end by summing the solutions over all values
(na ,nb ,kg) and (nm ,nn ,kl).

Putting together all the above considerations, the resul
approximation to the Faddeev equations~12! can be rewrit-
ten in a way where all the propagators involved depend o
on one energy variable~or two time variables!. The forward-
going part of this expansion can be written as follows:

FIG. 4. A combination of two diagrams of the type shown he
can be used to connect the 2p1h and 2h1p propagators. Diag
like these are not included in the present approximation sche
Nevertheless, their contribution appears in the normalization
spectroscopic amplitudes. Explicit time-ordering is implied in th
diagram.
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Rmnmnnnlkl ,anabnbgkg

( i ) ~v!

5
1

2
@G0

mnmnnnlkl ,anabnbgkg

. ~v!

2G0
nnnmnmlkl ,anabnbgkg

. ~v!#

1G0
nnnmnmlkl ,m8n

m8 n8n
n8l8k

l8
.

~v!

3Gn8n
n8m8n

m8 l8k
l8 ,m9n

m9 n9n
n9l9k

l9
( i )

~v!

3@Rm9n
m9 n9n

n9l9k
l9 ,anabnbgkg

( j )
~v!

1Rm9n
m9 n9n

n9l9k
l9 ,anabnbgkg

(k)
~v!#, i 51,2,3, ~16!

whereG0. is the forward-going part of the 2p1h propagat
for three dressed but noninteracting lines. Using the no
tions introduced after Eq.~15! we have

G0
mnmnnnlkl ,anabnbgkg

. ~v!5dnm ,na
dnn ,nb

dkl ,kg

3
~X m

nmX n
nnY l

kl!* X a
naX b

nbY g
kg

v2~«na

1 1«nb

1 2«kg
2 !1 ih

.

~17!

Equation~16!, together with theG ( i )’s given in Appendix
A, approximate the general ‘‘Faddeev-Bethe-Salpeter’’ e
pansion to a tractable set of equations involving only tw
time objects. It is important to note that these equations
still expressed in terms of the self-consistent solut
gab(v) and include both pp and ph RPA phonons in a c
rect way. Thus they maintain all the features relevant for
physics we aim to describe.

B. Faddeev amplitudes

Equation~16! involves the use of propagators dependi
on a large number of indices. As a consequence, the dim
sion of the problem could easily grow up to a point where
practical application is feasible for a real system. This di
culty can be overcome by introducing a new set of spec
scopic amplitudes that depend only on the indices labe
the particle and hole fragments (n,n8,k) @31,32#. Thereby
the problem is reexpressed by changing from the basis of
states$a%, used in definitions~5! and~10!, to a new formu-
lation constructed in terms of the fragments labeled
$n,k%. This procedure also allows to rewrite the eigenva
and normalization conditions corresponding to Eq.~16! in a
more concise way. As long as the interaction eleme
Vab,gd are energy independent, all the solutions can then
obtained through a single diagonalization. This approach
particularly satisfactory from a physical point of view sinc
the equations reflect the mixing of the 2p1h states rep
sented by the (n,n8,k) fragments. This new formulation
does not introduce any further approximation. Neverthele
since it appears relevant for a practical solution of the pr
lem, we will describe it in the following.

ms
e.
f

3-6
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The Lehmann representation of the Faddeev compon
Rmnmnnnlkl ,anabnbgkg

( i ) contains all the poles«m
Fd of the 2p1h

propagator, each with its own residue. One obtains for th
components

Rmnmnnnlkl ,anabnbgkg

( i ) 5(
m

~bmnmnnnlkl

( i ),m !* banabnbgkg

m

v2«m
Fd1 ih

1Rf ree
( i ) ~v!, ~18!

where the superscriptm labels the solutions of Faddee
equations. In Eq.~18!, Rf ree

( i ) represent components contai
ing the same poles asG0. ~17!. The sum of these term
cancels exactly the contribution of the three freely propag
ing lines in Eq.~11!, leaving in the Lehmann representatio
of the Faddeev propagator only those poles«m

Fd , that corre-
spond to correlated 2p1h states. This is most easily dem
strated by applying the DRPA equations to both sides of
~16!.

