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The single-particle spectral function 8iNi has been computed within the framework of self-consisten
Green’s functions theory. The Faddeev random phase appatioin method and the G-matrix technique are
used to account for theffects of long- and short-range physics on the spectral bligion. Large scale calcu-
lations have been performed in spaces including up to teifiasc shells. The chiral RLO interaction is used
together with a monopole correction that accounts for examhissing three-nucleon forces. The single-particle
energies associated with nucleon transfer to valem®d brbits are found to be almost converged with respect
to both the size of the model space and the oscillator frezyuéfhe results support th&iNi is a good doubly
magic nucleus. The absolute spectroscopic factors to tlemca states oA = 55,57 are also obtained. For
the transition between the ground state®’bli and>®Ni, the calculations nicely agree with heavy-ion knockout
experiments.

PACS numbers: 31.10z,31.15.Ar

I. INTRODUCTION of the ground state of’Cu [6], expected to be described as
one valence proton outsidNi, resulted in much smaller mo-
ments than those expected from a single-particle pictune: S
The way shell closures and single-particle energies evolvéarly, large transition matrix elements between tegbound
as functions of the number of nucleons is presently one of thetate and the first excited Ztate indicate that th#Ni core
greatest challenges to our understanding of the basicrésatu is rather soft [5], or stated fierently, it implies a rather frag-
of nuclei. Doubly-magic nuclei are particularly importamd  mented single-particle picture. On the other hand, one bugh
closed shell nuclei likéNi and*°°Sn have been the focus of keep in mind that quenchings of spectroscopic factors toabo
several experiments during the last years [1-7]. Theircstru 60% are common even for good closed shell nuclei [9]. Ex-
ture provides important information on theoretical interp  perimentally, spectroscopic factors are defined as the odti
tations and our basic understanding of matter. In particulathe observed reaction rate with respect to the same rate-calc
recent experiments [1-6] have aimed at extracting informatated assuming a full occupation of the relevant singleigiar
tion about single-particle degrees of freedom in the vigini states. They are therefore often interpreted as a meastie of
of 5éNi. Experimental information from single-nucleon trans- occupancy of a specific single-particle state. Howevemfro
fer reactions and magnetic moments [1-4, 6], can be used @ strict theoretical point of view spectroscopic factores ot
extract and interpret complicated many-body wave funstion occupation numbers but a measure of what fraction of the full
in terms dfective single-particle degrees of freedom. Trans-wave function can be factorized into a correlated state(oft
fer reactions provide for example information about the anchosen to be a given closed-shell core) and an independent
gular distributions, the excitation energies and the spect single-particle or single-hole state. Large deviationsfithe
scopic factors of possible single-particles states. If ome values predicted by an independent-particle model, poiat t
infer from experimental data that a single-particle pietis  strongly correlated system. In this regime, collectiveitexc
a viable starting point for interpreting a closed-shellleus  tions that behave like single-particle degrees of freeddhat—
like >®Ni, one can use this nucleus as a basis for constructingg quasiparticles—can still arise.

valence-spacefkective interactions. These interactions can in . )
turn be used in shell-model calculations of nuclei with sae __The above mentioned large-scale shell-model calculations

valence nucleons above the= 28 andZ = 28 filled shells of ~ [8] have been performed in one major shell, tEo-shell,
56Ni. Recent measurements of spectroscopic factofénf ~ With an efective interaction fitted to reproduce properties of
in high-energy knockout reactions [2] seem to indicate thaf€veral nuclei that can be interpreted in terms of thesdesing
low-lying states irf’Ni can be characterized as single-particle Particle states. The number of possible Slater determsnant
states on top of®Ni as a closed-core nucleus. Large-scaleth@t can be constructed when distributing eight valence pro
shell-model calculations by Horet al [8] corroborate these {OnS and eight valence nucleons in the01 shell is more

findings, whereas a recent experiment on magnetic momentgan 16. This means that the inclusion of more compli-
cated patrticle-hole excitations from shells below and a&bov

the 1p0f shell, are well beyond present capabilities of large-

scale diagonalization methods [8, 10-13]. The hope is that
“Present address:Theoretical Nuclear Physics LaboraRIKEN Nishina ~ a@n dfective interaction tailored to one major shell includes
Center, Japan. as many as possible of these neglected particle-hole excita



tions. However, there are other many-body methods that akct optical potential. On the one hand, one can employ the
low for a computational scheme which accounts for a systemformalism for pureab initio studies. On the other, the strong
atic inclusion of more complicated many-body corrections.link with the response to experimental probes can be used to
Typical examples of such many-body methods are coupledzonstrain and improve phenomenological models. An exam-
cluster methods [14-17], various types of Monte Carlo methple of this approach is the dispersive optical model regentl
ods [18-20], perturbative many-body expansions [21, 22]derived for chain of calcium isotopes [49, 50]. This globad 0
self-consistent Green’s functions (SCGF) methods [23—31]tical potential reproduces with high accuracy the knows-€la

the density-matrix renormalization group [32—35] aximlini-  tic scattering data, up to energies of 200 MeV. Thus, Green’s
tio density functional theory [36, 37], just to mention some offunctions hold a promise dfoth bridging nuclear structure
the available methods. and reactions and for connecting the (relatively few) ipe®

