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The single-particle spectral function of56Ni has been computed within the framework of self-consistent
Green’s functions theory. The Faddeev random phase approximation method and the G-matrix technique are
used to account for the effects of long- and short-range physics on the spectral distribution. Large scale calcu-
lations have been performed in spaces including up to ten oscillator shells. The chiral N3LO interaction is used
together with a monopole correction that accounts for eventual missing three-nucleon forces. The single-particle
energies associated with nucleon transfer to valence 1p0 f orbits are found to be almost converged with respect
to both the size of the model space and the oscillator frequency. The results support that56Ni is a good doubly
magic nucleus. The absolute spectroscopic factors to the valence states onA = 55, 57 are also obtained. For
the transition between the ground states of57Ni and56Ni, the calculations nicely agree with heavy-ion knockout
experiments.

PACS numbers: 31.10.+z,31.15.Ar

I. INTRODUCTION

The way shell closures and single-particle energies evolve
as functions of the number of nucleons is presently one of the
greatest challenges to our understanding of the basic features
of nuclei. Doubly-magic nuclei are particularly importantand
closed shell nuclei like56Ni and100Sn have been the focus of
several experiments during the last years [1–7]. Their struc-
ture provides important information on theoretical interpre-
tations and our basic understanding of matter. In particular,
recent experiments [1–6] have aimed at extracting informa-
tion about single-particle degrees of freedom in the vicinity
of 56Ni. Experimental information from single-nucleon trans-
fer reactions and magnetic moments [1–4, 6], can be used to
extract and interpret complicated many-body wave functions
in terms effective single-particle degrees of freedom. Trans-
fer reactions provide for example information about the an-
gular distributions, the excitation energies and the spectro-
scopic factors of possible single-particles states. If onecan
infer from experimental data that a single-particle picture is
a viable starting point for interpreting a closed-shell nucleus
like 56Ni, one can use this nucleus as a basis for constructing
valence-space effective interactions. These interactions can in
turn be used in shell-model calculations of nuclei with several
valence nucleons above theN = 28 andZ = 28 filled shells of
56Ni. Recent measurements of spectroscopic factors of57Ni
in high-energy knockout reactions [2] seem to indicate that
low-lying states in57Ni can be characterized as single-particle
states on top of56Ni as a closed-core nucleus. Large-scale
shell-model calculations by Horoiet al [8] corroborate these
findings, whereas a recent experiment on magnetic moments

∗Present address:Theoretical Nuclear Physics Laboratory,RIKEN Nishina
Center, Japan.

of the ground state of57Cu [6], expected to be described as
one valence proton outside56Ni, resulted in much smaller mo-
ments than those expected from a single-particle picture. Sim-
ilarly, large transition matrix elements between the 0+

1 ground
state and the first excited 2+1 state indicate that the56Ni core
is rather soft [5], or stated differently, it implies a rather frag-
mented single-particle picture. On the other hand, one ought
keep in mind that quenchings of spectroscopic factors to about
60% are common even for good closed shell nuclei [9]. Ex-
perimentally, spectroscopic factors are defined as the ratio of
the observed reaction rate with respect to the same rate calcu-
lated assuming a full occupation of the relevant single-particle
states. They are therefore often interpreted as a measure ofthe
occupancy of a specific single-particle state. However, from
a strict theoretical point of view spectroscopic factors are not
occupation numbers but a measure of what fraction of the full
wave function can be factorized into a correlated state (often
chosen to be a given closed-shell core) and an independent
single-particle or single-hole state. Large deviations from the
values predicted by an independent-particle model, point to a
strongly correlated system. In this regime, collective excita-
tions that behave like single-particle degrees of freedom—that
is quasiparticles—can still arise.

The above mentioned large-scale shell-model calculations
[8] have been performed in one major shell, the 1p0 f -shell,
with an effective interaction fitted to reproduce properties of
several nuclei that can be interpreted in terms of these single-
particle states. The number of possible Slater determinants
that can be constructed when distributing eight valence pro-
tons and eight valence nucleons in the 1p0 f shell is more
than 109. This means that the inclusion of more compli-
cated particle-hole excitations from shells below and above
the 1p0 f shell, are well beyond present capabilities of large-
scale diagonalization methods [8, 10–13]. The hope is that
an effective interaction tailored to one major shell includes
as many as possible of these neglected particle-hole excita-
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tions. However, there are other many-body methods that al-
low for a computational scheme which accounts for a system-
atic inclusion of more complicated many-body corrections.
Typical examples of such many-body methods are coupled-
cluster methods [14–17], various types of Monte Carlo meth-
ods [18–20], perturbative many-body expansions [21, 22],
self-consistent Green’s functions (SCGF) methods [23–31],
the density-matrix renormalization group [32–35] andab ini-
tio density functional theory [36, 37], just to mention some of
the available methods.

The Green’s function Monte Carlo method [18, 38–40] and
the no-core shell-model approach [13, 41–46] have been suc-
cessfully applied to the theoretical description of light nu-
clei with mass numbersA ≤ 12, and Hamiltonians based
on nucleon-nucleon and three-nucleon interactions. However,
present experimental studies of nuclear stabilities are now be-
ing pushed to larger mass regions, with mass numbers from
A = 40 to A = 100. Traditionally, this has been the realm of
the nuclear shell-model and nuclear density-functional theory.
These methods employ Hamiltonians and density functionals
with phenomenological corrections and are not directly re-
lated to the vacuum nucleon-nucleon interaction employed in
ab initio calculations (exceptions are found when perturba-
tive many-body methods are used [22]). However, in selected
medium-mass nuclei,ab initio structure calculations can be
performed using approaches like coupled-cluster and Green’s
functions theories. These methods allow studying ground-
and excited-state properties of systems with dimensionalities
beyond the capability of present large-scale diagonalization
approaches, with a much smaller numerical effort when com-
pared to diagonalization methods aiming at similar accuracies.
The accuracy of these methods is sufficiently high to attribute
an eventual disagreement between experimental data and the-
oretical results to missing physics in the Hamiltonian. In this
way, such calculations help to increase our understanding of
the nuclear interaction on a very fundamental level.

Recent coupled-cluster calculations [17] have reported
practically converged results of the ground state of medium-
mass nuclei like40Ca, 48Ni and 48Ca using the bare chiral
interaction N3LO [47]. These calculations employed a har-
monic oscillator basis to construct the single-particle basis
and included correlations of the so-called singles and dou-
bles types. It means that one-particle-one-hole and two-
particle-two-hole correlations acting on a many-body Slater
determinant were summed to infinite order. Recently, results
with three-particle-three-hole correlations have also been ob-
tained [48]. The calculations were performed in a harmonic
oscillator basis containing up to fifteen major shells and re-
sulted in basically converged ground state properties for a
given Hamiltonian.