The vectorsbmnmnnnlkl

( i ),m represent the amplitudes of th

three Faddeev components and sum up to the residues o
full propagator

banabnbgkg

m 5 (
i 51,2,3

banabnbgkg

( i ),m . ~19!

We now define new Faddeev amplitudesxn1n2k
( i ),m that are re-

lated to theb ( i )’s in such a way that@31#

ban1bn2gk
( i ),m 5X a

n1X b
n2Y g

kxn1n2k
( i ),m , ~20!

where no summation is performed over the particle and h
indicesn1 , n2, andk. We also introduce the notation for th
spectroscopic amplitude, analogous to Eq.~19!

xn1n2k
m 5 (

i 51,2,3
xn1n2k

( i ),m . ~21!

In general,xn1n2k and the componentsxn1n2k
( i ) define four-

vectorsx andx( i ) all belonging to the same linear space. It
useful to split up the latter in two spacesVA andVS contain-
ing all the vectors that are antisymmetric and symmetric w
respect to the exchange of the two particle indicesn1 andn2,
respectively. Thus,

x,x( i )PVA^ VS . ~22!

We also define a vectorX containing all the three compo
nents

X5S x(1)

x(2)

x(3)
D PVA

3
^ VS

3 . ~23!

Here and in the following, we use the convention to den
vectors with lower case boldface and operators~matrices!
with plain capital letters belonging to the spaceVA^ VS .
Both vectors and matrices in the spaceVA

3
^ VS

3 are denoted
03431
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by capital boldface letters. We will also useI for the identity
matrix in theVA^ VS space and the superscriptex to indicate
the vectors obtained by exchanging the two particle indi
@thus, I ex is the operator exchangingn1 andn2 in Eqs.~20!
and ~21!#.

C. Faddeev Hamiltonian

The eigenvalue equation for the Faddeev expansion
be obtained by substituting the Lehmann representation~18!
into Eq. ~16! and extracting the residues«m

Fd of the poles.
After some algebra, one obtains the following set of eq
tions in terms of thex( i ) vectors

x( i )5FH ( i )H ( i )†
1U ( i )

1

v2D ( i )
T( i )†G ~x( j )1x(k)!, i 51,2,3.

~24!

In Eq. ~24!, the components of the matricesH ( i ), U ( i ), and
T( i ) are related to the spectroscopic amplitudes of the DR
propagators, as explained in Appendix B. TheD ( i )’s are di-
agonal matrices containing the eigenvalues of the co
sponding DRPA.

One can now define block-diagonal matricesH, D, etc.,
that contain on the diagonal the matricesH ( i ), D ( i ), etc.
These matrices act on the vectorsX defined in Eq.~23!.
Using this notation one combines Eq.~24! as follows:

X5FHH†1U
1

v2D
T†GMX , ~25!

where we have also introduced the matrix

M5F I I

I I

I I
G ~26!

that takes into account the proper mixing between the F
deev components.

By introducing the vector

Y[
1

v2D
T†MX ~27!

@which appears in Eq.~25!# and remembering thatD is a
diagonal matrix, it is possible to manipulate Eq.~25! into the
usual form of an eigenvalue equation

vX5FX, ~28!

where we have introduced the Faddeev HamiltonianF @23#,
which is given by

F5@ I2HH†M #21U$TM 1D~U21!@ I2HH†M #%.
~29!

The form~28! of the Faddeev eigenvalue equations is use
since it reduces the problem to the diagonalization of a sin
~non-Hermitian! Hamiltonian.
3-7
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C. BARBIERI AND W. H. DICKHOFF PHYSICAL REVIEW C63 034313
The HamiltonianF can still correspond to a large matr
requiring a large amount of CPU time to diagonalize. As w
be explained later in Sec. IV, about two-thirds of its so
tions are trivial and without physical meaning. Thus, it is n
necessary to diagonalize the full Faddeev Hamiltonian~29!
but one can project it onto the space of physical solution

D. Symmetry requirements and normalization conditions

As a consequence of the Pauli exclusion principle,
spectroscopic amplitudes for the 2p1h motion have to
antisymmetric with respect to the exchange of the two p
ticle indices. This statement applies to the full spectrosco
amplitudes~19! and~21! but not to the single Faddeev com
ponents, which have more complicated exchange proper
To exhibit the correct symmetry requirements for the F
deev components, it is useful to introduce the following e
change operator, which works on the space~23! of the three
x( i ) components:

P5F I ex

I ex

I ex
G . ~30!