The Green’s function Monte Carlo method [18, 38—40] andamenable ofb initio calculations to the rest of the nuclear
the no-core shell-model approach [13, 41-46] have been sutandscape.
cessfully applied to the theoretical description of light- n
clei with mass number& < 12, and Hamiltonians based

on nucleon-nucleon and three-nucleon interactions. Hewev i k
present experimental studies of nuclear stabilities aveles ~ €XPands the self-energy in terms of resummations of Feynman

ing pushed to larger mass regions, with mass numbers froffiiagrams and truncates the series in a way that allows fer fur
A = 40 toA = 100. Traditionally, this has been the realm of ther systematic improvements of the formalism. A powerful

the nuclear shell-model and nucI'ear density-functioredty. scheme for non-perturbative expansions is the so called Fad
These methods employ Hamiltonians and density functionald®€V random phase approximation (FRPA) that explicitly ac-
with phenomenological corrections and are not directly re-counts for particle-vibration couplings [28, 51]. Firsphpa-

lated to the vacuum nucleon-nucleon interaction emploged i ions of this approach were devoted'#®. One single calcu-

ab initio calculations (exceptions are found when perturba/@tion yielded the basic information to be used for micrgsco

tive many-body methods are used [22]). However, in selectegtudi€s of spectroscopic factors [29, 52], the excitatjpgcs
medium-mass nuclegb initio structure calculations can be UM [30], two-nucleon emission [53, 54] and the nucleon-
performed using approaches like coupled-cluster and GreenUCleus optical potential [55]. Thus, the FRPA method pur-
functions theories. These methods allow studying groundSUes & global description of the many-body dynamics, far be-
and excited-state properties of systems with dimensitiesli YONd ground state properties alone. Anoth’e!feulenc_e with
beyond the capability of present large-scale diagonadimat the coupled-cluster approach is that Green's functiomsall
approaches, with a much smaller numericgg when com-  Vid @ dlagra_mmatlc approach, to directly mtrod_uce th(_ee:orr
pared to diagonalization methods aiming at similar acdagac lations outside the model space that are associated with sh_o
The accuracy of these methods isfistiently high to attribute  '@n9ge degrees of freedom [56, 57]. It can therefore be applie
an eventual disagreement between experimental data and tH@ interactions with strong short-range cores (for exantple
oretical results to missing physics in the Hamiltonian.Hist Argonne model [58] was employed in Ref. [31]).

way, such calculations help to increase our understanding o
the nuclear interaction on a very fundamental level.

In practical applications of Green’s functions theory, one

, Self-consistent FRPA calculations &fO were first per-
Recent coupled-cluster calculations [17] have reporteqymed by the authors of Ref. [29], and subsequently ex@nde
practically converged results of the ground state of meeiumy, ¢,y ab initio calculations in spaces up to eight oscillator
mass nuclei like®’Ca, “®Ni and “*Ca using the bare chiral gpejis [31]. To our knowledge, the combination of the ran-
interaction NLO [47]. These calculations employed a har- 4o, phase approximation phonons and the proper treatment
monic oscillator basis to construct the single-particlsi®a ¢ the energy dependence of the interaction vertex, makes th
and included correlations of the so-called singles and doUge most accurate evaluation of single-particle stateitzla
bles types. It means that one-particle-one-hole and tWory this nucleus. In this work we extend the range of applica-
particle-two-hole correlations acting on a many-body 81at jons of this formalism to studies of quasiparticle statesiad
determinant were summed to infinite order. Recently, rssult5sNi, as a first application of Faddeev random phase approx-
with three-particle-three-hole correlations have alserb@b-  imation to 1p0f shell nuclei. As mentioned above, there is
tained [48]. The calculations were performed in a harmomc‘quite some experimental interest in single-particle prige
oscillator basis containing up to fifteen major shells and re ;.41 FeNi.
sulted in basically converged ground state properties for a
given Hamiltonian.

Another method with a strong potential for performialg This work is organized as follows. Sec. Il reviews the Fad-
initio calculations of nuclei beyond = 12 is self-consistent deev random phase approximation approach and discusses the
Green’s functions theory. Berently from the coupled-cluster approximations made to calculate the self-consistentgrop
and no-core shell model, this method does not construct thgator. The convergence of single-particle properties $s di
wave function but evaluates directly the energies and iranscussed in Sec. Il and the results for the spectral functien a
tion matrix elements for the transfer of one or more nucle-described in Sec. IV. We refer the reader directly inteksie
ons. Another important point is that the self-energy—thre ce discussion of physics results to the latter section. Cichs
tral component of the formalism—has been shown to be an exare drawn in Sec. V.
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[l. FORMALISM it includes the coupling of single-particle states to odile
vibrations like giant resonances.

This section serves as an overview of the formalism we em- The theoretical spectroscopic fact@sandZ, for removal
ploy. The treatment of short-range physics and the implemerfind addition, respectively, of a nucleon, are given by thre no
tation of self-consistency, which are improved with regpec Malization integral of the corresponding overlap wave func
previous works, are discussed in details. The Faddeev mandotions. In the notation of Eq. (1), these are
phase approximation expansion is also introduced, but we re

fer the reader for more details in Refs. [28, 51]. 4 = Z |<‘P’k*‘1|c(,|‘P0A)|2 = Z l%'ilz ,
In the framework of Green’s function theory, the object of @ @
interest is the single-particle propagator, instead ohtlaay- Z, =

A+Ly A2 n|2
body wave function. In the following, greek indicesg, . .. za: (7", 1) za: Il @
label the orthonormal basis set of single-particle states i
cluded in the model space, while latin indides, ... refer  The hole states are normalized according to
to many-body states. We employ the convention of summing
over repeated indices, unless specified otherwise. Théesing 2 YKP =1 yEY 0% 5(w)
particle propagator can be written in the so-called Lehmann kK= Z| 0| =4 Z( w) dw
representation as [23, 59] ¢

yE. ©®)

w=g&

ap

(X7)" X" K ( yk)* whic_h foIIows_ directly fr_om the Dysor_1 equation (2). The same
Qop(w) = Z a B, Z > \Th . Q@ relation applies to part_lcle states, _vvmj; replaced b)(_X[;)_ .
w—gi+1n w—¢g —In Because of the analytical propertiesX®f(w), the derivative
term results always in a negative contribution, leadingethy
whereX? = (WA*LcH¥A) (VX = (P2-Yc,|¥4)) are the spec-  to a quenching of the spectroscopic factors.
troscopic amplitudes, (c) are the second quantization an- It must be stressed that Egs. (2) and (3) do not involve
nihilation (creation) operators ang; = EA*1 — EQ (g = any approximation. Th_erefore, the full knowledg_;eX’JY‘F
EA — EA-Y). With these definitiongi¥2*1) and[¥A-1) are the and R(w) would be equivalent to the exact solution of the
eigenstates, whilEA** andEA~ are the corresponding ener- Schrodinger equation. In practical calculgtlons,_lt m(ays
gies of the A+ 1)-nucleon system. Therefore, the poles of theN€cessary to truncate the full space of available singteepa

single-particle propagator reflect the energy transfeenkesl states to a finite model space and to select a limited set of
in pickup and knockout reactions. many-body correlations. The approximations employedén th