Another method with a strong potential for performingab
initio calculations of nuclei beyondA = 12 is self-consistent
Green’s functions theory. Differently from the coupled-cluster
and no-core shell model, this method does not construct the
wave function but evaluates directly the energies and transi-
tion matrix elements for the transfer of one or more nucle-
ons. Another important point is that the self-energy–the cen-
tral component of the formalism–has been shown to be an ex-

act optical potential. On the one hand, one can employ the
formalism for pureab initio studies. On the other, the strong
link with the response to experimental probes can be used to
constrain and improve phenomenological models. An exam-
ple of this approach is the dispersive optical model recently
derived for chain of calcium isotopes [49, 50]. This global op-
tical potential reproduces with high accuracy the known elas-
tic scattering data, up to energies of 200 MeV. Thus, Green’s
functions hold a promise ofboth bridging nuclear structure
and reactions and for connecting the (relatively few) isotopes
amenable ofab initio calculations to the rest of the nuclear
landscape.

In practical applications of Green’s functions theory, one
expands the self-energy in terms of resummations of Feynman
diagrams and truncates the series in a way that allows for fur-
ther systematic improvements of the formalism. A powerful
scheme for non-perturbative expansions is the so called Fad-
deev random phase approximation (FRPA) that explicitly ac-
counts for particle-vibration couplings [28, 51]. First applica-
tions of this approach were devoted to16O. One single calcu-
lation yielded the basic information to be used for microscopic
studies of spectroscopic factors [29, 52], the excitation spec-
trum [30], two-nucleon emission [53, 54] and the nucleon-
nucleus optical potential [55]. Thus, the FRPA method pur-
sues a global description of the many-body dynamics, far be-
yond ground state properties alone. Another difference with
the coupled-cluster approach is that Green’s functions allow,
via a diagrammatic approach, to directly introduce the corre-
lations outside the model space that are associated with short-
range degrees of freedom [56, 57]. It can therefore be applied
to interactions with strong short-range cores (for example, the
Argonne model [58] was employed in Ref. [31]).

Self-consistent FRPA calculations of16O were first per-
formed by the authors of Ref. [29], and subsequently extended
to fully ab initio calculations in spaces up to eight oscillator
shells [31]. To our knowledge, the combination of the ran-
dom phase approximation phonons and the proper treatment
of the energy dependence of the interaction vertex, makes this
the most accurate evaluation of single-particle states available
for this nucleus. In this work we extend the range of applica-
tions of this formalism to studies of quasiparticle states around
56Ni, as a first application of Faddeev random phase approx-
imation to 1p0 f shell nuclei. As mentioned above, there is
quite some experimental interest in single-particle properties
around56Ni.

This work is organized as follows. Sec. II reviews the Fad-
deev random phase approximation approach and discusses the
approximations made to calculate the self-consistent propa-
gator. The convergence of single-particle properties is dis-
cussed in Sec. III and the results for the spectral function are
described in Sec. IV. We refer the reader directly interested to
discussion of physics results to the latter section. Conclusions
are drawn in Sec. V.
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II. FORMALISM

This section serves as an overview of the formalism we em-
ploy. The treatment of short-range physics and the implemen-
tation of self-consistency, which are improved with respect to
previous works, are discussed in details. The Faddeev random
phase approximation expansion is also introduced, but we re-
fer the reader for more details in Refs. [28, 51].

In the framework of Green’s function theory, the object of
interest is the single-particle propagator, instead of themany-
body wave function. In the following, greek indicesα, β, . . .
label the orthonormal basis set of single-particle states in-
cluded in the model space, while latin indicesk, l, . . . refer
to many-body states. We employ the convention of summing
over repeated indices, unless specified otherwise. The single-
particle propagator can be written in the so-called Lehmann
representation as [23, 59]

gαβ(ω) =
∑

n

(

Xn
α

)∗
Xn
β

ω − ε+n + iη
+

∑

k

Yk
α

(

Yk
β

)∗

ω − ε−k − iη
, (1)

whereXn
α = 〈Ψ

A+1
n |c†α|ΨA

0〉 (Yk
α = 〈Ψ

A−1
k |cα|Ψ

A
0〉) are the spec-

troscopic amplitudes,cα (c†α) are the second quantization an-
nihilation (creation) operators andε+n = EA+1

n − EA
0 (ε−k =

EA
0 − EA−1

k ). With these definitions,|ΨA+1
n 〉 and|ΨA−1

k 〉 are the
eigenstates, whileEA+1

n andEA−1
k are the corresponding ener-

gies of the (A±1)-nucleon system. Therefore, the poles of the
single-particle propagator reflect the energy transfer observed
in pickup and knockout reactions.

The single-particle propagatorgαβ(ω) enters the Dyson
equation as

gαβ(ω) = g0
αβ(ω) + g0

αγ(ω)Σ⋆γδ(ω)gδβ(ω) . (2)

It depends on the irreducible self-energyΣ⋆(ω). The latter can
be written as the sum of two terms. The first terms describes
the average mean-field (MF) while the second term contains
dynamic correlations,

Σ⋆αβ(ω) = ΣMF
αβ +

1
4

Vαλ,µν Rµνλ,γδε(ω) Vγδ,βε . (3)

In Eq. (2), g0(ω) is the so-called unperturbed single-
propagator, corresponding to nucleons moving under the ef-
fect of the kinetic energy part of the total Hamiltonian. The
localization of the single-particle states in the nuclear mean-
field is due to the termΣMF , which extends the Hartree-Fock
potential to that of a fully correlated density matrix. The term
Vαβ,γδ represents the antisymmetrized matrix elements of the
nucleon-nucleon interaction. In this work, these will be ap-
proximated by an effective interaction, Eq. (8), discussed in
Sec. II A. Eq. (3) introduces the two-particle-one-hole (2p1h)
and two-hole-one-particle (2h1p) irreducible propagatorR(ω).
In its Feynman expansion, this propagator contains all dia-
grams with any number of particle and hole linesexceptthose
that allow the intermediate propagation of one single line.It
can therefore be interpreted as carrying the complete infor-
mation on all configurations that cannot be reduced to a nu-
cleon interacting with the average nuclear field. In particular,

it includes the coupling of single-particle states to collective
vibrations like giant resonances.