The form of matrix~30! takes into account that the comp
nentx(1) has to change intox(2) when the first two legs~i.e.,
the two particles! are exchanged. SinceP is idempotent~i.e.,
P25P), it has only eigenvalues11 and21 and the respec
tive eigenvectors are of the form

X215F xa

2I exxa

xb2I exxb

G and X115F xa

1I exxa

xb1I exxb

G , ~31!

in which xa and xb are any two vectors. One easily reco
nizes that the three Faddeev components ofX21 and X11
give rise to antisymmetric and symmetric spectroscopic a
plitudes, respectively, when they are inserted in Eq.~21!.

Using the symmetry properties of the interaction box
~13! and the definition ofM ~26!, one can show thatP com-
mutes with the matrix multiplyingX in Eq. ~25! and there-
fore with the Faddeev Hamiltonian~29!. Thus,P andF must
have a common set of eigenvalues. The relevant eigenve
in the present case correspond to those involvingX21.

The normalization condition is derived as usual by co
sidering the Lehmann representation~18! for the components
Rmnl,abg

( i ) (v) @33,34#. One can expand around a given po
«m

Fd and consider terms to order zero and then make us
the conjugate of the eigenvalue equation~24!. The result is a
condition for theX( i )’s which only allows proper normaliza
tion for the antisymmetric component. These antisymme
solutionsX21 satisfy the following condition:

x†x2 (
i 51,2,3

y( i )†
y( i )52, ~32!

wherex is the spectroscopic amplitude appearing in Eq.~21!
and the factor of 2 appears because a sum over all indice
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xn1n2k
m ~20! is implied, which includes also the exchang

terms. Eq.~32! differs from the usual normalization of
wave function for the fact that we have to subtract the ad
tional terms

y( i )5FV( i )H ( i )†
1J( i )

1

v2D ( i )
T( i )†G ~x( j )1x(k)! i 51,2,3.

~33!

These contributions correspond to the diagrams shown
Fig. 4 that have been discarded in the present expansion

IV. TREATMENT OF SPURIOUS SOLUTIONS

The Faddeev formalism is based on the introduction
different componentsx( i ), which belong to the same linea
space of the total spectroscopic amplitudex ~22!. These
components are the solutions of the Faddeev-eigenv
equation~28!, which is formulated in a larger space in term
of the vectorsX containing all threex( i ). Only one-third of
the solutions in this larger space have physical mean
while the others have to be discarded. One can clarify
problem by looking at how the complete spectroscopic a
plitudesx are obtained from the componentsx( i ) through Eq.
~21!. Relevant details for treating this issue are discus
below.

The antisymmetric solutions of the Faddeev equatio
X21 are determined from two independent vectorsxa andxb
as shown in Eq.~31!. In particular, one has to specify bot
the symmetric and antisymmetric parts of the first vec
(xa) and only the antisymmetric part of the second (xb).
These solutions therefore belong to the space

VF[VA^ VA^ VS . ~34!

The complete spectroscopic amplitudesx must also be anti-
symmetric under the exchange of the two particle indices
they belong toVA . Thus, Eq.~21! must be regarded as
projection fromVF to the smaller spaceVA and therefore
must have a nonvanishing kernel. We denote this kerne
VSp and refer to its vectors asspurious states, YSp. Although
these states satisfy the Pauli requirements, they do not y
any contribution to the full 2p1h propagator. We also co
sider the spaceVPh , which is orthogonal to the kernelVSp
and contains the antisymmetric statesYPh that generate non
vanishing spectroscopic amplitudesx. The vectors belonging
to VPh produce contributions to the 2p1h propagator a
therefore in the following they will be referred to asphysical
states. In Appendix C, explicit basis sets for theVPh andVSp
spaces are given. Obviously, the combination of these
basis sets forms an orthogonal basis ofVF and one hasVPh
[VA andVSp[VA^ VS .