The single-particle propagata,s(w) enters the Dyson present work to evaluate these quantities are discussée in t
equation as i rest of this section.

n

(@) = p(w) + G2, (W)Z}5(w)Tsp(w) - )

It depends on the irreducible self-enedy(w). The latter can
be written as the sum of two terms. The first terms describes
the average mean-field (MF) while the second term containg
dynamic correlations,

A. Short-range physics and effective interaction

The present calculations were performed within a large
ut finite set of harmonic oscillator states, including $&ag
particle states up to ten major shells. In order to treathloets

1 range part of the nucleon-nucleon interaction, one musimnes
Lopl@) = Z%F + ZV‘“#V Ruvayes(w) Vyope - (3) explicitly the series of ladder diagrams for two nucleons ou
0 _ ) side this model space. These contributions are included in
In Eq. (2), g'(w) is the so-called unperturbed single- (e self-energy in two dierent ways. Firstly, they are explic-
propagator, corresponding to nucleons moving under the efyy agded to the mean-field pa&VF, in order to reconstruct
fect of the kinetic energy part of the total Hamiltonian. The e contribution of short-range correlations in the fullbidirt

localization of the single-particle states in the nucleaam space. Secondly, they are included in a regulariztzteve
. . MF - - L
field is due to the terr ™, which extends the Hartree-Fock yamjjtonian which is used to calculate the long-range part

potential to that of a fuIIy'correIate'd density .matrix. Teeh o correlations—described t%(w)—inside the chosen model
Vagys represents the antisymmetrized matrix elements of th@y,ce  This approach leads to calculating the well kn@an
nucleon-nucleon interaction. In this work, these will be ap \atrix [22, 60], which is then used as an energy dependent
proximated by an féective interaction, Eq. (8), discussed in gfactive interaction inside the model space [81]. In this case
Sec. IlA. Eqg. (3) introduces the two-particle-one-h@plh) e sMF part of the self-energy will also depend on energy.
and two-hole-one-particleflp irreducible propagatd(w).  Thisis given by

In its Feynman expansion, this propagator contains all dia-

grams with any number of particle and hole limesepthose ME
that allow the intermediate propagation of one single lite. Zys (@)
can therefore be interpreted as carrying the complete-infor

mation on all configurations that cannot be reduced to a nu-

cleon interacting with the average nuclear field. In patéigu

. do’ , ,
2: f - Gayas(w + &)Go(w)
Y

Z Z Gayﬁg(w + 8;) ylg («yl;)’L s (6)
vs Kk
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whereG,z,,s(w) are the matrix elements of ti@matrix inter-  fix the starting energy ta = -5 MeV. Note that the starting
action. Eq. (6) diters from the standard Brueckner-Hartree-energy appearing in Eq. (6) is shifted by the quasihole poles
Fock potential in the fact that the mean-field is not represien ¢, This ensures that the energy dependencEMf(w) is

by a set of independent nucleons filling various orbits. Bath fully accounted for all quasiparticle states in tha1 shell.

the medium is described by the hole spectroscopic ampBtude
Yk that lead to the fully correlated density matrix. Since the
latter are obtained by solving the Dyson equation, they must
be obtained iteratively in a self-consistent way. Whendver

second term in Eq. (3) is neglected, this procedure simply re L .
duces to solving the standard Brueckner-Hartree-Fock-equa , | "€ Polarization propagat&(w) can be expanded in terms

tions. However, as soon as the response of the meB(ah of simpler Green’s. funqtions that invo_lve the propagatién o

is accounted for, the single-particle propagator becomaes f one or more 9“?‘5'9?‘”.'0'6 s.ta_tes. This approach hqs the ad-

mented an&EMF describes the interaction of a particle with Vantage that it aids in identifying key physics ingredieoits

the “correlated” medium. the many—body dynan_1|cs. By truncating the expansion to a
We remind that using th&-matrix in Eq. (6) corresponds particular subsets of @agrams or m_any-.body correlations,

to summing the mean-field term form Eq. (3) and ladder gi.can then construct suitable approximations to the selfeggne

agrams with intermediate two-particle states outside ke c Moreover, sinqe infinite sets O.f linked dia_grgms are S“m”.‘ed
sen model space. This partitioning procedure has two maiH1e a.p_proach 1S npn-perturpaﬂve and satisfies the 9xﬂ_gnsw
consequences. First, th@axts of short-range physics at the cond|t|on'[1'4]. This expansion also serves as a guideline fo
two-body level on the total energy are included in the renorSyStematic improvements of the method. _

malized interaction. This leads to a softer force that can be Following Refs. [28, 51], we first consider the particleol
applied within a “low-momentum” model space. Seconmy,pola_nzatlon propagator that describes excited stateseiit

due to the explicit energy dependence, the t8Mfi(w) con-  Particle system
tributes as well to the normalization of spectroscopicdest