The theoretical spectroscopic factorsZk andZn for removal
and addition, respectively, of a nucleon, are given by the nor-
malization integral of the corresponding overlap wave func-
tions. In the notation of Eq. (1), these are

Zk =
∑

α

∣

∣

∣〈ΨA−1
k |cα|Ψ

A
0〉

∣

∣

∣

2
=

∑

α

∣

∣

∣Yk
α

∣

∣

∣

2
,

Zn =
∑

α

∣

∣

∣〈ΨA+1
n |c

†
α|Ψ

A
0〉

∣

∣

∣

2
=

∑

α

∣

∣

∣Xn
α

∣

∣

∣

2
. (4)

The hole states are normalized according to

Zk =
∑

α

∣

∣

∣Yk
α

∣

∣

∣

2
= 1+

∑

α,β

(

Yk
α

)∗ ∂Σ
∗
αβ(ω)

∂ω

∣

∣

∣

∣

∣

∣

ω=ε−k

Yk
β , (5)

which follows directly from the Dyson equation (2). The same
relation applies to particle states, withYk

α replaced by
(

Xn
α

)∗.
Because of the analytical properties ofΣ⋆(ω), the derivative
term results always in a negative contribution, leading thereby
to a quenching of the spectroscopic factors.

It must be stressed that Eqs. (2) and (3) do not involve
any approximation. Therefore, the full knowledge ofΣMF

and R(ω) would be equivalent to the exact solution of the
Schrödinger equation. In practical calculations, it is always
necessary to truncate the full space of available single-particle
states to a finite model space and to select a limited set of
many-body correlations. The approximations employed in the
present work to evaluate these quantities are discussed in the
rest of this section.

A. Short-range physics and effective interaction

The present calculations were performed within a large
but finite set of harmonic oscillator states, including single-
particle states up to ten major shells. In order to treat the short-
range part of the nucleon-nucleon interaction, one must resum
explicitly the series of ladder diagrams for two nucleons out-
side this model space. These contributions are included in
the self-energy in two different ways. Firstly, they are explic-
itly added to the mean-field part,ΣMF , in order to reconstruct
the contribution of short-range correlations in the full Hilbert
space. Secondly, they are included in a regularized effective
Hamiltonian which is used to calculate the long-range part
of correlations—described byR(ω)—inside the chosen model
space. This approach leads to calculating the well knownG-
matrix [22, 60], which is then used as an energy dependent
effective interaction inside the model space [81]. In this case
the ΣMF part of the self-energy will also depend on energy.
This is given by

ΣMF
αβ (ω) = i

∑

γδ

∫

dω′

2π
Gαγ,δβ(ω + ω′)gγδ(ω′)

=
∑

γδ

∑

k

Gαγ,βδ(ω + ε−k ) Yk
δ

(

Yk
γ

)∗
, (6)
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whereGαβ,γδ(ω) are the matrix elements of theG-matrix inter-
action. Eq. (6) differs from the standard Brueckner-Hartree-
Fock potential in the fact that the mean-field is not represented
by a set of independent nucleons filling various orbits. Rather,
the medium is described by the hole spectroscopic amplitudes
Yk that lead to the fully correlated density matrix. Since the
latter are obtained by solving the Dyson equation, they must
be obtained iteratively in a self-consistent way. Wheneverthe
second term in Eq. (3) is neglected, this procedure simply re-
duces to solving the standard Brueckner-Hartree-Fock equa-
tions. However, as soon as the response of the mediumR(ω)
is accounted for, the single-particle propagator becomes frag-
mented andΣMF describes the interaction of a particle with
the “correlated” medium.

We remind that using theG-matrix in Eq. (6) corresponds
to summing the mean-field term form Eq. (3) and ladder di-
agrams with intermediate two-particle states outside the cho-
sen model space. This partitioning procedure has two main
consequences. First, the effects of short-range physics at the
two-body level on the total energy are included in the renor-
malized interaction. This leads to a softer force that can be
applied within a “low-momentum” model space. Secondly,
due to the explicit energy dependence, the termΣMF (ω) con-
tributes as well to the normalization of spectroscopic factors,
Eq. (5). This provides a natural way to determine the amount
of strength that the free interaction would admix into config-
urations outside the model space, see for example the discus-
sion of Refs. [56, 57]. Thus, the present approach differs from
methods based on the renormalization group, where instead
an explicit renormalization of the effective operators would
be required [61].

The energy dependence of theG-matrix becomes cumber-
some in calculating the polarization propagator. We define
therefore a static effective interaction for our model space to
be used in our calculations of the second term on the right-
hand side of Eq. (3). To do this we evaluate the average energy
for theharmonic oscillatorsingle-particle states according to

εho
α = 〈α|

p2

2m
|α〉 +

∑

β∈F

Gαβ,αβ(ω = εho
α + ε

ho
β ) , (7)

where the sum is limited to those states that correspond
to filled orbits in the independent particle model. Note
that in Eq. (7) the single-particle energies are derived itera-
tively while the oscillator wave functions remain unchanged.
Clearly, these orbits are a crude approximation to the real
quasiparticle states and will not be used to constructR(ω) in
Sec. II B–which will be rather determined in a self-consistent
fashion. The main purpose of the above procedure is to yield a
prescription for obtaining a starting energy independent effec-
tive interaction. Following Gad and Müther [62], we use the
single-particle energies from Eq. (7) to define an interaction
for the given model space by

Vαβ,γδ =
1
2

[Gαβ,γδ(ω = ε
ho
α + ε

ho
β ) + Gαβ,γδ(ω = ε

ho
γ + ε

ho
δ )] .

(8)
The G-matrix can be computed according Ref. [22, 60] for
negative energies, up to about−5 MeV. For larger values we

fix the starting energy toω = −5 MeV. Note that the starting
energy appearing in Eq. (6) is shifted by the quasihole poles
ε−k . This ensures that the energy dependence ofΣMF (ω) is
fully accounted for all quasiparticle states in the 1p0 f shell.

B. The Faddeev random phase approximation method

The polarization propagatorR(ω) can be expanded in terms
of simpler Green’s functions that involve the propagation of
one or more quasiparticle states. This approach has the ad-
vantage that it aids in identifying key physics ingredientsof
the many-body dynamics. By truncating the expansion to a
particular subsets of diagrams or many-body correlations,one
can then construct suitable approximations to the self-energy.
Moreover, since infinite sets of linked diagrams are summed
the approach is non-perturbative and satisfies the extensivity
condition [14]. This expansion also serves as a guideline for
systematic improvements of the method.