It must be stressed that in general the solutions of
Faddeev eigenvalue equation~28! do not automatically sepa
rate into the physical and spurious states just defined. N
ertheless, it is shown in Appendix C that the states ofVSp are
proper eigenstates of the Faddeev Hamiltonian for the exp
sion presented in this paper. This feature always occurs
the three-body problem but is not guaranteed when work
3-8
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with quasiparticle and quasihole excitations unless a pro
set of diagrams is considered. When this condition is sa
fied, there exists a set of spurious solutions of the Fadd
equation~28! that spans the spaceVSp completely. The pro-
jection of the Faddeev Hamiltonian~29! onto the physical
and spurious subspacesVPh andVSp then takes the form

F5F ^PhuFuPh& 0

^SpuFuPh& ^SpuFuSp&
G . ~35!

It should be noted that the physical statesYPh , belonging
to VPh , differ from the spurious onesYSp (PVSp) not only
because they give rise to physically meaningful spec
scopic amplitudes but also because they are not solution
the Faddeev equations~28!. In general, a physically mean
ingful eigenvector of~35!, Xphysical, is a mixture of states
belonging to bothVPh and VSp, due to the mixing term
^SpuFuPh&. Thus,

Xphysical5c1YPh1c2YSp, ~36!

wherec1 andc2 are some constants. In other words, a s
rious componentYSp is also generated that will be automa
cally projected out when computing the spectroscopic am
tudex ~21!.

It is important to recognize that such spurious contrib
tions are indeed needed since they account for the dif
ences of the three Faddeev components~20!. The relation
between the usual Faddeev components for a given phy
or spurious state can be inferred from the basis sets~C1!.
There it is shown that all the Faddeev componentsx( i ) of a
stateYPh or YSp are equal up to a sign. As a consequence
a general solution is a pure physical stateYPh , all its Fad-
deev components cannot differ from each other in a sign
cant way. Having a mixing between physical and spurio
states allows the possibility of obtaining two independ
Faddeev components. This result corresponds to the phy
ingredients that involve identical ph phonons for the com
nentsx(1) andx(2) but a pp phonon forx(3).

When all the Faddeev components are summed to ge
ate the full x in Eq. ~21!, the contribution of the spuriou
states cancels out. Thus, for any nonspurious solution of
Faddeev equations, only the contribution from physi
statesYPh is needed to determine the 2p1h propagator.
looking at Eq.~35!, it is easy to see that these contributio
can be directly obtained by diagonalizing the upper-l
block

vmYPh
m 5^PhuFuPh&YPh

m , ~37!

wherem is used to label the solutions. The solutions of E
~37! are sufficient to determine the 2p1h propagator. F
some applications one may need the individual compon
x( i ). In that case, the contribution from spurious statesYSp
can be determined by solving the remaining part of the F
deev equations

vmYSp
m 5^SpuFuPh&YPh

m 1^SpuFuSp&YSp
m . ~38!
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We note that if the upper-right block of Eq.~35! is not
zero, a mixing between theYPh andYSp states occurs for al
the eigenstates of the Faddeev Hamiltonian. In this situat
the spurious eigenvalues will differ from the unperturb
energies and all of the solutions of the Faddeev equat
will contain a componentYPh . The Faddeev formalism
would therefore become useless, since it would no longe
possible to discern between ‘‘good’’ and ‘‘bad’’ solutions. I
Appendix C we show how the correct behavior of spurio
solutions is related to the presence of backward-going c
tributions of the DRPAG matrices~see Fig. 3!. In case these
diagrams are neglected, the spurious statesYSp no longer
diagonalize the Faddeev Hamiltonian. Such diagrams m
give a small contribution to the description of low-lyin
states but they are essential to make the whole forma
presented here meaningful. As a general rule, when deriv
expansions based on the Faddeev equations, it should be
in mind that not all possible sets of diagrams can be eff
tively summed to all orders. Instead, one must first check
consistency of the set of diagrams with respect to the beh
ior of spurious solutions.