Eq. (5). This provides a natural way to determine the amount

B. TheFaddeev random phase approximation method

(PIcica Ry (PNIc)cs Py

of strength that the free interaction would admix into config Mopys(w) = Z _ (EN _ EN) ti

urations outside the model space, see for example the discus n#0 @ " 0 g

sion of Refs. [56, 57]. Thus, the present approadies from (PlciCsl PR (FRIcica V)
methods based on the renormalization group, where instead - . (9)

an explicit renormalization of theflective operators would n+0 W+ (ERI - ES‘) -

be required [61]. . ) .
The energy dependence of tBematrix becomes cumber- e_md the two-particle propagator that describes the addi-

some in calculating the polarization propagator. We defindior/removal of two particles

therefore a staticfeective interaction for our model space to

be used in our calculations of the second term on the right- g () = Z (Wplcsca| P *2) <‘I’,“1‘+2|cic;|‘11’a‘>
af,yo -

hand side of Eq. (3). To do this we evaluate the average energy w— (EN+2 _ EN) 4
. . . . . n n 0 n
for theharmonic oscillatorsingle-particle states according to N N2, oD .
0 B Z (Fyle, W, ™) (Y eIcsCa ¥y (10)
£h’ = (alzla) + D Gupaplw=2L+e), (7 - w—(EY - EN-?) —ip

BeF

h th is limited to th tates that These Green’s functions contain in their Lehmann represen-
\tN ?Irle q ebs.tjm' Isthlml' N q 0 doste S at_els a dC?rrelflp?nfjations all the relevant information regarding the exmtabf

0 filed orbits In the independent particie modet. .Oeparticle—hole and two-particle or two-hole collective nesd
that in Eq. (7) the single-particle energies are derivegite

tively while th lat funci ; had In this work we are interested in studying the influence of gi-
Ively whiie the osciliator wave Tunclions rémain unchange .. esonance vibrations, which can be described within the
Clearly, these orbits are a crude approximation to the re

T ; : andom phase approximation (RPA). In the Faddeev RPA ap-

guasnr:grﬂclg_ srt]ate_l?tr;md m” ngt tbe u_setslj FO conshlcﬂaat) '.n$t proach, the propagators of Egs. (9) and (10) are then evalu-

ec. llB-which will be rather determined in a sefi-consiste ., 4 by solving the usual RPA equations, which are depicted
fashion. The main purpose of the above procedureis to yield

L - . ! iagrammatically in Fig. 1. Since th ions refl W
prescription for obtaining a starting energy independé&ete aag ammatically g. 1. Since these equations refieot t

tive interaction. Following Gad and Muther [62], we use thebOdy correlations, they still have to be coupled to an addi-

) . . , . .~ tional single-particle propagator, as in Fig. 2, to obtamdeor-
single-particle energies from Eq. (7) to define an intecarcti respondigg gpproxin?atizngfor the two-garticle-one-haiel a
for the given model space by

two-hole-one-particle components Bfw). This is achieved

1 o ho ho ho by solving two separate sets of Faddeev equations, as dis-
Vopys = 5[Capyolw = &+ 85) + Gappolw =&, +&5)] . cussed in Ref. [28].
(8) Taking the two-particle-one-hole (2plh) case as an exam-

The G-matrix can be computed according Ref. [22, 60] forple, one can spliR®"(«w) in three diferent components
negative energies, up to abous MeV. For larger values we RO (w) (i = 1,2, 3) that difer from each other by the last pair



o

g

FIG. 2: (Color online) Example of one of the diagrams that are
summed to all orders by means of the Faddeev random phassappr
imation Egs. (12) (left). The corresponding contributiorthe self-
energy, obtained upon insertion into Eq. (3), is also shavgt).

FIG. 1: (Color online) Diagrammatic equations for the pization
(above) and the two-particle (below) propagators in the RIpA
proach. Dashed lines are matrix elements of tfiecéive nucleon-
nucleon interaction, Eq. (8). The full lines represent titiependent-
particle model propagata®V (w), which is employed instead of the level. In addition, one can in principle employ dressed lging
fully dressed one. See the text for details. particle propagators in these equations to generate asellly
consistent solution, as done in Refs. [29, 31] for valenbé®r
around®0.
of lines that interact in their diagrammatic expansion,

RO (@) = [G%1i(@) = G i@ |+ > RY, (@),
By [ aprad perwrd ] i;,z,s apyid C. Self-consistent approach

(11)
whereG®” (w) is the 2p1hpropagator for three freely propa- | the self-consistent Green's function approach, both the
gating lines. These components are solutions of the foligwi ymF part of the self-energy and the polarization propaga-

set of Faddeev equations [63] tor R(w) are expressed directly in terms of the exact single-
i 0> 0 particle propagatog(w). The lines in Figs. 1 and 2 should
ﬁfiﬂy,ﬂvﬂ(“’) = Copy v (@) Ty i (@) thus represent the fully dressed propagator obtained ly sol

x [RD + R 12 ing the_Dyson equation. _Since the degrees of freedom con-
[ Hy ”>~”“(w) Y ”>~W(w) (12) tained in Eq. (1) are excitations of the fully correlated-sys

+ G pa(@) = G (@) - 1=1,2.3 tem, the formalism does not depend on an explicit reference

state. Normally, one first computes Eq. (3) in terms of an ap-

where {, j,k) are cyclic permutations of (2,3). The in- proximate propagator. The solution of Eq. (2) is then used to
teraction vertice$'()(w) contain the couplings of a particle- calculate an improved self-energy and the procedure is iter
hole (ph), see Eq. (9), or two-partighevo-hole pphh), see ated to convergence. Baym and Kadfitnave shown that the
Eqg. (10), collective excitations and a freely propagating.l  self-consistency requirement implies the conservatidvooi
The propagatoR(w) which we employ in Eq. (3) is finally microscopic and macroscopic properties [64, 65]. Intaliy
obtained by the self-consistency requirement becomes important when-

ever dynamical correlations modify substantially the cese
(13)  with respect to the Hartree-Fock mean-field (an example is

the band-gap error problem in diamond crystals [66]). When
where the matrixU has the &ect of renormalizing the applying standard Hartree-Fock theory to nuclear strectur
strength of the dynamic self-energy. This correction eesur most realistic interactions predict unbound nuclei anéneé
consistency with perturbation theory up to third order. Theorbits in the continuum. This is a very poor starting point
explicit formulae of the matriceE®(w) andU are given in  for any application of perturbation theory and other many-
terms of the propagators of Egs. (9), (10) and (14), and th&ody techniques. However, the self-consistent approach re
interactionV,z,;. They are discussed in detail in Ref. [51]. quires using correlated quasiparticle energies and wawe fu
The calculation of th@hlpcomponent oR(w) follows com-  tions [the poles and residues of Eq. (1)]. These degrees of