Following Refs. [28, 51], we first consider the particle-hole
polarization propagator that describes excited states in theA-
particle system

Παβ,γδ(ω) =
∑

n,0

〈ΨN
0 |c
†

β
cα|ΨN

n 〉 〈Ψ
N
n |c
†
γcδ|ΨN

0 〉

ω −
(

EN
n − EN

0

)

+ iη

−
∑

n,0

〈ΨN
0 |c
†
γcδ|Ψ

N
n 〉 〈Ψ

N
n |c
†

β
cα|ΨN

0 〉

ω +
(

EN
n − EN

0

)

− iη
, (9)

and the two-particle propagator that describes the addi-
tion/removal of two particles

gII
αβ,γδ(ω) =

∑

n

〈ΨN
0 |cβcα|Ψ

N+2
n 〉 〈ΨN+2

n |c†γc
†

δ
|ΨN

0 〉

ω −
(

EN+2
n − EN

0

)

+ iη

−
∑

k

〈ΨN
0 |c
†
γc
†

δ
|ΨN−2

k 〉 〈ΨN−2
k |cβcα|ΨN

0 〉

ω −
(

EN
0 − EN−2

k

)

− iη
. (10)

These Green’s functions contain in their Lehmann represen-
tations all the relevant information regarding the excitation of
particle-hole and two-particle or two-hole collective modes.
In this work we are interested in studying the influence of gi-
ant resonance vibrations, which can be described within the
random phase approximation (RPA). In the Faddeev RPA ap-
proach, the propagators of Eqs. (9) and (10) are then evalu-
ated by solving the usual RPA equations, which are depicted
diagrammatically in Fig. 1. Since these equations reflect two-
body correlations, they still have to be coupled to an addi-
tional single-particle propagator, as in Fig. 2, to obtain the cor-
responding approximation for the two-particle-one-hole and
two-hole-one-particle components ofR(ω). This is achieved
by solving two separate sets of Faddeev equations, as dis-
cussed in Ref. [28].

Taking the two-particle-one-hole (2p1h) case as an exam-
ple, one can splitR(2p1h)(ω) in three different components
R̄(i)(ω) (i = 1, 2, 3) that differ from each other by the last pair
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Π

g

Π(ph)

(pp/hh)II

(ph)

(pp/hh)

FIG. 1: (Color online) Diagrammatic equations for the polarization
(above) and the two-particle (below) propagators in the RPAap-
proach. Dashed lines are matrix elements of the effective nucleon-
nucleon interaction, Eq. (8). The full lines represent the independent-
particle model propagatorgIPM(ω), which is employed instead of the
fully dressed one. See the text for details.

of lines that interact in their diagrammatic expansion,

R̄(2p1h)
αβγ,µνλ

(ω) =
[

G0>
αβγ,µνλ(ω) −G0>

βαγ,µνλ(ω)
]

+
∑

i=1,2,3

R̄(i)
αβγ,µνλ

(ω) ,

(11)
whereG0>(ω) is the2p1hpropagator for three freely propa-
gating lines. These components are solutions of the following
set of Faddeev equations [63]

R̄(i)
αβγ,µνλ

(ω) = G0>
αβγ,µ′ν′λ′ (ω) Γ(i)

µ′ν′λ′ ,µ′′ν′′λ′′
(ω)

×
[

R̄( j)
µ′′ν′′λ′′ ,µνλ

(ω) + R̄(k)
µ′′ν′′λ′′ ,µνλ

(ω) (12)

+ G0>
µ′′ν′′λ′′,µνλ(ω) −G0>

ν′′µ′′λ′′ ,µνλ(ω)
]

, i = 1, 2, 3

where (i, j, k) are cyclic permutations of (1, 2, 3). The in-
teraction verticesΓ(i)(ω) contain the couplings of a particle-
hole (ph), see Eq. (9), or two-particle/two-hole (pp/hh), see
Eq. (10), collective excitations and a freely propagating line.
The propagatorR(ω) which we employ in Eq. (3) is finally
obtained by

R(2p1h)
αβγ,µνλ

(ω) = Uαβγ,µ′ν′λ′ R̄(2p1h)
µ′ν′λ′ ,µ′′ν′′λ′′

(ω) U†
µ′′ν′′λ′′,µνλ

, (13)

where the matrixU has the effect of renormalizing the
strength of the dynamic self-energy. This correction ensures
consistency with perturbation theory up to third order. The
explicit formulae of the matricesΓ(i)(ω) andU are given in
terms of the propagators of Eqs. (9), (10) and (14), and the
interactionVαβ,γδ. They are discussed in detail in Ref. [51].
The calculation of the2h1pcomponent ofR(ω) follows com-
pletely analogous steps.

The present formalism includes the effects ofph andpp/hh
motion simultaneously, while allowing interferences between
these modes. These excitations are evaluated here at the
RPA level and are then coupled to each other by solving
Eqs. (12). This generates diagrams as the one displayed in
Fig. 2. The Faddeev equations also ensure that the Pauli prin-
ciple is correctly taken into account at the2p1h and 2h1p

(ph)

(pp/hh)

ΠΠ
II

Π(ph)

g II (pp/hh)

(ph)

Π(ph)

g

FIG. 2: (Color online) Example of one of the diagrams that are
summed to all orders by means of the Faddeev random phase approx-
imation Eqs. (12) (left). The corresponding contribution to the self-
energy, obtained upon insertion into Eq. (3), is also shown (right).

level. In addition, one can in principle employ dressed single-
particle propagators in these equations to generate a fullyself-
consistent solution, as done in Refs. [29, 31] for valence orbits
around16O.