V. SUMMARY AND CONCLUSIONS

The present theoretical description of the distribution
spectroscopic strength at low energies lacks important in
dients for a successful comparison with experimental d
One of these ingredients is a proper description of the c
pling of s.p. motion to low-lying collective modes that a
present in the system. Recent calculations for16O @10#, for
example, only include a TDA description of these collecti
modes. A new method is proposed here to study the in
ence of pp and ph RPA correlations on the s.p. propag
for a system with a finite number of fermions. This method
formulated in the context of SCGF theory by evaluating t
nucleon self-energy in terms of the 2p1h and 2h1p propa
tors. The description of the 2p1h~or 2h1p! excitations has
been studied by using the Faddeev formalism, which is u
ally applied to solve the three-body problem. The Fadde
formalism is necessary since we consider the collective
and ph RPA phonons as the basic building blocks to desc
the 2p1h motion.

The computational scheme presented here employs
two-time propagators, thus leading to a tractable set of eq
tions. At the same time the contributions of pp and ph R
phonons have been consistently summed to all ord
thereby including the physical effects that appear to be
evant for the study of the16O nucleus. Unlike previous cal
culations in which ph phonons have been included,
present formalism takes the Pauli exchange correlati
properly into account up to the 2p1h level.

In deriving the set of Faddeev equations, a formulat
has been chosen that involves only a single diagonaliza
for the 2p1h fragments. The appearance of spurious solut
has also been discussed in some detail, showing that
inclusion of the contribution of certain diagrams is necess
to separate such spurious solutions from the physic
meaningful ones. When this separation occurs, it is straig
forward to project out the physical eigenstates from the F
3-9
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C. BARBIERI AND W. H. DICKHOFF PHYSICAL REVIEW C63 034313
deev equations, thereby eliminating the spurious ones.
The Faddeev formalism has been used to include spe

correlations corresponding to pp and ph phonons in a nat
way. Extensions to the inclusion of more complicated ex
tations like the extended DRPA@30# can be obtained in a
convenient way by starting from the formalism presented
Sec. II.

The formalism presented here appears practical for
scribing the spectroscopic strength in16O in a similar space
as was employed in@10#. This implementation is currently in
progress and will be reported elsewhere.
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APPENDIX A: INTERACTION BOXES

The G̃ (pp) matrix ~14a! obtained by solving the DRPA
equation has the following Lehmann representation:

G̃mn,ab
(pp) ~v!5Vmn,ab1(

n1

~Dmn
n1!* Dab

n1

v2«n1
G11 ih

2(
k2

Dmn
k2~Dab

k2!*

v2«k2
G22 ih

[Vmn,ab1DG̃mn,ab
. ~v!1DG̃mn,ab

, ~v! ~A1!

in which n1(k2) label the forward-going~backward-going!
contributions. In obtaining theG (3) vertex given by Eq.~13b!
we want to keep both the forward- and backward-go
tio
n

o
id
d
-
t

d
nc
p
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terms of Eq.~A1!. This implies that all three diagrams o
Fig. 3 are included. The main problem encountered wh
working with dressed propagators is that the contribution
these three diagrams do not factorize in an expression of
form G0.GG0. whenG0. is represented by a propagator
the form

G0
mnl,abg
. ~v!5 (

n1 ,n2 ,k

~X m
n1X n

n2Y l
k !* X a

n1X b
n2Y g

k

v2~«n1

1 1«n2

1 2«k
2!1 ih

.

~A2!

This factorization cannot be made because of the imp
sums over the particle and hole excitation indices (n,n8,k)
in Eq. ~A2!. For example, the hole labelk cannot change in
Fig. 3 @12,30,35#.

This difficulty can be overcome with a slight reformula
tion of the problem. We no longer regardG (3) andG0. only
as functions of the model space indices (a,b,g), but instead
assign an additional dependence on the particle and hole
dices. Thus promoting the (n,n8,k) quantum numbers to ex
ternal indices, the Lehmann representation ofG0. ~17! will
contain at most one pole for every matrix element. As
consequence, all the components~10! appearing in the Fad
deev equations have to be reformulated in the same way.
original propagators can then be retrieved at the end by s
ming the solutions over all the particle and hole fragmen
With this procedure it becomes possible to write the sum
the three diagrams in Fig. 3 in terms of a matrix product
two G0. ~17! propagators and the following vertex:
Gmnmnnnlkl ,anabnbgkg