2p1h 2plh
R( P (w) = U(Y,By,,u’v’/l’ ﬁ( en) (w) U;,,

aBy.uva NV VA v

pletely analogous steps. freedom form an optimal starting point for studies of many-
The present formalism includes thfezts ofph andpphh  body dynamics at the Fermi surface.
motion simultaneously, while allowing interferences betw Accounting for the fragmentation of the single-particle

these modes. These excitations are evaluated here at tpeopagator in the Faddeev random phase approximation in-
RPA level and are then coupled to each other by solvingreases the computational load as one moves to larger nuclei
Egs. (12). This generates diagrams as the one displayed and model spaces. In this situation it is convenient to edpan
Fig. 2. The Faddeev equations also ensure that the Pauli prifR(w) in terms of an independent-particle model (IPM) prop-
ciple is correctly taken into account at t2plhand2hlp agator. This should approximate the dressed one but with a
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limited number of poles. Thus, we solve Eq. (12) in terms of 26 x 10° two-particle-one-hole states. This number is bound
, to increase when larger nuclei are investigated or morelsleta
.- (&™) o P (¢§)* of nuclear fragmentation (that is more poles) are incluaed i
Uop (@) = Z e Z e+ (14)  ¢'"M(«w) (14). The numerical implementation of the Faddeev
nr @ Tl w-& —m random phase approximation required careful optimization
evaluating the elements of the Faddeev matrix and a proper
‘generalization of the Arnoldi algorithm [67] to employ mul-

keF

where F represent the set of occupied orbits. The single

i iaalPM -
particle energies’™ ™ and wave functiong are chosen such 10 hivots. Similar improvements allowed to extend large

that g""(«w) coincides with the real propagatg(w) at the  <.o16 cajculations from thé = 16 mass region to tha = 56

Fermi surface. To do this we define the following moments Ofmass region. The dimensions reached in this work represent
the poles of Eq. (1).

roughly the upper limit when using table top single processo

e o K {uk\* computers. Obviously, there is much to gain by taking advan-

P Z (X2) XB Z Ya (yﬁ) p=012 tage of modern supercomputer facilities and future researc

# LB -t 4 [E -1’ o efforts should be put into parallelization of the present algo-
(15) rithms. _ _

Model spaces of eight to ten major shells are large enough
for a proper description of the response due to long-range co
relations. These include excitations of several MeVs ih t
region of giant resonances. Thigexts of short-range physics
are also included by using@matrix and an #ective interac-
tion as discussed in Sec. Il A. These are derived using the chi
ral nucleon-nucleon interaction®NO by Entem and Mach-
leidt [47]. This interaction employs a cuf@f A = 500 MeV.

Typical realistic two-nucleon interactions fail in reprad
ing the spin-orbit splittings and gaps betweefliatient shells.
In particular, for theN = 28 andZ = 28 subshell closures
these lead to an underestimation of the gap at the Fermi sur-
({ace. In these cases, a complete diagonalization of the [Hami
onian would predict a deformed ground state of these nuclei
even when they are experimentally known to be good spher-
ical closed-shells systems [11, 68]. This issue can be cured
with a simple modification of the monopole strengths of the
interaction. Recently, Zuker has reported that the same cor
rection works well for several isotopes throughout the eacl
. i chart and proposed that this may be interpreted as a signatur
The present calculations were performed using a harmonigg missing three-nucleon interactions [69].
oscillator basis and including up to ten major harmonic 0s- The inclusion of three-nucleon interactions to the Faddeev
cillator shells. We label these spaces WNhax = 3, 5, 7, random phase approximation formalism is beyond the scope
or 9, whereN = 2n +|. For the largest model space em- of the present work. However, it will be shown in Sec. Il A
ployed, Nmax = 9, all partial waves with orbital angular mo- hat properly reproducing the Fermi gap is crucial in order t
mentuml < 7 were included. This amount to 368 single- gptain meaningful results for the valence space spectpisco

particle states for each particle species, protons andereit f50t0rs. Thus, we follow Ref. [69] and modify the monopoles
in our case. The total number of available Slater deterntan i, the NBLO interaction model as

for SéNi without any particular restrictions is proportional to

whereEkg is the Fermi energy. Eq. (14) is determined by im-
posing M(%PM = MZ, andM_;"™ = MZ,. The purpose of
Eg. (15) is to define a set offfective single-particle orbits
and energies that conserve the total spectroscopic streagt
ried by the self-consistent propagator and the centroidis of
fragmented states. Whileffective single-particle properties
form an appropriate starting point to evaluB(@), it remains
clear that they only represent average quantities. Insieiad
Eq. (1) that must be related to experiment.

The propagatog'”™(w) is derived from Eq. (1) and it still
needs to be evaluated in a iterative way. Therefore, thdtresu
ing propagatoR(w) is (partially) self-consistent. We stress
that Eq. (6) can be calculated easily from the fully dresse
propagator. Thus self-consistency is achieegdctlyat the
mean-field level.