C. Self-consistent approach

In the self-consistent Green’s function approach, both the
ΣMF part of the self-energy and the polarization propaga-
tor R(ω) are expressed directly in terms of the exact single-
particle propagatorg(ω). The lines in Figs. 1 and 2 should
thus represent the fully dressed propagator obtained by solv-
ing the Dyson equation. Since the degrees of freedom con-
tained in Eq. (1) are excitations of the fully correlated sys-
tem, the formalism does not depend on an explicit reference
state. Normally, one first computes Eq. (3) in terms of an ap-
proximate propagator. The solution of Eq. (2) is then used to
calculate an improved self-energy and the procedure is iter-
ated to convergence. Baym and Kadanoff have shown that the
self-consistency requirement implies the conservation ofboth
microscopic and macroscopic properties [64, 65]. Intuitively,
the self-consistency requirement becomes important when-
ever dynamical correlations modify substantially the response
with respect to the Hartree-Fock mean-field (an example is
the band-gap error problem in diamond crystals [66]). When
applying standard Hartree-Fock theory to nuclear structure,
most realistic interactions predict unbound nuclei and valence
orbits in the continuum. This is a very poor starting point
for any application of perturbation theory and other many-
body techniques. However, the self-consistent approach re-
quires using correlated quasiparticle energies and wave func-
tions [the poles and residues of Eq. (1)]. These degrees of
freedom form an optimal starting point for studies of many-
body dynamics at the Fermi surface.

Accounting for the fragmentation of the single-particle
propagator in the Faddeev random phase approximation in-
creases the computational load as one moves to larger nuclei
and model spaces. In this situation it is convenient to expand
R(ω) in terms of an independent-particle model (IPM) prop-
agator. This should approximate the dressed one but with a
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limited number of poles. Thus, we solve Eq. (12) in terms of

gIPM
αβ (ω) =

∑

n/∈F

(

φn
α

)∗
φn
β

ω − εIMP
n + iη

+
∑

k∈F

φk
α

(

φk
β

)∗

ω − εIMP
k − iη

, (14)

where F represent the set of occupied orbits. The single-
particle energiesεIPM and wave functionsφ are chosen such
that gIPM(ω) coincides with the real propagatorg(ω) at the
Fermi surface. To do this we define the following moments of
the poles of Eq. (1).

Mp
αβ
=

∑

n

(

Xn
α

)∗
Xn
β

[

EF − ε+n
]p +

∑

k

Yk
α

(

Yk
β

)∗

[

EF − ε
−
k

]p , p = 0, 1, 2, . . .

(15)
whereEF is the Fermi energy. Eq. (14) is determined by im-
posingM0,IPM

αβ
= M0

αβ
and M1,IPM

αβ
= M1

αβ. The purpose of
Eq. (15) is to define a set of effective single-particle orbits
and energies that conserve the total spectroscopic strength car-
ried by the self-consistent propagator and the centroids ofits
fragmented states. While effective single-particle properties
form an appropriate starting point to evaluateR(ω), it remains
clear that they only represent average quantities. Instead, it is
Eq. (1) that must be related to experiment.

The propagatorgIPM(ω) is derived from Eq. (1) and it still
needs to be evaluated in a iterative way. Therefore, the result-
ing propagatorR(ω) is (partially) self-consistent. We stress
that Eq. (6) can be calculated easily from the fully dressed
propagator. Thus self-consistency is achievedexactlyat the
mean-field level.

III. CALCULATIONS AND CONVERGENCE

The present calculations were performed using a harmonic
oscillator basis and including up to ten major harmonic os-
cillator shells. We label these spaces withNmax = 3, 5, 7,
or 9, whereN = 2n + l. For the largest model space em-
ployed,Nmax = 9, all partial waves with orbital angular mo-
mentuml ≤ 7 were included. This amount to 368 single-
particle states for each particle species, protons and neutrons
in our case. The total number of available Slater determinants
for 56Ni without any particular restrictions is proportional to
the product of the two binomials

(

368
28

)

×

(

368
28

)

,

a number which clearly exceeds the capabilities of any direct
large-scale diagonalization procedure.

The codes utilize aj j -coupling scheme to decouple the
Faddeev equations of Eq. (12). At each iteration, the RPA
equations are solved in the particle-hole and the particle-
particle and hole-hole channels using the single-particleor-
bits and energies from Eq. (14). The resulting propagators
are inserted in Eqs. (12), which in turn are casted into a
non Hermitian eigenvalue problem [28]. In our largest cal-
culation we diagonalize dense matrices of dimension up to

26× 103 two-particle-one-hole states. This number is bound
to increase when larger nuclei are investigated or more details
of nuclear fragmentation (that is more poles) are included in
gIPM(ω) (14). The numerical implementation of the Faddeev
random phase approximation required careful optimizationin
evaluating the elements of the Faddeev matrix and a proper
generalization of the Arnoldi algorithm [67] to employ mul-
tiple pivots. Similar improvements allowed to extend large
scale calculations from theA = 16 mass region to theA = 56
mass region. The dimensions reached in this work represent
roughly the upper limit when using table top single processor
computers. Obviously, there is much to gain by taking advan-
tage of modern supercomputer facilities and future research
efforts should be put into parallelization of the present algo-
rithms.

Model spaces of eight to ten major shells are large enough
for a proper description of the response due to long-range cor-
relations. These include excitations of several MeVs into the
region of giant resonances. The effects of short-range physics
are also included by using aG-matrix and an effective interac-
tion as discussed in Sec. II A. These are derived using the chi-
ral nucleon-nucleon interaction N3LO by Entem and Mach-
leidt [47]. This interaction employs a cutoff of Λ = 500 MeV.

Typical realistic two-nucleon interactions fail in reproduc-
ing the spin-orbit splittings and gaps between different shells.
In particular, for theN = 28 andZ = 28 subshell closures
these lead to an underestimation of the gap at the Fermi sur-
face. In these cases, a complete diagonalization of the Hamil-
tonian would predict a deformed ground state of these nuclei
even when they are experimentally known to be good spher-
ical closed-shells systems [11, 68]. This issue can be cured
with a simple modification of the monopole strengths of the
interaction. Recently, Zuker has reported that the same cor-
rection works well for several isotopes throughout the nuclear
chart and proposed that this may be interpreted as a signature
of missing three-nucleon interactions [69].

The inclusion of three-nucleon interactions to the Faddeev
random phase approximation formalism is beyond the scope
of the present work. However, it will be shown in Sec. III A
that properly reproducing the Fermi gap is crucial in order to
obtain meaningful results for the valence space spectroscopic
factors. Thus, we follow Ref. [69] and modify the monopoles
in the N3LO interaction model as

∆VT
f r → ∆VT

f r − (−1)TκM ,

∆VT
f f → ∆VT

f f − 1.5(1− T)κM , (16)

wheref andr stand for the Brueckner-Hartree-Fock states as-
sociated to the 0f7/2 and the (1p3/2,1p1/2,0f5/2) orbits, respec-
tively. In the limit of large spaces, the Brueckner-Hartree-
Fock orbits converge to the Hartree-Fock states and this cor-
rection becomes independent of the choice of the single-
particle basis. Note that the prescription of Eq. (16) modifies
only a few crucial matrix elements while about six millions of
them are defined in theNmax= 9 model space.