(3) ~v!5
1

2

dkl ,kg

(
s

uY s
klu2

H Vmn,ab1(
n1

~Dmn
n1!* Dab

n1

v2~«n1
G12«kl

2 !1 ih

1(
k2

@v2«nm

1 2«nn

1 2«na

1 2«nb

1 1«kl

2 1«k2
G2#Dmn

k2~Dab
k2!*

~«k2
G22«nm

1 2«nn

1 !~«k2
G22«na

1 2«nb

1 ! J , ~A3!
e a
n
al-
the

lue
which corresponds to the expression for the pp interac
box ~13b!. With this prescription, we are able to write a
expansion that sums diagrams like those of Fig 3. This
achieved at the cost of an increased size of the matrices t
dealt with. After further manipulation, it is possible to avo
this complication by dropping the dependence on the mo
space indices (a, b, g), as explained in Sec. III B. The ad
vantage of the present procedure lies in the possibility
diagonalize the Faddeev amplitudes in one step instea
solving the equations with energy-dependent vertex fu
tions as discussed in Sec. III C. The expressions for the
interaction boxesG (1) and G (2) are derived in a completely
analogous way.
n
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-
h

APPENDIX B: DRESSED RPA EQUATIONS

To clarify the notations used in the paper, we give her
brief overview of the DRPA equation for the pp interactio
matrix. We also give the explicit expressions for the norm
ization and closure relations used in the development of
formalism.

The pp-DRPA equation is derived from Eq.~14a! by
choosingKab,gd

(pp) 5Vab,gd and is shown in Fig. 5. Using the
Lehmann representation~A1! and extracting the poles«n1

G1

(«k2
G2) from the DRPA equation, we get the usual eigenva

problem
3-10
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Dab
n1(k2)5Dgd

n1(k2)ggd,er
(0) ~v!

1

2
Ver,abuv5«

n1
G1(«

k2
G2) ,

~B1!

where n1 (k2) refers to the forward-going~backward-
going! solutions. It is useful to introduce the following nota
tion, in analogy to the convention introduced in Eq.~20! for
the Faddeev components:

Un1 ,n2

n1 5
X a

n1X b
n2~Dab

n1!*

A2~«n1
G12«n1

1 2«n2

1 !
, ~B2a!

Hn1 ,n2

k2 5
X a

n1X b
n2Dab

k2

A2~«k2
G22«n1

1 2«n2

1 !
, ~B2b!

Jk1 ,k2

n1 5
~Y a

k1Y b
k2Dab

n1!*

A2~«n1
G12«k1

2 2«k2

2 !
, ~B2c!

Vk1 ,k2

k2 5
~Y a

k1Y b
k2!* Dab

k2

A2~«k2
G22«k1

2 2«k2

2 !
. ~B2d!

These represent the generalization to dressed propagato
the usual RPA components~theA2 has been inserted only i
the pp case for convenience!. In Eq. ~B2! the quantitiesX
(Y) and«n

1 («k
2) represent the spectroscopic amplitudes a

the poles of the forward-going~backward-going! part of the
one-body propagator, while«n1(k2)

G1(2) are the eigenvalues o
the DRPA equation~B1!.

The normalization condition for the DRPA solution
given in terms of the components~B2!, is the generalization
of the normalization for the usual RPA@36# and can be put in
matrix notation as

FU† J†

H† V†GF I

2I GFU H

J VG5F I

2I G , ~B3!

while the closure relations are given by

FU H

J VGF I

2I GFU† J†

H† V†G5
1

2 F I 2I ex

I ex2I G ,
~B4!

FIG. 5. DRPA equation for theG̃ (pp) matrix.
03431
of

d

whereU, H, J, and V are the matrices containing the el
ments of Eq.~B2!. In dealing with the formalism for the
Faddeev equations, it is also useful to introduce the follo
ing two matrices:

Tn1 ,n2

n1 5
1

A2
X a

n1X b
n2~Dab

n1!* , ~B5a!

Wk1 ,k2

k2 5
1

A2
~Y a

k1Y b
k2!* Dab

k2 , ~B5b!

which are trivially related to the components~B2a! and
~B2d!.

The matrix elements given in Eqs.~B2a!–~B2d! and
~B5a!,~B5b! correspond to the matricesH (3), U (3), andT(3)

introduced after Eq.~24! for the 2p1h Faddeev expansion (J,
V, andW being the corresponding ones for the 2h1p exp
sion!.