1. CALCULATIONSAND CONVERGENCE

the product of the two binomials AV], = AV = (-1)"km ,
T T _ _
368 368 AVip — AV —15(1-T)kwm , (16)
28 | %\ 28 |’ wheref andr stand for the Brueckner-Hartree-Fock states as-

sociated to the §,, and the (s/2,1p1/2,0fs,2) orbits, respec-

a number which clearly exceeds the capabilities of any tirectively. In the limit of large spaces, the Brueckner-Hariree
large-scale diagonalization procedure. Fock orbits converge to the Hartree-Fock states and this cor

The codes utilize gj-coupling scheme to decouple the rection becomes independent of the choice of the single-
Faddeev equations of Eqg. (12). At each iteration, the RPAparticle basis. Note that the prescription of Eq. (16) medifi
equations are solved in the particle-hole and the particleenly a few crucial matrix elements while about six milliorfs o
particle and hole-hole channels using the single-paroicle them are defined in thid,ax = 9 model space.
bits and energies from Eq. (14). The resulting propagators We also note that the present truncation of the model space,
are inserted in Egs. (12), which in turn are casted into an terms of the number of oscillator shells, does not separat
non Hermitian eigenvalue problem [28]. In our largest cal-exactly the center of mass motion. Coupled-cluster calcula
culation we diagonalize dense matrices of dimension up téions have shown that the error introduced by this trunoatio
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becomes negligibly small for large model spaces such as the 8 0 12 14 16 18 20
ones employed here and therefore it does not represent a majo hQ [MeV]

issue [17, 70]. In calculations of binding energies, it oust

ary to subtract the operator for the kinetic energy of thé@en F|G. 4: (Color online) Dependence of the neutrqm 1 particle en-

of mass directly from the Hamiltonian. This term automati- ergy and the &, hole energy with respect to the oscillator frequency

cally corrects for the zero point motion in oscillator basig  and the size of the model space.

it depends explicitly on the number of particles. In this kyor

we are interested in transitions to states witfiedent num-

bers of nucleons [(A1] and aim at computing directly the ted as a function of the calculated particle-hole @dfy, =

differences between the total energies. Therefore, the abog% w0 — €or..4co- The results correspond to model spaces
. . 3/2,N= 7/2,K=

correction shouldot be employed in the present case. Oneot gifferent dimensions (eight or ten oscillator shells) and os-

may note that the separation of the center-of-mass motion igjjjator frequenciesiQ = 10 or 18 MeV). The gapAE,, in-

an issue related to the choice made for the model spacer rathgeases withey but the dependence on the model space is

than the many-bo_dy met'hod itself. For example, expressing,eak. We notice that, once the experimental valudBf,

the propagators directly in momentum space would allow ans reproduced, the spectroscopic factors are well defindd an

exact separation. In this situation, the transformandwben_ found to be converged with respect to the given model space.

the center-of-mass and laboratory frames for systems with a | reguits reported below were obtained with a fixed value

nucleon plus & nucleons (or A — 1) nucleons) core would of km = 0.57 MeV. In theNmax = 9 model space and an

also be simple. oscillator energyiQ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliablattuirw

1 - 2% of the independent-particle model value.

A. Choiceof ky

Eq. (16) introduces a single parametey) in our calcu-
lations. The reason for this modification is that the spectro
scopic factors of the valence orbits are strongly sensttive
the particle-hole gap. This sensitivity is to be expectedesi
collective modes in th&Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower exoitati
energies and higher probability of admixture with valence o
bits. In order to extract meaningful predictions for spectr

B. Convergence with respect to choice of model space

Fig. 4 shows the dependence of the neutrpglparticle
and the @7, hole energies with respect to the oscillator fre-
guency and the size of the model space. As can be seen from
scopic factors it is therefore necessary to constrain tmeiFe this figure, the single-particle energies for these two Ising
gaps for protons and neutrons to their experimental values. particle states tend to stabilize around eight to ten majelis

To investigate this dependency we repeated our calculaFhis finding concords both with coupled-cluster calculasio
tions for values ofky in the range & — 0.7 MeV. Fig. 3  that employ aG-matrix as &ective interaction fot®0, see
shows the resulting neutron spectroscopic factors for e v Refs. [70, 71], and with analogous Green’s functions stud-
lence ps2 quasiparticle and;,, quasihole. These are plot- ies [31]. It remains however to make an extensive comparison
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gies on the oscillator frequency. The energies plotted hesethe
poles ofg(w) corresponding to the valencgQf orbits. Calculations
were performed foNmax = 9 andl < 7.

TABLE I: Energies (in MeV) and spectroscopic factors (asaation

of the independent-particle model) for transitions to tp@flvalence
orbits, obtained foriQ = 10 MeV, Nnax = 9 andky = 0.57 MeV.

between coupled-cluster theory and the Green’s functien aprhe experimental single-particle energies are taken fro2j. [The

proach in order to find an optimal size of the model space withmeasured spectroscopic factor for transfer between thengrstates
a given nucleon-nucleon interaction. Finally, we plotig.s  of *’Ni and**Niis from Ref. [2].

the neutron valence single-particle energies for all thglsk

particle states in @0f-shell. The latter results were obtained

with our largest model space, ten major shells Wi« =9 gomewhat smaller, at about 59%. A larger value is obtained
and the single-particle orbital momentunx 7. As can be ¢, ynockout to the ground state 8Ni, which is predicted
seen from this figure, there is still, although weak, a depeng, pe 7204, The results for proton transfer to particle (hole)
dence upon the oscillator parameter. To perform calculatio g4 if7cCy 65C0) are only slightly larger. According to the
beyond ten major shells will require non trivial extensiahs analysis of Fig. 3, itis expected that these predictionsane

our codes. verged within 1-2% of the independent-particle model value

Past studies [5, 6, 73] have questioned whether low-energy
quasiparticle states ffNi are strongly admixed to excitations
of a soft®Ni core. The results obtained here do not sug-
gest substantial @ierences with respect to other known closed