We also note that the present truncation of the model space,
in terms of the number of oscillator shells, does not separate
exactly the center of mass motion. Coupled-cluster calcula-
tions have shown that the error introduced by this truncation
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FIG. 3: (Color online) Dependence of neutron spectroscopicfactors
(given as a fraction of the independent-particle model value) for the
1p3/2 and the 0f7/2 valence orbits with respect the ph gap∆Eph. For
each model space, different points correspond to different choices of
κM in the range 0.4− 0.7 MeV.

becomes negligibly small for large model spaces such as the
ones employed here and therefore it does not represent a major
issue [17, 70]. In calculations of binding energies, it custom-
ary to subtract the operator for the kinetic energy of the center
of mass directly from the Hamiltonian. This term automati-
cally corrects for the zero point motion in oscillator basisbut
it depends explicitly on the number of particles. In this work,
we are interested in transitions to states with different num-
bers of nucleons [(A±1] and aim at computing directly the
differences between the total energies. Therefore, the above
correction shouldnot be employed in the present case. One
may note that the separation of the center-of-mass motion is
an issue related to the choice made for the model space, rather
than the many-body method itself. For example, expressing
the propagators directly in momentum space would allow an
exact separation. In this situation, the transformation between
the center-of-mass and laboratory frames for systems with a
nucleon plus aA nucleons (or (A − 1) nucleons) core would
also be simple.

A. Choice of κM

Eq. (16) introduces a single parameter (κM) in our calcu-
lations. The reason for this modification is that the spectro-
scopic factors of the valence orbits are strongly sensitiveto
the particle-hole gap. This sensitivity is to be expected since
collective modes in the56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence or-
bits. In order to extract meaningful predictions for spectro-
scopic factors it is therefore necessary to constrain the Fermi
gaps for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calcula-
tions for values ofκM in the range 0.4 − 0.7 MeV. Fig. 3
shows the resulting neutron spectroscopic factors for the va-
lence p3/2 quasiparticle andf7/2 quasihole. These are plot-
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FIG. 4: (Color online) Dependence of the neutron 1p3/2 particle en-
ergy and the 0f7/2 hole energy with respect to the oscillator frequency
and the size of the model space.

ted as a function of the calculated particle-hole gap∆Eph =

ε+1p3/2,n=0 − ε
−
0 f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and os-
cillator frequencies (~Ω = 10 or 18 MeV). The gap∆Eph in-
creases withκM but the dependence on the model space is
weak. We notice that, once the experimental value of∆Eph

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In theNmax = 9 model space and an
oscillator energy~Ω = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1− 2% of the independent-particle model value.

B. Convergence with respect to choice of model space

Fig. 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator fre-
quency and the size of the model space. As can be seen from
this figure, the single-particle energies for these two single-
particle states tend to stabilize around eight to ten major shells.
This finding concords both with coupled-cluster calculations
that employ aG-matrix as effective interaction for16O, see
Refs. [70, 71], and with analogous Green’s functions stud-
ies [31]. It remains however to make an extensive comparison
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FIG. 5: (Color online) Dependence of neutron single-particle ener-
gies on the oscillator frequency. The energies plotted hereare the
poles ofg(ω) corresponding to the valence 1p0 f orbits. Calculations
were performed forNmax= 9 andl ≤ 7.

between coupled-cluster theory and the Green’s function ap-
proach in order to find an optimal size of the model space with
a given nucleon-nucleon interaction. Finally, we plot in Fig. 5
the neutron valence single-particle energies for all the single-
particle states in 1p0 f -shell. The latter results were obtained
with our largest model space, ten major shells withNmax = 9
and the single-particle orbital momentuml ≤ 7. As can be
seen from this figure, there is still, although weak, a depen-
dence upon the oscillator parameter. To perform calculations
beyond ten major shells will require non trivial extensionsof
our codes.

IV. RESULTS FOR THE SPECTRAL FUNCTION

Our results for spectroscopic factors for the 1p0 f -shell va-
lence orbits and the corresponding single-particle energies are
collected in Table I. In general, the modified N3LO interac-
tion predicts single-particle energies about 2− 3 MeV lower
than the experimental ones. The Coulomb shift between cor-
responding neutron and proton orbits is calculated to be about
10.2 MeV and it is closer to the empirical value of 9.5 MeV.
For the oscillator parameter chosen,~Ω = 10 MeV, we obtain
an inversion of the 1p1/2 and 0f5/2 excited states in57Ni, with
respect to the experiment. However, this discrepancy disap-
pears for larger values of~Ω (see Fig. 5). This effect is in
fact smaller than the residual dependence on the model space
and therefore no conclusion can be made about the ordering
for the fully converged result. The spectroscopic factor for the
transition between the ground states of57Ni and56Ni was ex-
tracted from high energy knockout reactions in Ref. [2]. The
self-consistent Faddeev random phase approximation result
for this quantity yield 65% of the independent-particle model
value, and agrees with the empirical data within experimen-
tal uncertainties. The theoretical spectroscopic factorsfor the
excited states in57Ni are similar, with the 0f5/2 state being

ε+n , ε−k Zn/(2 j + 1), Zk/(2 j + 1)
————————– ————————–

FRPA Exp. FRPA Exp.
57Ni:
ν1p1/2 -11.43 -9.134 0.63
ν0 f5/2 -10.80 -9.478 0.59
ν1p3/2 -12.78 -10.247 0.65 0.58(11)
55Ni:
ν0 f7/2 -19.22 -16.641 0.72

57Cu:
π1p1/2 -1.28 +0.417 0.66
π0 f5/2 -0.58 0.60
π1p3/2 -2.54 -0.695 0.67
55Co:
π0 f7/2 -9.08 -7.165 0.73

TABLE I: Energies (in MeV) and spectroscopic factors (as a fraction
of the independent-particle model) for transitions to the 1p0 f valence
orbits, obtained for~Ω = 10 MeV, Nmax = 9 andκM = 0.57 MeV.
The experimental single-particle energies are taken from [72]. The
measured spectroscopic factor for transfer between the ground states
of 57Ni and56Ni is from Ref. [2].

somewhat smaller, at about 59%. A larger value is obtained
for knockout to the ground state of55Ni, which is predicted
to be 72%. The results for proton transfer to particle (hole)
states in57Cu (55Co) are only slightly larger. According to the
analysis of Fig. 3, it is expected that these predictions arecon-
verged within 1-2% of the independent-particle model values.