APPENDIX C: PROPERTIES OF SPURIOUS STATES

The set of solutionsX21 ~31! that satisfy the Pauli re-
quirements can be divided in to two subsets of physicalVPh
and spurious statesVSp. Orthogonal basis sets for these tw
spaces are given by

YPh5S u2uex

u2uex

u2uex
D PVPh and YSp5S 2u

1uex

u2uex
D PVSp,

~C1!

where theu represent unit vectors that belong to the spa
~22!. Their components are given by

un1n2k5dn1 ,n8dn2 ,n9dk,k8 ~C2!

with n8, n9, andk8 fixed fragmentation indices that label a
the possibleu. The vectorsuex5I exu are given by the ex-
change of the two particle indicesn1 and n2. The physical
statesYPh are characterized by the fact that they do n
produce vanishing spectroscopic amplitudes while the sp
ous statesYSp do. ThusVSp represents the kernel of Eq.~21!.

It is clear from Eq.~C1! that theYPh states span a spac
equivalent to the space of antisymmetric vectorsx ~21!, thus
VPh[VA . Analogously, theYSp states depend on both th
symmetric and the antisymmetric parts of theu vectors,
which implies VSp[VA^ VS . Therefore, the vectors~C1!
form a basis for the full antisymmetric Faddeev spaceVF
~34!.

In general, the physical and spurious states~C1! defined
here are not solutions of the Faddeev equations~28!, they
simply define a basis over which these solutions can be
panded. Nevertheless, for both the normal three-body F
deev equations and the expansion proposed in this pap
can be seen that the spurious statesYSp ~and only those!
diagonalize the Faddeev Hamiltonian. The eigenvalues
respond to the poles of the three freely propagating linev
5«n8

1
1«n9

1
2«k

2 ~17!. This feature serves as a sum rule
the solutions of the Faddeev equations and~unlike the case
of three-body systems! is not always satisfied when applyin
the formalism to particle and hole excitations. Instead t
property depends on the diagrams included in the expan
3-11
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and a proper set of diagrams needs to be employed in o
to apply the Faddeev formalism. For the particular Fadd
expansion described here, this constraint is achieved by
cluding the backward-going terms of DRPA phonons in
G ( i ) matrices and by using the closure relations~B4!, which
turn out to play an important role. In the following, the pro
that theYSp states of Eq.~C1! actually represent a set o
spurious solutions of the present Faddeev formalism is
lined. This also clarifies the relationship between the corr
behavior of the spurious solutions and the backward-go
DRPA diagrams.

Consider a spurious stateỸSp of the form ~C1!, with ũ
given by Eq.~C2! and eigenvalueṽ. We now observe tha
the matricesU ~B2a! andT ~B5a! differ from each other only
by an energy denominator. In particular, we have

2
1

ṽ2D
T→U, ~C3!

wereU, T, andD are defined in Sec. III. If the eigenvalue
given byṽ5«n8

1
1«n9

1
2«k

2 , the equivalence of the left- an
right-hand side holdsonly for the matrix elements having th
l.

s,

de

.

r,

94
n

,

,

03431
er
v
n-
e

t-
ct
g

same indices (n8,n9,k8). Indeed, only in that case the de
nominatorṽ2D will be equal to the one in Eq.~B2a!. On
the other hand, we see from Eq.~C2! that the components o
ũ are nonzero only for the same indices. This allows
substitution of the→ in Eq. ~C3! by an equal sign when
acting on the vectorỸSp. Substituting Eq.~C3! into Eq.~25!
and using the closure relations of the DRPA, we obtain
equation

ỸSp52MỸ Sp, ~C4!

which is valid only for the specific stateỸSp, labeled by the
indices (n8,n9,k8). The last equation is satisfied for a spu
ous state of the form~C1! but not for the corresponding
physical stateỸPh . Thus, we have obtained a set of spurio
solutions of the Faddeev equations that form an orthogo
basis ofVSp.

In this proof, we note that the closure relation~B4! can be
applied to derive Eq.~C4! because of the presence of th
backward-going termHH† in Eq. ~25!, which comes directly
from the last diagram of Fig. 3.
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