Our results for spectroscopic factors for th@df-shell va-  shell nuclei. The spectroscopic factors from Table | arénie |
lence orbits and the corresponding single-particle eesrgie  with observations from stable nuclei [9, 74] and support the
collected in Table I. In general, the modifiedIND interac-  hypothesis that®Ni is a good closed-shell nucleus. In our
tion predicts single-particle energies about 3 MeV lower  calculations we find that theps,, quasiparticle state GfNi
than the experimental ones. The Coulomb shift between cocarries 65% of the strength for this orbit. Another 20% is
responding neutron and proton orbits is calculated to betabo located in the particle region belog=2 MeV (above this
10.2 MeV and it is closer to the empirical value a69MeV.  energy strength associated with thgl20h shell starts to ap-
For the oscillator parameter choséf = 10 MeV, we obtain  pear), and about 3% is in the hole region abeye= —40
an inversion of the ft;» and Ofs/, excited states iR’Ni, with MeV (see Fig. 6). Similarly, the 3> state has 72% of the
respect to the experiment. However, this discrepancy disapndependent-particle model strength in the quasihole fteak
pears for larger values diQ (see Fig. 5). Thisfect is in  ground state of°Ni), 10% in the fragmented hole region, and
fact smaller than the residual dependence on the model spa8&o in the fragmented patrticle region. This analysis confirms
and therefore no conclusion can be made about the orderirthat the main mechanism responsible for the quenching of the
for the fully converged result. The spectroscopic factotfie = spectroscopic factors lies in the admixture between single
transition between the ground stateS i and°®Ni was ex-  particle states and collective excitations in the regiogiant
tracted from high energy knockout reactions in Ref. [2]. Theresonances [24]. Due to these correlations a large pareof th
self-consistent Faddeev random phase approximationtresuhissing strength from the valence peak is shifted and spread
for this quantity yield 65% of the independent-particle rabd over an adjacent region about 520 MeV wide. Further
value, and agrees with the empirical data within experimenreduction of the spectroscopic factors comes from the rgixin
tal uncertainties. The theoretical spectroscopic fadtmrthe  with configurations at much higher energies and momenta and
excited states if’Ni are similar, with the @/, state being is accounted for through the energy dependence of Eq. (6).

IV. RESULTSFOR THE SPECTRAL FUNCTION
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The information carried by the calculated single-particleanalyzing the spectroscopic factors and strength digioibu
propagatog(w) is collected in Fig. 6 for neutrons and partial rather than occupation numbers, since the latter are itiedr
waves up td=3. The plot shows the spectral strength asso-quantities [82]. While unoccupied states can be probed by
ciated with each pole of(w). Fragments below the Fermi the addition of a nucleon, occupied states are accessed by
surface Eg) refer to the separation of a neutrddNi), while knockout to states of thé& — 1 nucleon system. A similar
those above correspond to neutron additfdi{). The poles  fragmentation pattern is therefore seen for ttig-Oorbit but
corresponding to thedDf valence orbits are indicated by ar- reversed below the Fermi surface. Interestingly enough, th
rows. These are the same single-particle energies that haaddeev random phase approximation predicts that states co
been discussed in Sec. IlIB and Tab. I. As noted aboveresponding to orbits in thesdd and Z1d0g shells maintain
the fragments found at slightly higher energies (just above strong single-particle character even though they atbdur
& ~ —8 MeV) originate from the mixing of these orbits apart from the Fermi surface. The fragmentation of these or-
with two-particle-one-hole configurations and collectwe  bits requires excitations across shells dfetient parity (e.g.
citations of the nucleus. The overall fragmentatidieet is  1s0d and 1p0f) and could become stronger if the energy dif-
substantial but not strong enough to destroy the singléefr ference among major shells is reduced. Indeed, a compari-
character of the principal quasiparticle peaks (note thagga  son of our results with electron scattering measurements on
arithmic scale has been chosen in Fig. 6 in order to makéNi [75] suggests that the ¥ O interaction tends to over-
smaller fragments of the spectral distribution more vjbl estimate the gaps between these major shells. Note that in
This observation supports the use of valence single-partic the present calculations thes12I0g quasiparticles are found
states as the relevant degrees of freedom that govern iog-ly at energies of abowt3 MeV and overlap with the fragmented
excitations, as assumed in conventional shell-model e@pli 1p0f states.
tions. We note that the question whether a system can be
approximated as a good shell closure is better addressed byFar from the Fermi energgg, the mixing with complex