Past studies [5, 6, 73] have questioned whether low-energy
quasiparticle states in57Ni are strongly admixed to excitations
of a soft 56Ni core. The results obtained here do not sug-
gest substantial differences with respect to other known closed
shell nuclei. The spectroscopic factors from Table I are in line
with observations from stable nuclei [9, 74] and support the
hypothesis that56Ni is a good closed-shell nucleus. In our
calculations we find that the 1p3/2 quasiparticle state of57Ni
carries 65% of the strength for this orbit. Another 20% is
located in the particle region belowε+n=2 MeV (above this
energy strength associated with the 2p1 f 0h shell starts to ap-
pear), and about 3% is in the hole region aboveε−k = −40
MeV (see Fig. 6). Similarly, the 0f7/2 state has 72% of the
independent-particle model strength in the quasihole peak(the
ground state of55Ni), 10% in the fragmented hole region, and
3% in the fragmented particle region. This analysis confirms
that the main mechanism responsible for the quenching of the
spectroscopic factors lies in the admixture between single-
particle states and collective excitations in the region ofgiant
resonances [24]. Due to these correlations a large part of the
missing strength from the valence peak is shifted and spread
over an adjacent region about 15− 20 MeV wide. Further
reduction of the spectroscopic factors comes from the mixing
with configurations at much higher energies and momenta and
is accounted for through the energy dependence of Eq. (6).
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FIG. 6: (Color online) Spectral strengths for one-neutron transfer on56Ni obtained from the self-consistent single-particle propagatorg(ω).
Poles above (below) the Fermi energy,EF , correspond to transition to eigenstates of57Ni (55Ni). The respective spectroscopic factors are
given as a fraction of the independent-particle model value. The quasiparticle poles corresponding to the valence orbits of the 1p0 f shell are
indicated by arrows. A logarithmic scale was chosen to put instronger evidence the distribution of the fragmented strength. Results are for
~Ω=10 MeV, Nmax=9 andκM=0.57 MeV.

The information carried by the calculated single-particle
propagatorg(ω) is collected in Fig. 6 for neutrons and partial
waves up tol=3. The plot shows the spectral strength asso-
ciated with each pole ofg(ω). Fragments below the Fermi
surface (EF) refer to the separation of a neutron (55Ni), while
those above correspond to neutron addition (57Ni). The poles
corresponding to the 1p0 f valence orbits are indicated by ar-
rows. These are the same single-particle energies that have
been discussed in Sec. III B and Tab. I. As noted above,
the fragments found at slightly higher energies (just above
ε+n ∼ −8 MeV) originate from the mixing of these orbits
with two-particle-one-hole configurations and collectiveex-
citations of the nucleus. The overall fragmentation effect is
substantial but not strong enough to destroy the single-particle
character of the principal quasiparticle peaks (note that alog-
arithmic scale has been chosen in Fig. 6 in order to make
smaller fragments of the spectral distribution more visible).
This observation supports the use of valence single-particle
states as the relevant degrees of freedom that govern low-lying
excitations, as assumed in conventional shell-model applica-
tions. We note that the question whether a system can be
approximated as a good shell closure is better addressed by

analyzing the spectroscopic factors and strength distribution
rather than occupation numbers, since the latter are integrated
quantities [82]. While unoccupied states can be probed by
the addition of a nucleon, occupied states are accessed by
knockout to states of theA − 1 nucleon system. A similar
fragmentation pattern is therefore seen for the 0f7/2 orbit but
reversed below the Fermi surface. Interestingly enough, the
Faddeev random phase approximation predicts that states cor-
responding to orbits in the 1s0d and 2s1d0g shells maintain
a strong single-particle character even though they are further
apart from the Fermi surface. The fragmentation of these or-
bits requires excitations across shells of different parity (e.g.
1s0d and 1p0 f ) and could become stronger if the energy dif-
ference among major shells is reduced. Indeed, a compari-
son of our results with electron scattering measurements on
58Ni [75] suggests that the N3LO interaction tends to over-
estimate the gaps between these major shells. Note that in
the present calculations the 2s1d0g quasiparticles are found
at energies of about−3 MeV and overlap with the fragmented
1p0 f states.

Far from the Fermi energyEF , the mixing with complex
configurations becomes strong and it is no longer possible to
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identify sharp quasiparticle and quasihole states. Still,the
energy region occupied by the major shells can be identi-
fied clearly. The N3LO interaction places the states associ-
ated with the 1s0d shell between−60 and−30 MeV, while
the 0p-shell states appear below−50 MeV. Other hole frag-
ments are observed around−30 MeV for the 1p1/2, 1p3/2 and
0 f5/2 partial waves. These originate from particle states in
the 1p0 f shell that are partially occupied due to the smear-
ing of the Fermi surface. Nucleon knockout from these orbits
requires little energy transfer and leads to low-lying states in
55Ni or 55Cu. These states originate from the mixing of par-
ticle orbits with two-hole-one-particle configurations (R(2h1p))
in the Dyson equation. Still, the55Ni ground state is strongly
influenced by the 0f7/2 hole component.

Analogous fragmentation patterns extend to the shells fur-
ther away from the Fermi surface, although these are not
shown in Fig. 6. On the particle side,ε+n = 0 MeV marks
the threshold for the single-particle continuum in the (A+ 1)-
nucleon system. Above this, the exact spectral function be-
comes a continuous function of energy. In the present calcu-
lations a structure of separate poles is found due to the dis-
cretization of the model space. A continuum distribution also
develops for the hole part of the exact spectral function below
the energyε−k=(EA

0 − EA−1
k′=0) − SA−1

N , whereSA−1
N is the one-

nucleon separation energy from the ground state ofA− 1 par-
ticles. The distribution on both sides of the Fermi surface is
similar but not fully symmetric, the strength being stronger at
large positive energies. This is because the (A + 1)-nucleon
system can access a larger phase space than a single hole
within theA-nucleon ground state. This asymmetry is already
observed at the level of the self-energyΣ⋆(ω), a result in line
with available fits of global optical potentials [49, 50].

For the proton case, the poles ofg(ω) correspond to the ad-
dition (removal) of a proton to the eigenstates of57Co (55Cu).
The corresponding spectral strength is substantially the same
as that discussed for neutrons due to the almost exact isospin
symmetry of the nuclear force. However, it is shifted to higher
energies by the Coulomb repulsion.