configurations becomes strong and it is no longer possible to
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identify sharp quasiparticle and quasihole states. Ski#, and excitation processes. Therefore, they can be diremthy ¢
energy region occupied by the major shells can be identipared to a large body of experimental data. Due to these char-
fied clearly. The NLO interaction places the states associ-acteristics the formalism can be used to gain unmatched in-
ated with the $0d shell between-60 and—30 MeV, while  sights into the many-body dynamics of quantum mechanical
the Op-shell states appear belows0 MeV. Other hole frag- systems. Within this framework, the Faddeev random phase
ments are observed arour80 MeV for the Ipy/», 1psz and  approximation method proposed in Ref. [28] is a good candi-
0fs/2 partial waves. These originate from particle states indate to pursuab initio studies of medium mass isotopes.
the 1pOf shell that are partially occupied due to the smear- |n this work we have presented the basic details of calcu-
ing of the Fermi surface. Nucleon knockout from these orbitgating the Faddeev random phase approximation expansion
requires little energy transfer and leads to low-lyingesdh  and discussed results for the spectral functiofi®fi. This
*°Ni or *>Cu. These states originate from the mixing of par-is the first application of the self-consistent Green's func
ticle orbits with two-hole-one-particle configuratiom®%?)  tion approach to the(0f shell region. The calculations em-
in the Dyson equation. Still, ti&Ni ground state is strongly  ploy the chiral MLO two-nucleon interaction, with a modified
influenced by the 6, hole component. monopole to account for missing many-nucleon forces. In ad-
Analogous fragmentation patterns extend to the shells furdition to this one-parameter modification of the Hamiltonia
ther away from the Fermi surface, although these are nahe only remaining parameters that enter our calculatioas a
shown in Fig. 6. On the particle side, = 0 MeV marks  those defining the nucleon-nucleon interaction.
the threshold for the single-particle continuumiin thex(1)- Calculations were performed in models spaces including up
nucleon system. Above this, the exact spectral function ber ten major oscillator shells. These large spaces are large
comes a continuous function of energy. In the present calClusnough to allow for a sophisticated treatment of long-range
lations a structure of separate poles is found due to the digsgrrelations. The quasiparticle and quasihole energidiseof
cretization of the model space. A continuum distributiosoal 1p0f valence orbits were found to be rather well converged.
develops for the hole part of the exact spectral_function\hel In the largest calculations they appeared to be almost con-
the energye, =(Eg — Ejig) — Sy™*, whereS{™ is the one-  stant for oscillator frequencies in the rarige e [8, 20] MeV.
nucleon separation energy from the ground sta® efl par-  These convergence properties are possible thanks to a predi
ticles. The distribution on both sides of the Fermi surface i agonalization of the féects of short-range correlations. This
similar but not fully symmetric, the strength being stronge  is done using th&-matrix technique [22, 60] to resum ladder
large positive energies. This is because ter(1)-nucleon  djagrams outside the model space. Our results put in evidenc
system can access a larger phase space than a single hg@ strong sensitivity of spectroscopic factors on theigiart
within the A-nucleon ground state. This asymmetry is alreadyngle gap at the Fermi surface. For tNe= 28 andZ = 28
observed at the level of the self-enei(w), a resultinline  sypshell closures the baréIND potential fails in describing
with available fits of global optical potentials [49, 50]. the experimental gap (in an analogous way to other realistic
For the proton case, the polesgtf) correspond to the ad-  two-nucleon interactions [11]). Thistect has been attributed
dition (removal) of a proton to the eigenstates®®@o (*°Cu).  to missing three-nucleon interactions [69]. It is foundttha

The corresponding spectral strength is substantiallydnges  proper correction of few monopole terms of the Hamiltonian
as that discussed for neutrons due to the almost exact ls0spillows us to extract reliable results for the fragmentatién

symmetry of the nuclear force. However, it is shifted to ligh  single-particle strength.

energies by the Coulomb repulsion. Fully self-consistent Faddeev random phase approximation
calculations have till now only been presented ¥®. The
extension to accuratab initio calculations in the pOf shell
V. CONCLUSIONS represent a major technical advance. However, no substanti
use of parallel computation has been made in applying this
The aim of this work has been to extend large-scale calcuformalism. Improvements in numerical algorithms are still
lations of self-consistent Green’s functions to medium snas possible and it is expected that they will allow a betterttrea
nuclei and to investigate the properties of the singleiglart ment of fragmentation in the self-consistent approach,els w
spectral function of®Ni. as pushing the limits of present calculations well beyondsna
Many-body Green’s functions hold a number of interest-A = 56. Another obvious extension is the inclusion of explicit
ing mathematical properties. Since one aims at obtainingree-nucleon forces. Within the framework of self-cotesis
excitations relative to a reference nucleus calculatimages ~Green’s function theory this has already been achievedfer n
more gently when increasing the number of particles as opclear matter studies [76]. Similar developments can be ex-
posed to direct large-scale diagonalization methods. Onlpected for finite nuclei as well.
connected diagrams are summed to all orders so that the For open shell systems with weakly bound states/@nd
extensivity condition is satisfied [14]. Moreover, the self resonances, one needs a single-particle basis which can han
consistent approach provides a path to ensure the consendle continuum states, as done in [77]. Normally, this leads
tion of basic macroscopic quantities. However, the gréateso a much larger space and may require parallelization of
advantage of the self-consistent Green’s function forsnali our codes. On the other hand, th&eetive interaction
is that its building blocks, the many-body propagators,-conamong valence-space quasiparticles is already genemated i
tain information on the response to several particle temsf the present calculations and can be used for standard shell-
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model calculations in one or two major shells. The issue obf Refs. [3, 4]. These spectroscopic factors are all in thgea
degenerate unperturbed states for open shells systemisbas af 60%-70% of the independent-particle model value and in
been addressed for Green’s functions theory in Ref. [78] byair agreement with the observation of valence states in sev
using a Bogoliubov-type quasi-particle transformation.al  eral stable nuclei [9]. The fragmentation pattern of vaéenc
self-consistent treatment, one may improve on this approacorbits predicted by the Faddeev random phase approximation
by extending the Faddeev-RPA method to include explicits also found in substantial agreement with what is known for
configuration mixing between the nucleons inside the operlosed shell nuclei [24] and supports the descriptioRSbl
shell. as a doubly magic nucleus. Finally, we note that tfieats of

The N = 28 andZ = 28 subshell closure has also at- admixing configurations with several particle-hole exitas
tracted recent experimental interest following the diseus  are not included in the present study. Thefeas can be ac-
of whether the low-lying states ofCu are strongly frag- counted for by using configuration interaction (shell-mpde
mented due to a softNi core, see for example Ref. [6]. While methods. However, based on the analysis of Refs. [68, 79, 80]
no direct experimental information is available for thensia  these corrections are not expected to be dominant.
tion between these two isotopes, the spectroscopic fagtor f
neutron knockout fron?’Ni has been measured in Ref. [2].
The present calculations describe well the quenching of the
experimental cross section. At the same time, we report pre-
dictions for both proton and neutron transfer to the other va
lence orbits arounéfNi. These calculations can thereby pro-  One of the authors (C.B.) would like to acknowledge sev-
vide theoretical benchmarks for the forthcoming experiteen eral useful discussions with W. H. Dickfi@nd D. Van Neck.
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