V. CONCLUSIONS

The aim of this work has been to extend large-scale calcu-
lations of self-consistent Green’s functions to medium mass
nuclei and to investigate the properties of the single-particle
spectral function of56Ni.

Many-body Green’s functions hold a number of interest-
ing mathematical properties. Since one aims at obtaining
excitations relative to a reference nucleus calculations scale
more gently when increasing the number of particles as op-
posed to direct large-scale diagonalization methods. Only
connected diagrams are summed to all orders so that the
extensivity condition is satisfied [14]. Moreover, the self-
consistent approach provides a path to ensure the conserva-
tion of basic macroscopic quantities. However, the greatest
advantage of the self-consistent Green’s function formalism
is that its building blocks, the many-body propagators, con-
tain information on the response to several particle transfer

and excitation processes. Therefore, they can be directly com-
pared to a large body of experimental data. Due to these char-
acteristics the formalism can be used to gain unmatched in-
sights into the many-body dynamics of quantum mechanical
systems. Within this framework, the Faddeev random phase
approximation method proposed in Ref. [28] is a good candi-
date to pursueab initio studies of medium mass isotopes.

In this work we have presented the basic details of calcu-
lating the Faddeev random phase approximation expansion
and discussed results for the spectral function of56Ni. This
is the first application of the self-consistent Green’s func-
tion approach to the 1p0 f shell region. The calculations em-
ploy the chiral N3LO two-nucleon interaction, with a modified
monopole to account for missing many-nucleon forces. In ad-
dition to this one-parameter modification of the Hamiltonian,
the only remaining parameters that enter our calculations are
those defining the nucleon-nucleon interaction.

Calculations were performed in models spaces including up
to ten major oscillator shells. These large spaces are large
enough to allow for a sophisticated treatment of long-range
correlations. The quasiparticle and quasihole energies ofthe
1p0 f valence orbits were found to be rather well converged.
In the largest calculations they appeared to be almost con-
stant for oscillator frequencies in the range~Ω ∈ [8, 20] MeV.
These convergence properties are possible thanks to a predi-
agonalization of the effects of short-range correlations. This
is done using theG-matrix technique [22, 60] to resum ladder
diagrams outside the model space. Our results put in evidence
the strong sensitivity of spectroscopic factors on the particle-
hole gap at the Fermi surface. For theN = 28 andZ = 28
subshell closures the bare N3LO potential fails in describing
the experimental gap (in an analogous way to other realistic
two-nucleon interactions [11]). This effect has been attributed
to missing three-nucleon interactions [69]. It is found that a
proper correction of few monopole terms of the Hamiltonian
allows us to extract reliable results for the fragmentationof
single-particle strength.

Fully self-consistent Faddeev random phase approximation
calculations have till now only been presented for16O. The
extension to accurateab initio calculations in the 1p0 f shell
represent a major technical advance. However, no substantial
use of parallel computation has been made in applying this
formalism. Improvements in numerical algorithms are still
possible and it is expected that they will allow a better treat-
ment of fragmentation in the self-consistent approach, as well
as pushing the limits of present calculations well beyond mass
A = 56. Another obvious extension is the inclusion of explicit
three-nucleon forces. Within the framework of self-consistent
Green’s function theory this has already been achieved for nu-
clear matter studies [76]. Similar developments can be ex-
pected for finite nuclei as well.

For open shell systems with weakly bound states and/or
resonances, one needs a single-particle basis which can han-
dle continuum states, as done in [77]. Normally, this leads
to a much larger space and may require parallelization of
our codes. On the other hand, the effective interaction
among valence-space quasiparticles is already generated in
the present calculations and can be used for standard shell-
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model calculations in one or two major shells. The issue of
degenerate unperturbed states for open shells systems has also
been addressed for Green’s functions theory in Ref. [78] by
using a Bogoliubov-type quasi-particle transformation. In a
self-consistent treatment, one may improve on this approach
by extending the Faddeev-RPA method to include explicit
configuration mixing between the nucleons inside the open
shell.

The N = 28 andZ = 28 subshell closure has also at-
tracted recent experimental interest following the discussion
of whether the low-lying states of57Cu are strongly frag-
mented due to a soft56Ni core, see for example Ref. [6]. While
no direct experimental information is available for the transi-
tion between these two isotopes, the spectroscopic factor for
neutron knockout from57Ni has been measured in Ref. [2].
The present calculations describe well the quenching of the
experimental cross section. At the same time, we report pre-
dictions for both proton and neutron transfer to the other va-
lence orbits around56Ni. These calculations can thereby pro-
vide theoretical benchmarks for the forthcoming experiments

of Refs. [3, 4]. These spectroscopic factors are all in the range
of 60%-70% of the independent-particle model value and in
fair agreement with the observation of valence states in sev-
eral stable nuclei [9]. The fragmentation pattern of valence
orbits predicted by the Faddeev random phase approximation
is also found in substantial agreement with what is known for
closed shell nuclei [24] and supports the description of56Ni
as a doubly magic nucleus. Finally, we note that the effects of
admixing configurations with several particle-hole excitations
are not included in the present study. These effects can be ac-
counted for by using configuration interaction (shell-model)
methods. However, based on the analysis of Refs. [68, 79, 80]
these corrections are not expected to be dominant.
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[43] P. Navrátil and W. E. Ormand, Phys. Rev. Lett.88, 152502
(2002).
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[76] V. Somà and P. Bożek, Phys. Rev. C78, 054003 (2008).
[77] G. Hagen, D. J. Dean, M. Hjorth-Jensen, and T. Papenbrock,

Phys. Lett.B656, 169 (2007).
[78] V. Vav den Sluys, D. Van Neck, M. Waroquier, and J. Rycke-

busch, Nucl. Phys.A551, 210 (1993).
[79] J. R. Gour, M. Horoi, P. Piecuch, B. A. Brown,

Phys. Rev. Lett.101, 052501 (2008).
[80] C. Barbieri, M. Hjorth-Jensen, in preparation.
[81] We use a definition ofG(ω) in whichall states belonging to the

model space are Pauli blocked since diagrams among them are
already included in the many-body calculation ofR(ω).

[82] Occupation numbers are normally defined in terms of the den-
sity matrix, which involves an integral sum over each hole pole
of Eq. (1). Especially for deeply bound orbits, it is possible that
a strong fragmentation pattern still leads to large occupation
numbers.


